]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - block/blk-mq.c
KEYS: Don't write out to userspace while holding key semaphore
[mirror_ubuntu-hirsute-kernel.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Block multiqueue core code
4 *
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
7 */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29
30 #include <trace/events/block.h>
31
32 #include <linux/blk-mq.h>
33 #include <linux/t10-pi.h>
34 #include "blk.h"
35 #include "blk-mq.h"
36 #include "blk-mq-debugfs.h"
37 #include "blk-mq-tag.h"
38 #include "blk-pm.h"
39 #include "blk-stat.h"
40 #include "blk-mq-sched.h"
41 #include "blk-rq-qos.h"
42
43 static void blk_mq_poll_stats_start(struct request_queue *q);
44 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
45
46 static int blk_mq_poll_stats_bkt(const struct request *rq)
47 {
48 int ddir, sectors, bucket;
49
50 ddir = rq_data_dir(rq);
51 sectors = blk_rq_stats_sectors(rq);
52
53 bucket = ddir + 2 * ilog2(sectors);
54
55 if (bucket < 0)
56 return -1;
57 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
58 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
59
60 return bucket;
61 }
62
63 /*
64 * Check if any of the ctx, dispatch list or elevator
65 * have pending work in this hardware queue.
66 */
67 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
68 {
69 return !list_empty_careful(&hctx->dispatch) ||
70 sbitmap_any_bit_set(&hctx->ctx_map) ||
71 blk_mq_sched_has_work(hctx);
72 }
73
74 /*
75 * Mark this ctx as having pending work in this hardware queue
76 */
77 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
78 struct blk_mq_ctx *ctx)
79 {
80 const int bit = ctx->index_hw[hctx->type];
81
82 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
83 sbitmap_set_bit(&hctx->ctx_map, bit);
84 }
85
86 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
87 struct blk_mq_ctx *ctx)
88 {
89 const int bit = ctx->index_hw[hctx->type];
90
91 sbitmap_clear_bit(&hctx->ctx_map, bit);
92 }
93
94 struct mq_inflight {
95 struct hd_struct *part;
96 unsigned int inflight[2];
97 };
98
99 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
100 struct request *rq, void *priv,
101 bool reserved)
102 {
103 struct mq_inflight *mi = priv;
104
105 if (rq->part == mi->part)
106 mi->inflight[rq_data_dir(rq)]++;
107
108 return true;
109 }
110
111 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
112 {
113 struct mq_inflight mi = { .part = part };
114
115 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
116
117 return mi.inflight[0] + mi.inflight[1];
118 }
119
120 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
121 unsigned int inflight[2])
122 {
123 struct mq_inflight mi = { .part = part };
124
125 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
126 inflight[0] = mi.inflight[0];
127 inflight[1] = mi.inflight[1];
128 }
129
130 void blk_freeze_queue_start(struct request_queue *q)
131 {
132 mutex_lock(&q->mq_freeze_lock);
133 if (++q->mq_freeze_depth == 1) {
134 percpu_ref_kill(&q->q_usage_counter);
135 mutex_unlock(&q->mq_freeze_lock);
136 if (queue_is_mq(q))
137 blk_mq_run_hw_queues(q, false);
138 } else {
139 mutex_unlock(&q->mq_freeze_lock);
140 }
141 }
142 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
143
144 void blk_mq_freeze_queue_wait(struct request_queue *q)
145 {
146 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
147 }
148 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
149
150 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
151 unsigned long timeout)
152 {
153 return wait_event_timeout(q->mq_freeze_wq,
154 percpu_ref_is_zero(&q->q_usage_counter),
155 timeout);
156 }
157 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
158
159 /*
160 * Guarantee no request is in use, so we can change any data structure of
161 * the queue afterward.
162 */
163 void blk_freeze_queue(struct request_queue *q)
164 {
165 /*
166 * In the !blk_mq case we are only calling this to kill the
167 * q_usage_counter, otherwise this increases the freeze depth
168 * and waits for it to return to zero. For this reason there is
169 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
170 * exported to drivers as the only user for unfreeze is blk_mq.
171 */
172 blk_freeze_queue_start(q);
173 blk_mq_freeze_queue_wait(q);
174 }
175
176 void blk_mq_freeze_queue(struct request_queue *q)
177 {
178 /*
179 * ...just an alias to keep freeze and unfreeze actions balanced
180 * in the blk_mq_* namespace
181 */
182 blk_freeze_queue(q);
183 }
184 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
185
186 void blk_mq_unfreeze_queue(struct request_queue *q)
187 {
188 mutex_lock(&q->mq_freeze_lock);
189 q->mq_freeze_depth--;
190 WARN_ON_ONCE(q->mq_freeze_depth < 0);
191 if (!q->mq_freeze_depth) {
192 percpu_ref_resurrect(&q->q_usage_counter);
193 wake_up_all(&q->mq_freeze_wq);
194 }
195 mutex_unlock(&q->mq_freeze_lock);
196 }
197 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
198
199 /*
200 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
201 * mpt3sas driver such that this function can be removed.
202 */
203 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
204 {
205 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
206 }
207 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
208
209 /**
210 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
211 * @q: request queue.
212 *
213 * Note: this function does not prevent that the struct request end_io()
214 * callback function is invoked. Once this function is returned, we make
215 * sure no dispatch can happen until the queue is unquiesced via
216 * blk_mq_unquiesce_queue().
217 */
218 void blk_mq_quiesce_queue(struct request_queue *q)
219 {
220 struct blk_mq_hw_ctx *hctx;
221 unsigned int i;
222 bool rcu = false;
223
224 blk_mq_quiesce_queue_nowait(q);
225
226 queue_for_each_hw_ctx(q, hctx, i) {
227 if (hctx->flags & BLK_MQ_F_BLOCKING)
228 synchronize_srcu(hctx->srcu);
229 else
230 rcu = true;
231 }
232 if (rcu)
233 synchronize_rcu();
234 }
235 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
236
237 /*
238 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
239 * @q: request queue.
240 *
241 * This function recovers queue into the state before quiescing
242 * which is done by blk_mq_quiesce_queue.
243 */
244 void blk_mq_unquiesce_queue(struct request_queue *q)
245 {
246 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
247
248 /* dispatch requests which are inserted during quiescing */
249 blk_mq_run_hw_queues(q, true);
250 }
251 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
252
253 void blk_mq_wake_waiters(struct request_queue *q)
254 {
255 struct blk_mq_hw_ctx *hctx;
256 unsigned int i;
257
258 queue_for_each_hw_ctx(q, hctx, i)
259 if (blk_mq_hw_queue_mapped(hctx))
260 blk_mq_tag_wakeup_all(hctx->tags, true);
261 }
262
263 /*
264 * Only need start/end time stamping if we have iostat or
265 * blk stats enabled, or using an IO scheduler.
266 */
267 static inline bool blk_mq_need_time_stamp(struct request *rq)
268 {
269 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
270 }
271
272 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
273 unsigned int tag, unsigned int op, u64 alloc_time_ns)
274 {
275 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
276 struct request *rq = tags->static_rqs[tag];
277 req_flags_t rq_flags = 0;
278
279 if (data->flags & BLK_MQ_REQ_INTERNAL) {
280 rq->tag = -1;
281 rq->internal_tag = tag;
282 } else {
283 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
284 rq_flags = RQF_MQ_INFLIGHT;
285 atomic_inc(&data->hctx->nr_active);
286 }
287 rq->tag = tag;
288 rq->internal_tag = -1;
289 data->hctx->tags->rqs[rq->tag] = rq;
290 }
291
292 /* csd/requeue_work/fifo_time is initialized before use */
293 rq->q = data->q;
294 rq->mq_ctx = data->ctx;
295 rq->mq_hctx = data->hctx;
296 rq->rq_flags = rq_flags;
297 rq->cmd_flags = op;
298 if (data->flags & BLK_MQ_REQ_PREEMPT)
299 rq->rq_flags |= RQF_PREEMPT;
300 if (blk_queue_io_stat(data->q))
301 rq->rq_flags |= RQF_IO_STAT;
302 INIT_LIST_HEAD(&rq->queuelist);
303 INIT_HLIST_NODE(&rq->hash);
304 RB_CLEAR_NODE(&rq->rb_node);
305 rq->rq_disk = NULL;
306 rq->part = NULL;
307 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
308 rq->alloc_time_ns = alloc_time_ns;
309 #endif
310 if (blk_mq_need_time_stamp(rq))
311 rq->start_time_ns = ktime_get_ns();
312 else
313 rq->start_time_ns = 0;
314 rq->io_start_time_ns = 0;
315 rq->stats_sectors = 0;
316 rq->nr_phys_segments = 0;
317 #if defined(CONFIG_BLK_DEV_INTEGRITY)
318 rq->nr_integrity_segments = 0;
319 #endif
320 /* tag was already set */
321 rq->extra_len = 0;
322 WRITE_ONCE(rq->deadline, 0);
323
324 rq->timeout = 0;
325
326 rq->end_io = NULL;
327 rq->end_io_data = NULL;
328
329 data->ctx->rq_dispatched[op_is_sync(op)]++;
330 refcount_set(&rq->ref, 1);
331 return rq;
332 }
333
334 static struct request *blk_mq_get_request(struct request_queue *q,
335 struct bio *bio,
336 struct blk_mq_alloc_data *data)
337 {
338 struct elevator_queue *e = q->elevator;
339 struct request *rq;
340 unsigned int tag;
341 bool clear_ctx_on_error = false;
342 u64 alloc_time_ns = 0;
343
344 blk_queue_enter_live(q);
345
346 /* alloc_time includes depth and tag waits */
347 if (blk_queue_rq_alloc_time(q))
348 alloc_time_ns = ktime_get_ns();
349
350 data->q = q;
351 if (likely(!data->ctx)) {
352 data->ctx = blk_mq_get_ctx(q);
353 clear_ctx_on_error = true;
354 }
355 if (likely(!data->hctx))
356 data->hctx = blk_mq_map_queue(q, data->cmd_flags,
357 data->ctx);
358 if (data->cmd_flags & REQ_NOWAIT)
359 data->flags |= BLK_MQ_REQ_NOWAIT;
360
361 if (e) {
362 data->flags |= BLK_MQ_REQ_INTERNAL;
363
364 /*
365 * Flush requests are special and go directly to the
366 * dispatch list. Don't include reserved tags in the
367 * limiting, as it isn't useful.
368 */
369 if (!op_is_flush(data->cmd_flags) &&
370 e->type->ops.limit_depth &&
371 !(data->flags & BLK_MQ_REQ_RESERVED))
372 e->type->ops.limit_depth(data->cmd_flags, data);
373 } else {
374 blk_mq_tag_busy(data->hctx);
375 }
376
377 tag = blk_mq_get_tag(data);
378 if (tag == BLK_MQ_TAG_FAIL) {
379 if (clear_ctx_on_error)
380 data->ctx = NULL;
381 blk_queue_exit(q);
382 return NULL;
383 }
384
385 rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags, alloc_time_ns);
386 if (!op_is_flush(data->cmd_flags)) {
387 rq->elv.icq = NULL;
388 if (e && e->type->ops.prepare_request) {
389 if (e->type->icq_cache)
390 blk_mq_sched_assign_ioc(rq);
391
392 e->type->ops.prepare_request(rq, bio);
393 rq->rq_flags |= RQF_ELVPRIV;
394 }
395 }
396 data->hctx->queued++;
397 return rq;
398 }
399
400 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
401 blk_mq_req_flags_t flags)
402 {
403 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
404 struct request *rq;
405 int ret;
406
407 ret = blk_queue_enter(q, flags);
408 if (ret)
409 return ERR_PTR(ret);
410
411 rq = blk_mq_get_request(q, NULL, &alloc_data);
412 blk_queue_exit(q);
413
414 if (!rq)
415 return ERR_PTR(-EWOULDBLOCK);
416
417 rq->__data_len = 0;
418 rq->__sector = (sector_t) -1;
419 rq->bio = rq->biotail = NULL;
420 return rq;
421 }
422 EXPORT_SYMBOL(blk_mq_alloc_request);
423
424 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
425 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
426 {
427 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
428 struct request *rq;
429 unsigned int cpu;
430 int ret;
431
432 /*
433 * If the tag allocator sleeps we could get an allocation for a
434 * different hardware context. No need to complicate the low level
435 * allocator for this for the rare use case of a command tied to
436 * a specific queue.
437 */
438 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
439 return ERR_PTR(-EINVAL);
440
441 if (hctx_idx >= q->nr_hw_queues)
442 return ERR_PTR(-EIO);
443
444 ret = blk_queue_enter(q, flags);
445 if (ret)
446 return ERR_PTR(ret);
447
448 /*
449 * Check if the hardware context is actually mapped to anything.
450 * If not tell the caller that it should skip this queue.
451 */
452 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
453 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
454 blk_queue_exit(q);
455 return ERR_PTR(-EXDEV);
456 }
457 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
458 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
459
460 rq = blk_mq_get_request(q, NULL, &alloc_data);
461 blk_queue_exit(q);
462
463 if (!rq)
464 return ERR_PTR(-EWOULDBLOCK);
465
466 return rq;
467 }
468 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
469
470 static void __blk_mq_free_request(struct request *rq)
471 {
472 struct request_queue *q = rq->q;
473 struct blk_mq_ctx *ctx = rq->mq_ctx;
474 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
475 const int sched_tag = rq->internal_tag;
476
477 blk_pm_mark_last_busy(rq);
478 rq->mq_hctx = NULL;
479 if (rq->tag != -1)
480 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
481 if (sched_tag != -1)
482 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
483 blk_mq_sched_restart(hctx);
484 blk_queue_exit(q);
485 }
486
487 void blk_mq_free_request(struct request *rq)
488 {
489 struct request_queue *q = rq->q;
490 struct elevator_queue *e = q->elevator;
491 struct blk_mq_ctx *ctx = rq->mq_ctx;
492 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
493
494 if (rq->rq_flags & RQF_ELVPRIV) {
495 if (e && e->type->ops.finish_request)
496 e->type->ops.finish_request(rq);
497 if (rq->elv.icq) {
498 put_io_context(rq->elv.icq->ioc);
499 rq->elv.icq = NULL;
500 }
501 }
502
503 ctx->rq_completed[rq_is_sync(rq)]++;
504 if (rq->rq_flags & RQF_MQ_INFLIGHT)
505 atomic_dec(&hctx->nr_active);
506
507 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
508 laptop_io_completion(q->backing_dev_info);
509
510 rq_qos_done(q, rq);
511
512 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
513 if (refcount_dec_and_test(&rq->ref))
514 __blk_mq_free_request(rq);
515 }
516 EXPORT_SYMBOL_GPL(blk_mq_free_request);
517
518 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
519 {
520 u64 now = 0;
521
522 if (blk_mq_need_time_stamp(rq))
523 now = ktime_get_ns();
524
525 if (rq->rq_flags & RQF_STATS) {
526 blk_mq_poll_stats_start(rq->q);
527 blk_stat_add(rq, now);
528 }
529
530 if (rq->internal_tag != -1)
531 blk_mq_sched_completed_request(rq, now);
532
533 blk_account_io_done(rq, now);
534
535 if (rq->end_io) {
536 rq_qos_done(rq->q, rq);
537 rq->end_io(rq, error);
538 } else {
539 blk_mq_free_request(rq);
540 }
541 }
542 EXPORT_SYMBOL(__blk_mq_end_request);
543
544 void blk_mq_end_request(struct request *rq, blk_status_t error)
545 {
546 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
547 BUG();
548 __blk_mq_end_request(rq, error);
549 }
550 EXPORT_SYMBOL(blk_mq_end_request);
551
552 static void __blk_mq_complete_request_remote(void *data)
553 {
554 struct request *rq = data;
555 struct request_queue *q = rq->q;
556
557 q->mq_ops->complete(rq);
558 }
559
560 static void __blk_mq_complete_request(struct request *rq)
561 {
562 struct blk_mq_ctx *ctx = rq->mq_ctx;
563 struct request_queue *q = rq->q;
564 bool shared = false;
565 int cpu;
566
567 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
568 /*
569 * Most of single queue controllers, there is only one irq vector
570 * for handling IO completion, and the only irq's affinity is set
571 * as all possible CPUs. On most of ARCHs, this affinity means the
572 * irq is handled on one specific CPU.
573 *
574 * So complete IO reqeust in softirq context in case of single queue
575 * for not degrading IO performance by irqsoff latency.
576 */
577 if (q->nr_hw_queues == 1) {
578 __blk_complete_request(rq);
579 return;
580 }
581
582 /*
583 * For a polled request, always complete locallly, it's pointless
584 * to redirect the completion.
585 */
586 if ((rq->cmd_flags & REQ_HIPRI) ||
587 !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
588 q->mq_ops->complete(rq);
589 return;
590 }
591
592 cpu = get_cpu();
593 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
594 shared = cpus_share_cache(cpu, ctx->cpu);
595
596 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
597 rq->csd.func = __blk_mq_complete_request_remote;
598 rq->csd.info = rq;
599 rq->csd.flags = 0;
600 smp_call_function_single_async(ctx->cpu, &rq->csd);
601 } else {
602 q->mq_ops->complete(rq);
603 }
604 put_cpu();
605 }
606
607 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
608 __releases(hctx->srcu)
609 {
610 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
611 rcu_read_unlock();
612 else
613 srcu_read_unlock(hctx->srcu, srcu_idx);
614 }
615
616 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
617 __acquires(hctx->srcu)
618 {
619 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
620 /* shut up gcc false positive */
621 *srcu_idx = 0;
622 rcu_read_lock();
623 } else
624 *srcu_idx = srcu_read_lock(hctx->srcu);
625 }
626
627 /**
628 * blk_mq_complete_request - end I/O on a request
629 * @rq: the request being processed
630 *
631 * Description:
632 * Ends all I/O on a request. It does not handle partial completions.
633 * The actual completion happens out-of-order, through a IPI handler.
634 **/
635 bool blk_mq_complete_request(struct request *rq)
636 {
637 if (unlikely(blk_should_fake_timeout(rq->q)))
638 return false;
639 __blk_mq_complete_request(rq);
640 return true;
641 }
642 EXPORT_SYMBOL(blk_mq_complete_request);
643
644 /**
645 * blk_mq_start_request - Start processing a request
646 * @rq: Pointer to request to be started
647 *
648 * Function used by device drivers to notify the block layer that a request
649 * is going to be processed now, so blk layer can do proper initializations
650 * such as starting the timeout timer.
651 */
652 void blk_mq_start_request(struct request *rq)
653 {
654 struct request_queue *q = rq->q;
655
656 trace_block_rq_issue(q, rq);
657
658 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
659 rq->io_start_time_ns = ktime_get_ns();
660 rq->stats_sectors = blk_rq_sectors(rq);
661 rq->rq_flags |= RQF_STATS;
662 rq_qos_issue(q, rq);
663 }
664
665 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
666
667 blk_add_timer(rq);
668 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
669
670 if (q->dma_drain_size && blk_rq_bytes(rq)) {
671 /*
672 * Make sure space for the drain appears. We know we can do
673 * this because max_hw_segments has been adjusted to be one
674 * fewer than the device can handle.
675 */
676 rq->nr_phys_segments++;
677 }
678
679 #ifdef CONFIG_BLK_DEV_INTEGRITY
680 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
681 q->integrity.profile->prepare_fn(rq);
682 #endif
683 }
684 EXPORT_SYMBOL(blk_mq_start_request);
685
686 static void __blk_mq_requeue_request(struct request *rq)
687 {
688 struct request_queue *q = rq->q;
689
690 blk_mq_put_driver_tag(rq);
691
692 trace_block_rq_requeue(q, rq);
693 rq_qos_requeue(q, rq);
694
695 if (blk_mq_request_started(rq)) {
696 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
697 rq->rq_flags &= ~RQF_TIMED_OUT;
698 if (q->dma_drain_size && blk_rq_bytes(rq))
699 rq->nr_phys_segments--;
700 }
701 }
702
703 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
704 {
705 __blk_mq_requeue_request(rq);
706
707 /* this request will be re-inserted to io scheduler queue */
708 blk_mq_sched_requeue_request(rq);
709
710 BUG_ON(!list_empty(&rq->queuelist));
711 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
712 }
713 EXPORT_SYMBOL(blk_mq_requeue_request);
714
715 static void blk_mq_requeue_work(struct work_struct *work)
716 {
717 struct request_queue *q =
718 container_of(work, struct request_queue, requeue_work.work);
719 LIST_HEAD(rq_list);
720 struct request *rq, *next;
721
722 spin_lock_irq(&q->requeue_lock);
723 list_splice_init(&q->requeue_list, &rq_list);
724 spin_unlock_irq(&q->requeue_lock);
725
726 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
727 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
728 continue;
729
730 rq->rq_flags &= ~RQF_SOFTBARRIER;
731 list_del_init(&rq->queuelist);
732 /*
733 * If RQF_DONTPREP, rq has contained some driver specific
734 * data, so insert it to hctx dispatch list to avoid any
735 * merge.
736 */
737 if (rq->rq_flags & RQF_DONTPREP)
738 blk_mq_request_bypass_insert(rq, false, false);
739 else
740 blk_mq_sched_insert_request(rq, true, false, false);
741 }
742
743 while (!list_empty(&rq_list)) {
744 rq = list_entry(rq_list.next, struct request, queuelist);
745 list_del_init(&rq->queuelist);
746 blk_mq_sched_insert_request(rq, false, false, false);
747 }
748
749 blk_mq_run_hw_queues(q, false);
750 }
751
752 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
753 bool kick_requeue_list)
754 {
755 struct request_queue *q = rq->q;
756 unsigned long flags;
757
758 /*
759 * We abuse this flag that is otherwise used by the I/O scheduler to
760 * request head insertion from the workqueue.
761 */
762 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
763
764 spin_lock_irqsave(&q->requeue_lock, flags);
765 if (at_head) {
766 rq->rq_flags |= RQF_SOFTBARRIER;
767 list_add(&rq->queuelist, &q->requeue_list);
768 } else {
769 list_add_tail(&rq->queuelist, &q->requeue_list);
770 }
771 spin_unlock_irqrestore(&q->requeue_lock, flags);
772
773 if (kick_requeue_list)
774 blk_mq_kick_requeue_list(q);
775 }
776
777 void blk_mq_kick_requeue_list(struct request_queue *q)
778 {
779 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
780 }
781 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
782
783 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
784 unsigned long msecs)
785 {
786 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
787 msecs_to_jiffies(msecs));
788 }
789 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
790
791 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
792 {
793 if (tag < tags->nr_tags) {
794 prefetch(tags->rqs[tag]);
795 return tags->rqs[tag];
796 }
797
798 return NULL;
799 }
800 EXPORT_SYMBOL(blk_mq_tag_to_rq);
801
802 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
803 void *priv, bool reserved)
804 {
805 /*
806 * If we find a request that is inflight and the queue matches,
807 * we know the queue is busy. Return false to stop the iteration.
808 */
809 if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
810 bool *busy = priv;
811
812 *busy = true;
813 return false;
814 }
815
816 return true;
817 }
818
819 bool blk_mq_queue_inflight(struct request_queue *q)
820 {
821 bool busy = false;
822
823 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
824 return busy;
825 }
826 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
827
828 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
829 {
830 req->rq_flags |= RQF_TIMED_OUT;
831 if (req->q->mq_ops->timeout) {
832 enum blk_eh_timer_return ret;
833
834 ret = req->q->mq_ops->timeout(req, reserved);
835 if (ret == BLK_EH_DONE)
836 return;
837 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
838 }
839
840 blk_add_timer(req);
841 }
842
843 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
844 {
845 unsigned long deadline;
846
847 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
848 return false;
849 if (rq->rq_flags & RQF_TIMED_OUT)
850 return false;
851
852 deadline = READ_ONCE(rq->deadline);
853 if (time_after_eq(jiffies, deadline))
854 return true;
855
856 if (*next == 0)
857 *next = deadline;
858 else if (time_after(*next, deadline))
859 *next = deadline;
860 return false;
861 }
862
863 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
864 struct request *rq, void *priv, bool reserved)
865 {
866 unsigned long *next = priv;
867
868 /*
869 * Just do a quick check if it is expired before locking the request in
870 * so we're not unnecessarilly synchronizing across CPUs.
871 */
872 if (!blk_mq_req_expired(rq, next))
873 return true;
874
875 /*
876 * We have reason to believe the request may be expired. Take a
877 * reference on the request to lock this request lifetime into its
878 * currently allocated context to prevent it from being reallocated in
879 * the event the completion by-passes this timeout handler.
880 *
881 * If the reference was already released, then the driver beat the
882 * timeout handler to posting a natural completion.
883 */
884 if (!refcount_inc_not_zero(&rq->ref))
885 return true;
886
887 /*
888 * The request is now locked and cannot be reallocated underneath the
889 * timeout handler's processing. Re-verify this exact request is truly
890 * expired; if it is not expired, then the request was completed and
891 * reallocated as a new request.
892 */
893 if (blk_mq_req_expired(rq, next))
894 blk_mq_rq_timed_out(rq, reserved);
895
896 if (is_flush_rq(rq, hctx))
897 rq->end_io(rq, 0);
898 else if (refcount_dec_and_test(&rq->ref))
899 __blk_mq_free_request(rq);
900
901 return true;
902 }
903
904 static void blk_mq_timeout_work(struct work_struct *work)
905 {
906 struct request_queue *q =
907 container_of(work, struct request_queue, timeout_work);
908 unsigned long next = 0;
909 struct blk_mq_hw_ctx *hctx;
910 int i;
911
912 /* A deadlock might occur if a request is stuck requiring a
913 * timeout at the same time a queue freeze is waiting
914 * completion, since the timeout code would not be able to
915 * acquire the queue reference here.
916 *
917 * That's why we don't use blk_queue_enter here; instead, we use
918 * percpu_ref_tryget directly, because we need to be able to
919 * obtain a reference even in the short window between the queue
920 * starting to freeze, by dropping the first reference in
921 * blk_freeze_queue_start, and the moment the last request is
922 * consumed, marked by the instant q_usage_counter reaches
923 * zero.
924 */
925 if (!percpu_ref_tryget(&q->q_usage_counter))
926 return;
927
928 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
929
930 if (next != 0) {
931 mod_timer(&q->timeout, next);
932 } else {
933 /*
934 * Request timeouts are handled as a forward rolling timer. If
935 * we end up here it means that no requests are pending and
936 * also that no request has been pending for a while. Mark
937 * each hctx as idle.
938 */
939 queue_for_each_hw_ctx(q, hctx, i) {
940 /* the hctx may be unmapped, so check it here */
941 if (blk_mq_hw_queue_mapped(hctx))
942 blk_mq_tag_idle(hctx);
943 }
944 }
945 blk_queue_exit(q);
946 }
947
948 struct flush_busy_ctx_data {
949 struct blk_mq_hw_ctx *hctx;
950 struct list_head *list;
951 };
952
953 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
954 {
955 struct flush_busy_ctx_data *flush_data = data;
956 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
957 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
958 enum hctx_type type = hctx->type;
959
960 spin_lock(&ctx->lock);
961 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
962 sbitmap_clear_bit(sb, bitnr);
963 spin_unlock(&ctx->lock);
964 return true;
965 }
966
967 /*
968 * Process software queues that have been marked busy, splicing them
969 * to the for-dispatch
970 */
971 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
972 {
973 struct flush_busy_ctx_data data = {
974 .hctx = hctx,
975 .list = list,
976 };
977
978 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
979 }
980 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
981
982 struct dispatch_rq_data {
983 struct blk_mq_hw_ctx *hctx;
984 struct request *rq;
985 };
986
987 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
988 void *data)
989 {
990 struct dispatch_rq_data *dispatch_data = data;
991 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
992 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
993 enum hctx_type type = hctx->type;
994
995 spin_lock(&ctx->lock);
996 if (!list_empty(&ctx->rq_lists[type])) {
997 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
998 list_del_init(&dispatch_data->rq->queuelist);
999 if (list_empty(&ctx->rq_lists[type]))
1000 sbitmap_clear_bit(sb, bitnr);
1001 }
1002 spin_unlock(&ctx->lock);
1003
1004 return !dispatch_data->rq;
1005 }
1006
1007 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1008 struct blk_mq_ctx *start)
1009 {
1010 unsigned off = start ? start->index_hw[hctx->type] : 0;
1011 struct dispatch_rq_data data = {
1012 .hctx = hctx,
1013 .rq = NULL,
1014 };
1015
1016 __sbitmap_for_each_set(&hctx->ctx_map, off,
1017 dispatch_rq_from_ctx, &data);
1018
1019 return data.rq;
1020 }
1021
1022 static inline unsigned int queued_to_index(unsigned int queued)
1023 {
1024 if (!queued)
1025 return 0;
1026
1027 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1028 }
1029
1030 bool blk_mq_get_driver_tag(struct request *rq)
1031 {
1032 struct blk_mq_alloc_data data = {
1033 .q = rq->q,
1034 .hctx = rq->mq_hctx,
1035 .flags = BLK_MQ_REQ_NOWAIT,
1036 .cmd_flags = rq->cmd_flags,
1037 };
1038 bool shared;
1039
1040 if (rq->tag != -1)
1041 return true;
1042
1043 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1044 data.flags |= BLK_MQ_REQ_RESERVED;
1045
1046 shared = blk_mq_tag_busy(data.hctx);
1047 rq->tag = blk_mq_get_tag(&data);
1048 if (rq->tag >= 0) {
1049 if (shared) {
1050 rq->rq_flags |= RQF_MQ_INFLIGHT;
1051 atomic_inc(&data.hctx->nr_active);
1052 }
1053 data.hctx->tags->rqs[rq->tag] = rq;
1054 }
1055
1056 return rq->tag != -1;
1057 }
1058
1059 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1060 int flags, void *key)
1061 {
1062 struct blk_mq_hw_ctx *hctx;
1063
1064 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1065
1066 spin_lock(&hctx->dispatch_wait_lock);
1067 if (!list_empty(&wait->entry)) {
1068 struct sbitmap_queue *sbq;
1069
1070 list_del_init(&wait->entry);
1071 sbq = &hctx->tags->bitmap_tags;
1072 atomic_dec(&sbq->ws_active);
1073 }
1074 spin_unlock(&hctx->dispatch_wait_lock);
1075
1076 blk_mq_run_hw_queue(hctx, true);
1077 return 1;
1078 }
1079
1080 /*
1081 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1082 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1083 * restart. For both cases, take care to check the condition again after
1084 * marking us as waiting.
1085 */
1086 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1087 struct request *rq)
1088 {
1089 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1090 struct wait_queue_head *wq;
1091 wait_queue_entry_t *wait;
1092 bool ret;
1093
1094 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1095 blk_mq_sched_mark_restart_hctx(hctx);
1096
1097 /*
1098 * It's possible that a tag was freed in the window between the
1099 * allocation failure and adding the hardware queue to the wait
1100 * queue.
1101 *
1102 * Don't clear RESTART here, someone else could have set it.
1103 * At most this will cost an extra queue run.
1104 */
1105 return blk_mq_get_driver_tag(rq);
1106 }
1107
1108 wait = &hctx->dispatch_wait;
1109 if (!list_empty_careful(&wait->entry))
1110 return false;
1111
1112 wq = &bt_wait_ptr(sbq, hctx)->wait;
1113
1114 spin_lock_irq(&wq->lock);
1115 spin_lock(&hctx->dispatch_wait_lock);
1116 if (!list_empty(&wait->entry)) {
1117 spin_unlock(&hctx->dispatch_wait_lock);
1118 spin_unlock_irq(&wq->lock);
1119 return false;
1120 }
1121
1122 atomic_inc(&sbq->ws_active);
1123 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1124 __add_wait_queue(wq, wait);
1125
1126 /*
1127 * It's possible that a tag was freed in the window between the
1128 * allocation failure and adding the hardware queue to the wait
1129 * queue.
1130 */
1131 ret = blk_mq_get_driver_tag(rq);
1132 if (!ret) {
1133 spin_unlock(&hctx->dispatch_wait_lock);
1134 spin_unlock_irq(&wq->lock);
1135 return false;
1136 }
1137
1138 /*
1139 * We got a tag, remove ourselves from the wait queue to ensure
1140 * someone else gets the wakeup.
1141 */
1142 list_del_init(&wait->entry);
1143 atomic_dec(&sbq->ws_active);
1144 spin_unlock(&hctx->dispatch_wait_lock);
1145 spin_unlock_irq(&wq->lock);
1146
1147 return true;
1148 }
1149
1150 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1151 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1152 /*
1153 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1154 * - EWMA is one simple way to compute running average value
1155 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1156 * - take 4 as factor for avoiding to get too small(0) result, and this
1157 * factor doesn't matter because EWMA decreases exponentially
1158 */
1159 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1160 {
1161 unsigned int ewma;
1162
1163 if (hctx->queue->elevator)
1164 return;
1165
1166 ewma = hctx->dispatch_busy;
1167
1168 if (!ewma && !busy)
1169 return;
1170
1171 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1172 if (busy)
1173 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1174 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1175
1176 hctx->dispatch_busy = ewma;
1177 }
1178
1179 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1180
1181 /*
1182 * Returns true if we did some work AND can potentially do more.
1183 */
1184 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1185 bool got_budget)
1186 {
1187 struct blk_mq_hw_ctx *hctx;
1188 struct request *rq, *nxt;
1189 bool no_tag = false;
1190 int errors, queued;
1191 blk_status_t ret = BLK_STS_OK;
1192
1193 if (list_empty(list))
1194 return false;
1195
1196 WARN_ON(!list_is_singular(list) && got_budget);
1197
1198 /*
1199 * Now process all the entries, sending them to the driver.
1200 */
1201 errors = queued = 0;
1202 do {
1203 struct blk_mq_queue_data bd;
1204
1205 rq = list_first_entry(list, struct request, queuelist);
1206
1207 hctx = rq->mq_hctx;
1208 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1209 break;
1210
1211 if (!blk_mq_get_driver_tag(rq)) {
1212 /*
1213 * The initial allocation attempt failed, so we need to
1214 * rerun the hardware queue when a tag is freed. The
1215 * waitqueue takes care of that. If the queue is run
1216 * before we add this entry back on the dispatch list,
1217 * we'll re-run it below.
1218 */
1219 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1220 blk_mq_put_dispatch_budget(hctx);
1221 /*
1222 * For non-shared tags, the RESTART check
1223 * will suffice.
1224 */
1225 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1226 no_tag = true;
1227 break;
1228 }
1229 }
1230
1231 list_del_init(&rq->queuelist);
1232
1233 bd.rq = rq;
1234
1235 /*
1236 * Flag last if we have no more requests, or if we have more
1237 * but can't assign a driver tag to it.
1238 */
1239 if (list_empty(list))
1240 bd.last = true;
1241 else {
1242 nxt = list_first_entry(list, struct request, queuelist);
1243 bd.last = !blk_mq_get_driver_tag(nxt);
1244 }
1245
1246 ret = q->mq_ops->queue_rq(hctx, &bd);
1247 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1248 /*
1249 * If an I/O scheduler has been configured and we got a
1250 * driver tag for the next request already, free it
1251 * again.
1252 */
1253 if (!list_empty(list)) {
1254 nxt = list_first_entry(list, struct request, queuelist);
1255 blk_mq_put_driver_tag(nxt);
1256 }
1257 list_add(&rq->queuelist, list);
1258 __blk_mq_requeue_request(rq);
1259 break;
1260 }
1261
1262 if (unlikely(ret != BLK_STS_OK)) {
1263 errors++;
1264 blk_mq_end_request(rq, BLK_STS_IOERR);
1265 continue;
1266 }
1267
1268 queued++;
1269 } while (!list_empty(list));
1270
1271 hctx->dispatched[queued_to_index(queued)]++;
1272
1273 /*
1274 * Any items that need requeuing? Stuff them into hctx->dispatch,
1275 * that is where we will continue on next queue run.
1276 */
1277 if (!list_empty(list)) {
1278 bool needs_restart;
1279
1280 /*
1281 * If we didn't flush the entire list, we could have told
1282 * the driver there was more coming, but that turned out to
1283 * be a lie.
1284 */
1285 if (q->mq_ops->commit_rqs)
1286 q->mq_ops->commit_rqs(hctx);
1287
1288 spin_lock(&hctx->lock);
1289 list_splice_tail_init(list, &hctx->dispatch);
1290 spin_unlock(&hctx->lock);
1291
1292 /*
1293 * If SCHED_RESTART was set by the caller of this function and
1294 * it is no longer set that means that it was cleared by another
1295 * thread and hence that a queue rerun is needed.
1296 *
1297 * If 'no_tag' is set, that means that we failed getting
1298 * a driver tag with an I/O scheduler attached. If our dispatch
1299 * waitqueue is no longer active, ensure that we run the queue
1300 * AFTER adding our entries back to the list.
1301 *
1302 * If no I/O scheduler has been configured it is possible that
1303 * the hardware queue got stopped and restarted before requests
1304 * were pushed back onto the dispatch list. Rerun the queue to
1305 * avoid starvation. Notes:
1306 * - blk_mq_run_hw_queue() checks whether or not a queue has
1307 * been stopped before rerunning a queue.
1308 * - Some but not all block drivers stop a queue before
1309 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1310 * and dm-rq.
1311 *
1312 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1313 * bit is set, run queue after a delay to avoid IO stalls
1314 * that could otherwise occur if the queue is idle.
1315 */
1316 needs_restart = blk_mq_sched_needs_restart(hctx);
1317 if (!needs_restart ||
1318 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1319 blk_mq_run_hw_queue(hctx, true);
1320 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1321 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1322
1323 blk_mq_update_dispatch_busy(hctx, true);
1324 return false;
1325 } else
1326 blk_mq_update_dispatch_busy(hctx, false);
1327
1328 /*
1329 * If the host/device is unable to accept more work, inform the
1330 * caller of that.
1331 */
1332 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1333 return false;
1334
1335 return (queued + errors) != 0;
1336 }
1337
1338 /**
1339 * __blk_mq_run_hw_queue - Run a hardware queue.
1340 * @hctx: Pointer to the hardware queue to run.
1341 *
1342 * Send pending requests to the hardware.
1343 */
1344 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1345 {
1346 int srcu_idx;
1347
1348 /*
1349 * We should be running this queue from one of the CPUs that
1350 * are mapped to it.
1351 *
1352 * There are at least two related races now between setting
1353 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1354 * __blk_mq_run_hw_queue():
1355 *
1356 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1357 * but later it becomes online, then this warning is harmless
1358 * at all
1359 *
1360 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1361 * but later it becomes offline, then the warning can't be
1362 * triggered, and we depend on blk-mq timeout handler to
1363 * handle dispatched requests to this hctx
1364 */
1365 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1366 cpu_online(hctx->next_cpu)) {
1367 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1368 raw_smp_processor_id(),
1369 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1370 dump_stack();
1371 }
1372
1373 /*
1374 * We can't run the queue inline with ints disabled. Ensure that
1375 * we catch bad users of this early.
1376 */
1377 WARN_ON_ONCE(in_interrupt());
1378
1379 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1380
1381 hctx_lock(hctx, &srcu_idx);
1382 blk_mq_sched_dispatch_requests(hctx);
1383 hctx_unlock(hctx, srcu_idx);
1384 }
1385
1386 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1387 {
1388 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1389
1390 if (cpu >= nr_cpu_ids)
1391 cpu = cpumask_first(hctx->cpumask);
1392 return cpu;
1393 }
1394
1395 /*
1396 * It'd be great if the workqueue API had a way to pass
1397 * in a mask and had some smarts for more clever placement.
1398 * For now we just round-robin here, switching for every
1399 * BLK_MQ_CPU_WORK_BATCH queued items.
1400 */
1401 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1402 {
1403 bool tried = false;
1404 int next_cpu = hctx->next_cpu;
1405
1406 if (hctx->queue->nr_hw_queues == 1)
1407 return WORK_CPU_UNBOUND;
1408
1409 if (--hctx->next_cpu_batch <= 0) {
1410 select_cpu:
1411 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1412 cpu_online_mask);
1413 if (next_cpu >= nr_cpu_ids)
1414 next_cpu = blk_mq_first_mapped_cpu(hctx);
1415 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1416 }
1417
1418 /*
1419 * Do unbound schedule if we can't find a online CPU for this hctx,
1420 * and it should only happen in the path of handling CPU DEAD.
1421 */
1422 if (!cpu_online(next_cpu)) {
1423 if (!tried) {
1424 tried = true;
1425 goto select_cpu;
1426 }
1427
1428 /*
1429 * Make sure to re-select CPU next time once after CPUs
1430 * in hctx->cpumask become online again.
1431 */
1432 hctx->next_cpu = next_cpu;
1433 hctx->next_cpu_batch = 1;
1434 return WORK_CPU_UNBOUND;
1435 }
1436
1437 hctx->next_cpu = next_cpu;
1438 return next_cpu;
1439 }
1440
1441 /**
1442 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1443 * @hctx: Pointer to the hardware queue to run.
1444 * @async: If we want to run the queue asynchronously.
1445 * @msecs: Microseconds of delay to wait before running the queue.
1446 *
1447 * If !@async, try to run the queue now. Else, run the queue asynchronously and
1448 * with a delay of @msecs.
1449 */
1450 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1451 unsigned long msecs)
1452 {
1453 if (unlikely(blk_mq_hctx_stopped(hctx)))
1454 return;
1455
1456 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1457 int cpu = get_cpu();
1458 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1459 __blk_mq_run_hw_queue(hctx);
1460 put_cpu();
1461 return;
1462 }
1463
1464 put_cpu();
1465 }
1466
1467 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1468 msecs_to_jiffies(msecs));
1469 }
1470
1471 /**
1472 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1473 * @hctx: Pointer to the hardware queue to run.
1474 * @msecs: Microseconds of delay to wait before running the queue.
1475 *
1476 * Run a hardware queue asynchronously with a delay of @msecs.
1477 */
1478 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1479 {
1480 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1481 }
1482 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1483
1484 /**
1485 * blk_mq_run_hw_queue - Start to run a hardware queue.
1486 * @hctx: Pointer to the hardware queue to run.
1487 * @async: If we want to run the queue asynchronously.
1488 *
1489 * Check if the request queue is not in a quiesced state and if there are
1490 * pending requests to be sent. If this is true, run the queue to send requests
1491 * to hardware.
1492 */
1493 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1494 {
1495 int srcu_idx;
1496 bool need_run;
1497
1498 /*
1499 * When queue is quiesced, we may be switching io scheduler, or
1500 * updating nr_hw_queues, or other things, and we can't run queue
1501 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1502 *
1503 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1504 * quiesced.
1505 */
1506 hctx_lock(hctx, &srcu_idx);
1507 need_run = !blk_queue_quiesced(hctx->queue) &&
1508 blk_mq_hctx_has_pending(hctx);
1509 hctx_unlock(hctx, srcu_idx);
1510
1511 if (need_run)
1512 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1513 }
1514 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1515
1516 /**
1517 * blk_mq_run_hw_queue - Run all hardware queues in a request queue.
1518 * @q: Pointer to the request queue to run.
1519 * @async: If we want to run the queue asynchronously.
1520 */
1521 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1522 {
1523 struct blk_mq_hw_ctx *hctx;
1524 int i;
1525
1526 queue_for_each_hw_ctx(q, hctx, i) {
1527 if (blk_mq_hctx_stopped(hctx))
1528 continue;
1529
1530 blk_mq_run_hw_queue(hctx, async);
1531 }
1532 }
1533 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1534
1535 /**
1536 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1537 * @q: request queue.
1538 *
1539 * The caller is responsible for serializing this function against
1540 * blk_mq_{start,stop}_hw_queue().
1541 */
1542 bool blk_mq_queue_stopped(struct request_queue *q)
1543 {
1544 struct blk_mq_hw_ctx *hctx;
1545 int i;
1546
1547 queue_for_each_hw_ctx(q, hctx, i)
1548 if (blk_mq_hctx_stopped(hctx))
1549 return true;
1550
1551 return false;
1552 }
1553 EXPORT_SYMBOL(blk_mq_queue_stopped);
1554
1555 /*
1556 * This function is often used for pausing .queue_rq() by driver when
1557 * there isn't enough resource or some conditions aren't satisfied, and
1558 * BLK_STS_RESOURCE is usually returned.
1559 *
1560 * We do not guarantee that dispatch can be drained or blocked
1561 * after blk_mq_stop_hw_queue() returns. Please use
1562 * blk_mq_quiesce_queue() for that requirement.
1563 */
1564 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1565 {
1566 cancel_delayed_work(&hctx->run_work);
1567
1568 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1569 }
1570 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1571
1572 /*
1573 * This function is often used for pausing .queue_rq() by driver when
1574 * there isn't enough resource or some conditions aren't satisfied, and
1575 * BLK_STS_RESOURCE is usually returned.
1576 *
1577 * We do not guarantee that dispatch can be drained or blocked
1578 * after blk_mq_stop_hw_queues() returns. Please use
1579 * blk_mq_quiesce_queue() for that requirement.
1580 */
1581 void blk_mq_stop_hw_queues(struct request_queue *q)
1582 {
1583 struct blk_mq_hw_ctx *hctx;
1584 int i;
1585
1586 queue_for_each_hw_ctx(q, hctx, i)
1587 blk_mq_stop_hw_queue(hctx);
1588 }
1589 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1590
1591 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1592 {
1593 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1594
1595 blk_mq_run_hw_queue(hctx, false);
1596 }
1597 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1598
1599 void blk_mq_start_hw_queues(struct request_queue *q)
1600 {
1601 struct blk_mq_hw_ctx *hctx;
1602 int i;
1603
1604 queue_for_each_hw_ctx(q, hctx, i)
1605 blk_mq_start_hw_queue(hctx);
1606 }
1607 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1608
1609 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1610 {
1611 if (!blk_mq_hctx_stopped(hctx))
1612 return;
1613
1614 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1615 blk_mq_run_hw_queue(hctx, async);
1616 }
1617 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1618
1619 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1620 {
1621 struct blk_mq_hw_ctx *hctx;
1622 int i;
1623
1624 queue_for_each_hw_ctx(q, hctx, i)
1625 blk_mq_start_stopped_hw_queue(hctx, async);
1626 }
1627 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1628
1629 static void blk_mq_run_work_fn(struct work_struct *work)
1630 {
1631 struct blk_mq_hw_ctx *hctx;
1632
1633 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1634
1635 /*
1636 * If we are stopped, don't run the queue.
1637 */
1638 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1639 return;
1640
1641 __blk_mq_run_hw_queue(hctx);
1642 }
1643
1644 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1645 struct request *rq,
1646 bool at_head)
1647 {
1648 struct blk_mq_ctx *ctx = rq->mq_ctx;
1649 enum hctx_type type = hctx->type;
1650
1651 lockdep_assert_held(&ctx->lock);
1652
1653 trace_block_rq_insert(hctx->queue, rq);
1654
1655 if (at_head)
1656 list_add(&rq->queuelist, &ctx->rq_lists[type]);
1657 else
1658 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1659 }
1660
1661 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1662 bool at_head)
1663 {
1664 struct blk_mq_ctx *ctx = rq->mq_ctx;
1665
1666 lockdep_assert_held(&ctx->lock);
1667
1668 __blk_mq_insert_req_list(hctx, rq, at_head);
1669 blk_mq_hctx_mark_pending(hctx, ctx);
1670 }
1671
1672 /**
1673 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1674 * @rq: Pointer to request to be inserted.
1675 * @run_queue: If we should run the hardware queue after inserting the request.
1676 *
1677 * Should only be used carefully, when the caller knows we want to
1678 * bypass a potential IO scheduler on the target device.
1679 */
1680 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1681 bool run_queue)
1682 {
1683 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1684
1685 spin_lock(&hctx->lock);
1686 if (at_head)
1687 list_add(&rq->queuelist, &hctx->dispatch);
1688 else
1689 list_add_tail(&rq->queuelist, &hctx->dispatch);
1690 spin_unlock(&hctx->lock);
1691
1692 if (run_queue)
1693 blk_mq_run_hw_queue(hctx, false);
1694 }
1695
1696 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1697 struct list_head *list)
1698
1699 {
1700 struct request *rq;
1701 enum hctx_type type = hctx->type;
1702
1703 /*
1704 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1705 * offline now
1706 */
1707 list_for_each_entry(rq, list, queuelist) {
1708 BUG_ON(rq->mq_ctx != ctx);
1709 trace_block_rq_insert(hctx->queue, rq);
1710 }
1711
1712 spin_lock(&ctx->lock);
1713 list_splice_tail_init(list, &ctx->rq_lists[type]);
1714 blk_mq_hctx_mark_pending(hctx, ctx);
1715 spin_unlock(&ctx->lock);
1716 }
1717
1718 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1719 {
1720 struct request *rqa = container_of(a, struct request, queuelist);
1721 struct request *rqb = container_of(b, struct request, queuelist);
1722
1723 if (rqa->mq_ctx != rqb->mq_ctx)
1724 return rqa->mq_ctx > rqb->mq_ctx;
1725 if (rqa->mq_hctx != rqb->mq_hctx)
1726 return rqa->mq_hctx > rqb->mq_hctx;
1727
1728 return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1729 }
1730
1731 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1732 {
1733 LIST_HEAD(list);
1734
1735 if (list_empty(&plug->mq_list))
1736 return;
1737 list_splice_init(&plug->mq_list, &list);
1738
1739 if (plug->rq_count > 2 && plug->multiple_queues)
1740 list_sort(NULL, &list, plug_rq_cmp);
1741
1742 plug->rq_count = 0;
1743
1744 do {
1745 struct list_head rq_list;
1746 struct request *rq, *head_rq = list_entry_rq(list.next);
1747 struct list_head *pos = &head_rq->queuelist; /* skip first */
1748 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1749 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1750 unsigned int depth = 1;
1751
1752 list_for_each_continue(pos, &list) {
1753 rq = list_entry_rq(pos);
1754 BUG_ON(!rq->q);
1755 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1756 break;
1757 depth++;
1758 }
1759
1760 list_cut_before(&rq_list, &list, pos);
1761 trace_block_unplug(head_rq->q, depth, !from_schedule);
1762 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1763 from_schedule);
1764 } while(!list_empty(&list));
1765 }
1766
1767 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1768 unsigned int nr_segs)
1769 {
1770 if (bio->bi_opf & REQ_RAHEAD)
1771 rq->cmd_flags |= REQ_FAILFAST_MASK;
1772
1773 rq->__sector = bio->bi_iter.bi_sector;
1774 rq->write_hint = bio->bi_write_hint;
1775 blk_rq_bio_prep(rq, bio, nr_segs);
1776
1777 blk_account_io_start(rq, true);
1778 }
1779
1780 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1781 struct request *rq,
1782 blk_qc_t *cookie, bool last)
1783 {
1784 struct request_queue *q = rq->q;
1785 struct blk_mq_queue_data bd = {
1786 .rq = rq,
1787 .last = last,
1788 };
1789 blk_qc_t new_cookie;
1790 blk_status_t ret;
1791
1792 new_cookie = request_to_qc_t(hctx, rq);
1793
1794 /*
1795 * For OK queue, we are done. For error, caller may kill it.
1796 * Any other error (busy), just add it to our list as we
1797 * previously would have done.
1798 */
1799 ret = q->mq_ops->queue_rq(hctx, &bd);
1800 switch (ret) {
1801 case BLK_STS_OK:
1802 blk_mq_update_dispatch_busy(hctx, false);
1803 *cookie = new_cookie;
1804 break;
1805 case BLK_STS_RESOURCE:
1806 case BLK_STS_DEV_RESOURCE:
1807 blk_mq_update_dispatch_busy(hctx, true);
1808 __blk_mq_requeue_request(rq);
1809 break;
1810 default:
1811 blk_mq_update_dispatch_busy(hctx, false);
1812 *cookie = BLK_QC_T_NONE;
1813 break;
1814 }
1815
1816 return ret;
1817 }
1818
1819 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1820 struct request *rq,
1821 blk_qc_t *cookie,
1822 bool bypass_insert, bool last)
1823 {
1824 struct request_queue *q = rq->q;
1825 bool run_queue = true;
1826
1827 /*
1828 * RCU or SRCU read lock is needed before checking quiesced flag.
1829 *
1830 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1831 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1832 * and avoid driver to try to dispatch again.
1833 */
1834 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1835 run_queue = false;
1836 bypass_insert = false;
1837 goto insert;
1838 }
1839
1840 if (q->elevator && !bypass_insert)
1841 goto insert;
1842
1843 if (!blk_mq_get_dispatch_budget(hctx))
1844 goto insert;
1845
1846 if (!blk_mq_get_driver_tag(rq)) {
1847 blk_mq_put_dispatch_budget(hctx);
1848 goto insert;
1849 }
1850
1851 return __blk_mq_issue_directly(hctx, rq, cookie, last);
1852 insert:
1853 if (bypass_insert)
1854 return BLK_STS_RESOURCE;
1855
1856 blk_mq_request_bypass_insert(rq, false, run_queue);
1857 return BLK_STS_OK;
1858 }
1859
1860 /**
1861 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
1862 * @hctx: Pointer of the associated hardware queue.
1863 * @rq: Pointer to request to be sent.
1864 * @cookie: Request queue cookie.
1865 *
1866 * If the device has enough resources to accept a new request now, send the
1867 * request directly to device driver. Else, insert at hctx->dispatch queue, so
1868 * we can try send it another time in the future. Requests inserted at this
1869 * queue have higher priority.
1870 */
1871 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1872 struct request *rq, blk_qc_t *cookie)
1873 {
1874 blk_status_t ret;
1875 int srcu_idx;
1876
1877 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1878
1879 hctx_lock(hctx, &srcu_idx);
1880
1881 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
1882 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1883 blk_mq_request_bypass_insert(rq, false, true);
1884 else if (ret != BLK_STS_OK)
1885 blk_mq_end_request(rq, ret);
1886
1887 hctx_unlock(hctx, srcu_idx);
1888 }
1889
1890 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
1891 {
1892 blk_status_t ret;
1893 int srcu_idx;
1894 blk_qc_t unused_cookie;
1895 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1896
1897 hctx_lock(hctx, &srcu_idx);
1898 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
1899 hctx_unlock(hctx, srcu_idx);
1900
1901 return ret;
1902 }
1903
1904 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1905 struct list_head *list)
1906 {
1907 while (!list_empty(list)) {
1908 blk_status_t ret;
1909 struct request *rq = list_first_entry(list, struct request,
1910 queuelist);
1911
1912 list_del_init(&rq->queuelist);
1913 ret = blk_mq_request_issue_directly(rq, list_empty(list));
1914 if (ret != BLK_STS_OK) {
1915 if (ret == BLK_STS_RESOURCE ||
1916 ret == BLK_STS_DEV_RESOURCE) {
1917 blk_mq_request_bypass_insert(rq, false,
1918 list_empty(list));
1919 break;
1920 }
1921 blk_mq_end_request(rq, ret);
1922 }
1923 }
1924
1925 /*
1926 * If we didn't flush the entire list, we could have told
1927 * the driver there was more coming, but that turned out to
1928 * be a lie.
1929 */
1930 if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs)
1931 hctx->queue->mq_ops->commit_rqs(hctx);
1932 }
1933
1934 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1935 {
1936 list_add_tail(&rq->queuelist, &plug->mq_list);
1937 plug->rq_count++;
1938 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
1939 struct request *tmp;
1940
1941 tmp = list_first_entry(&plug->mq_list, struct request,
1942 queuelist);
1943 if (tmp->q != rq->q)
1944 plug->multiple_queues = true;
1945 }
1946 }
1947
1948 /**
1949 * blk_mq_make_request - Create and send a request to block device.
1950 * @q: Request queue pointer.
1951 * @bio: Bio pointer.
1952 *
1953 * Builds up a request structure from @q and @bio and send to the device. The
1954 * request may not be queued directly to hardware if:
1955 * * This request can be merged with another one
1956 * * We want to place request at plug queue for possible future merging
1957 * * There is an IO scheduler active at this queue
1958 *
1959 * It will not queue the request if there is an error with the bio, or at the
1960 * request creation.
1961 *
1962 * Returns: Request queue cookie.
1963 */
1964 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1965 {
1966 const int is_sync = op_is_sync(bio->bi_opf);
1967 const int is_flush_fua = op_is_flush(bio->bi_opf);
1968 struct blk_mq_alloc_data data = { .flags = 0};
1969 struct request *rq;
1970 struct blk_plug *plug;
1971 struct request *same_queue_rq = NULL;
1972 unsigned int nr_segs;
1973 blk_qc_t cookie;
1974
1975 blk_queue_bounce(q, &bio);
1976 __blk_queue_split(q, &bio, &nr_segs);
1977
1978 if (!bio_integrity_prep(bio))
1979 return BLK_QC_T_NONE;
1980
1981 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1982 blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
1983 return BLK_QC_T_NONE;
1984
1985 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
1986 return BLK_QC_T_NONE;
1987
1988 rq_qos_throttle(q, bio);
1989
1990 data.cmd_flags = bio->bi_opf;
1991 rq = blk_mq_get_request(q, bio, &data);
1992 if (unlikely(!rq)) {
1993 rq_qos_cleanup(q, bio);
1994 if (bio->bi_opf & REQ_NOWAIT)
1995 bio_wouldblock_error(bio);
1996 return BLK_QC_T_NONE;
1997 }
1998
1999 trace_block_getrq(q, bio, bio->bi_opf);
2000
2001 rq_qos_track(q, rq, bio);
2002
2003 cookie = request_to_qc_t(data.hctx, rq);
2004
2005 blk_mq_bio_to_request(rq, bio, nr_segs);
2006
2007 plug = blk_mq_plug(q, bio);
2008 if (unlikely(is_flush_fua)) {
2009 /* Bypass scheduler for flush requests */
2010 blk_insert_flush(rq);
2011 blk_mq_run_hw_queue(data.hctx, true);
2012 } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs ||
2013 !blk_queue_nonrot(q))) {
2014 /*
2015 * Use plugging if we have a ->commit_rqs() hook as well, as
2016 * we know the driver uses bd->last in a smart fashion.
2017 *
2018 * Use normal plugging if this disk is slow HDD, as sequential
2019 * IO may benefit a lot from plug merging.
2020 */
2021 unsigned int request_count = plug->rq_count;
2022 struct request *last = NULL;
2023
2024 if (!request_count)
2025 trace_block_plug(q);
2026 else
2027 last = list_entry_rq(plug->mq_list.prev);
2028
2029 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2030 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2031 blk_flush_plug_list(plug, false);
2032 trace_block_plug(q);
2033 }
2034
2035 blk_add_rq_to_plug(plug, rq);
2036 } else if (q->elevator) {
2037 /* Insert the request at the IO scheduler queue */
2038 blk_mq_sched_insert_request(rq, false, true, true);
2039 } else if (plug && !blk_queue_nomerges(q)) {
2040 /*
2041 * We do limited plugging. If the bio can be merged, do that.
2042 * Otherwise the existing request in the plug list will be
2043 * issued. So the plug list will have one request at most
2044 * The plug list might get flushed before this. If that happens,
2045 * the plug list is empty, and same_queue_rq is invalid.
2046 */
2047 if (list_empty(&plug->mq_list))
2048 same_queue_rq = NULL;
2049 if (same_queue_rq) {
2050 list_del_init(&same_queue_rq->queuelist);
2051 plug->rq_count--;
2052 }
2053 blk_add_rq_to_plug(plug, rq);
2054 trace_block_plug(q);
2055
2056 if (same_queue_rq) {
2057 data.hctx = same_queue_rq->mq_hctx;
2058 trace_block_unplug(q, 1, true);
2059 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2060 &cookie);
2061 }
2062 } else if ((q->nr_hw_queues > 1 && is_sync) ||
2063 !data.hctx->dispatch_busy) {
2064 /*
2065 * There is no scheduler and we can try to send directly
2066 * to the hardware.
2067 */
2068 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2069 } else {
2070 /* Default case. */
2071 blk_mq_sched_insert_request(rq, false, true, true);
2072 }
2073
2074 return cookie;
2075 }
2076
2077 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2078 unsigned int hctx_idx)
2079 {
2080 struct page *page;
2081
2082 if (tags->rqs && set->ops->exit_request) {
2083 int i;
2084
2085 for (i = 0; i < tags->nr_tags; i++) {
2086 struct request *rq = tags->static_rqs[i];
2087
2088 if (!rq)
2089 continue;
2090 set->ops->exit_request(set, rq, hctx_idx);
2091 tags->static_rqs[i] = NULL;
2092 }
2093 }
2094
2095 while (!list_empty(&tags->page_list)) {
2096 page = list_first_entry(&tags->page_list, struct page, lru);
2097 list_del_init(&page->lru);
2098 /*
2099 * Remove kmemleak object previously allocated in
2100 * blk_mq_alloc_rqs().
2101 */
2102 kmemleak_free(page_address(page));
2103 __free_pages(page, page->private);
2104 }
2105 }
2106
2107 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2108 {
2109 kfree(tags->rqs);
2110 tags->rqs = NULL;
2111 kfree(tags->static_rqs);
2112 tags->static_rqs = NULL;
2113
2114 blk_mq_free_tags(tags);
2115 }
2116
2117 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2118 unsigned int hctx_idx,
2119 unsigned int nr_tags,
2120 unsigned int reserved_tags)
2121 {
2122 struct blk_mq_tags *tags;
2123 int node;
2124
2125 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2126 if (node == NUMA_NO_NODE)
2127 node = set->numa_node;
2128
2129 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2130 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2131 if (!tags)
2132 return NULL;
2133
2134 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2135 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2136 node);
2137 if (!tags->rqs) {
2138 blk_mq_free_tags(tags);
2139 return NULL;
2140 }
2141
2142 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2143 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2144 node);
2145 if (!tags->static_rqs) {
2146 kfree(tags->rqs);
2147 blk_mq_free_tags(tags);
2148 return NULL;
2149 }
2150
2151 return tags;
2152 }
2153
2154 static size_t order_to_size(unsigned int order)
2155 {
2156 return (size_t)PAGE_SIZE << order;
2157 }
2158
2159 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2160 unsigned int hctx_idx, int node)
2161 {
2162 int ret;
2163
2164 if (set->ops->init_request) {
2165 ret = set->ops->init_request(set, rq, hctx_idx, node);
2166 if (ret)
2167 return ret;
2168 }
2169
2170 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2171 return 0;
2172 }
2173
2174 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2175 unsigned int hctx_idx, unsigned int depth)
2176 {
2177 unsigned int i, j, entries_per_page, max_order = 4;
2178 size_t rq_size, left;
2179 int node;
2180
2181 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2182 if (node == NUMA_NO_NODE)
2183 node = set->numa_node;
2184
2185 INIT_LIST_HEAD(&tags->page_list);
2186
2187 /*
2188 * rq_size is the size of the request plus driver payload, rounded
2189 * to the cacheline size
2190 */
2191 rq_size = round_up(sizeof(struct request) + set->cmd_size,
2192 cache_line_size());
2193 left = rq_size * depth;
2194
2195 for (i = 0; i < depth; ) {
2196 int this_order = max_order;
2197 struct page *page;
2198 int to_do;
2199 void *p;
2200
2201 while (this_order && left < order_to_size(this_order - 1))
2202 this_order--;
2203
2204 do {
2205 page = alloc_pages_node(node,
2206 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2207 this_order);
2208 if (page)
2209 break;
2210 if (!this_order--)
2211 break;
2212 if (order_to_size(this_order) < rq_size)
2213 break;
2214 } while (1);
2215
2216 if (!page)
2217 goto fail;
2218
2219 page->private = this_order;
2220 list_add_tail(&page->lru, &tags->page_list);
2221
2222 p = page_address(page);
2223 /*
2224 * Allow kmemleak to scan these pages as they contain pointers
2225 * to additional allocations like via ops->init_request().
2226 */
2227 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2228 entries_per_page = order_to_size(this_order) / rq_size;
2229 to_do = min(entries_per_page, depth - i);
2230 left -= to_do * rq_size;
2231 for (j = 0; j < to_do; j++) {
2232 struct request *rq = p;
2233
2234 tags->static_rqs[i] = rq;
2235 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2236 tags->static_rqs[i] = NULL;
2237 goto fail;
2238 }
2239
2240 p += rq_size;
2241 i++;
2242 }
2243 }
2244 return 0;
2245
2246 fail:
2247 blk_mq_free_rqs(set, tags, hctx_idx);
2248 return -ENOMEM;
2249 }
2250
2251 /*
2252 * 'cpu' is going away. splice any existing rq_list entries from this
2253 * software queue to the hw queue dispatch list, and ensure that it
2254 * gets run.
2255 */
2256 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2257 {
2258 struct blk_mq_hw_ctx *hctx;
2259 struct blk_mq_ctx *ctx;
2260 LIST_HEAD(tmp);
2261 enum hctx_type type;
2262
2263 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2264 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2265 type = hctx->type;
2266
2267 spin_lock(&ctx->lock);
2268 if (!list_empty(&ctx->rq_lists[type])) {
2269 list_splice_init(&ctx->rq_lists[type], &tmp);
2270 blk_mq_hctx_clear_pending(hctx, ctx);
2271 }
2272 spin_unlock(&ctx->lock);
2273
2274 if (list_empty(&tmp))
2275 return 0;
2276
2277 spin_lock(&hctx->lock);
2278 list_splice_tail_init(&tmp, &hctx->dispatch);
2279 spin_unlock(&hctx->lock);
2280
2281 blk_mq_run_hw_queue(hctx, true);
2282 return 0;
2283 }
2284
2285 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2286 {
2287 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2288 &hctx->cpuhp_dead);
2289 }
2290
2291 /* hctx->ctxs will be freed in queue's release handler */
2292 static void blk_mq_exit_hctx(struct request_queue *q,
2293 struct blk_mq_tag_set *set,
2294 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2295 {
2296 if (blk_mq_hw_queue_mapped(hctx))
2297 blk_mq_tag_idle(hctx);
2298
2299 if (set->ops->exit_request)
2300 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2301
2302 if (set->ops->exit_hctx)
2303 set->ops->exit_hctx(hctx, hctx_idx);
2304
2305 blk_mq_remove_cpuhp(hctx);
2306
2307 spin_lock(&q->unused_hctx_lock);
2308 list_add(&hctx->hctx_list, &q->unused_hctx_list);
2309 spin_unlock(&q->unused_hctx_lock);
2310 }
2311
2312 static void blk_mq_exit_hw_queues(struct request_queue *q,
2313 struct blk_mq_tag_set *set, int nr_queue)
2314 {
2315 struct blk_mq_hw_ctx *hctx;
2316 unsigned int i;
2317
2318 queue_for_each_hw_ctx(q, hctx, i) {
2319 if (i == nr_queue)
2320 break;
2321 blk_mq_debugfs_unregister_hctx(hctx);
2322 blk_mq_exit_hctx(q, set, hctx, i);
2323 }
2324 }
2325
2326 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2327 {
2328 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2329
2330 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2331 __alignof__(struct blk_mq_hw_ctx)) !=
2332 sizeof(struct blk_mq_hw_ctx));
2333
2334 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2335 hw_ctx_size += sizeof(struct srcu_struct);
2336
2337 return hw_ctx_size;
2338 }
2339
2340 static int blk_mq_init_hctx(struct request_queue *q,
2341 struct blk_mq_tag_set *set,
2342 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2343 {
2344 hctx->queue_num = hctx_idx;
2345
2346 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2347
2348 hctx->tags = set->tags[hctx_idx];
2349
2350 if (set->ops->init_hctx &&
2351 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2352 goto unregister_cpu_notifier;
2353
2354 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2355 hctx->numa_node))
2356 goto exit_hctx;
2357 return 0;
2358
2359 exit_hctx:
2360 if (set->ops->exit_hctx)
2361 set->ops->exit_hctx(hctx, hctx_idx);
2362 unregister_cpu_notifier:
2363 blk_mq_remove_cpuhp(hctx);
2364 return -1;
2365 }
2366
2367 static struct blk_mq_hw_ctx *
2368 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2369 int node)
2370 {
2371 struct blk_mq_hw_ctx *hctx;
2372 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2373
2374 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2375 if (!hctx)
2376 goto fail_alloc_hctx;
2377
2378 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2379 goto free_hctx;
2380
2381 atomic_set(&hctx->nr_active, 0);
2382 if (node == NUMA_NO_NODE)
2383 node = set->numa_node;
2384 hctx->numa_node = node;
2385
2386 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2387 spin_lock_init(&hctx->lock);
2388 INIT_LIST_HEAD(&hctx->dispatch);
2389 hctx->queue = q;
2390 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2391
2392 INIT_LIST_HEAD(&hctx->hctx_list);
2393
2394 /*
2395 * Allocate space for all possible cpus to avoid allocation at
2396 * runtime
2397 */
2398 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2399 gfp, node);
2400 if (!hctx->ctxs)
2401 goto free_cpumask;
2402
2403 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2404 gfp, node))
2405 goto free_ctxs;
2406 hctx->nr_ctx = 0;
2407
2408 spin_lock_init(&hctx->dispatch_wait_lock);
2409 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2410 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2411
2412 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2413 gfp);
2414 if (!hctx->fq)
2415 goto free_bitmap;
2416
2417 if (hctx->flags & BLK_MQ_F_BLOCKING)
2418 init_srcu_struct(hctx->srcu);
2419 blk_mq_hctx_kobj_init(hctx);
2420
2421 return hctx;
2422
2423 free_bitmap:
2424 sbitmap_free(&hctx->ctx_map);
2425 free_ctxs:
2426 kfree(hctx->ctxs);
2427 free_cpumask:
2428 free_cpumask_var(hctx->cpumask);
2429 free_hctx:
2430 kfree(hctx);
2431 fail_alloc_hctx:
2432 return NULL;
2433 }
2434
2435 static void blk_mq_init_cpu_queues(struct request_queue *q,
2436 unsigned int nr_hw_queues)
2437 {
2438 struct blk_mq_tag_set *set = q->tag_set;
2439 unsigned int i, j;
2440
2441 for_each_possible_cpu(i) {
2442 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2443 struct blk_mq_hw_ctx *hctx;
2444 int k;
2445
2446 __ctx->cpu = i;
2447 spin_lock_init(&__ctx->lock);
2448 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2449 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2450
2451 __ctx->queue = q;
2452
2453 /*
2454 * Set local node, IFF we have more than one hw queue. If
2455 * not, we remain on the home node of the device
2456 */
2457 for (j = 0; j < set->nr_maps; j++) {
2458 hctx = blk_mq_map_queue_type(q, j, i);
2459 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2460 hctx->numa_node = local_memory_node(cpu_to_node(i));
2461 }
2462 }
2463 }
2464
2465 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2466 {
2467 int ret = 0;
2468
2469 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2470 set->queue_depth, set->reserved_tags);
2471 if (!set->tags[hctx_idx])
2472 return false;
2473
2474 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2475 set->queue_depth);
2476 if (!ret)
2477 return true;
2478
2479 blk_mq_free_rq_map(set->tags[hctx_idx]);
2480 set->tags[hctx_idx] = NULL;
2481 return false;
2482 }
2483
2484 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2485 unsigned int hctx_idx)
2486 {
2487 if (set->tags && set->tags[hctx_idx]) {
2488 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2489 blk_mq_free_rq_map(set->tags[hctx_idx]);
2490 set->tags[hctx_idx] = NULL;
2491 }
2492 }
2493
2494 static void blk_mq_map_swqueue(struct request_queue *q)
2495 {
2496 unsigned int i, j, hctx_idx;
2497 struct blk_mq_hw_ctx *hctx;
2498 struct blk_mq_ctx *ctx;
2499 struct blk_mq_tag_set *set = q->tag_set;
2500
2501 queue_for_each_hw_ctx(q, hctx, i) {
2502 cpumask_clear(hctx->cpumask);
2503 hctx->nr_ctx = 0;
2504 hctx->dispatch_from = NULL;
2505 }
2506
2507 /*
2508 * Map software to hardware queues.
2509 *
2510 * If the cpu isn't present, the cpu is mapped to first hctx.
2511 */
2512 for_each_possible_cpu(i) {
2513 hctx_idx = set->map[HCTX_TYPE_DEFAULT].mq_map[i];
2514 /* unmapped hw queue can be remapped after CPU topo changed */
2515 if (!set->tags[hctx_idx] &&
2516 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2517 /*
2518 * If tags initialization fail for some hctx,
2519 * that hctx won't be brought online. In this
2520 * case, remap the current ctx to hctx[0] which
2521 * is guaranteed to always have tags allocated
2522 */
2523 set->map[HCTX_TYPE_DEFAULT].mq_map[i] = 0;
2524 }
2525
2526 ctx = per_cpu_ptr(q->queue_ctx, i);
2527 for (j = 0; j < set->nr_maps; j++) {
2528 if (!set->map[j].nr_queues) {
2529 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2530 HCTX_TYPE_DEFAULT, i);
2531 continue;
2532 }
2533
2534 hctx = blk_mq_map_queue_type(q, j, i);
2535 ctx->hctxs[j] = hctx;
2536 /*
2537 * If the CPU is already set in the mask, then we've
2538 * mapped this one already. This can happen if
2539 * devices share queues across queue maps.
2540 */
2541 if (cpumask_test_cpu(i, hctx->cpumask))
2542 continue;
2543
2544 cpumask_set_cpu(i, hctx->cpumask);
2545 hctx->type = j;
2546 ctx->index_hw[hctx->type] = hctx->nr_ctx;
2547 hctx->ctxs[hctx->nr_ctx++] = ctx;
2548
2549 /*
2550 * If the nr_ctx type overflows, we have exceeded the
2551 * amount of sw queues we can support.
2552 */
2553 BUG_ON(!hctx->nr_ctx);
2554 }
2555
2556 for (; j < HCTX_MAX_TYPES; j++)
2557 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2558 HCTX_TYPE_DEFAULT, i);
2559 }
2560
2561 queue_for_each_hw_ctx(q, hctx, i) {
2562 /*
2563 * If no software queues are mapped to this hardware queue,
2564 * disable it and free the request entries.
2565 */
2566 if (!hctx->nr_ctx) {
2567 /* Never unmap queue 0. We need it as a
2568 * fallback in case of a new remap fails
2569 * allocation
2570 */
2571 if (i && set->tags[i])
2572 blk_mq_free_map_and_requests(set, i);
2573
2574 hctx->tags = NULL;
2575 continue;
2576 }
2577
2578 hctx->tags = set->tags[i];
2579 WARN_ON(!hctx->tags);
2580
2581 /*
2582 * Set the map size to the number of mapped software queues.
2583 * This is more accurate and more efficient than looping
2584 * over all possibly mapped software queues.
2585 */
2586 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2587
2588 /*
2589 * Initialize batch roundrobin counts
2590 */
2591 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2592 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2593 }
2594 }
2595
2596 /*
2597 * Caller needs to ensure that we're either frozen/quiesced, or that
2598 * the queue isn't live yet.
2599 */
2600 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2601 {
2602 struct blk_mq_hw_ctx *hctx;
2603 int i;
2604
2605 queue_for_each_hw_ctx(q, hctx, i) {
2606 if (shared)
2607 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2608 else
2609 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2610 }
2611 }
2612
2613 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2614 bool shared)
2615 {
2616 struct request_queue *q;
2617
2618 lockdep_assert_held(&set->tag_list_lock);
2619
2620 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2621 blk_mq_freeze_queue(q);
2622 queue_set_hctx_shared(q, shared);
2623 blk_mq_unfreeze_queue(q);
2624 }
2625 }
2626
2627 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2628 {
2629 struct blk_mq_tag_set *set = q->tag_set;
2630
2631 mutex_lock(&set->tag_list_lock);
2632 list_del_rcu(&q->tag_set_list);
2633 if (list_is_singular(&set->tag_list)) {
2634 /* just transitioned to unshared */
2635 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2636 /* update existing queue */
2637 blk_mq_update_tag_set_depth(set, false);
2638 }
2639 mutex_unlock(&set->tag_list_lock);
2640 INIT_LIST_HEAD(&q->tag_set_list);
2641 }
2642
2643 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2644 struct request_queue *q)
2645 {
2646 mutex_lock(&set->tag_list_lock);
2647
2648 /*
2649 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2650 */
2651 if (!list_empty(&set->tag_list) &&
2652 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2653 set->flags |= BLK_MQ_F_TAG_SHARED;
2654 /* update existing queue */
2655 blk_mq_update_tag_set_depth(set, true);
2656 }
2657 if (set->flags & BLK_MQ_F_TAG_SHARED)
2658 queue_set_hctx_shared(q, true);
2659 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2660
2661 mutex_unlock(&set->tag_list_lock);
2662 }
2663
2664 /* All allocations will be freed in release handler of q->mq_kobj */
2665 static int blk_mq_alloc_ctxs(struct request_queue *q)
2666 {
2667 struct blk_mq_ctxs *ctxs;
2668 int cpu;
2669
2670 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2671 if (!ctxs)
2672 return -ENOMEM;
2673
2674 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2675 if (!ctxs->queue_ctx)
2676 goto fail;
2677
2678 for_each_possible_cpu(cpu) {
2679 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2680 ctx->ctxs = ctxs;
2681 }
2682
2683 q->mq_kobj = &ctxs->kobj;
2684 q->queue_ctx = ctxs->queue_ctx;
2685
2686 return 0;
2687 fail:
2688 kfree(ctxs);
2689 return -ENOMEM;
2690 }
2691
2692 /*
2693 * It is the actual release handler for mq, but we do it from
2694 * request queue's release handler for avoiding use-after-free
2695 * and headache because q->mq_kobj shouldn't have been introduced,
2696 * but we can't group ctx/kctx kobj without it.
2697 */
2698 void blk_mq_release(struct request_queue *q)
2699 {
2700 struct blk_mq_hw_ctx *hctx, *next;
2701 int i;
2702
2703 queue_for_each_hw_ctx(q, hctx, i)
2704 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
2705
2706 /* all hctx are in .unused_hctx_list now */
2707 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
2708 list_del_init(&hctx->hctx_list);
2709 kobject_put(&hctx->kobj);
2710 }
2711
2712 kfree(q->queue_hw_ctx);
2713
2714 /*
2715 * release .mq_kobj and sw queue's kobject now because
2716 * both share lifetime with request queue.
2717 */
2718 blk_mq_sysfs_deinit(q);
2719 }
2720
2721 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2722 {
2723 struct request_queue *uninit_q, *q;
2724
2725 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2726 if (!uninit_q)
2727 return ERR_PTR(-ENOMEM);
2728
2729 /*
2730 * Initialize the queue without an elevator. device_add_disk() will do
2731 * the initialization.
2732 */
2733 q = blk_mq_init_allocated_queue(set, uninit_q, false);
2734 if (IS_ERR(q))
2735 blk_cleanup_queue(uninit_q);
2736
2737 return q;
2738 }
2739 EXPORT_SYMBOL(blk_mq_init_queue);
2740
2741 /*
2742 * Helper for setting up a queue with mq ops, given queue depth, and
2743 * the passed in mq ops flags.
2744 */
2745 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2746 const struct blk_mq_ops *ops,
2747 unsigned int queue_depth,
2748 unsigned int set_flags)
2749 {
2750 struct request_queue *q;
2751 int ret;
2752
2753 memset(set, 0, sizeof(*set));
2754 set->ops = ops;
2755 set->nr_hw_queues = 1;
2756 set->nr_maps = 1;
2757 set->queue_depth = queue_depth;
2758 set->numa_node = NUMA_NO_NODE;
2759 set->flags = set_flags;
2760
2761 ret = blk_mq_alloc_tag_set(set);
2762 if (ret)
2763 return ERR_PTR(ret);
2764
2765 q = blk_mq_init_queue(set);
2766 if (IS_ERR(q)) {
2767 blk_mq_free_tag_set(set);
2768 return q;
2769 }
2770
2771 return q;
2772 }
2773 EXPORT_SYMBOL(blk_mq_init_sq_queue);
2774
2775 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2776 struct blk_mq_tag_set *set, struct request_queue *q,
2777 int hctx_idx, int node)
2778 {
2779 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
2780
2781 /* reuse dead hctx first */
2782 spin_lock(&q->unused_hctx_lock);
2783 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
2784 if (tmp->numa_node == node) {
2785 hctx = tmp;
2786 break;
2787 }
2788 }
2789 if (hctx)
2790 list_del_init(&hctx->hctx_list);
2791 spin_unlock(&q->unused_hctx_lock);
2792
2793 if (!hctx)
2794 hctx = blk_mq_alloc_hctx(q, set, node);
2795 if (!hctx)
2796 goto fail;
2797
2798 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
2799 goto free_hctx;
2800
2801 return hctx;
2802
2803 free_hctx:
2804 kobject_put(&hctx->kobj);
2805 fail:
2806 return NULL;
2807 }
2808
2809 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2810 struct request_queue *q)
2811 {
2812 int i, j, end;
2813 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2814
2815 if (q->nr_hw_queues < set->nr_hw_queues) {
2816 struct blk_mq_hw_ctx **new_hctxs;
2817
2818 new_hctxs = kcalloc_node(set->nr_hw_queues,
2819 sizeof(*new_hctxs), GFP_KERNEL,
2820 set->numa_node);
2821 if (!new_hctxs)
2822 return;
2823 if (hctxs)
2824 memcpy(new_hctxs, hctxs, q->nr_hw_queues *
2825 sizeof(*hctxs));
2826 q->queue_hw_ctx = new_hctxs;
2827 q->nr_hw_queues = set->nr_hw_queues;
2828 kfree(hctxs);
2829 hctxs = new_hctxs;
2830 }
2831
2832 /* protect against switching io scheduler */
2833 mutex_lock(&q->sysfs_lock);
2834 for (i = 0; i < set->nr_hw_queues; i++) {
2835 int node;
2836 struct blk_mq_hw_ctx *hctx;
2837
2838 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
2839 /*
2840 * If the hw queue has been mapped to another numa node,
2841 * we need to realloc the hctx. If allocation fails, fallback
2842 * to use the previous one.
2843 */
2844 if (hctxs[i] && (hctxs[i]->numa_node == node))
2845 continue;
2846
2847 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2848 if (hctx) {
2849 if (hctxs[i])
2850 blk_mq_exit_hctx(q, set, hctxs[i], i);
2851 hctxs[i] = hctx;
2852 } else {
2853 if (hctxs[i])
2854 pr_warn("Allocate new hctx on node %d fails,\
2855 fallback to previous one on node %d\n",
2856 node, hctxs[i]->numa_node);
2857 else
2858 break;
2859 }
2860 }
2861 /*
2862 * Increasing nr_hw_queues fails. Free the newly allocated
2863 * hctxs and keep the previous q->nr_hw_queues.
2864 */
2865 if (i != set->nr_hw_queues) {
2866 j = q->nr_hw_queues;
2867 end = i;
2868 } else {
2869 j = i;
2870 end = q->nr_hw_queues;
2871 q->nr_hw_queues = set->nr_hw_queues;
2872 }
2873
2874 for (; j < end; j++) {
2875 struct blk_mq_hw_ctx *hctx = hctxs[j];
2876
2877 if (hctx) {
2878 if (hctx->tags)
2879 blk_mq_free_map_and_requests(set, j);
2880 blk_mq_exit_hctx(q, set, hctx, j);
2881 hctxs[j] = NULL;
2882 }
2883 }
2884 mutex_unlock(&q->sysfs_lock);
2885 }
2886
2887 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2888 struct request_queue *q,
2889 bool elevator_init)
2890 {
2891 /* mark the queue as mq asap */
2892 q->mq_ops = set->ops;
2893
2894 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2895 blk_mq_poll_stats_bkt,
2896 BLK_MQ_POLL_STATS_BKTS, q);
2897 if (!q->poll_cb)
2898 goto err_exit;
2899
2900 if (blk_mq_alloc_ctxs(q))
2901 goto err_poll;
2902
2903 /* init q->mq_kobj and sw queues' kobjects */
2904 blk_mq_sysfs_init(q);
2905
2906 INIT_LIST_HEAD(&q->unused_hctx_list);
2907 spin_lock_init(&q->unused_hctx_lock);
2908
2909 blk_mq_realloc_hw_ctxs(set, q);
2910 if (!q->nr_hw_queues)
2911 goto err_hctxs;
2912
2913 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2914 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2915
2916 q->tag_set = set;
2917
2918 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2919 if (set->nr_maps > HCTX_TYPE_POLL &&
2920 set->map[HCTX_TYPE_POLL].nr_queues)
2921 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2922
2923 q->sg_reserved_size = INT_MAX;
2924
2925 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2926 INIT_LIST_HEAD(&q->requeue_list);
2927 spin_lock_init(&q->requeue_lock);
2928
2929 blk_queue_make_request(q, blk_mq_make_request);
2930
2931 /*
2932 * Do this after blk_queue_make_request() overrides it...
2933 */
2934 q->nr_requests = set->queue_depth;
2935
2936 /*
2937 * Default to classic polling
2938 */
2939 q->poll_nsec = BLK_MQ_POLL_CLASSIC;
2940
2941 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2942 blk_mq_add_queue_tag_set(set, q);
2943 blk_mq_map_swqueue(q);
2944
2945 if (elevator_init)
2946 elevator_init_mq(q);
2947
2948 return q;
2949
2950 err_hctxs:
2951 kfree(q->queue_hw_ctx);
2952 q->nr_hw_queues = 0;
2953 blk_mq_sysfs_deinit(q);
2954 err_poll:
2955 blk_stat_free_callback(q->poll_cb);
2956 q->poll_cb = NULL;
2957 err_exit:
2958 q->mq_ops = NULL;
2959 return ERR_PTR(-ENOMEM);
2960 }
2961 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2962
2963 /* tags can _not_ be used after returning from blk_mq_exit_queue */
2964 void blk_mq_exit_queue(struct request_queue *q)
2965 {
2966 struct blk_mq_tag_set *set = q->tag_set;
2967
2968 blk_mq_del_queue_tag_set(q);
2969 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2970 }
2971
2972 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2973 {
2974 int i;
2975
2976 for (i = 0; i < set->nr_hw_queues; i++)
2977 if (!__blk_mq_alloc_rq_map(set, i))
2978 goto out_unwind;
2979
2980 return 0;
2981
2982 out_unwind:
2983 while (--i >= 0)
2984 blk_mq_free_rq_map(set->tags[i]);
2985
2986 return -ENOMEM;
2987 }
2988
2989 /*
2990 * Allocate the request maps associated with this tag_set. Note that this
2991 * may reduce the depth asked for, if memory is tight. set->queue_depth
2992 * will be updated to reflect the allocated depth.
2993 */
2994 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2995 {
2996 unsigned int depth;
2997 int err;
2998
2999 depth = set->queue_depth;
3000 do {
3001 err = __blk_mq_alloc_rq_maps(set);
3002 if (!err)
3003 break;
3004
3005 set->queue_depth >>= 1;
3006 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3007 err = -ENOMEM;
3008 break;
3009 }
3010 } while (set->queue_depth);
3011
3012 if (!set->queue_depth || err) {
3013 pr_err("blk-mq: failed to allocate request map\n");
3014 return -ENOMEM;
3015 }
3016
3017 if (depth != set->queue_depth)
3018 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3019 depth, set->queue_depth);
3020
3021 return 0;
3022 }
3023
3024 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3025 {
3026 if (set->ops->map_queues && !is_kdump_kernel()) {
3027 int i;
3028
3029 /*
3030 * transport .map_queues is usually done in the following
3031 * way:
3032 *
3033 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3034 * mask = get_cpu_mask(queue)
3035 * for_each_cpu(cpu, mask)
3036 * set->map[x].mq_map[cpu] = queue;
3037 * }
3038 *
3039 * When we need to remap, the table has to be cleared for
3040 * killing stale mapping since one CPU may not be mapped
3041 * to any hw queue.
3042 */
3043 for (i = 0; i < set->nr_maps; i++)
3044 blk_mq_clear_mq_map(&set->map[i]);
3045
3046 return set->ops->map_queues(set);
3047 } else {
3048 BUG_ON(set->nr_maps > 1);
3049 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3050 }
3051 }
3052
3053 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3054 int cur_nr_hw_queues, int new_nr_hw_queues)
3055 {
3056 struct blk_mq_tags **new_tags;
3057
3058 if (cur_nr_hw_queues >= new_nr_hw_queues)
3059 return 0;
3060
3061 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3062 GFP_KERNEL, set->numa_node);
3063 if (!new_tags)
3064 return -ENOMEM;
3065
3066 if (set->tags)
3067 memcpy(new_tags, set->tags, cur_nr_hw_queues *
3068 sizeof(*set->tags));
3069 kfree(set->tags);
3070 set->tags = new_tags;
3071 set->nr_hw_queues = new_nr_hw_queues;
3072
3073 return 0;
3074 }
3075
3076 /*
3077 * Alloc a tag set to be associated with one or more request queues.
3078 * May fail with EINVAL for various error conditions. May adjust the
3079 * requested depth down, if it's too large. In that case, the set
3080 * value will be stored in set->queue_depth.
3081 */
3082 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3083 {
3084 int i, ret;
3085
3086 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3087
3088 if (!set->nr_hw_queues)
3089 return -EINVAL;
3090 if (!set->queue_depth)
3091 return -EINVAL;
3092 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3093 return -EINVAL;
3094
3095 if (!set->ops->queue_rq)
3096 return -EINVAL;
3097
3098 if (!set->ops->get_budget ^ !set->ops->put_budget)
3099 return -EINVAL;
3100
3101 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3102 pr_info("blk-mq: reduced tag depth to %u\n",
3103 BLK_MQ_MAX_DEPTH);
3104 set->queue_depth = BLK_MQ_MAX_DEPTH;
3105 }
3106
3107 if (!set->nr_maps)
3108 set->nr_maps = 1;
3109 else if (set->nr_maps > HCTX_MAX_TYPES)
3110 return -EINVAL;
3111
3112 /*
3113 * If a crashdump is active, then we are potentially in a very
3114 * memory constrained environment. Limit us to 1 queue and
3115 * 64 tags to prevent using too much memory.
3116 */
3117 if (is_kdump_kernel()) {
3118 set->nr_hw_queues = 1;
3119 set->nr_maps = 1;
3120 set->queue_depth = min(64U, set->queue_depth);
3121 }
3122 /*
3123 * There is no use for more h/w queues than cpus if we just have
3124 * a single map
3125 */
3126 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3127 set->nr_hw_queues = nr_cpu_ids;
3128
3129 if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0)
3130 return -ENOMEM;
3131
3132 ret = -ENOMEM;
3133 for (i = 0; i < set->nr_maps; i++) {
3134 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3135 sizeof(set->map[i].mq_map[0]),
3136 GFP_KERNEL, set->numa_node);
3137 if (!set->map[i].mq_map)
3138 goto out_free_mq_map;
3139 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3140 }
3141
3142 ret = blk_mq_update_queue_map(set);
3143 if (ret)
3144 goto out_free_mq_map;
3145
3146 ret = blk_mq_alloc_rq_maps(set);
3147 if (ret)
3148 goto out_free_mq_map;
3149
3150 mutex_init(&set->tag_list_lock);
3151 INIT_LIST_HEAD(&set->tag_list);
3152
3153 return 0;
3154
3155 out_free_mq_map:
3156 for (i = 0; i < set->nr_maps; i++) {
3157 kfree(set->map[i].mq_map);
3158 set->map[i].mq_map = NULL;
3159 }
3160 kfree(set->tags);
3161 set->tags = NULL;
3162 return ret;
3163 }
3164 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3165
3166 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3167 {
3168 int i, j;
3169
3170 for (i = 0; i < set->nr_hw_queues; i++)
3171 blk_mq_free_map_and_requests(set, i);
3172
3173 for (j = 0; j < set->nr_maps; j++) {
3174 kfree(set->map[j].mq_map);
3175 set->map[j].mq_map = NULL;
3176 }
3177
3178 kfree(set->tags);
3179 set->tags = NULL;
3180 }
3181 EXPORT_SYMBOL(blk_mq_free_tag_set);
3182
3183 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3184 {
3185 struct blk_mq_tag_set *set = q->tag_set;
3186 struct blk_mq_hw_ctx *hctx;
3187 int i, ret;
3188
3189 if (!set)
3190 return -EINVAL;
3191
3192 if (q->nr_requests == nr)
3193 return 0;
3194
3195 blk_mq_freeze_queue(q);
3196 blk_mq_quiesce_queue(q);
3197
3198 ret = 0;
3199 queue_for_each_hw_ctx(q, hctx, i) {
3200 if (!hctx->tags)
3201 continue;
3202 /*
3203 * If we're using an MQ scheduler, just update the scheduler
3204 * queue depth. This is similar to what the old code would do.
3205 */
3206 if (!hctx->sched_tags) {
3207 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3208 false);
3209 } else {
3210 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3211 nr, true);
3212 }
3213 if (ret)
3214 break;
3215 if (q->elevator && q->elevator->type->ops.depth_updated)
3216 q->elevator->type->ops.depth_updated(hctx);
3217 }
3218
3219 if (!ret)
3220 q->nr_requests = nr;
3221
3222 blk_mq_unquiesce_queue(q);
3223 blk_mq_unfreeze_queue(q);
3224
3225 return ret;
3226 }
3227
3228 /*
3229 * request_queue and elevator_type pair.
3230 * It is just used by __blk_mq_update_nr_hw_queues to cache
3231 * the elevator_type associated with a request_queue.
3232 */
3233 struct blk_mq_qe_pair {
3234 struct list_head node;
3235 struct request_queue *q;
3236 struct elevator_type *type;
3237 };
3238
3239 /*
3240 * Cache the elevator_type in qe pair list and switch the
3241 * io scheduler to 'none'
3242 */
3243 static bool blk_mq_elv_switch_none(struct list_head *head,
3244 struct request_queue *q)
3245 {
3246 struct blk_mq_qe_pair *qe;
3247
3248 if (!q->elevator)
3249 return true;
3250
3251 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3252 if (!qe)
3253 return false;
3254
3255 INIT_LIST_HEAD(&qe->node);
3256 qe->q = q;
3257 qe->type = q->elevator->type;
3258 list_add(&qe->node, head);
3259
3260 mutex_lock(&q->sysfs_lock);
3261 /*
3262 * After elevator_switch_mq, the previous elevator_queue will be
3263 * released by elevator_release. The reference of the io scheduler
3264 * module get by elevator_get will also be put. So we need to get
3265 * a reference of the io scheduler module here to prevent it to be
3266 * removed.
3267 */
3268 __module_get(qe->type->elevator_owner);
3269 elevator_switch_mq(q, NULL);
3270 mutex_unlock(&q->sysfs_lock);
3271
3272 return true;
3273 }
3274
3275 static void blk_mq_elv_switch_back(struct list_head *head,
3276 struct request_queue *q)
3277 {
3278 struct blk_mq_qe_pair *qe;
3279 struct elevator_type *t = NULL;
3280
3281 list_for_each_entry(qe, head, node)
3282 if (qe->q == q) {
3283 t = qe->type;
3284 break;
3285 }
3286
3287 if (!t)
3288 return;
3289
3290 list_del(&qe->node);
3291 kfree(qe);
3292
3293 mutex_lock(&q->sysfs_lock);
3294 elevator_switch_mq(q, t);
3295 mutex_unlock(&q->sysfs_lock);
3296 }
3297
3298 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3299 int nr_hw_queues)
3300 {
3301 struct request_queue *q;
3302 LIST_HEAD(head);
3303 int prev_nr_hw_queues;
3304
3305 lockdep_assert_held(&set->tag_list_lock);
3306
3307 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3308 nr_hw_queues = nr_cpu_ids;
3309 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3310 return;
3311
3312 list_for_each_entry(q, &set->tag_list, tag_set_list)
3313 blk_mq_freeze_queue(q);
3314 /*
3315 * Switch IO scheduler to 'none', cleaning up the data associated
3316 * with the previous scheduler. We will switch back once we are done
3317 * updating the new sw to hw queue mappings.
3318 */
3319 list_for_each_entry(q, &set->tag_list, tag_set_list)
3320 if (!blk_mq_elv_switch_none(&head, q))
3321 goto switch_back;
3322
3323 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3324 blk_mq_debugfs_unregister_hctxs(q);
3325 blk_mq_sysfs_unregister(q);
3326 }
3327
3328 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3329 0)
3330 goto reregister;
3331
3332 prev_nr_hw_queues = set->nr_hw_queues;
3333 set->nr_hw_queues = nr_hw_queues;
3334 blk_mq_update_queue_map(set);
3335 fallback:
3336 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3337 blk_mq_realloc_hw_ctxs(set, q);
3338 if (q->nr_hw_queues != set->nr_hw_queues) {
3339 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3340 nr_hw_queues, prev_nr_hw_queues);
3341 set->nr_hw_queues = prev_nr_hw_queues;
3342 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3343 goto fallback;
3344 }
3345 blk_mq_map_swqueue(q);
3346 }
3347
3348 reregister:
3349 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3350 blk_mq_sysfs_register(q);
3351 blk_mq_debugfs_register_hctxs(q);
3352 }
3353
3354 switch_back:
3355 list_for_each_entry(q, &set->tag_list, tag_set_list)
3356 blk_mq_elv_switch_back(&head, q);
3357
3358 list_for_each_entry(q, &set->tag_list, tag_set_list)
3359 blk_mq_unfreeze_queue(q);
3360 }
3361
3362 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3363 {
3364 mutex_lock(&set->tag_list_lock);
3365 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3366 mutex_unlock(&set->tag_list_lock);
3367 }
3368 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3369
3370 /* Enable polling stats and return whether they were already enabled. */
3371 static bool blk_poll_stats_enable(struct request_queue *q)
3372 {
3373 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3374 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3375 return true;
3376 blk_stat_add_callback(q, q->poll_cb);
3377 return false;
3378 }
3379
3380 static void blk_mq_poll_stats_start(struct request_queue *q)
3381 {
3382 /*
3383 * We don't arm the callback if polling stats are not enabled or the
3384 * callback is already active.
3385 */
3386 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3387 blk_stat_is_active(q->poll_cb))
3388 return;
3389
3390 blk_stat_activate_msecs(q->poll_cb, 100);
3391 }
3392
3393 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3394 {
3395 struct request_queue *q = cb->data;
3396 int bucket;
3397
3398 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3399 if (cb->stat[bucket].nr_samples)
3400 q->poll_stat[bucket] = cb->stat[bucket];
3401 }
3402 }
3403
3404 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3405 struct request *rq)
3406 {
3407 unsigned long ret = 0;
3408 int bucket;
3409
3410 /*
3411 * If stats collection isn't on, don't sleep but turn it on for
3412 * future users
3413 */
3414 if (!blk_poll_stats_enable(q))
3415 return 0;
3416
3417 /*
3418 * As an optimistic guess, use half of the mean service time
3419 * for this type of request. We can (and should) make this smarter.
3420 * For instance, if the completion latencies are tight, we can
3421 * get closer than just half the mean. This is especially
3422 * important on devices where the completion latencies are longer
3423 * than ~10 usec. We do use the stats for the relevant IO size
3424 * if available which does lead to better estimates.
3425 */
3426 bucket = blk_mq_poll_stats_bkt(rq);
3427 if (bucket < 0)
3428 return ret;
3429
3430 if (q->poll_stat[bucket].nr_samples)
3431 ret = (q->poll_stat[bucket].mean + 1) / 2;
3432
3433 return ret;
3434 }
3435
3436 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3437 struct request *rq)
3438 {
3439 struct hrtimer_sleeper hs;
3440 enum hrtimer_mode mode;
3441 unsigned int nsecs;
3442 ktime_t kt;
3443
3444 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3445 return false;
3446
3447 /*
3448 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3449 *
3450 * 0: use half of prev avg
3451 * >0: use this specific value
3452 */
3453 if (q->poll_nsec > 0)
3454 nsecs = q->poll_nsec;
3455 else
3456 nsecs = blk_mq_poll_nsecs(q, rq);
3457
3458 if (!nsecs)
3459 return false;
3460
3461 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3462
3463 /*
3464 * This will be replaced with the stats tracking code, using
3465 * 'avg_completion_time / 2' as the pre-sleep target.
3466 */
3467 kt = nsecs;
3468
3469 mode = HRTIMER_MODE_REL;
3470 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3471 hrtimer_set_expires(&hs.timer, kt);
3472
3473 do {
3474 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3475 break;
3476 set_current_state(TASK_UNINTERRUPTIBLE);
3477 hrtimer_sleeper_start_expires(&hs, mode);
3478 if (hs.task)
3479 io_schedule();
3480 hrtimer_cancel(&hs.timer);
3481 mode = HRTIMER_MODE_ABS;
3482 } while (hs.task && !signal_pending(current));
3483
3484 __set_current_state(TASK_RUNNING);
3485 destroy_hrtimer_on_stack(&hs.timer);
3486 return true;
3487 }
3488
3489 static bool blk_mq_poll_hybrid(struct request_queue *q,
3490 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3491 {
3492 struct request *rq;
3493
3494 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3495 return false;
3496
3497 if (!blk_qc_t_is_internal(cookie))
3498 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3499 else {
3500 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3501 /*
3502 * With scheduling, if the request has completed, we'll
3503 * get a NULL return here, as we clear the sched tag when
3504 * that happens. The request still remains valid, like always,
3505 * so we should be safe with just the NULL check.
3506 */
3507 if (!rq)
3508 return false;
3509 }
3510
3511 return blk_mq_poll_hybrid_sleep(q, rq);
3512 }
3513
3514 /**
3515 * blk_poll - poll for IO completions
3516 * @q: the queue
3517 * @cookie: cookie passed back at IO submission time
3518 * @spin: whether to spin for completions
3519 *
3520 * Description:
3521 * Poll for completions on the passed in queue. Returns number of
3522 * completed entries found. If @spin is true, then blk_poll will continue
3523 * looping until at least one completion is found, unless the task is
3524 * otherwise marked running (or we need to reschedule).
3525 */
3526 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3527 {
3528 struct blk_mq_hw_ctx *hctx;
3529 long state;
3530
3531 if (!blk_qc_t_valid(cookie) ||
3532 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3533 return 0;
3534
3535 if (current->plug)
3536 blk_flush_plug_list(current->plug, false);
3537
3538 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3539
3540 /*
3541 * If we sleep, have the caller restart the poll loop to reset
3542 * the state. Like for the other success return cases, the
3543 * caller is responsible for checking if the IO completed. If
3544 * the IO isn't complete, we'll get called again and will go
3545 * straight to the busy poll loop.
3546 */
3547 if (blk_mq_poll_hybrid(q, hctx, cookie))
3548 return 1;
3549
3550 hctx->poll_considered++;
3551
3552 state = current->state;
3553 do {
3554 int ret;
3555
3556 hctx->poll_invoked++;
3557
3558 ret = q->mq_ops->poll(hctx);
3559 if (ret > 0) {
3560 hctx->poll_success++;
3561 __set_current_state(TASK_RUNNING);
3562 return ret;
3563 }
3564
3565 if (signal_pending_state(state, current))
3566 __set_current_state(TASK_RUNNING);
3567
3568 if (current->state == TASK_RUNNING)
3569 return 1;
3570 if (ret < 0 || !spin)
3571 break;
3572 cpu_relax();
3573 } while (!need_resched());
3574
3575 __set_current_state(TASK_RUNNING);
3576 return 0;
3577 }
3578 EXPORT_SYMBOL_GPL(blk_poll);
3579
3580 unsigned int blk_mq_rq_cpu(struct request *rq)
3581 {
3582 return rq->mq_ctx->cpu;
3583 }
3584 EXPORT_SYMBOL(blk_mq_rq_cpu);
3585
3586 static int __init blk_mq_init(void)
3587 {
3588 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3589 blk_mq_hctx_notify_dead);
3590 return 0;
3591 }
3592 subsys_initcall(blk_mq_init);