]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-mq.c
block: add a op_is_flush helper
[mirror_ubuntu-artful-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
25 #include <linux/prefetch.h>
26
27 #include <trace/events/block.h>
28
29 #include <linux/blk-mq.h>
30 #include "blk.h"
31 #include "blk-mq.h"
32 #include "blk-mq-tag.h"
33 #include "blk-stat.h"
34 #include "blk-wbt.h"
35 #include "blk-mq-sched.h"
36
37 static DEFINE_MUTEX(all_q_mutex);
38 static LIST_HEAD(all_q_list);
39
40 /*
41 * Check if any of the ctx's have pending work in this hardware queue
42 */
43 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
44 {
45 return sbitmap_any_bit_set(&hctx->ctx_map) ||
46 !list_empty_careful(&hctx->dispatch) ||
47 blk_mq_sched_has_work(hctx);
48 }
49
50 /*
51 * Mark this ctx as having pending work in this hardware queue
52 */
53 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
54 struct blk_mq_ctx *ctx)
55 {
56 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
57 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
58 }
59
60 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
61 struct blk_mq_ctx *ctx)
62 {
63 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
64 }
65
66 void blk_mq_freeze_queue_start(struct request_queue *q)
67 {
68 int freeze_depth;
69
70 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
71 if (freeze_depth == 1) {
72 percpu_ref_kill(&q->q_usage_counter);
73 blk_mq_run_hw_queues(q, false);
74 }
75 }
76 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
77
78 static void blk_mq_freeze_queue_wait(struct request_queue *q)
79 {
80 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
81 }
82
83 /*
84 * Guarantee no request is in use, so we can change any data structure of
85 * the queue afterward.
86 */
87 void blk_freeze_queue(struct request_queue *q)
88 {
89 /*
90 * In the !blk_mq case we are only calling this to kill the
91 * q_usage_counter, otherwise this increases the freeze depth
92 * and waits for it to return to zero. For this reason there is
93 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
94 * exported to drivers as the only user for unfreeze is blk_mq.
95 */
96 blk_mq_freeze_queue_start(q);
97 blk_mq_freeze_queue_wait(q);
98 }
99
100 void blk_mq_freeze_queue(struct request_queue *q)
101 {
102 /*
103 * ...just an alias to keep freeze and unfreeze actions balanced
104 * in the blk_mq_* namespace
105 */
106 blk_freeze_queue(q);
107 }
108 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
109
110 void blk_mq_unfreeze_queue(struct request_queue *q)
111 {
112 int freeze_depth;
113
114 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
115 WARN_ON_ONCE(freeze_depth < 0);
116 if (!freeze_depth) {
117 percpu_ref_reinit(&q->q_usage_counter);
118 wake_up_all(&q->mq_freeze_wq);
119 }
120 }
121 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
122
123 /**
124 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
125 * @q: request queue.
126 *
127 * Note: this function does not prevent that the struct request end_io()
128 * callback function is invoked. Additionally, it is not prevented that
129 * new queue_rq() calls occur unless the queue has been stopped first.
130 */
131 void blk_mq_quiesce_queue(struct request_queue *q)
132 {
133 struct blk_mq_hw_ctx *hctx;
134 unsigned int i;
135 bool rcu = false;
136
137 blk_mq_stop_hw_queues(q);
138
139 queue_for_each_hw_ctx(q, hctx, i) {
140 if (hctx->flags & BLK_MQ_F_BLOCKING)
141 synchronize_srcu(&hctx->queue_rq_srcu);
142 else
143 rcu = true;
144 }
145 if (rcu)
146 synchronize_rcu();
147 }
148 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
149
150 void blk_mq_wake_waiters(struct request_queue *q)
151 {
152 struct blk_mq_hw_ctx *hctx;
153 unsigned int i;
154
155 queue_for_each_hw_ctx(q, hctx, i)
156 if (blk_mq_hw_queue_mapped(hctx))
157 blk_mq_tag_wakeup_all(hctx->tags, true);
158
159 /*
160 * If we are called because the queue has now been marked as
161 * dying, we need to ensure that processes currently waiting on
162 * the queue are notified as well.
163 */
164 wake_up_all(&q->mq_freeze_wq);
165 }
166
167 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
168 {
169 return blk_mq_has_free_tags(hctx->tags);
170 }
171 EXPORT_SYMBOL(blk_mq_can_queue);
172
173 void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
174 struct request *rq, unsigned int op)
175 {
176 INIT_LIST_HEAD(&rq->queuelist);
177 /* csd/requeue_work/fifo_time is initialized before use */
178 rq->q = q;
179 rq->mq_ctx = ctx;
180 rq->cmd_flags = op;
181 if (blk_queue_io_stat(q))
182 rq->rq_flags |= RQF_IO_STAT;
183 /* do not touch atomic flags, it needs atomic ops against the timer */
184 rq->cpu = -1;
185 INIT_HLIST_NODE(&rq->hash);
186 RB_CLEAR_NODE(&rq->rb_node);
187 rq->rq_disk = NULL;
188 rq->part = NULL;
189 rq->start_time = jiffies;
190 #ifdef CONFIG_BLK_CGROUP
191 rq->rl = NULL;
192 set_start_time_ns(rq);
193 rq->io_start_time_ns = 0;
194 #endif
195 rq->nr_phys_segments = 0;
196 #if defined(CONFIG_BLK_DEV_INTEGRITY)
197 rq->nr_integrity_segments = 0;
198 #endif
199 rq->special = NULL;
200 /* tag was already set */
201 rq->errors = 0;
202
203 rq->cmd = rq->__cmd;
204
205 rq->extra_len = 0;
206 rq->sense_len = 0;
207 rq->resid_len = 0;
208 rq->sense = NULL;
209
210 INIT_LIST_HEAD(&rq->timeout_list);
211 rq->timeout = 0;
212
213 rq->end_io = NULL;
214 rq->end_io_data = NULL;
215 rq->next_rq = NULL;
216
217 ctx->rq_dispatched[op_is_sync(op)]++;
218 }
219 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
220
221 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
222 unsigned int op)
223 {
224 struct request *rq;
225 unsigned int tag;
226
227 tag = blk_mq_get_tag(data);
228 if (tag != BLK_MQ_TAG_FAIL) {
229 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
230
231 rq = tags->static_rqs[tag];
232
233 if (data->flags & BLK_MQ_REQ_INTERNAL) {
234 rq->tag = -1;
235 rq->internal_tag = tag;
236 } else {
237 if (blk_mq_tag_busy(data->hctx)) {
238 rq->rq_flags = RQF_MQ_INFLIGHT;
239 atomic_inc(&data->hctx->nr_active);
240 }
241 rq->tag = tag;
242 rq->internal_tag = -1;
243 }
244
245 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
246 return rq;
247 }
248
249 return NULL;
250 }
251 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
252
253 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
254 unsigned int flags)
255 {
256 struct blk_mq_alloc_data alloc_data = { .flags = flags };
257 struct request *rq;
258 int ret;
259
260 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
261 if (ret)
262 return ERR_PTR(ret);
263
264 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
265
266 blk_mq_put_ctx(alloc_data.ctx);
267 blk_queue_exit(q);
268
269 if (!rq)
270 return ERR_PTR(-EWOULDBLOCK);
271
272 rq->__data_len = 0;
273 rq->__sector = (sector_t) -1;
274 rq->bio = rq->biotail = NULL;
275 return rq;
276 }
277 EXPORT_SYMBOL(blk_mq_alloc_request);
278
279 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
280 unsigned int flags, unsigned int hctx_idx)
281 {
282 struct blk_mq_hw_ctx *hctx;
283 struct blk_mq_ctx *ctx;
284 struct request *rq;
285 struct blk_mq_alloc_data alloc_data;
286 int ret;
287
288 /*
289 * If the tag allocator sleeps we could get an allocation for a
290 * different hardware context. No need to complicate the low level
291 * allocator for this for the rare use case of a command tied to
292 * a specific queue.
293 */
294 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
295 return ERR_PTR(-EINVAL);
296
297 if (hctx_idx >= q->nr_hw_queues)
298 return ERR_PTR(-EIO);
299
300 ret = blk_queue_enter(q, true);
301 if (ret)
302 return ERR_PTR(ret);
303
304 /*
305 * Check if the hardware context is actually mapped to anything.
306 * If not tell the caller that it should skip this queue.
307 */
308 hctx = q->queue_hw_ctx[hctx_idx];
309 if (!blk_mq_hw_queue_mapped(hctx)) {
310 ret = -EXDEV;
311 goto out_queue_exit;
312 }
313 ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));
314
315 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
316 rq = __blk_mq_alloc_request(&alloc_data, rw);
317 if (!rq) {
318 ret = -EWOULDBLOCK;
319 goto out_queue_exit;
320 }
321
322 return rq;
323
324 out_queue_exit:
325 blk_queue_exit(q);
326 return ERR_PTR(ret);
327 }
328 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
329
330 void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
331 struct request *rq)
332 {
333 const int sched_tag = rq->internal_tag;
334 struct request_queue *q = rq->q;
335
336 if (rq->rq_flags & RQF_MQ_INFLIGHT)
337 atomic_dec(&hctx->nr_active);
338
339 wbt_done(q->rq_wb, &rq->issue_stat);
340 rq->rq_flags = 0;
341
342 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
343 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
344 if (rq->tag != -1)
345 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
346 if (sched_tag != -1)
347 blk_mq_sched_completed_request(hctx, rq);
348 blk_mq_sched_restart_queues(hctx);
349 blk_queue_exit(q);
350 }
351
352 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
353 struct request *rq)
354 {
355 struct blk_mq_ctx *ctx = rq->mq_ctx;
356
357 ctx->rq_completed[rq_is_sync(rq)]++;
358 __blk_mq_finish_request(hctx, ctx, rq);
359 }
360
361 void blk_mq_finish_request(struct request *rq)
362 {
363 blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
364 }
365
366 void blk_mq_free_request(struct request *rq)
367 {
368 blk_mq_sched_put_request(rq);
369 }
370 EXPORT_SYMBOL_GPL(blk_mq_free_request);
371
372 inline void __blk_mq_end_request(struct request *rq, int error)
373 {
374 blk_account_io_done(rq);
375
376 if (rq->end_io) {
377 wbt_done(rq->q->rq_wb, &rq->issue_stat);
378 rq->end_io(rq, error);
379 } else {
380 if (unlikely(blk_bidi_rq(rq)))
381 blk_mq_free_request(rq->next_rq);
382 blk_mq_free_request(rq);
383 }
384 }
385 EXPORT_SYMBOL(__blk_mq_end_request);
386
387 void blk_mq_end_request(struct request *rq, int error)
388 {
389 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
390 BUG();
391 __blk_mq_end_request(rq, error);
392 }
393 EXPORT_SYMBOL(blk_mq_end_request);
394
395 static void __blk_mq_complete_request_remote(void *data)
396 {
397 struct request *rq = data;
398
399 rq->q->softirq_done_fn(rq);
400 }
401
402 static void blk_mq_ipi_complete_request(struct request *rq)
403 {
404 struct blk_mq_ctx *ctx = rq->mq_ctx;
405 bool shared = false;
406 int cpu;
407
408 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
409 rq->q->softirq_done_fn(rq);
410 return;
411 }
412
413 cpu = get_cpu();
414 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
415 shared = cpus_share_cache(cpu, ctx->cpu);
416
417 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
418 rq->csd.func = __blk_mq_complete_request_remote;
419 rq->csd.info = rq;
420 rq->csd.flags = 0;
421 smp_call_function_single_async(ctx->cpu, &rq->csd);
422 } else {
423 rq->q->softirq_done_fn(rq);
424 }
425 put_cpu();
426 }
427
428 static void blk_mq_stat_add(struct request *rq)
429 {
430 if (rq->rq_flags & RQF_STATS) {
431 /*
432 * We could rq->mq_ctx here, but there's less of a risk
433 * of races if we have the completion event add the stats
434 * to the local software queue.
435 */
436 struct blk_mq_ctx *ctx;
437
438 ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
439 blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
440 }
441 }
442
443 static void __blk_mq_complete_request(struct request *rq)
444 {
445 struct request_queue *q = rq->q;
446
447 blk_mq_stat_add(rq);
448
449 if (!q->softirq_done_fn)
450 blk_mq_end_request(rq, rq->errors);
451 else
452 blk_mq_ipi_complete_request(rq);
453 }
454
455 /**
456 * blk_mq_complete_request - end I/O on a request
457 * @rq: the request being processed
458 *
459 * Description:
460 * Ends all I/O on a request. It does not handle partial completions.
461 * The actual completion happens out-of-order, through a IPI handler.
462 **/
463 void blk_mq_complete_request(struct request *rq, int error)
464 {
465 struct request_queue *q = rq->q;
466
467 if (unlikely(blk_should_fake_timeout(q)))
468 return;
469 if (!blk_mark_rq_complete(rq)) {
470 rq->errors = error;
471 __blk_mq_complete_request(rq);
472 }
473 }
474 EXPORT_SYMBOL(blk_mq_complete_request);
475
476 int blk_mq_request_started(struct request *rq)
477 {
478 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
479 }
480 EXPORT_SYMBOL_GPL(blk_mq_request_started);
481
482 void blk_mq_start_request(struct request *rq)
483 {
484 struct request_queue *q = rq->q;
485
486 blk_mq_sched_started_request(rq);
487
488 trace_block_rq_issue(q, rq);
489
490 rq->resid_len = blk_rq_bytes(rq);
491 if (unlikely(blk_bidi_rq(rq)))
492 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
493
494 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
495 blk_stat_set_issue_time(&rq->issue_stat);
496 rq->rq_flags |= RQF_STATS;
497 wbt_issue(q->rq_wb, &rq->issue_stat);
498 }
499
500 blk_add_timer(rq);
501
502 /*
503 * Ensure that ->deadline is visible before set the started
504 * flag and clear the completed flag.
505 */
506 smp_mb__before_atomic();
507
508 /*
509 * Mark us as started and clear complete. Complete might have been
510 * set if requeue raced with timeout, which then marked it as
511 * complete. So be sure to clear complete again when we start
512 * the request, otherwise we'll ignore the completion event.
513 */
514 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
515 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
516 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
517 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
518
519 if (q->dma_drain_size && blk_rq_bytes(rq)) {
520 /*
521 * Make sure space for the drain appears. We know we can do
522 * this because max_hw_segments has been adjusted to be one
523 * fewer than the device can handle.
524 */
525 rq->nr_phys_segments++;
526 }
527 }
528 EXPORT_SYMBOL(blk_mq_start_request);
529
530 static void __blk_mq_requeue_request(struct request *rq)
531 {
532 struct request_queue *q = rq->q;
533
534 trace_block_rq_requeue(q, rq);
535 wbt_requeue(q->rq_wb, &rq->issue_stat);
536 blk_mq_sched_requeue_request(rq);
537
538 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
539 if (q->dma_drain_size && blk_rq_bytes(rq))
540 rq->nr_phys_segments--;
541 }
542 }
543
544 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
545 {
546 __blk_mq_requeue_request(rq);
547
548 BUG_ON(blk_queued_rq(rq));
549 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
550 }
551 EXPORT_SYMBOL(blk_mq_requeue_request);
552
553 static void blk_mq_requeue_work(struct work_struct *work)
554 {
555 struct request_queue *q =
556 container_of(work, struct request_queue, requeue_work.work);
557 LIST_HEAD(rq_list);
558 struct request *rq, *next;
559 unsigned long flags;
560
561 spin_lock_irqsave(&q->requeue_lock, flags);
562 list_splice_init(&q->requeue_list, &rq_list);
563 spin_unlock_irqrestore(&q->requeue_lock, flags);
564
565 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
566 if (!(rq->rq_flags & RQF_SOFTBARRIER))
567 continue;
568
569 rq->rq_flags &= ~RQF_SOFTBARRIER;
570 list_del_init(&rq->queuelist);
571 blk_mq_sched_insert_request(rq, true, false, false);
572 }
573
574 while (!list_empty(&rq_list)) {
575 rq = list_entry(rq_list.next, struct request, queuelist);
576 list_del_init(&rq->queuelist);
577 blk_mq_sched_insert_request(rq, false, false, false);
578 }
579
580 blk_mq_run_hw_queues(q, false);
581 }
582
583 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
584 bool kick_requeue_list)
585 {
586 struct request_queue *q = rq->q;
587 unsigned long flags;
588
589 /*
590 * We abuse this flag that is otherwise used by the I/O scheduler to
591 * request head insertation from the workqueue.
592 */
593 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
594
595 spin_lock_irqsave(&q->requeue_lock, flags);
596 if (at_head) {
597 rq->rq_flags |= RQF_SOFTBARRIER;
598 list_add(&rq->queuelist, &q->requeue_list);
599 } else {
600 list_add_tail(&rq->queuelist, &q->requeue_list);
601 }
602 spin_unlock_irqrestore(&q->requeue_lock, flags);
603
604 if (kick_requeue_list)
605 blk_mq_kick_requeue_list(q);
606 }
607 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
608
609 void blk_mq_kick_requeue_list(struct request_queue *q)
610 {
611 kblockd_schedule_delayed_work(&q->requeue_work, 0);
612 }
613 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
614
615 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
616 unsigned long msecs)
617 {
618 kblockd_schedule_delayed_work(&q->requeue_work,
619 msecs_to_jiffies(msecs));
620 }
621 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
622
623 void blk_mq_abort_requeue_list(struct request_queue *q)
624 {
625 unsigned long flags;
626 LIST_HEAD(rq_list);
627
628 spin_lock_irqsave(&q->requeue_lock, flags);
629 list_splice_init(&q->requeue_list, &rq_list);
630 spin_unlock_irqrestore(&q->requeue_lock, flags);
631
632 while (!list_empty(&rq_list)) {
633 struct request *rq;
634
635 rq = list_first_entry(&rq_list, struct request, queuelist);
636 list_del_init(&rq->queuelist);
637 rq->errors = -EIO;
638 blk_mq_end_request(rq, rq->errors);
639 }
640 }
641 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
642
643 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
644 {
645 if (tag < tags->nr_tags) {
646 prefetch(tags->rqs[tag]);
647 return tags->rqs[tag];
648 }
649
650 return NULL;
651 }
652 EXPORT_SYMBOL(blk_mq_tag_to_rq);
653
654 struct blk_mq_timeout_data {
655 unsigned long next;
656 unsigned int next_set;
657 };
658
659 void blk_mq_rq_timed_out(struct request *req, bool reserved)
660 {
661 const struct blk_mq_ops *ops = req->q->mq_ops;
662 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
663
664 /*
665 * We know that complete is set at this point. If STARTED isn't set
666 * anymore, then the request isn't active and the "timeout" should
667 * just be ignored. This can happen due to the bitflag ordering.
668 * Timeout first checks if STARTED is set, and if it is, assumes
669 * the request is active. But if we race with completion, then
670 * we both flags will get cleared. So check here again, and ignore
671 * a timeout event with a request that isn't active.
672 */
673 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
674 return;
675
676 if (ops->timeout)
677 ret = ops->timeout(req, reserved);
678
679 switch (ret) {
680 case BLK_EH_HANDLED:
681 __blk_mq_complete_request(req);
682 break;
683 case BLK_EH_RESET_TIMER:
684 blk_add_timer(req);
685 blk_clear_rq_complete(req);
686 break;
687 case BLK_EH_NOT_HANDLED:
688 break;
689 default:
690 printk(KERN_ERR "block: bad eh return: %d\n", ret);
691 break;
692 }
693 }
694
695 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
696 struct request *rq, void *priv, bool reserved)
697 {
698 struct blk_mq_timeout_data *data = priv;
699
700 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
701 /*
702 * If a request wasn't started before the queue was
703 * marked dying, kill it here or it'll go unnoticed.
704 */
705 if (unlikely(blk_queue_dying(rq->q))) {
706 rq->errors = -EIO;
707 blk_mq_end_request(rq, rq->errors);
708 }
709 return;
710 }
711
712 if (time_after_eq(jiffies, rq->deadline)) {
713 if (!blk_mark_rq_complete(rq))
714 blk_mq_rq_timed_out(rq, reserved);
715 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
716 data->next = rq->deadline;
717 data->next_set = 1;
718 }
719 }
720
721 static void blk_mq_timeout_work(struct work_struct *work)
722 {
723 struct request_queue *q =
724 container_of(work, struct request_queue, timeout_work);
725 struct blk_mq_timeout_data data = {
726 .next = 0,
727 .next_set = 0,
728 };
729 int i;
730
731 /* A deadlock might occur if a request is stuck requiring a
732 * timeout at the same time a queue freeze is waiting
733 * completion, since the timeout code would not be able to
734 * acquire the queue reference here.
735 *
736 * That's why we don't use blk_queue_enter here; instead, we use
737 * percpu_ref_tryget directly, because we need to be able to
738 * obtain a reference even in the short window between the queue
739 * starting to freeze, by dropping the first reference in
740 * blk_mq_freeze_queue_start, and the moment the last request is
741 * consumed, marked by the instant q_usage_counter reaches
742 * zero.
743 */
744 if (!percpu_ref_tryget(&q->q_usage_counter))
745 return;
746
747 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
748
749 if (data.next_set) {
750 data.next = blk_rq_timeout(round_jiffies_up(data.next));
751 mod_timer(&q->timeout, data.next);
752 } else {
753 struct blk_mq_hw_ctx *hctx;
754
755 queue_for_each_hw_ctx(q, hctx, i) {
756 /* the hctx may be unmapped, so check it here */
757 if (blk_mq_hw_queue_mapped(hctx))
758 blk_mq_tag_idle(hctx);
759 }
760 }
761 blk_queue_exit(q);
762 }
763
764 /*
765 * Reverse check our software queue for entries that we could potentially
766 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
767 * too much time checking for merges.
768 */
769 static bool blk_mq_attempt_merge(struct request_queue *q,
770 struct blk_mq_ctx *ctx, struct bio *bio)
771 {
772 struct request *rq;
773 int checked = 8;
774
775 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
776 int el_ret;
777
778 if (!checked--)
779 break;
780
781 if (!blk_rq_merge_ok(rq, bio))
782 continue;
783
784 el_ret = blk_try_merge(rq, bio);
785 if (el_ret == ELEVATOR_NO_MERGE)
786 continue;
787
788 if (!blk_mq_sched_allow_merge(q, rq, bio))
789 break;
790
791 if (el_ret == ELEVATOR_BACK_MERGE) {
792 if (bio_attempt_back_merge(q, rq, bio)) {
793 ctx->rq_merged++;
794 return true;
795 }
796 break;
797 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
798 if (bio_attempt_front_merge(q, rq, bio)) {
799 ctx->rq_merged++;
800 return true;
801 }
802 break;
803 }
804 }
805
806 return false;
807 }
808
809 struct flush_busy_ctx_data {
810 struct blk_mq_hw_ctx *hctx;
811 struct list_head *list;
812 };
813
814 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
815 {
816 struct flush_busy_ctx_data *flush_data = data;
817 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
818 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
819
820 sbitmap_clear_bit(sb, bitnr);
821 spin_lock(&ctx->lock);
822 list_splice_tail_init(&ctx->rq_list, flush_data->list);
823 spin_unlock(&ctx->lock);
824 return true;
825 }
826
827 /*
828 * Process software queues that have been marked busy, splicing them
829 * to the for-dispatch
830 */
831 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
832 {
833 struct flush_busy_ctx_data data = {
834 .hctx = hctx,
835 .list = list,
836 };
837
838 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
839 }
840 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
841
842 static inline unsigned int queued_to_index(unsigned int queued)
843 {
844 if (!queued)
845 return 0;
846
847 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
848 }
849
850 static bool blk_mq_get_driver_tag(struct request *rq,
851 struct blk_mq_hw_ctx **hctx, bool wait)
852 {
853 struct blk_mq_alloc_data data = {
854 .q = rq->q,
855 .ctx = rq->mq_ctx,
856 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
857 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
858 };
859
860 if (blk_mq_hctx_stopped(data.hctx))
861 return false;
862
863 if (rq->tag != -1) {
864 done:
865 if (hctx)
866 *hctx = data.hctx;
867 return true;
868 }
869
870 rq->tag = blk_mq_get_tag(&data);
871 if (rq->tag >= 0) {
872 if (blk_mq_tag_busy(data.hctx)) {
873 rq->rq_flags |= RQF_MQ_INFLIGHT;
874 atomic_inc(&data.hctx->nr_active);
875 }
876 data.hctx->tags->rqs[rq->tag] = rq;
877 goto done;
878 }
879
880 return false;
881 }
882
883 static void blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
884 struct request *rq)
885 {
886 if (rq->tag == -1 || rq->internal_tag == -1)
887 return;
888
889 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
890 rq->tag = -1;
891
892 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
893 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
894 atomic_dec(&hctx->nr_active);
895 }
896 }
897
898 /*
899 * If we fail getting a driver tag because all the driver tags are already
900 * assigned and on the dispatch list, BUT the first entry does not have a
901 * tag, then we could deadlock. For that case, move entries with assigned
902 * driver tags to the front, leaving the set of tagged requests in the
903 * same order, and the untagged set in the same order.
904 */
905 static bool reorder_tags_to_front(struct list_head *list)
906 {
907 struct request *rq, *tmp, *first = NULL;
908
909 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
910 if (rq == first)
911 break;
912 if (rq->tag != -1) {
913 list_move(&rq->queuelist, list);
914 if (!first)
915 first = rq;
916 }
917 }
918
919 return first != NULL;
920 }
921
922 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
923 {
924 struct request_queue *q = hctx->queue;
925 struct request *rq;
926 LIST_HEAD(driver_list);
927 struct list_head *dptr;
928 int queued, ret = BLK_MQ_RQ_QUEUE_OK;
929
930 /*
931 * Start off with dptr being NULL, so we start the first request
932 * immediately, even if we have more pending.
933 */
934 dptr = NULL;
935
936 /*
937 * Now process all the entries, sending them to the driver.
938 */
939 queued = 0;
940 while (!list_empty(list)) {
941 struct blk_mq_queue_data bd;
942
943 rq = list_first_entry(list, struct request, queuelist);
944 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
945 if (!queued && reorder_tags_to_front(list))
946 continue;
947
948 /*
949 * We failed getting a driver tag. Mark the queue(s)
950 * as needing a restart. Retry getting a tag again,
951 * in case the needed IO completed right before we
952 * marked the queue as needing a restart.
953 */
954 blk_mq_sched_mark_restart(hctx);
955 if (!blk_mq_get_driver_tag(rq, &hctx, false))
956 break;
957 }
958 list_del_init(&rq->queuelist);
959
960 bd.rq = rq;
961 bd.list = dptr;
962 bd.last = list_empty(list);
963
964 ret = q->mq_ops->queue_rq(hctx, &bd);
965 switch (ret) {
966 case BLK_MQ_RQ_QUEUE_OK:
967 queued++;
968 break;
969 case BLK_MQ_RQ_QUEUE_BUSY:
970 blk_mq_put_driver_tag(hctx, rq);
971 list_add(&rq->queuelist, list);
972 __blk_mq_requeue_request(rq);
973 break;
974 default:
975 pr_err("blk-mq: bad return on queue: %d\n", ret);
976 case BLK_MQ_RQ_QUEUE_ERROR:
977 rq->errors = -EIO;
978 blk_mq_end_request(rq, rq->errors);
979 break;
980 }
981
982 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
983 break;
984
985 /*
986 * We've done the first request. If we have more than 1
987 * left in the list, set dptr to defer issue.
988 */
989 if (!dptr && list->next != list->prev)
990 dptr = &driver_list;
991 }
992
993 hctx->dispatched[queued_to_index(queued)]++;
994
995 /*
996 * Any items that need requeuing? Stuff them into hctx->dispatch,
997 * that is where we will continue on next queue run.
998 */
999 if (!list_empty(list)) {
1000 spin_lock(&hctx->lock);
1001 list_splice_init(list, &hctx->dispatch);
1002 spin_unlock(&hctx->lock);
1003
1004 /*
1005 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
1006 * it's possible the queue is stopped and restarted again
1007 * before this. Queue restart will dispatch requests. And since
1008 * requests in rq_list aren't added into hctx->dispatch yet,
1009 * the requests in rq_list might get lost.
1010 *
1011 * blk_mq_run_hw_queue() already checks the STOPPED bit
1012 *
1013 * If RESTART is set, then let completion restart the queue
1014 * instead of potentially looping here.
1015 */
1016 if (!blk_mq_sched_needs_restart(hctx))
1017 blk_mq_run_hw_queue(hctx, true);
1018 }
1019
1020 return ret != BLK_MQ_RQ_QUEUE_BUSY;
1021 }
1022
1023 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1024 {
1025 int srcu_idx;
1026
1027 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1028 cpu_online(hctx->next_cpu));
1029
1030 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1031 rcu_read_lock();
1032 blk_mq_sched_dispatch_requests(hctx);
1033 rcu_read_unlock();
1034 } else {
1035 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1036 blk_mq_sched_dispatch_requests(hctx);
1037 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1038 }
1039 }
1040
1041 /*
1042 * It'd be great if the workqueue API had a way to pass
1043 * in a mask and had some smarts for more clever placement.
1044 * For now we just round-robin here, switching for every
1045 * BLK_MQ_CPU_WORK_BATCH queued items.
1046 */
1047 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1048 {
1049 if (hctx->queue->nr_hw_queues == 1)
1050 return WORK_CPU_UNBOUND;
1051
1052 if (--hctx->next_cpu_batch <= 0) {
1053 int next_cpu;
1054
1055 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1056 if (next_cpu >= nr_cpu_ids)
1057 next_cpu = cpumask_first(hctx->cpumask);
1058
1059 hctx->next_cpu = next_cpu;
1060 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1061 }
1062
1063 return hctx->next_cpu;
1064 }
1065
1066 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1067 {
1068 if (unlikely(blk_mq_hctx_stopped(hctx) ||
1069 !blk_mq_hw_queue_mapped(hctx)))
1070 return;
1071
1072 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1073 int cpu = get_cpu();
1074 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1075 __blk_mq_run_hw_queue(hctx);
1076 put_cpu();
1077 return;
1078 }
1079
1080 put_cpu();
1081 }
1082
1083 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
1084 }
1085
1086 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1087 {
1088 struct blk_mq_hw_ctx *hctx;
1089 int i;
1090
1091 queue_for_each_hw_ctx(q, hctx, i) {
1092 if (!blk_mq_hctx_has_pending(hctx) ||
1093 blk_mq_hctx_stopped(hctx))
1094 continue;
1095
1096 blk_mq_run_hw_queue(hctx, async);
1097 }
1098 }
1099 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1100
1101 /**
1102 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1103 * @q: request queue.
1104 *
1105 * The caller is responsible for serializing this function against
1106 * blk_mq_{start,stop}_hw_queue().
1107 */
1108 bool blk_mq_queue_stopped(struct request_queue *q)
1109 {
1110 struct blk_mq_hw_ctx *hctx;
1111 int i;
1112
1113 queue_for_each_hw_ctx(q, hctx, i)
1114 if (blk_mq_hctx_stopped(hctx))
1115 return true;
1116
1117 return false;
1118 }
1119 EXPORT_SYMBOL(blk_mq_queue_stopped);
1120
1121 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1122 {
1123 cancel_work(&hctx->run_work);
1124 cancel_delayed_work(&hctx->delay_work);
1125 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1126 }
1127 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1128
1129 void blk_mq_stop_hw_queues(struct request_queue *q)
1130 {
1131 struct blk_mq_hw_ctx *hctx;
1132 int i;
1133
1134 queue_for_each_hw_ctx(q, hctx, i)
1135 blk_mq_stop_hw_queue(hctx);
1136 }
1137 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1138
1139 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1140 {
1141 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1142
1143 blk_mq_run_hw_queue(hctx, false);
1144 }
1145 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1146
1147 void blk_mq_start_hw_queues(struct request_queue *q)
1148 {
1149 struct blk_mq_hw_ctx *hctx;
1150 int i;
1151
1152 queue_for_each_hw_ctx(q, hctx, i)
1153 blk_mq_start_hw_queue(hctx);
1154 }
1155 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1156
1157 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1158 {
1159 if (!blk_mq_hctx_stopped(hctx))
1160 return;
1161
1162 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1163 blk_mq_run_hw_queue(hctx, async);
1164 }
1165 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1166
1167 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1168 {
1169 struct blk_mq_hw_ctx *hctx;
1170 int i;
1171
1172 queue_for_each_hw_ctx(q, hctx, i)
1173 blk_mq_start_stopped_hw_queue(hctx, async);
1174 }
1175 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1176
1177 static void blk_mq_run_work_fn(struct work_struct *work)
1178 {
1179 struct blk_mq_hw_ctx *hctx;
1180
1181 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1182
1183 __blk_mq_run_hw_queue(hctx);
1184 }
1185
1186 static void blk_mq_delay_work_fn(struct work_struct *work)
1187 {
1188 struct blk_mq_hw_ctx *hctx;
1189
1190 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1191
1192 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1193 __blk_mq_run_hw_queue(hctx);
1194 }
1195
1196 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1197 {
1198 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1199 return;
1200
1201 blk_mq_stop_hw_queue(hctx);
1202 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1203 &hctx->delay_work, msecs_to_jiffies(msecs));
1204 }
1205 EXPORT_SYMBOL(blk_mq_delay_queue);
1206
1207 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1208 struct request *rq,
1209 bool at_head)
1210 {
1211 struct blk_mq_ctx *ctx = rq->mq_ctx;
1212
1213 trace_block_rq_insert(hctx->queue, rq);
1214
1215 if (at_head)
1216 list_add(&rq->queuelist, &ctx->rq_list);
1217 else
1218 list_add_tail(&rq->queuelist, &ctx->rq_list);
1219 }
1220
1221 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1222 bool at_head)
1223 {
1224 struct blk_mq_ctx *ctx = rq->mq_ctx;
1225
1226 __blk_mq_insert_req_list(hctx, rq, at_head);
1227 blk_mq_hctx_mark_pending(hctx, ctx);
1228 }
1229
1230 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1231 struct list_head *list)
1232
1233 {
1234 /*
1235 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1236 * offline now
1237 */
1238 spin_lock(&ctx->lock);
1239 while (!list_empty(list)) {
1240 struct request *rq;
1241
1242 rq = list_first_entry(list, struct request, queuelist);
1243 BUG_ON(rq->mq_ctx != ctx);
1244 list_del_init(&rq->queuelist);
1245 __blk_mq_insert_req_list(hctx, rq, false);
1246 }
1247 blk_mq_hctx_mark_pending(hctx, ctx);
1248 spin_unlock(&ctx->lock);
1249 }
1250
1251 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1252 {
1253 struct request *rqa = container_of(a, struct request, queuelist);
1254 struct request *rqb = container_of(b, struct request, queuelist);
1255
1256 return !(rqa->mq_ctx < rqb->mq_ctx ||
1257 (rqa->mq_ctx == rqb->mq_ctx &&
1258 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1259 }
1260
1261 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1262 {
1263 struct blk_mq_ctx *this_ctx;
1264 struct request_queue *this_q;
1265 struct request *rq;
1266 LIST_HEAD(list);
1267 LIST_HEAD(ctx_list);
1268 unsigned int depth;
1269
1270 list_splice_init(&plug->mq_list, &list);
1271
1272 list_sort(NULL, &list, plug_ctx_cmp);
1273
1274 this_q = NULL;
1275 this_ctx = NULL;
1276 depth = 0;
1277
1278 while (!list_empty(&list)) {
1279 rq = list_entry_rq(list.next);
1280 list_del_init(&rq->queuelist);
1281 BUG_ON(!rq->q);
1282 if (rq->mq_ctx != this_ctx) {
1283 if (this_ctx) {
1284 trace_block_unplug(this_q, depth, from_schedule);
1285 blk_mq_sched_insert_requests(this_q, this_ctx,
1286 &ctx_list,
1287 from_schedule);
1288 }
1289
1290 this_ctx = rq->mq_ctx;
1291 this_q = rq->q;
1292 depth = 0;
1293 }
1294
1295 depth++;
1296 list_add_tail(&rq->queuelist, &ctx_list);
1297 }
1298
1299 /*
1300 * If 'this_ctx' is set, we know we have entries to complete
1301 * on 'ctx_list'. Do those.
1302 */
1303 if (this_ctx) {
1304 trace_block_unplug(this_q, depth, from_schedule);
1305 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1306 from_schedule);
1307 }
1308 }
1309
1310 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1311 {
1312 init_request_from_bio(rq, bio);
1313
1314 blk_account_io_start(rq, true);
1315 }
1316
1317 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1318 {
1319 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1320 !blk_queue_nomerges(hctx->queue);
1321 }
1322
1323 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1324 struct blk_mq_ctx *ctx,
1325 struct request *rq, struct bio *bio)
1326 {
1327 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1328 blk_mq_bio_to_request(rq, bio);
1329 spin_lock(&ctx->lock);
1330 insert_rq:
1331 __blk_mq_insert_request(hctx, rq, false);
1332 spin_unlock(&ctx->lock);
1333 return false;
1334 } else {
1335 struct request_queue *q = hctx->queue;
1336
1337 spin_lock(&ctx->lock);
1338 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1339 blk_mq_bio_to_request(rq, bio);
1340 goto insert_rq;
1341 }
1342
1343 spin_unlock(&ctx->lock);
1344 __blk_mq_finish_request(hctx, ctx, rq);
1345 return true;
1346 }
1347 }
1348
1349 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1350 {
1351 if (rq->tag != -1)
1352 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1353
1354 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1355 }
1356
1357 static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie)
1358 {
1359 struct request_queue *q = rq->q;
1360 struct blk_mq_queue_data bd = {
1361 .rq = rq,
1362 .list = NULL,
1363 .last = 1
1364 };
1365 struct blk_mq_hw_ctx *hctx;
1366 blk_qc_t new_cookie;
1367 int ret;
1368
1369 if (q->elevator)
1370 goto insert;
1371
1372 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1373 goto insert;
1374
1375 new_cookie = request_to_qc_t(hctx, rq);
1376
1377 /*
1378 * For OK queue, we are done. For error, kill it. Any other
1379 * error (busy), just add it to our list as we previously
1380 * would have done
1381 */
1382 ret = q->mq_ops->queue_rq(hctx, &bd);
1383 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1384 *cookie = new_cookie;
1385 return;
1386 }
1387
1388 __blk_mq_requeue_request(rq);
1389
1390 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1391 *cookie = BLK_QC_T_NONE;
1392 rq->errors = -EIO;
1393 blk_mq_end_request(rq, rq->errors);
1394 return;
1395 }
1396
1397 insert:
1398 blk_mq_sched_insert_request(rq, false, true, true);
1399 }
1400
1401 /*
1402 * Multiple hardware queue variant. This will not use per-process plugs,
1403 * but will attempt to bypass the hctx queueing if we can go straight to
1404 * hardware for SYNC IO.
1405 */
1406 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1407 {
1408 const int is_sync = op_is_sync(bio->bi_opf);
1409 const int is_flush_fua = op_is_flush(bio->bi_opf);
1410 struct blk_mq_alloc_data data = { .flags = 0 };
1411 struct request *rq;
1412 unsigned int request_count = 0, srcu_idx;
1413 struct blk_plug *plug;
1414 struct request *same_queue_rq = NULL;
1415 blk_qc_t cookie;
1416 unsigned int wb_acct;
1417
1418 blk_queue_bounce(q, &bio);
1419
1420 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1421 bio_io_error(bio);
1422 return BLK_QC_T_NONE;
1423 }
1424
1425 blk_queue_split(q, &bio, q->bio_split);
1426
1427 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1428 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1429 return BLK_QC_T_NONE;
1430
1431 if (blk_mq_sched_bio_merge(q, bio))
1432 return BLK_QC_T_NONE;
1433
1434 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1435
1436 trace_block_getrq(q, bio, bio->bi_opf);
1437
1438 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1439 if (unlikely(!rq)) {
1440 __wbt_done(q->rq_wb, wb_acct);
1441 return BLK_QC_T_NONE;
1442 }
1443
1444 wbt_track(&rq->issue_stat, wb_acct);
1445
1446 cookie = request_to_qc_t(data.hctx, rq);
1447
1448 if (unlikely(is_flush_fua)) {
1449 blk_mq_bio_to_request(rq, bio);
1450 blk_mq_get_driver_tag(rq, NULL, true);
1451 blk_insert_flush(rq);
1452 goto run_queue;
1453 }
1454
1455 plug = current->plug;
1456 /*
1457 * If the driver supports defer issued based on 'last', then
1458 * queue it up like normal since we can potentially save some
1459 * CPU this way.
1460 */
1461 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1462 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1463 struct request *old_rq = NULL;
1464
1465 blk_mq_bio_to_request(rq, bio);
1466
1467 /*
1468 * We do limited plugging. If the bio can be merged, do that.
1469 * Otherwise the existing request in the plug list will be
1470 * issued. So the plug list will have one request at most
1471 */
1472 if (plug) {
1473 /*
1474 * The plug list might get flushed before this. If that
1475 * happens, same_queue_rq is invalid and plug list is
1476 * empty
1477 */
1478 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1479 old_rq = same_queue_rq;
1480 list_del_init(&old_rq->queuelist);
1481 }
1482 list_add_tail(&rq->queuelist, &plug->mq_list);
1483 } else /* is_sync */
1484 old_rq = rq;
1485 blk_mq_put_ctx(data.ctx);
1486 if (!old_rq)
1487 goto done;
1488
1489 if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
1490 rcu_read_lock();
1491 blk_mq_try_issue_directly(old_rq, &cookie);
1492 rcu_read_unlock();
1493 } else {
1494 srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
1495 blk_mq_try_issue_directly(old_rq, &cookie);
1496 srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
1497 }
1498 goto done;
1499 }
1500
1501 if (q->elevator) {
1502 blk_mq_put_ctx(data.ctx);
1503 blk_mq_bio_to_request(rq, bio);
1504 blk_mq_sched_insert_request(rq, false, true,
1505 !is_sync || is_flush_fua);
1506 goto done;
1507 }
1508 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1509 /*
1510 * For a SYNC request, send it to the hardware immediately. For
1511 * an ASYNC request, just ensure that we run it later on. The
1512 * latter allows for merging opportunities and more efficient
1513 * dispatching.
1514 */
1515 run_queue:
1516 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1517 }
1518 blk_mq_put_ctx(data.ctx);
1519 done:
1520 return cookie;
1521 }
1522
1523 /*
1524 * Single hardware queue variant. This will attempt to use any per-process
1525 * plug for merging and IO deferral.
1526 */
1527 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1528 {
1529 const int is_sync = op_is_sync(bio->bi_opf);
1530 const int is_flush_fua = op_is_flush(bio->bi_opf);
1531 struct blk_plug *plug;
1532 unsigned int request_count = 0;
1533 struct blk_mq_alloc_data data = { .flags = 0 };
1534 struct request *rq;
1535 blk_qc_t cookie;
1536 unsigned int wb_acct;
1537
1538 blk_queue_bounce(q, &bio);
1539
1540 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1541 bio_io_error(bio);
1542 return BLK_QC_T_NONE;
1543 }
1544
1545 blk_queue_split(q, &bio, q->bio_split);
1546
1547 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1548 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1549 return BLK_QC_T_NONE;
1550 } else
1551 request_count = blk_plug_queued_count(q);
1552
1553 if (blk_mq_sched_bio_merge(q, bio))
1554 return BLK_QC_T_NONE;
1555
1556 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1557
1558 trace_block_getrq(q, bio, bio->bi_opf);
1559
1560 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1561 if (unlikely(!rq)) {
1562 __wbt_done(q->rq_wb, wb_acct);
1563 return BLK_QC_T_NONE;
1564 }
1565
1566 wbt_track(&rq->issue_stat, wb_acct);
1567
1568 cookie = request_to_qc_t(data.hctx, rq);
1569
1570 if (unlikely(is_flush_fua)) {
1571 blk_mq_bio_to_request(rq, bio);
1572 blk_mq_get_driver_tag(rq, NULL, true);
1573 blk_insert_flush(rq);
1574 goto run_queue;
1575 }
1576
1577 /*
1578 * A task plug currently exists. Since this is completely lockless,
1579 * utilize that to temporarily store requests until the task is
1580 * either done or scheduled away.
1581 */
1582 plug = current->plug;
1583 if (plug) {
1584 struct request *last = NULL;
1585
1586 blk_mq_bio_to_request(rq, bio);
1587
1588 /*
1589 * @request_count may become stale because of schedule
1590 * out, so check the list again.
1591 */
1592 if (list_empty(&plug->mq_list))
1593 request_count = 0;
1594 if (!request_count)
1595 trace_block_plug(q);
1596 else
1597 last = list_entry_rq(plug->mq_list.prev);
1598
1599 blk_mq_put_ctx(data.ctx);
1600
1601 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1602 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1603 blk_flush_plug_list(plug, false);
1604 trace_block_plug(q);
1605 }
1606
1607 list_add_tail(&rq->queuelist, &plug->mq_list);
1608 return cookie;
1609 }
1610
1611 if (q->elevator) {
1612 blk_mq_put_ctx(data.ctx);
1613 blk_mq_bio_to_request(rq, bio);
1614 blk_mq_sched_insert_request(rq, false, true,
1615 !is_sync || is_flush_fua);
1616 goto done;
1617 }
1618 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1619 /*
1620 * For a SYNC request, send it to the hardware immediately. For
1621 * an ASYNC request, just ensure that we run it later on. The
1622 * latter allows for merging opportunities and more efficient
1623 * dispatching.
1624 */
1625 run_queue:
1626 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1627 }
1628
1629 blk_mq_put_ctx(data.ctx);
1630 done:
1631 return cookie;
1632 }
1633
1634 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1635 unsigned int hctx_idx)
1636 {
1637 struct page *page;
1638
1639 if (tags->rqs && set->ops->exit_request) {
1640 int i;
1641
1642 for (i = 0; i < tags->nr_tags; i++) {
1643 struct request *rq = tags->static_rqs[i];
1644
1645 if (!rq)
1646 continue;
1647 set->ops->exit_request(set->driver_data, rq,
1648 hctx_idx, i);
1649 tags->static_rqs[i] = NULL;
1650 }
1651 }
1652
1653 while (!list_empty(&tags->page_list)) {
1654 page = list_first_entry(&tags->page_list, struct page, lru);
1655 list_del_init(&page->lru);
1656 /*
1657 * Remove kmemleak object previously allocated in
1658 * blk_mq_init_rq_map().
1659 */
1660 kmemleak_free(page_address(page));
1661 __free_pages(page, page->private);
1662 }
1663 }
1664
1665 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1666 {
1667 kfree(tags->rqs);
1668 tags->rqs = NULL;
1669 kfree(tags->static_rqs);
1670 tags->static_rqs = NULL;
1671
1672 blk_mq_free_tags(tags);
1673 }
1674
1675 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1676 unsigned int hctx_idx,
1677 unsigned int nr_tags,
1678 unsigned int reserved_tags)
1679 {
1680 struct blk_mq_tags *tags;
1681
1682 tags = blk_mq_init_tags(nr_tags, reserved_tags,
1683 set->numa_node,
1684 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1685 if (!tags)
1686 return NULL;
1687
1688 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1689 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1690 set->numa_node);
1691 if (!tags->rqs) {
1692 blk_mq_free_tags(tags);
1693 return NULL;
1694 }
1695
1696 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1697 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1698 set->numa_node);
1699 if (!tags->static_rqs) {
1700 kfree(tags->rqs);
1701 blk_mq_free_tags(tags);
1702 return NULL;
1703 }
1704
1705 return tags;
1706 }
1707
1708 static size_t order_to_size(unsigned int order)
1709 {
1710 return (size_t)PAGE_SIZE << order;
1711 }
1712
1713 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1714 unsigned int hctx_idx, unsigned int depth)
1715 {
1716 unsigned int i, j, entries_per_page, max_order = 4;
1717 size_t rq_size, left;
1718
1719 INIT_LIST_HEAD(&tags->page_list);
1720
1721 /*
1722 * rq_size is the size of the request plus driver payload, rounded
1723 * to the cacheline size
1724 */
1725 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1726 cache_line_size());
1727 left = rq_size * depth;
1728
1729 for (i = 0; i < depth; ) {
1730 int this_order = max_order;
1731 struct page *page;
1732 int to_do;
1733 void *p;
1734
1735 while (this_order && left < order_to_size(this_order - 1))
1736 this_order--;
1737
1738 do {
1739 page = alloc_pages_node(set->numa_node,
1740 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1741 this_order);
1742 if (page)
1743 break;
1744 if (!this_order--)
1745 break;
1746 if (order_to_size(this_order) < rq_size)
1747 break;
1748 } while (1);
1749
1750 if (!page)
1751 goto fail;
1752
1753 page->private = this_order;
1754 list_add_tail(&page->lru, &tags->page_list);
1755
1756 p = page_address(page);
1757 /*
1758 * Allow kmemleak to scan these pages as they contain pointers
1759 * to additional allocations like via ops->init_request().
1760 */
1761 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1762 entries_per_page = order_to_size(this_order) / rq_size;
1763 to_do = min(entries_per_page, depth - i);
1764 left -= to_do * rq_size;
1765 for (j = 0; j < to_do; j++) {
1766 struct request *rq = p;
1767
1768 tags->static_rqs[i] = rq;
1769 if (set->ops->init_request) {
1770 if (set->ops->init_request(set->driver_data,
1771 rq, hctx_idx, i,
1772 set->numa_node)) {
1773 tags->static_rqs[i] = NULL;
1774 goto fail;
1775 }
1776 }
1777
1778 p += rq_size;
1779 i++;
1780 }
1781 }
1782 return 0;
1783
1784 fail:
1785 blk_mq_free_rqs(set, tags, hctx_idx);
1786 return -ENOMEM;
1787 }
1788
1789 /*
1790 * 'cpu' is going away. splice any existing rq_list entries from this
1791 * software queue to the hw queue dispatch list, and ensure that it
1792 * gets run.
1793 */
1794 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1795 {
1796 struct blk_mq_hw_ctx *hctx;
1797 struct blk_mq_ctx *ctx;
1798 LIST_HEAD(tmp);
1799
1800 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1801 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1802
1803 spin_lock(&ctx->lock);
1804 if (!list_empty(&ctx->rq_list)) {
1805 list_splice_init(&ctx->rq_list, &tmp);
1806 blk_mq_hctx_clear_pending(hctx, ctx);
1807 }
1808 spin_unlock(&ctx->lock);
1809
1810 if (list_empty(&tmp))
1811 return 0;
1812
1813 spin_lock(&hctx->lock);
1814 list_splice_tail_init(&tmp, &hctx->dispatch);
1815 spin_unlock(&hctx->lock);
1816
1817 blk_mq_run_hw_queue(hctx, true);
1818 return 0;
1819 }
1820
1821 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1822 {
1823 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1824 &hctx->cpuhp_dead);
1825 }
1826
1827 /* hctx->ctxs will be freed in queue's release handler */
1828 static void blk_mq_exit_hctx(struct request_queue *q,
1829 struct blk_mq_tag_set *set,
1830 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1831 {
1832 unsigned flush_start_tag = set->queue_depth;
1833
1834 blk_mq_tag_idle(hctx);
1835
1836 if (set->ops->exit_request)
1837 set->ops->exit_request(set->driver_data,
1838 hctx->fq->flush_rq, hctx_idx,
1839 flush_start_tag + hctx_idx);
1840
1841 if (set->ops->exit_hctx)
1842 set->ops->exit_hctx(hctx, hctx_idx);
1843
1844 if (hctx->flags & BLK_MQ_F_BLOCKING)
1845 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1846
1847 blk_mq_remove_cpuhp(hctx);
1848 blk_free_flush_queue(hctx->fq);
1849 sbitmap_free(&hctx->ctx_map);
1850 }
1851
1852 static void blk_mq_exit_hw_queues(struct request_queue *q,
1853 struct blk_mq_tag_set *set, int nr_queue)
1854 {
1855 struct blk_mq_hw_ctx *hctx;
1856 unsigned int i;
1857
1858 queue_for_each_hw_ctx(q, hctx, i) {
1859 if (i == nr_queue)
1860 break;
1861 blk_mq_exit_hctx(q, set, hctx, i);
1862 }
1863 }
1864
1865 static void blk_mq_free_hw_queues(struct request_queue *q,
1866 struct blk_mq_tag_set *set)
1867 {
1868 struct blk_mq_hw_ctx *hctx;
1869 unsigned int i;
1870
1871 queue_for_each_hw_ctx(q, hctx, i)
1872 free_cpumask_var(hctx->cpumask);
1873 }
1874
1875 static int blk_mq_init_hctx(struct request_queue *q,
1876 struct blk_mq_tag_set *set,
1877 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1878 {
1879 int node;
1880 unsigned flush_start_tag = set->queue_depth;
1881
1882 node = hctx->numa_node;
1883 if (node == NUMA_NO_NODE)
1884 node = hctx->numa_node = set->numa_node;
1885
1886 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1887 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1888 spin_lock_init(&hctx->lock);
1889 INIT_LIST_HEAD(&hctx->dispatch);
1890 hctx->queue = q;
1891 hctx->queue_num = hctx_idx;
1892 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1893
1894 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1895
1896 hctx->tags = set->tags[hctx_idx];
1897
1898 /*
1899 * Allocate space for all possible cpus to avoid allocation at
1900 * runtime
1901 */
1902 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1903 GFP_KERNEL, node);
1904 if (!hctx->ctxs)
1905 goto unregister_cpu_notifier;
1906
1907 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1908 node))
1909 goto free_ctxs;
1910
1911 hctx->nr_ctx = 0;
1912
1913 if (set->ops->init_hctx &&
1914 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1915 goto free_bitmap;
1916
1917 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1918 if (!hctx->fq)
1919 goto exit_hctx;
1920
1921 if (set->ops->init_request &&
1922 set->ops->init_request(set->driver_data,
1923 hctx->fq->flush_rq, hctx_idx,
1924 flush_start_tag + hctx_idx, node))
1925 goto free_fq;
1926
1927 if (hctx->flags & BLK_MQ_F_BLOCKING)
1928 init_srcu_struct(&hctx->queue_rq_srcu);
1929
1930 return 0;
1931
1932 free_fq:
1933 kfree(hctx->fq);
1934 exit_hctx:
1935 if (set->ops->exit_hctx)
1936 set->ops->exit_hctx(hctx, hctx_idx);
1937 free_bitmap:
1938 sbitmap_free(&hctx->ctx_map);
1939 free_ctxs:
1940 kfree(hctx->ctxs);
1941 unregister_cpu_notifier:
1942 blk_mq_remove_cpuhp(hctx);
1943 return -1;
1944 }
1945
1946 static void blk_mq_init_cpu_queues(struct request_queue *q,
1947 unsigned int nr_hw_queues)
1948 {
1949 unsigned int i;
1950
1951 for_each_possible_cpu(i) {
1952 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1953 struct blk_mq_hw_ctx *hctx;
1954
1955 memset(__ctx, 0, sizeof(*__ctx));
1956 __ctx->cpu = i;
1957 spin_lock_init(&__ctx->lock);
1958 INIT_LIST_HEAD(&__ctx->rq_list);
1959 __ctx->queue = q;
1960 blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
1961 blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
1962
1963 /* If the cpu isn't online, the cpu is mapped to first hctx */
1964 if (!cpu_online(i))
1965 continue;
1966
1967 hctx = blk_mq_map_queue(q, i);
1968
1969 /*
1970 * Set local node, IFF we have more than one hw queue. If
1971 * not, we remain on the home node of the device
1972 */
1973 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1974 hctx->numa_node = local_memory_node(cpu_to_node(i));
1975 }
1976 }
1977
1978 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1979 {
1980 int ret = 0;
1981
1982 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1983 set->queue_depth, set->reserved_tags);
1984 if (!set->tags[hctx_idx])
1985 return false;
1986
1987 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
1988 set->queue_depth);
1989 if (!ret)
1990 return true;
1991
1992 blk_mq_free_rq_map(set->tags[hctx_idx]);
1993 set->tags[hctx_idx] = NULL;
1994 return false;
1995 }
1996
1997 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
1998 unsigned int hctx_idx)
1999 {
2000 if (set->tags[hctx_idx]) {
2001 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2002 blk_mq_free_rq_map(set->tags[hctx_idx]);
2003 set->tags[hctx_idx] = NULL;
2004 }
2005 }
2006
2007 static void blk_mq_map_swqueue(struct request_queue *q,
2008 const struct cpumask *online_mask)
2009 {
2010 unsigned int i, hctx_idx;
2011 struct blk_mq_hw_ctx *hctx;
2012 struct blk_mq_ctx *ctx;
2013 struct blk_mq_tag_set *set = q->tag_set;
2014
2015 /*
2016 * Avoid others reading imcomplete hctx->cpumask through sysfs
2017 */
2018 mutex_lock(&q->sysfs_lock);
2019
2020 queue_for_each_hw_ctx(q, hctx, i) {
2021 cpumask_clear(hctx->cpumask);
2022 hctx->nr_ctx = 0;
2023 }
2024
2025 /*
2026 * Map software to hardware queues
2027 */
2028 for_each_possible_cpu(i) {
2029 /* If the cpu isn't online, the cpu is mapped to first hctx */
2030 if (!cpumask_test_cpu(i, online_mask))
2031 continue;
2032
2033 hctx_idx = q->mq_map[i];
2034 /* unmapped hw queue can be remapped after CPU topo changed */
2035 if (!set->tags[hctx_idx] &&
2036 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2037 /*
2038 * If tags initialization fail for some hctx,
2039 * that hctx won't be brought online. In this
2040 * case, remap the current ctx to hctx[0] which
2041 * is guaranteed to always have tags allocated
2042 */
2043 q->mq_map[i] = 0;
2044 }
2045
2046 ctx = per_cpu_ptr(q->queue_ctx, i);
2047 hctx = blk_mq_map_queue(q, i);
2048
2049 cpumask_set_cpu(i, hctx->cpumask);
2050 ctx->index_hw = hctx->nr_ctx;
2051 hctx->ctxs[hctx->nr_ctx++] = ctx;
2052 }
2053
2054 mutex_unlock(&q->sysfs_lock);
2055
2056 queue_for_each_hw_ctx(q, hctx, i) {
2057 /*
2058 * If no software queues are mapped to this hardware queue,
2059 * disable it and free the request entries.
2060 */
2061 if (!hctx->nr_ctx) {
2062 /* Never unmap queue 0. We need it as a
2063 * fallback in case of a new remap fails
2064 * allocation
2065 */
2066 if (i && set->tags[i])
2067 blk_mq_free_map_and_requests(set, i);
2068
2069 hctx->tags = NULL;
2070 continue;
2071 }
2072
2073 hctx->tags = set->tags[i];
2074 WARN_ON(!hctx->tags);
2075
2076 /*
2077 * Set the map size to the number of mapped software queues.
2078 * This is more accurate and more efficient than looping
2079 * over all possibly mapped software queues.
2080 */
2081 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2082
2083 /*
2084 * Initialize batch roundrobin counts
2085 */
2086 hctx->next_cpu = cpumask_first(hctx->cpumask);
2087 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2088 }
2089 }
2090
2091 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2092 {
2093 struct blk_mq_hw_ctx *hctx;
2094 int i;
2095
2096 queue_for_each_hw_ctx(q, hctx, i) {
2097 if (shared)
2098 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2099 else
2100 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2101 }
2102 }
2103
2104 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2105 {
2106 struct request_queue *q;
2107
2108 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2109 blk_mq_freeze_queue(q);
2110 queue_set_hctx_shared(q, shared);
2111 blk_mq_unfreeze_queue(q);
2112 }
2113 }
2114
2115 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2116 {
2117 struct blk_mq_tag_set *set = q->tag_set;
2118
2119 mutex_lock(&set->tag_list_lock);
2120 list_del_init(&q->tag_set_list);
2121 if (list_is_singular(&set->tag_list)) {
2122 /* just transitioned to unshared */
2123 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2124 /* update existing queue */
2125 blk_mq_update_tag_set_depth(set, false);
2126 }
2127 mutex_unlock(&set->tag_list_lock);
2128 }
2129
2130 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2131 struct request_queue *q)
2132 {
2133 q->tag_set = set;
2134
2135 mutex_lock(&set->tag_list_lock);
2136
2137 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2138 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2139 set->flags |= BLK_MQ_F_TAG_SHARED;
2140 /* update existing queue */
2141 blk_mq_update_tag_set_depth(set, true);
2142 }
2143 if (set->flags & BLK_MQ_F_TAG_SHARED)
2144 queue_set_hctx_shared(q, true);
2145 list_add_tail(&q->tag_set_list, &set->tag_list);
2146
2147 mutex_unlock(&set->tag_list_lock);
2148 }
2149
2150 /*
2151 * It is the actual release handler for mq, but we do it from
2152 * request queue's release handler for avoiding use-after-free
2153 * and headache because q->mq_kobj shouldn't have been introduced,
2154 * but we can't group ctx/kctx kobj without it.
2155 */
2156 void blk_mq_release(struct request_queue *q)
2157 {
2158 struct blk_mq_hw_ctx *hctx;
2159 unsigned int i;
2160
2161 blk_mq_sched_teardown(q);
2162
2163 /* hctx kobj stays in hctx */
2164 queue_for_each_hw_ctx(q, hctx, i) {
2165 if (!hctx)
2166 continue;
2167 kfree(hctx->ctxs);
2168 kfree(hctx);
2169 }
2170
2171 q->mq_map = NULL;
2172
2173 kfree(q->queue_hw_ctx);
2174
2175 /* ctx kobj stays in queue_ctx */
2176 free_percpu(q->queue_ctx);
2177 }
2178
2179 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2180 {
2181 struct request_queue *uninit_q, *q;
2182
2183 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2184 if (!uninit_q)
2185 return ERR_PTR(-ENOMEM);
2186
2187 q = blk_mq_init_allocated_queue(set, uninit_q);
2188 if (IS_ERR(q))
2189 blk_cleanup_queue(uninit_q);
2190
2191 return q;
2192 }
2193 EXPORT_SYMBOL(blk_mq_init_queue);
2194
2195 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2196 struct request_queue *q)
2197 {
2198 int i, j;
2199 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2200
2201 blk_mq_sysfs_unregister(q);
2202 for (i = 0; i < set->nr_hw_queues; i++) {
2203 int node;
2204
2205 if (hctxs[i])
2206 continue;
2207
2208 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2209 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2210 GFP_KERNEL, node);
2211 if (!hctxs[i])
2212 break;
2213
2214 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2215 node)) {
2216 kfree(hctxs[i]);
2217 hctxs[i] = NULL;
2218 break;
2219 }
2220
2221 atomic_set(&hctxs[i]->nr_active, 0);
2222 hctxs[i]->numa_node = node;
2223 hctxs[i]->queue_num = i;
2224
2225 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2226 free_cpumask_var(hctxs[i]->cpumask);
2227 kfree(hctxs[i]);
2228 hctxs[i] = NULL;
2229 break;
2230 }
2231 blk_mq_hctx_kobj_init(hctxs[i]);
2232 }
2233 for (j = i; j < q->nr_hw_queues; j++) {
2234 struct blk_mq_hw_ctx *hctx = hctxs[j];
2235
2236 if (hctx) {
2237 if (hctx->tags)
2238 blk_mq_free_map_and_requests(set, j);
2239 blk_mq_exit_hctx(q, set, hctx, j);
2240 free_cpumask_var(hctx->cpumask);
2241 kobject_put(&hctx->kobj);
2242 kfree(hctx->ctxs);
2243 kfree(hctx);
2244 hctxs[j] = NULL;
2245
2246 }
2247 }
2248 q->nr_hw_queues = i;
2249 blk_mq_sysfs_register(q);
2250 }
2251
2252 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2253 struct request_queue *q)
2254 {
2255 /* mark the queue as mq asap */
2256 q->mq_ops = set->ops;
2257
2258 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2259 if (!q->queue_ctx)
2260 goto err_exit;
2261
2262 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2263 GFP_KERNEL, set->numa_node);
2264 if (!q->queue_hw_ctx)
2265 goto err_percpu;
2266
2267 q->mq_map = set->mq_map;
2268
2269 blk_mq_realloc_hw_ctxs(set, q);
2270 if (!q->nr_hw_queues)
2271 goto err_hctxs;
2272
2273 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2274 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2275
2276 q->nr_queues = nr_cpu_ids;
2277
2278 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2279
2280 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2281 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2282
2283 q->sg_reserved_size = INT_MAX;
2284
2285 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2286 INIT_LIST_HEAD(&q->requeue_list);
2287 spin_lock_init(&q->requeue_lock);
2288
2289 if (q->nr_hw_queues > 1)
2290 blk_queue_make_request(q, blk_mq_make_request);
2291 else
2292 blk_queue_make_request(q, blk_sq_make_request);
2293
2294 /*
2295 * Do this after blk_queue_make_request() overrides it...
2296 */
2297 q->nr_requests = set->queue_depth;
2298
2299 /*
2300 * Default to classic polling
2301 */
2302 q->poll_nsec = -1;
2303
2304 if (set->ops->complete)
2305 blk_queue_softirq_done(q, set->ops->complete);
2306
2307 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2308
2309 get_online_cpus();
2310 mutex_lock(&all_q_mutex);
2311
2312 list_add_tail(&q->all_q_node, &all_q_list);
2313 blk_mq_add_queue_tag_set(set, q);
2314 blk_mq_map_swqueue(q, cpu_online_mask);
2315
2316 mutex_unlock(&all_q_mutex);
2317 put_online_cpus();
2318
2319 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2320 int ret;
2321
2322 ret = blk_mq_sched_init(q);
2323 if (ret)
2324 return ERR_PTR(ret);
2325 }
2326
2327 return q;
2328
2329 err_hctxs:
2330 kfree(q->queue_hw_ctx);
2331 err_percpu:
2332 free_percpu(q->queue_ctx);
2333 err_exit:
2334 q->mq_ops = NULL;
2335 return ERR_PTR(-ENOMEM);
2336 }
2337 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2338
2339 void blk_mq_free_queue(struct request_queue *q)
2340 {
2341 struct blk_mq_tag_set *set = q->tag_set;
2342
2343 mutex_lock(&all_q_mutex);
2344 list_del_init(&q->all_q_node);
2345 mutex_unlock(&all_q_mutex);
2346
2347 wbt_exit(q);
2348
2349 blk_mq_del_queue_tag_set(q);
2350
2351 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2352 blk_mq_free_hw_queues(q, set);
2353 }
2354
2355 /* Basically redo blk_mq_init_queue with queue frozen */
2356 static void blk_mq_queue_reinit(struct request_queue *q,
2357 const struct cpumask *online_mask)
2358 {
2359 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2360
2361 blk_mq_sysfs_unregister(q);
2362
2363 /*
2364 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2365 * we should change hctx numa_node according to new topology (this
2366 * involves free and re-allocate memory, worthy doing?)
2367 */
2368
2369 blk_mq_map_swqueue(q, online_mask);
2370
2371 blk_mq_sysfs_register(q);
2372 }
2373
2374 /*
2375 * New online cpumask which is going to be set in this hotplug event.
2376 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2377 * one-by-one and dynamically allocating this could result in a failure.
2378 */
2379 static struct cpumask cpuhp_online_new;
2380
2381 static void blk_mq_queue_reinit_work(void)
2382 {
2383 struct request_queue *q;
2384
2385 mutex_lock(&all_q_mutex);
2386 /*
2387 * We need to freeze and reinit all existing queues. Freezing
2388 * involves synchronous wait for an RCU grace period and doing it
2389 * one by one may take a long time. Start freezing all queues in
2390 * one swoop and then wait for the completions so that freezing can
2391 * take place in parallel.
2392 */
2393 list_for_each_entry(q, &all_q_list, all_q_node)
2394 blk_mq_freeze_queue_start(q);
2395 list_for_each_entry(q, &all_q_list, all_q_node)
2396 blk_mq_freeze_queue_wait(q);
2397
2398 list_for_each_entry(q, &all_q_list, all_q_node)
2399 blk_mq_queue_reinit(q, &cpuhp_online_new);
2400
2401 list_for_each_entry(q, &all_q_list, all_q_node)
2402 blk_mq_unfreeze_queue(q);
2403
2404 mutex_unlock(&all_q_mutex);
2405 }
2406
2407 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2408 {
2409 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2410 blk_mq_queue_reinit_work();
2411 return 0;
2412 }
2413
2414 /*
2415 * Before hotadded cpu starts handling requests, new mappings must be
2416 * established. Otherwise, these requests in hw queue might never be
2417 * dispatched.
2418 *
2419 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2420 * for CPU0, and ctx1 for CPU1).
2421 *
2422 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2423 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2424 *
2425 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2426 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2427 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2428 * ignored.
2429 */
2430 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2431 {
2432 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2433 cpumask_set_cpu(cpu, &cpuhp_online_new);
2434 blk_mq_queue_reinit_work();
2435 return 0;
2436 }
2437
2438 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2439 {
2440 int i;
2441
2442 for (i = 0; i < set->nr_hw_queues; i++)
2443 if (!__blk_mq_alloc_rq_map(set, i))
2444 goto out_unwind;
2445
2446 return 0;
2447
2448 out_unwind:
2449 while (--i >= 0)
2450 blk_mq_free_rq_map(set->tags[i]);
2451
2452 return -ENOMEM;
2453 }
2454
2455 /*
2456 * Allocate the request maps associated with this tag_set. Note that this
2457 * may reduce the depth asked for, if memory is tight. set->queue_depth
2458 * will be updated to reflect the allocated depth.
2459 */
2460 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2461 {
2462 unsigned int depth;
2463 int err;
2464
2465 depth = set->queue_depth;
2466 do {
2467 err = __blk_mq_alloc_rq_maps(set);
2468 if (!err)
2469 break;
2470
2471 set->queue_depth >>= 1;
2472 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2473 err = -ENOMEM;
2474 break;
2475 }
2476 } while (set->queue_depth);
2477
2478 if (!set->queue_depth || err) {
2479 pr_err("blk-mq: failed to allocate request map\n");
2480 return -ENOMEM;
2481 }
2482
2483 if (depth != set->queue_depth)
2484 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2485 depth, set->queue_depth);
2486
2487 return 0;
2488 }
2489
2490 /*
2491 * Alloc a tag set to be associated with one or more request queues.
2492 * May fail with EINVAL for various error conditions. May adjust the
2493 * requested depth down, if if it too large. In that case, the set
2494 * value will be stored in set->queue_depth.
2495 */
2496 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2497 {
2498 int ret;
2499
2500 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2501
2502 if (!set->nr_hw_queues)
2503 return -EINVAL;
2504 if (!set->queue_depth)
2505 return -EINVAL;
2506 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2507 return -EINVAL;
2508
2509 if (!set->ops->queue_rq)
2510 return -EINVAL;
2511
2512 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2513 pr_info("blk-mq: reduced tag depth to %u\n",
2514 BLK_MQ_MAX_DEPTH);
2515 set->queue_depth = BLK_MQ_MAX_DEPTH;
2516 }
2517
2518 /*
2519 * If a crashdump is active, then we are potentially in a very
2520 * memory constrained environment. Limit us to 1 queue and
2521 * 64 tags to prevent using too much memory.
2522 */
2523 if (is_kdump_kernel()) {
2524 set->nr_hw_queues = 1;
2525 set->queue_depth = min(64U, set->queue_depth);
2526 }
2527 /*
2528 * There is no use for more h/w queues than cpus.
2529 */
2530 if (set->nr_hw_queues > nr_cpu_ids)
2531 set->nr_hw_queues = nr_cpu_ids;
2532
2533 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2534 GFP_KERNEL, set->numa_node);
2535 if (!set->tags)
2536 return -ENOMEM;
2537
2538 ret = -ENOMEM;
2539 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2540 GFP_KERNEL, set->numa_node);
2541 if (!set->mq_map)
2542 goto out_free_tags;
2543
2544 if (set->ops->map_queues)
2545 ret = set->ops->map_queues(set);
2546 else
2547 ret = blk_mq_map_queues(set);
2548 if (ret)
2549 goto out_free_mq_map;
2550
2551 ret = blk_mq_alloc_rq_maps(set);
2552 if (ret)
2553 goto out_free_mq_map;
2554
2555 mutex_init(&set->tag_list_lock);
2556 INIT_LIST_HEAD(&set->tag_list);
2557
2558 return 0;
2559
2560 out_free_mq_map:
2561 kfree(set->mq_map);
2562 set->mq_map = NULL;
2563 out_free_tags:
2564 kfree(set->tags);
2565 set->tags = NULL;
2566 return ret;
2567 }
2568 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2569
2570 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2571 {
2572 int i;
2573
2574 for (i = 0; i < nr_cpu_ids; i++)
2575 blk_mq_free_map_and_requests(set, i);
2576
2577 kfree(set->mq_map);
2578 set->mq_map = NULL;
2579
2580 kfree(set->tags);
2581 set->tags = NULL;
2582 }
2583 EXPORT_SYMBOL(blk_mq_free_tag_set);
2584
2585 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2586 {
2587 struct blk_mq_tag_set *set = q->tag_set;
2588 struct blk_mq_hw_ctx *hctx;
2589 int i, ret;
2590
2591 if (!set)
2592 return -EINVAL;
2593
2594 blk_mq_freeze_queue(q);
2595 blk_mq_quiesce_queue(q);
2596
2597 ret = 0;
2598 queue_for_each_hw_ctx(q, hctx, i) {
2599 if (!hctx->tags)
2600 continue;
2601 /*
2602 * If we're using an MQ scheduler, just update the scheduler
2603 * queue depth. This is similar to what the old code would do.
2604 */
2605 if (!hctx->sched_tags) {
2606 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2607 min(nr, set->queue_depth),
2608 false);
2609 } else {
2610 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2611 nr, true);
2612 }
2613 if (ret)
2614 break;
2615 }
2616
2617 if (!ret)
2618 q->nr_requests = nr;
2619
2620 blk_mq_unfreeze_queue(q);
2621 blk_mq_start_stopped_hw_queues(q, true);
2622
2623 return ret;
2624 }
2625
2626 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2627 {
2628 struct request_queue *q;
2629
2630 if (nr_hw_queues > nr_cpu_ids)
2631 nr_hw_queues = nr_cpu_ids;
2632 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2633 return;
2634
2635 list_for_each_entry(q, &set->tag_list, tag_set_list)
2636 blk_mq_freeze_queue(q);
2637
2638 set->nr_hw_queues = nr_hw_queues;
2639 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2640 blk_mq_realloc_hw_ctxs(set, q);
2641
2642 if (q->nr_hw_queues > 1)
2643 blk_queue_make_request(q, blk_mq_make_request);
2644 else
2645 blk_queue_make_request(q, blk_sq_make_request);
2646
2647 blk_mq_queue_reinit(q, cpu_online_mask);
2648 }
2649
2650 list_for_each_entry(q, &set->tag_list, tag_set_list)
2651 blk_mq_unfreeze_queue(q);
2652 }
2653 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2654
2655 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2656 struct blk_mq_hw_ctx *hctx,
2657 struct request *rq)
2658 {
2659 struct blk_rq_stat stat[2];
2660 unsigned long ret = 0;
2661
2662 /*
2663 * If stats collection isn't on, don't sleep but turn it on for
2664 * future users
2665 */
2666 if (!blk_stat_enable(q))
2667 return 0;
2668
2669 /*
2670 * We don't have to do this once per IO, should optimize this
2671 * to just use the current window of stats until it changes
2672 */
2673 memset(&stat, 0, sizeof(stat));
2674 blk_hctx_stat_get(hctx, stat);
2675
2676 /*
2677 * As an optimistic guess, use half of the mean service time
2678 * for this type of request. We can (and should) make this smarter.
2679 * For instance, if the completion latencies are tight, we can
2680 * get closer than just half the mean. This is especially
2681 * important on devices where the completion latencies are longer
2682 * than ~10 usec.
2683 */
2684 if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
2685 ret = (stat[BLK_STAT_READ].mean + 1) / 2;
2686 else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
2687 ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;
2688
2689 return ret;
2690 }
2691
2692 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2693 struct blk_mq_hw_ctx *hctx,
2694 struct request *rq)
2695 {
2696 struct hrtimer_sleeper hs;
2697 enum hrtimer_mode mode;
2698 unsigned int nsecs;
2699 ktime_t kt;
2700
2701 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2702 return false;
2703
2704 /*
2705 * poll_nsec can be:
2706 *
2707 * -1: don't ever hybrid sleep
2708 * 0: use half of prev avg
2709 * >0: use this specific value
2710 */
2711 if (q->poll_nsec == -1)
2712 return false;
2713 else if (q->poll_nsec > 0)
2714 nsecs = q->poll_nsec;
2715 else
2716 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2717
2718 if (!nsecs)
2719 return false;
2720
2721 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2722
2723 /*
2724 * This will be replaced with the stats tracking code, using
2725 * 'avg_completion_time / 2' as the pre-sleep target.
2726 */
2727 kt = nsecs;
2728
2729 mode = HRTIMER_MODE_REL;
2730 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2731 hrtimer_set_expires(&hs.timer, kt);
2732
2733 hrtimer_init_sleeper(&hs, current);
2734 do {
2735 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2736 break;
2737 set_current_state(TASK_UNINTERRUPTIBLE);
2738 hrtimer_start_expires(&hs.timer, mode);
2739 if (hs.task)
2740 io_schedule();
2741 hrtimer_cancel(&hs.timer);
2742 mode = HRTIMER_MODE_ABS;
2743 } while (hs.task && !signal_pending(current));
2744
2745 __set_current_state(TASK_RUNNING);
2746 destroy_hrtimer_on_stack(&hs.timer);
2747 return true;
2748 }
2749
2750 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2751 {
2752 struct request_queue *q = hctx->queue;
2753 long state;
2754
2755 /*
2756 * If we sleep, have the caller restart the poll loop to reset
2757 * the state. Like for the other success return cases, the
2758 * caller is responsible for checking if the IO completed. If
2759 * the IO isn't complete, we'll get called again and will go
2760 * straight to the busy poll loop.
2761 */
2762 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2763 return true;
2764
2765 hctx->poll_considered++;
2766
2767 state = current->state;
2768 while (!need_resched()) {
2769 int ret;
2770
2771 hctx->poll_invoked++;
2772
2773 ret = q->mq_ops->poll(hctx, rq->tag);
2774 if (ret > 0) {
2775 hctx->poll_success++;
2776 set_current_state(TASK_RUNNING);
2777 return true;
2778 }
2779
2780 if (signal_pending_state(state, current))
2781 set_current_state(TASK_RUNNING);
2782
2783 if (current->state == TASK_RUNNING)
2784 return true;
2785 if (ret < 0)
2786 break;
2787 cpu_relax();
2788 }
2789
2790 return false;
2791 }
2792
2793 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2794 {
2795 struct blk_mq_hw_ctx *hctx;
2796 struct blk_plug *plug;
2797 struct request *rq;
2798
2799 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2800 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2801 return false;
2802
2803 plug = current->plug;
2804 if (plug)
2805 blk_flush_plug_list(plug, false);
2806
2807 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2808 if (!blk_qc_t_is_internal(cookie))
2809 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2810 else
2811 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2812
2813 return __blk_mq_poll(hctx, rq);
2814 }
2815 EXPORT_SYMBOL_GPL(blk_mq_poll);
2816
2817 void blk_mq_disable_hotplug(void)
2818 {
2819 mutex_lock(&all_q_mutex);
2820 }
2821
2822 void blk_mq_enable_hotplug(void)
2823 {
2824 mutex_unlock(&all_q_mutex);
2825 }
2826
2827 static int __init blk_mq_init(void)
2828 {
2829 blk_mq_debugfs_init();
2830
2831 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2832 blk_mq_hctx_notify_dead);
2833
2834 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2835 blk_mq_queue_reinit_prepare,
2836 blk_mq_queue_reinit_dead);
2837 return 0;
2838 }
2839 subsys_initcall(blk_mq_init);