]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-mq.c
dbae586602f6f00f3f297a703fbfba1d8c867f8b
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static DEFINE_MUTEX(all_q_mutex);
41 static LIST_HEAD(all_q_list);
42
43 static void blk_mq_poll_stats_start(struct request_queue *q);
44 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
45 static void __blk_mq_stop_hw_queues(struct request_queue *q, bool sync);
46
47 static int blk_mq_poll_stats_bkt(const struct request *rq)
48 {
49 int ddir, bytes, bucket;
50
51 ddir = rq_data_dir(rq);
52 bytes = blk_rq_bytes(rq);
53
54 bucket = ddir + 2*(ilog2(bytes) - 9);
55
56 if (bucket < 0)
57 return -1;
58 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
59 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
60
61 return bucket;
62 }
63
64 /*
65 * Check if any of the ctx's have pending work in this hardware queue
66 */
67 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
68 {
69 return sbitmap_any_bit_set(&hctx->ctx_map) ||
70 !list_empty_careful(&hctx->dispatch) ||
71 blk_mq_sched_has_work(hctx);
72 }
73
74 /*
75 * Mark this ctx as having pending work in this hardware queue
76 */
77 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
78 struct blk_mq_ctx *ctx)
79 {
80 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
81 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
82 }
83
84 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
85 struct blk_mq_ctx *ctx)
86 {
87 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
88 }
89
90 void blk_freeze_queue_start(struct request_queue *q)
91 {
92 int freeze_depth;
93
94 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
95 if (freeze_depth == 1) {
96 percpu_ref_kill(&q->q_usage_counter);
97 blk_mq_run_hw_queues(q, false);
98 }
99 }
100 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
101
102 void blk_mq_freeze_queue_wait(struct request_queue *q)
103 {
104 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
105 }
106 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
107
108 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
109 unsigned long timeout)
110 {
111 return wait_event_timeout(q->mq_freeze_wq,
112 percpu_ref_is_zero(&q->q_usage_counter),
113 timeout);
114 }
115 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
116
117 /*
118 * Guarantee no request is in use, so we can change any data structure of
119 * the queue afterward.
120 */
121 void blk_freeze_queue(struct request_queue *q)
122 {
123 /*
124 * In the !blk_mq case we are only calling this to kill the
125 * q_usage_counter, otherwise this increases the freeze depth
126 * and waits for it to return to zero. For this reason there is
127 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
128 * exported to drivers as the only user for unfreeze is blk_mq.
129 */
130 blk_freeze_queue_start(q);
131 blk_mq_freeze_queue_wait(q);
132 }
133
134 void blk_mq_freeze_queue(struct request_queue *q)
135 {
136 /*
137 * ...just an alias to keep freeze and unfreeze actions balanced
138 * in the blk_mq_* namespace
139 */
140 blk_freeze_queue(q);
141 }
142 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
143
144 void blk_mq_unfreeze_queue(struct request_queue *q)
145 {
146 int freeze_depth;
147
148 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
149 WARN_ON_ONCE(freeze_depth < 0);
150 if (!freeze_depth) {
151 percpu_ref_reinit(&q->q_usage_counter);
152 wake_up_all(&q->mq_freeze_wq);
153 }
154 }
155 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
156
157 /**
158 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
159 * @q: request queue.
160 *
161 * Note: this function does not prevent that the struct request end_io()
162 * callback function is invoked. Once this function is returned, we make
163 * sure no dispatch can happen until the queue is unquiesced via
164 * blk_mq_unquiesce_queue().
165 */
166 void blk_mq_quiesce_queue(struct request_queue *q)
167 {
168 struct blk_mq_hw_ctx *hctx;
169 unsigned int i;
170 bool rcu = false;
171
172 blk_mq_quiesce_queue_nowait(q);
173
174 queue_for_each_hw_ctx(q, hctx, i) {
175 if (hctx->flags & BLK_MQ_F_BLOCKING)
176 synchronize_srcu(&hctx->queue_rq_srcu);
177 else
178 rcu = true;
179 }
180 if (rcu)
181 synchronize_rcu();
182 }
183 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
184
185 /*
186 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
187 * @q: request queue.
188 *
189 * This function recovers queue into the state before quiescing
190 * which is done by blk_mq_quiesce_queue.
191 */
192 void blk_mq_unquiesce_queue(struct request_queue *q)
193 {
194 spin_lock_irq(q->queue_lock);
195 queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
196 spin_unlock_irq(q->queue_lock);
197
198 /* dispatch requests which are inserted during quiescing */
199 blk_mq_run_hw_queues(q, true);
200 }
201 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
202
203 void blk_mq_wake_waiters(struct request_queue *q)
204 {
205 struct blk_mq_hw_ctx *hctx;
206 unsigned int i;
207
208 queue_for_each_hw_ctx(q, hctx, i)
209 if (blk_mq_hw_queue_mapped(hctx))
210 blk_mq_tag_wakeup_all(hctx->tags, true);
211
212 /*
213 * If we are called because the queue has now been marked as
214 * dying, we need to ensure that processes currently waiting on
215 * the queue are notified as well.
216 */
217 wake_up_all(&q->mq_freeze_wq);
218 }
219
220 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
221 {
222 return blk_mq_has_free_tags(hctx->tags);
223 }
224 EXPORT_SYMBOL(blk_mq_can_queue);
225
226 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
227 unsigned int tag, unsigned int op)
228 {
229 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
230 struct request *rq = tags->static_rqs[tag];
231
232 if (data->flags & BLK_MQ_REQ_INTERNAL) {
233 rq->tag = -1;
234 rq->internal_tag = tag;
235 } else {
236 if (blk_mq_tag_busy(data->hctx)) {
237 rq->rq_flags = RQF_MQ_INFLIGHT;
238 atomic_inc(&data->hctx->nr_active);
239 }
240 rq->tag = tag;
241 rq->internal_tag = -1;
242 data->hctx->tags->rqs[rq->tag] = rq;
243 }
244
245 INIT_LIST_HEAD(&rq->queuelist);
246 /* csd/requeue_work/fifo_time is initialized before use */
247 rq->q = data->q;
248 rq->mq_ctx = data->ctx;
249 rq->cmd_flags = op;
250 if (blk_queue_io_stat(data->q))
251 rq->rq_flags |= RQF_IO_STAT;
252 /* do not touch atomic flags, it needs atomic ops against the timer */
253 rq->cpu = -1;
254 INIT_HLIST_NODE(&rq->hash);
255 RB_CLEAR_NODE(&rq->rb_node);
256 rq->rq_disk = NULL;
257 rq->part = NULL;
258 rq->start_time = jiffies;
259 #ifdef CONFIG_BLK_CGROUP
260 rq->rl = NULL;
261 set_start_time_ns(rq);
262 rq->io_start_time_ns = 0;
263 #endif
264 rq->nr_phys_segments = 0;
265 #if defined(CONFIG_BLK_DEV_INTEGRITY)
266 rq->nr_integrity_segments = 0;
267 #endif
268 rq->special = NULL;
269 /* tag was already set */
270 rq->extra_len = 0;
271
272 INIT_LIST_HEAD(&rq->timeout_list);
273 rq->timeout = 0;
274
275 rq->end_io = NULL;
276 rq->end_io_data = NULL;
277 rq->next_rq = NULL;
278
279 data->ctx->rq_dispatched[op_is_sync(op)]++;
280 return rq;
281 }
282
283 static struct request *blk_mq_get_request(struct request_queue *q,
284 struct bio *bio, unsigned int op,
285 struct blk_mq_alloc_data *data)
286 {
287 struct elevator_queue *e = q->elevator;
288 struct request *rq;
289 unsigned int tag;
290
291 blk_queue_enter_live(q);
292 data->q = q;
293 if (likely(!data->ctx))
294 data->ctx = blk_mq_get_ctx(q);
295 if (likely(!data->hctx))
296 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
297
298 if (e) {
299 data->flags |= BLK_MQ_REQ_INTERNAL;
300
301 /*
302 * Flush requests are special and go directly to the
303 * dispatch list.
304 */
305 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
306 e->type->ops.mq.limit_depth(op, data);
307 }
308
309 tag = blk_mq_get_tag(data);
310 if (tag == BLK_MQ_TAG_FAIL) {
311 blk_queue_exit(q);
312 return NULL;
313 }
314
315 rq = blk_mq_rq_ctx_init(data, tag, op);
316 if (!op_is_flush(op)) {
317 rq->elv.icq = NULL;
318 if (e && e->type->ops.mq.prepare_request) {
319 if (e->type->icq_cache && rq_ioc(bio))
320 blk_mq_sched_assign_ioc(rq, bio);
321
322 e->type->ops.mq.prepare_request(rq, bio);
323 rq->rq_flags |= RQF_ELVPRIV;
324 }
325 }
326 data->hctx->queued++;
327 return rq;
328 }
329
330 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
331 unsigned int flags)
332 {
333 struct blk_mq_alloc_data alloc_data = { .flags = flags };
334 struct request *rq;
335 int ret;
336
337 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
338 if (ret)
339 return ERR_PTR(ret);
340
341 rq = blk_mq_get_request(q, NULL, rw, &alloc_data);
342
343 blk_mq_put_ctx(alloc_data.ctx);
344 blk_queue_exit(q);
345
346 if (!rq)
347 return ERR_PTR(-EWOULDBLOCK);
348
349 rq->__data_len = 0;
350 rq->__sector = (sector_t) -1;
351 rq->bio = rq->biotail = NULL;
352 return rq;
353 }
354 EXPORT_SYMBOL(blk_mq_alloc_request);
355
356 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
357 unsigned int flags, unsigned int hctx_idx)
358 {
359 struct blk_mq_alloc_data alloc_data = { .flags = flags };
360 struct request *rq;
361 unsigned int cpu;
362 int ret;
363
364 /*
365 * If the tag allocator sleeps we could get an allocation for a
366 * different hardware context. No need to complicate the low level
367 * allocator for this for the rare use case of a command tied to
368 * a specific queue.
369 */
370 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
371 return ERR_PTR(-EINVAL);
372
373 if (hctx_idx >= q->nr_hw_queues)
374 return ERR_PTR(-EIO);
375
376 ret = blk_queue_enter(q, true);
377 if (ret)
378 return ERR_PTR(ret);
379
380 /*
381 * Check if the hardware context is actually mapped to anything.
382 * If not tell the caller that it should skip this queue.
383 */
384 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
385 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
386 blk_queue_exit(q);
387 return ERR_PTR(-EXDEV);
388 }
389 cpu = cpumask_first(alloc_data.hctx->cpumask);
390 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
391
392 rq = blk_mq_get_request(q, NULL, rw, &alloc_data);
393
394 blk_queue_exit(q);
395
396 if (!rq)
397 return ERR_PTR(-EWOULDBLOCK);
398
399 return rq;
400 }
401 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
402
403 void blk_mq_free_request(struct request *rq)
404 {
405 struct request_queue *q = rq->q;
406 struct elevator_queue *e = q->elevator;
407 struct blk_mq_ctx *ctx = rq->mq_ctx;
408 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
409 const int sched_tag = rq->internal_tag;
410
411 if (rq->rq_flags & RQF_ELVPRIV) {
412 if (e && e->type->ops.mq.finish_request)
413 e->type->ops.mq.finish_request(rq);
414 if (rq->elv.icq) {
415 put_io_context(rq->elv.icq->ioc);
416 rq->elv.icq = NULL;
417 }
418 }
419
420 ctx->rq_completed[rq_is_sync(rq)]++;
421 if (rq->rq_flags & RQF_MQ_INFLIGHT)
422 atomic_dec(&hctx->nr_active);
423
424 wbt_done(q->rq_wb, &rq->issue_stat);
425 rq->rq_flags = 0;
426
427 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
428 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
429 if (rq->tag != -1)
430 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
431 if (sched_tag != -1)
432 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
433 blk_mq_sched_restart(hctx);
434 blk_queue_exit(q);
435 }
436 EXPORT_SYMBOL_GPL(blk_mq_free_request);
437
438 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
439 {
440 blk_account_io_done(rq);
441
442 if (rq->end_io) {
443 wbt_done(rq->q->rq_wb, &rq->issue_stat);
444 rq->end_io(rq, error);
445 } else {
446 if (unlikely(blk_bidi_rq(rq)))
447 blk_mq_free_request(rq->next_rq);
448 blk_mq_free_request(rq);
449 }
450 }
451 EXPORT_SYMBOL(__blk_mq_end_request);
452
453 void blk_mq_end_request(struct request *rq, blk_status_t error)
454 {
455 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
456 BUG();
457 __blk_mq_end_request(rq, error);
458 }
459 EXPORT_SYMBOL(blk_mq_end_request);
460
461 static void __blk_mq_complete_request_remote(void *data)
462 {
463 struct request *rq = data;
464
465 rq->q->softirq_done_fn(rq);
466 }
467
468 static void __blk_mq_complete_request(struct request *rq)
469 {
470 struct blk_mq_ctx *ctx = rq->mq_ctx;
471 bool shared = false;
472 int cpu;
473
474 if (rq->internal_tag != -1)
475 blk_mq_sched_completed_request(rq);
476 if (rq->rq_flags & RQF_STATS) {
477 blk_mq_poll_stats_start(rq->q);
478 blk_stat_add(rq);
479 }
480
481 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
482 rq->q->softirq_done_fn(rq);
483 return;
484 }
485
486 cpu = get_cpu();
487 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
488 shared = cpus_share_cache(cpu, ctx->cpu);
489
490 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
491 rq->csd.func = __blk_mq_complete_request_remote;
492 rq->csd.info = rq;
493 rq->csd.flags = 0;
494 smp_call_function_single_async(ctx->cpu, &rq->csd);
495 } else {
496 rq->q->softirq_done_fn(rq);
497 }
498 put_cpu();
499 }
500
501 /**
502 * blk_mq_complete_request - end I/O on a request
503 * @rq: the request being processed
504 *
505 * Description:
506 * Ends all I/O on a request. It does not handle partial completions.
507 * The actual completion happens out-of-order, through a IPI handler.
508 **/
509 void blk_mq_complete_request(struct request *rq)
510 {
511 struct request_queue *q = rq->q;
512
513 if (unlikely(blk_should_fake_timeout(q)))
514 return;
515 if (!blk_mark_rq_complete(rq))
516 __blk_mq_complete_request(rq);
517 }
518 EXPORT_SYMBOL(blk_mq_complete_request);
519
520 int blk_mq_request_started(struct request *rq)
521 {
522 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
523 }
524 EXPORT_SYMBOL_GPL(blk_mq_request_started);
525
526 void blk_mq_start_request(struct request *rq)
527 {
528 struct request_queue *q = rq->q;
529
530 blk_mq_sched_started_request(rq);
531
532 trace_block_rq_issue(q, rq);
533
534 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
535 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
536 rq->rq_flags |= RQF_STATS;
537 wbt_issue(q->rq_wb, &rq->issue_stat);
538 }
539
540 blk_add_timer(rq);
541
542 /*
543 * Ensure that ->deadline is visible before set the started
544 * flag and clear the completed flag.
545 */
546 smp_mb__before_atomic();
547
548 /*
549 * Mark us as started and clear complete. Complete might have been
550 * set if requeue raced with timeout, which then marked it as
551 * complete. So be sure to clear complete again when we start
552 * the request, otherwise we'll ignore the completion event.
553 */
554 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
555 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
556 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
557 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
558
559 if (q->dma_drain_size && blk_rq_bytes(rq)) {
560 /*
561 * Make sure space for the drain appears. We know we can do
562 * this because max_hw_segments has been adjusted to be one
563 * fewer than the device can handle.
564 */
565 rq->nr_phys_segments++;
566 }
567 }
568 EXPORT_SYMBOL(blk_mq_start_request);
569
570 /*
571 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
572 * flag isn't set yet, so there may be race with timeout handler,
573 * but given rq->deadline is just set in .queue_rq() under
574 * this situation, the race won't be possible in reality because
575 * rq->timeout should be set as big enough to cover the window
576 * between blk_mq_start_request() called from .queue_rq() and
577 * clearing REQ_ATOM_STARTED here.
578 */
579 static void __blk_mq_requeue_request(struct request *rq)
580 {
581 struct request_queue *q = rq->q;
582
583 trace_block_rq_requeue(q, rq);
584 wbt_requeue(q->rq_wb, &rq->issue_stat);
585 blk_mq_sched_requeue_request(rq);
586
587 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
588 if (q->dma_drain_size && blk_rq_bytes(rq))
589 rq->nr_phys_segments--;
590 }
591 }
592
593 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
594 {
595 __blk_mq_requeue_request(rq);
596
597 BUG_ON(blk_queued_rq(rq));
598 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
599 }
600 EXPORT_SYMBOL(blk_mq_requeue_request);
601
602 static void blk_mq_requeue_work(struct work_struct *work)
603 {
604 struct request_queue *q =
605 container_of(work, struct request_queue, requeue_work.work);
606 LIST_HEAD(rq_list);
607 struct request *rq, *next;
608 unsigned long flags;
609
610 spin_lock_irqsave(&q->requeue_lock, flags);
611 list_splice_init(&q->requeue_list, &rq_list);
612 spin_unlock_irqrestore(&q->requeue_lock, flags);
613
614 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
615 if (!(rq->rq_flags & RQF_SOFTBARRIER))
616 continue;
617
618 rq->rq_flags &= ~RQF_SOFTBARRIER;
619 list_del_init(&rq->queuelist);
620 blk_mq_sched_insert_request(rq, true, false, false, true);
621 }
622
623 while (!list_empty(&rq_list)) {
624 rq = list_entry(rq_list.next, struct request, queuelist);
625 list_del_init(&rq->queuelist);
626 blk_mq_sched_insert_request(rq, false, false, false, true);
627 }
628
629 blk_mq_run_hw_queues(q, false);
630 }
631
632 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
633 bool kick_requeue_list)
634 {
635 struct request_queue *q = rq->q;
636 unsigned long flags;
637
638 /*
639 * We abuse this flag that is otherwise used by the I/O scheduler to
640 * request head insertation from the workqueue.
641 */
642 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
643
644 spin_lock_irqsave(&q->requeue_lock, flags);
645 if (at_head) {
646 rq->rq_flags |= RQF_SOFTBARRIER;
647 list_add(&rq->queuelist, &q->requeue_list);
648 } else {
649 list_add_tail(&rq->queuelist, &q->requeue_list);
650 }
651 spin_unlock_irqrestore(&q->requeue_lock, flags);
652
653 if (kick_requeue_list)
654 blk_mq_kick_requeue_list(q);
655 }
656 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
657
658 void blk_mq_kick_requeue_list(struct request_queue *q)
659 {
660 kblockd_schedule_delayed_work(&q->requeue_work, 0);
661 }
662 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
663
664 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
665 unsigned long msecs)
666 {
667 kblockd_schedule_delayed_work(&q->requeue_work,
668 msecs_to_jiffies(msecs));
669 }
670 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
671
672 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
673 {
674 if (tag < tags->nr_tags) {
675 prefetch(tags->rqs[tag]);
676 return tags->rqs[tag];
677 }
678
679 return NULL;
680 }
681 EXPORT_SYMBOL(blk_mq_tag_to_rq);
682
683 struct blk_mq_timeout_data {
684 unsigned long next;
685 unsigned int next_set;
686 };
687
688 void blk_mq_rq_timed_out(struct request *req, bool reserved)
689 {
690 const struct blk_mq_ops *ops = req->q->mq_ops;
691 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
692
693 /*
694 * We know that complete is set at this point. If STARTED isn't set
695 * anymore, then the request isn't active and the "timeout" should
696 * just be ignored. This can happen due to the bitflag ordering.
697 * Timeout first checks if STARTED is set, and if it is, assumes
698 * the request is active. But if we race with completion, then
699 * both flags will get cleared. So check here again, and ignore
700 * a timeout event with a request that isn't active.
701 */
702 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
703 return;
704
705 if (ops->timeout)
706 ret = ops->timeout(req, reserved);
707
708 switch (ret) {
709 case BLK_EH_HANDLED:
710 __blk_mq_complete_request(req);
711 break;
712 case BLK_EH_RESET_TIMER:
713 blk_add_timer(req);
714 blk_clear_rq_complete(req);
715 break;
716 case BLK_EH_NOT_HANDLED:
717 break;
718 default:
719 printk(KERN_ERR "block: bad eh return: %d\n", ret);
720 break;
721 }
722 }
723
724 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
725 struct request *rq, void *priv, bool reserved)
726 {
727 struct blk_mq_timeout_data *data = priv;
728
729 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
730 return;
731
732 /*
733 * The rq being checked may have been freed and reallocated
734 * out already here, we avoid this race by checking rq->deadline
735 * and REQ_ATOM_COMPLETE flag together:
736 *
737 * - if rq->deadline is observed as new value because of
738 * reusing, the rq won't be timed out because of timing.
739 * - if rq->deadline is observed as previous value,
740 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
741 * because we put a barrier between setting rq->deadline
742 * and clearing the flag in blk_mq_start_request(), so
743 * this rq won't be timed out too.
744 */
745 if (time_after_eq(jiffies, rq->deadline)) {
746 if (!blk_mark_rq_complete(rq))
747 blk_mq_rq_timed_out(rq, reserved);
748 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
749 data->next = rq->deadline;
750 data->next_set = 1;
751 }
752 }
753
754 static void blk_mq_timeout_work(struct work_struct *work)
755 {
756 struct request_queue *q =
757 container_of(work, struct request_queue, timeout_work);
758 struct blk_mq_timeout_data data = {
759 .next = 0,
760 .next_set = 0,
761 };
762 int i;
763
764 /* A deadlock might occur if a request is stuck requiring a
765 * timeout at the same time a queue freeze is waiting
766 * completion, since the timeout code would not be able to
767 * acquire the queue reference here.
768 *
769 * That's why we don't use blk_queue_enter here; instead, we use
770 * percpu_ref_tryget directly, because we need to be able to
771 * obtain a reference even in the short window between the queue
772 * starting to freeze, by dropping the first reference in
773 * blk_freeze_queue_start, and the moment the last request is
774 * consumed, marked by the instant q_usage_counter reaches
775 * zero.
776 */
777 if (!percpu_ref_tryget(&q->q_usage_counter))
778 return;
779
780 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
781
782 if (data.next_set) {
783 data.next = blk_rq_timeout(round_jiffies_up(data.next));
784 mod_timer(&q->timeout, data.next);
785 } else {
786 struct blk_mq_hw_ctx *hctx;
787
788 queue_for_each_hw_ctx(q, hctx, i) {
789 /* the hctx may be unmapped, so check it here */
790 if (blk_mq_hw_queue_mapped(hctx))
791 blk_mq_tag_idle(hctx);
792 }
793 }
794 blk_queue_exit(q);
795 }
796
797 struct flush_busy_ctx_data {
798 struct blk_mq_hw_ctx *hctx;
799 struct list_head *list;
800 };
801
802 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
803 {
804 struct flush_busy_ctx_data *flush_data = data;
805 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
806 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
807
808 sbitmap_clear_bit(sb, bitnr);
809 spin_lock(&ctx->lock);
810 list_splice_tail_init(&ctx->rq_list, flush_data->list);
811 spin_unlock(&ctx->lock);
812 return true;
813 }
814
815 /*
816 * Process software queues that have been marked busy, splicing them
817 * to the for-dispatch
818 */
819 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
820 {
821 struct flush_busy_ctx_data data = {
822 .hctx = hctx,
823 .list = list,
824 };
825
826 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
827 }
828 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
829
830 static inline unsigned int queued_to_index(unsigned int queued)
831 {
832 if (!queued)
833 return 0;
834
835 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
836 }
837
838 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
839 bool wait)
840 {
841 struct blk_mq_alloc_data data = {
842 .q = rq->q,
843 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
844 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
845 };
846
847 might_sleep_if(wait);
848
849 if (rq->tag != -1)
850 goto done;
851
852 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
853 data.flags |= BLK_MQ_REQ_RESERVED;
854
855 rq->tag = blk_mq_get_tag(&data);
856 if (rq->tag >= 0) {
857 if (blk_mq_tag_busy(data.hctx)) {
858 rq->rq_flags |= RQF_MQ_INFLIGHT;
859 atomic_inc(&data.hctx->nr_active);
860 }
861 data.hctx->tags->rqs[rq->tag] = rq;
862 }
863
864 done:
865 if (hctx)
866 *hctx = data.hctx;
867 return rq->tag != -1;
868 }
869
870 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
871 struct request *rq)
872 {
873 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
874 rq->tag = -1;
875
876 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
877 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
878 atomic_dec(&hctx->nr_active);
879 }
880 }
881
882 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
883 struct request *rq)
884 {
885 if (rq->tag == -1 || rq->internal_tag == -1)
886 return;
887
888 __blk_mq_put_driver_tag(hctx, rq);
889 }
890
891 static void blk_mq_put_driver_tag(struct request *rq)
892 {
893 struct blk_mq_hw_ctx *hctx;
894
895 if (rq->tag == -1 || rq->internal_tag == -1)
896 return;
897
898 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
899 __blk_mq_put_driver_tag(hctx, rq);
900 }
901
902 /*
903 * If we fail getting a driver tag because all the driver tags are already
904 * assigned and on the dispatch list, BUT the first entry does not have a
905 * tag, then we could deadlock. For that case, move entries with assigned
906 * driver tags to the front, leaving the set of tagged requests in the
907 * same order, and the untagged set in the same order.
908 */
909 static bool reorder_tags_to_front(struct list_head *list)
910 {
911 struct request *rq, *tmp, *first = NULL;
912
913 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
914 if (rq == first)
915 break;
916 if (rq->tag != -1) {
917 list_move(&rq->queuelist, list);
918 if (!first)
919 first = rq;
920 }
921 }
922
923 return first != NULL;
924 }
925
926 static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
927 void *key)
928 {
929 struct blk_mq_hw_ctx *hctx;
930
931 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
932
933 list_del(&wait->task_list);
934 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
935 blk_mq_run_hw_queue(hctx, true);
936 return 1;
937 }
938
939 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
940 {
941 struct sbq_wait_state *ws;
942
943 /*
944 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
945 * The thread which wins the race to grab this bit adds the hardware
946 * queue to the wait queue.
947 */
948 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
949 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
950 return false;
951
952 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
953 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
954
955 /*
956 * As soon as this returns, it's no longer safe to fiddle with
957 * hctx->dispatch_wait, since a completion can wake up the wait queue
958 * and unlock the bit.
959 */
960 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
961 return true;
962 }
963
964 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
965 {
966 struct blk_mq_hw_ctx *hctx;
967 struct request *rq;
968 int errors, queued;
969
970 if (list_empty(list))
971 return false;
972
973 /*
974 * Now process all the entries, sending them to the driver.
975 */
976 errors = queued = 0;
977 do {
978 struct blk_mq_queue_data bd;
979 blk_status_t ret;
980
981 rq = list_first_entry(list, struct request, queuelist);
982 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
983 if (!queued && reorder_tags_to_front(list))
984 continue;
985
986 /*
987 * The initial allocation attempt failed, so we need to
988 * rerun the hardware queue when a tag is freed.
989 */
990 if (!blk_mq_dispatch_wait_add(hctx))
991 break;
992
993 /*
994 * It's possible that a tag was freed in the window
995 * between the allocation failure and adding the
996 * hardware queue to the wait queue.
997 */
998 if (!blk_mq_get_driver_tag(rq, &hctx, false))
999 break;
1000 }
1001
1002 list_del_init(&rq->queuelist);
1003
1004 bd.rq = rq;
1005
1006 /*
1007 * Flag last if we have no more requests, or if we have more
1008 * but can't assign a driver tag to it.
1009 */
1010 if (list_empty(list))
1011 bd.last = true;
1012 else {
1013 struct request *nxt;
1014
1015 nxt = list_first_entry(list, struct request, queuelist);
1016 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1017 }
1018
1019 ret = q->mq_ops->queue_rq(hctx, &bd);
1020 if (ret == BLK_STS_RESOURCE) {
1021 blk_mq_put_driver_tag_hctx(hctx, rq);
1022 list_add(&rq->queuelist, list);
1023 __blk_mq_requeue_request(rq);
1024 break;
1025 }
1026
1027 if (unlikely(ret != BLK_STS_OK)) {
1028 errors++;
1029 blk_mq_end_request(rq, BLK_STS_IOERR);
1030 continue;
1031 }
1032
1033 queued++;
1034 } while (!list_empty(list));
1035
1036 hctx->dispatched[queued_to_index(queued)]++;
1037
1038 /*
1039 * Any items that need requeuing? Stuff them into hctx->dispatch,
1040 * that is where we will continue on next queue run.
1041 */
1042 if (!list_empty(list)) {
1043 /*
1044 * If an I/O scheduler has been configured and we got a driver
1045 * tag for the next request already, free it again.
1046 */
1047 rq = list_first_entry(list, struct request, queuelist);
1048 blk_mq_put_driver_tag(rq);
1049
1050 spin_lock(&hctx->lock);
1051 list_splice_init(list, &hctx->dispatch);
1052 spin_unlock(&hctx->lock);
1053
1054 /*
1055 * If SCHED_RESTART was set by the caller of this function and
1056 * it is no longer set that means that it was cleared by another
1057 * thread and hence that a queue rerun is needed.
1058 *
1059 * If TAG_WAITING is set that means that an I/O scheduler has
1060 * been configured and another thread is waiting for a driver
1061 * tag. To guarantee fairness, do not rerun this hardware queue
1062 * but let the other thread grab the driver tag.
1063 *
1064 * If no I/O scheduler has been configured it is possible that
1065 * the hardware queue got stopped and restarted before requests
1066 * were pushed back onto the dispatch list. Rerun the queue to
1067 * avoid starvation. Notes:
1068 * - blk_mq_run_hw_queue() checks whether or not a queue has
1069 * been stopped before rerunning a queue.
1070 * - Some but not all block drivers stop a queue before
1071 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1072 * and dm-rq.
1073 */
1074 if (!blk_mq_sched_needs_restart(hctx) &&
1075 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1076 blk_mq_run_hw_queue(hctx, true);
1077 }
1078
1079 return (queued + errors) != 0;
1080 }
1081
1082 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1083 {
1084 int srcu_idx;
1085
1086 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1087 cpu_online(hctx->next_cpu));
1088
1089 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1090 rcu_read_lock();
1091 blk_mq_sched_dispatch_requests(hctx);
1092 rcu_read_unlock();
1093 } else {
1094 might_sleep();
1095
1096 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1097 blk_mq_sched_dispatch_requests(hctx);
1098 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1099 }
1100 }
1101
1102 /*
1103 * It'd be great if the workqueue API had a way to pass
1104 * in a mask and had some smarts for more clever placement.
1105 * For now we just round-robin here, switching for every
1106 * BLK_MQ_CPU_WORK_BATCH queued items.
1107 */
1108 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1109 {
1110 if (hctx->queue->nr_hw_queues == 1)
1111 return WORK_CPU_UNBOUND;
1112
1113 if (--hctx->next_cpu_batch <= 0) {
1114 int next_cpu;
1115
1116 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1117 if (next_cpu >= nr_cpu_ids)
1118 next_cpu = cpumask_first(hctx->cpumask);
1119
1120 hctx->next_cpu = next_cpu;
1121 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1122 }
1123
1124 return hctx->next_cpu;
1125 }
1126
1127 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1128 unsigned long msecs)
1129 {
1130 if (unlikely(blk_mq_hctx_stopped(hctx) ||
1131 !blk_mq_hw_queue_mapped(hctx)))
1132 return;
1133
1134 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1135 int cpu = get_cpu();
1136 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1137 __blk_mq_run_hw_queue(hctx);
1138 put_cpu();
1139 return;
1140 }
1141
1142 put_cpu();
1143 }
1144
1145 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1146 &hctx->run_work,
1147 msecs_to_jiffies(msecs));
1148 }
1149
1150 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1151 {
1152 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1153 }
1154 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1155
1156 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1157 {
1158 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1159 }
1160 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1161
1162 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1163 {
1164 struct blk_mq_hw_ctx *hctx;
1165 int i;
1166
1167 queue_for_each_hw_ctx(q, hctx, i) {
1168 if (!blk_mq_hctx_has_pending(hctx) ||
1169 blk_mq_hctx_stopped(hctx))
1170 continue;
1171
1172 blk_mq_run_hw_queue(hctx, async);
1173 }
1174 }
1175 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1176
1177 /**
1178 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1179 * @q: request queue.
1180 *
1181 * The caller is responsible for serializing this function against
1182 * blk_mq_{start,stop}_hw_queue().
1183 */
1184 bool blk_mq_queue_stopped(struct request_queue *q)
1185 {
1186 struct blk_mq_hw_ctx *hctx;
1187 int i;
1188
1189 queue_for_each_hw_ctx(q, hctx, i)
1190 if (blk_mq_hctx_stopped(hctx))
1191 return true;
1192
1193 return false;
1194 }
1195 EXPORT_SYMBOL(blk_mq_queue_stopped);
1196
1197 static void __blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx, bool sync)
1198 {
1199 if (sync)
1200 cancel_delayed_work_sync(&hctx->run_work);
1201 else
1202 cancel_delayed_work(&hctx->run_work);
1203
1204 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1205 }
1206
1207 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1208 {
1209 __blk_mq_stop_hw_queue(hctx, false);
1210 }
1211 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1212
1213 static void __blk_mq_stop_hw_queues(struct request_queue *q, bool sync)
1214 {
1215 struct blk_mq_hw_ctx *hctx;
1216 int i;
1217
1218 queue_for_each_hw_ctx(q, hctx, i)
1219 __blk_mq_stop_hw_queue(hctx, sync);
1220 }
1221
1222 void blk_mq_stop_hw_queues(struct request_queue *q)
1223 {
1224 __blk_mq_stop_hw_queues(q, false);
1225 }
1226 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1227
1228 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1229 {
1230 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1231
1232 blk_mq_run_hw_queue(hctx, false);
1233 }
1234 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1235
1236 void blk_mq_start_hw_queues(struct request_queue *q)
1237 {
1238 struct blk_mq_hw_ctx *hctx;
1239 int i;
1240
1241 queue_for_each_hw_ctx(q, hctx, i)
1242 blk_mq_start_hw_queue(hctx);
1243 }
1244 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1245
1246 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1247 {
1248 if (!blk_mq_hctx_stopped(hctx))
1249 return;
1250
1251 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1252 blk_mq_run_hw_queue(hctx, async);
1253 }
1254 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1255
1256 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1257 {
1258 struct blk_mq_hw_ctx *hctx;
1259 int i;
1260
1261 queue_for_each_hw_ctx(q, hctx, i)
1262 blk_mq_start_stopped_hw_queue(hctx, async);
1263 }
1264 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1265
1266 static void blk_mq_run_work_fn(struct work_struct *work)
1267 {
1268 struct blk_mq_hw_ctx *hctx;
1269
1270 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1271
1272 /*
1273 * If we are stopped, don't run the queue. The exception is if
1274 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1275 * the STOPPED bit and run it.
1276 */
1277 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1278 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1279 return;
1280
1281 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1282 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1283 }
1284
1285 __blk_mq_run_hw_queue(hctx);
1286 }
1287
1288
1289 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1290 {
1291 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1292 return;
1293
1294 /*
1295 * Stop the hw queue, then modify currently delayed work.
1296 * This should prevent us from running the queue prematurely.
1297 * Mark the queue as auto-clearing STOPPED when it runs.
1298 */
1299 blk_mq_stop_hw_queue(hctx);
1300 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1301 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1302 &hctx->run_work,
1303 msecs_to_jiffies(msecs));
1304 }
1305 EXPORT_SYMBOL(blk_mq_delay_queue);
1306
1307 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1308 struct request *rq,
1309 bool at_head)
1310 {
1311 struct blk_mq_ctx *ctx = rq->mq_ctx;
1312
1313 trace_block_rq_insert(hctx->queue, rq);
1314
1315 if (at_head)
1316 list_add(&rq->queuelist, &ctx->rq_list);
1317 else
1318 list_add_tail(&rq->queuelist, &ctx->rq_list);
1319 }
1320
1321 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1322 bool at_head)
1323 {
1324 struct blk_mq_ctx *ctx = rq->mq_ctx;
1325
1326 __blk_mq_insert_req_list(hctx, rq, at_head);
1327 blk_mq_hctx_mark_pending(hctx, ctx);
1328 }
1329
1330 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1331 struct list_head *list)
1332
1333 {
1334 /*
1335 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1336 * offline now
1337 */
1338 spin_lock(&ctx->lock);
1339 while (!list_empty(list)) {
1340 struct request *rq;
1341
1342 rq = list_first_entry(list, struct request, queuelist);
1343 BUG_ON(rq->mq_ctx != ctx);
1344 list_del_init(&rq->queuelist);
1345 __blk_mq_insert_req_list(hctx, rq, false);
1346 }
1347 blk_mq_hctx_mark_pending(hctx, ctx);
1348 spin_unlock(&ctx->lock);
1349 }
1350
1351 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1352 {
1353 struct request *rqa = container_of(a, struct request, queuelist);
1354 struct request *rqb = container_of(b, struct request, queuelist);
1355
1356 return !(rqa->mq_ctx < rqb->mq_ctx ||
1357 (rqa->mq_ctx == rqb->mq_ctx &&
1358 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1359 }
1360
1361 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1362 {
1363 struct blk_mq_ctx *this_ctx;
1364 struct request_queue *this_q;
1365 struct request *rq;
1366 LIST_HEAD(list);
1367 LIST_HEAD(ctx_list);
1368 unsigned int depth;
1369
1370 list_splice_init(&plug->mq_list, &list);
1371
1372 list_sort(NULL, &list, plug_ctx_cmp);
1373
1374 this_q = NULL;
1375 this_ctx = NULL;
1376 depth = 0;
1377
1378 while (!list_empty(&list)) {
1379 rq = list_entry_rq(list.next);
1380 list_del_init(&rq->queuelist);
1381 BUG_ON(!rq->q);
1382 if (rq->mq_ctx != this_ctx) {
1383 if (this_ctx) {
1384 trace_block_unplug(this_q, depth, from_schedule);
1385 blk_mq_sched_insert_requests(this_q, this_ctx,
1386 &ctx_list,
1387 from_schedule);
1388 }
1389
1390 this_ctx = rq->mq_ctx;
1391 this_q = rq->q;
1392 depth = 0;
1393 }
1394
1395 depth++;
1396 list_add_tail(&rq->queuelist, &ctx_list);
1397 }
1398
1399 /*
1400 * If 'this_ctx' is set, we know we have entries to complete
1401 * on 'ctx_list'. Do those.
1402 */
1403 if (this_ctx) {
1404 trace_block_unplug(this_q, depth, from_schedule);
1405 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1406 from_schedule);
1407 }
1408 }
1409
1410 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1411 {
1412 blk_init_request_from_bio(rq, bio);
1413
1414 blk_account_io_start(rq, true);
1415 }
1416
1417 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1418 {
1419 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1420 !blk_queue_nomerges(hctx->queue);
1421 }
1422
1423 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1424 struct blk_mq_ctx *ctx,
1425 struct request *rq)
1426 {
1427 spin_lock(&ctx->lock);
1428 __blk_mq_insert_request(hctx, rq, false);
1429 spin_unlock(&ctx->lock);
1430 }
1431
1432 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1433 {
1434 if (rq->tag != -1)
1435 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1436
1437 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1438 }
1439
1440 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1441 struct request *rq,
1442 blk_qc_t *cookie, bool may_sleep)
1443 {
1444 struct request_queue *q = rq->q;
1445 struct blk_mq_queue_data bd = {
1446 .rq = rq,
1447 .last = true,
1448 };
1449 blk_qc_t new_cookie;
1450 blk_status_t ret;
1451 bool run_queue = true;
1452
1453 /* RCU or SRCU read lock is needed before checking quiesced flag */
1454 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1455 run_queue = false;
1456 goto insert;
1457 }
1458
1459 if (q->elevator)
1460 goto insert;
1461
1462 if (!blk_mq_get_driver_tag(rq, NULL, false))
1463 goto insert;
1464
1465 new_cookie = request_to_qc_t(hctx, rq);
1466
1467 /*
1468 * For OK queue, we are done. For error, kill it. Any other
1469 * error (busy), just add it to our list as we previously
1470 * would have done
1471 */
1472 ret = q->mq_ops->queue_rq(hctx, &bd);
1473 switch (ret) {
1474 case BLK_STS_OK:
1475 *cookie = new_cookie;
1476 return;
1477 case BLK_STS_RESOURCE:
1478 __blk_mq_requeue_request(rq);
1479 goto insert;
1480 default:
1481 *cookie = BLK_QC_T_NONE;
1482 blk_mq_end_request(rq, ret);
1483 return;
1484 }
1485
1486 insert:
1487 blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1488 }
1489
1490 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1491 struct request *rq, blk_qc_t *cookie)
1492 {
1493 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1494 rcu_read_lock();
1495 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1496 rcu_read_unlock();
1497 } else {
1498 unsigned int srcu_idx;
1499
1500 might_sleep();
1501
1502 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1503 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
1504 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1505 }
1506 }
1507
1508 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1509 {
1510 const int is_sync = op_is_sync(bio->bi_opf);
1511 const int is_flush_fua = op_is_flush(bio->bi_opf);
1512 struct blk_mq_alloc_data data = { .flags = 0 };
1513 struct request *rq;
1514 unsigned int request_count = 0;
1515 struct blk_plug *plug;
1516 struct request *same_queue_rq = NULL;
1517 blk_qc_t cookie;
1518 unsigned int wb_acct;
1519
1520 blk_queue_bounce(q, &bio);
1521
1522 blk_queue_split(q, &bio);
1523
1524 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1525 bio_io_error(bio);
1526 return BLK_QC_T_NONE;
1527 }
1528
1529 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1530 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1531 return BLK_QC_T_NONE;
1532
1533 if (blk_mq_sched_bio_merge(q, bio))
1534 return BLK_QC_T_NONE;
1535
1536 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1537
1538 trace_block_getrq(q, bio, bio->bi_opf);
1539
1540 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1541 if (unlikely(!rq)) {
1542 __wbt_done(q->rq_wb, wb_acct);
1543 return BLK_QC_T_NONE;
1544 }
1545
1546 wbt_track(&rq->issue_stat, wb_acct);
1547
1548 cookie = request_to_qc_t(data.hctx, rq);
1549
1550 plug = current->plug;
1551 if (unlikely(is_flush_fua)) {
1552 blk_mq_put_ctx(data.ctx);
1553 blk_mq_bio_to_request(rq, bio);
1554 if (q->elevator) {
1555 blk_mq_sched_insert_request(rq, false, true, true,
1556 true);
1557 } else {
1558 blk_insert_flush(rq);
1559 blk_mq_run_hw_queue(data.hctx, true);
1560 }
1561 } else if (plug && q->nr_hw_queues == 1) {
1562 struct request *last = NULL;
1563
1564 blk_mq_put_ctx(data.ctx);
1565 blk_mq_bio_to_request(rq, bio);
1566
1567 /*
1568 * @request_count may become stale because of schedule
1569 * out, so check the list again.
1570 */
1571 if (list_empty(&plug->mq_list))
1572 request_count = 0;
1573 else if (blk_queue_nomerges(q))
1574 request_count = blk_plug_queued_count(q);
1575
1576 if (!request_count)
1577 trace_block_plug(q);
1578 else
1579 last = list_entry_rq(plug->mq_list.prev);
1580
1581 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1582 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1583 blk_flush_plug_list(plug, false);
1584 trace_block_plug(q);
1585 }
1586
1587 list_add_tail(&rq->queuelist, &plug->mq_list);
1588 } else if (plug && !blk_queue_nomerges(q)) {
1589 blk_mq_bio_to_request(rq, bio);
1590
1591 /*
1592 * We do limited plugging. If the bio can be merged, do that.
1593 * Otherwise the existing request in the plug list will be
1594 * issued. So the plug list will have one request at most
1595 * The plug list might get flushed before this. If that happens,
1596 * the plug list is empty, and same_queue_rq is invalid.
1597 */
1598 if (list_empty(&plug->mq_list))
1599 same_queue_rq = NULL;
1600 if (same_queue_rq)
1601 list_del_init(&same_queue_rq->queuelist);
1602 list_add_tail(&rq->queuelist, &plug->mq_list);
1603
1604 blk_mq_put_ctx(data.ctx);
1605
1606 if (same_queue_rq) {
1607 data.hctx = blk_mq_map_queue(q,
1608 same_queue_rq->mq_ctx->cpu);
1609 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1610 &cookie);
1611 }
1612 } else if (q->nr_hw_queues > 1 && is_sync) {
1613 blk_mq_put_ctx(data.ctx);
1614 blk_mq_bio_to_request(rq, bio);
1615 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1616 } else if (q->elevator) {
1617 blk_mq_put_ctx(data.ctx);
1618 blk_mq_bio_to_request(rq, bio);
1619 blk_mq_sched_insert_request(rq, false, true, true, true);
1620 } else {
1621 blk_mq_put_ctx(data.ctx);
1622 blk_mq_bio_to_request(rq, bio);
1623 blk_mq_queue_io(data.hctx, data.ctx, rq);
1624 blk_mq_run_hw_queue(data.hctx, true);
1625 }
1626
1627 return cookie;
1628 }
1629
1630 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1631 unsigned int hctx_idx)
1632 {
1633 struct page *page;
1634
1635 if (tags->rqs && set->ops->exit_request) {
1636 int i;
1637
1638 for (i = 0; i < tags->nr_tags; i++) {
1639 struct request *rq = tags->static_rqs[i];
1640
1641 if (!rq)
1642 continue;
1643 set->ops->exit_request(set, rq, hctx_idx);
1644 tags->static_rqs[i] = NULL;
1645 }
1646 }
1647
1648 while (!list_empty(&tags->page_list)) {
1649 page = list_first_entry(&tags->page_list, struct page, lru);
1650 list_del_init(&page->lru);
1651 /*
1652 * Remove kmemleak object previously allocated in
1653 * blk_mq_init_rq_map().
1654 */
1655 kmemleak_free(page_address(page));
1656 __free_pages(page, page->private);
1657 }
1658 }
1659
1660 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1661 {
1662 kfree(tags->rqs);
1663 tags->rqs = NULL;
1664 kfree(tags->static_rqs);
1665 tags->static_rqs = NULL;
1666
1667 blk_mq_free_tags(tags);
1668 }
1669
1670 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1671 unsigned int hctx_idx,
1672 unsigned int nr_tags,
1673 unsigned int reserved_tags)
1674 {
1675 struct blk_mq_tags *tags;
1676 int node;
1677
1678 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1679 if (node == NUMA_NO_NODE)
1680 node = set->numa_node;
1681
1682 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1683 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1684 if (!tags)
1685 return NULL;
1686
1687 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1688 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1689 node);
1690 if (!tags->rqs) {
1691 blk_mq_free_tags(tags);
1692 return NULL;
1693 }
1694
1695 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1696 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1697 node);
1698 if (!tags->static_rqs) {
1699 kfree(tags->rqs);
1700 blk_mq_free_tags(tags);
1701 return NULL;
1702 }
1703
1704 return tags;
1705 }
1706
1707 static size_t order_to_size(unsigned int order)
1708 {
1709 return (size_t)PAGE_SIZE << order;
1710 }
1711
1712 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1713 unsigned int hctx_idx, unsigned int depth)
1714 {
1715 unsigned int i, j, entries_per_page, max_order = 4;
1716 size_t rq_size, left;
1717 int node;
1718
1719 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1720 if (node == NUMA_NO_NODE)
1721 node = set->numa_node;
1722
1723 INIT_LIST_HEAD(&tags->page_list);
1724
1725 /*
1726 * rq_size is the size of the request plus driver payload, rounded
1727 * to the cacheline size
1728 */
1729 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1730 cache_line_size());
1731 left = rq_size * depth;
1732
1733 for (i = 0; i < depth; ) {
1734 int this_order = max_order;
1735 struct page *page;
1736 int to_do;
1737 void *p;
1738
1739 while (this_order && left < order_to_size(this_order - 1))
1740 this_order--;
1741
1742 do {
1743 page = alloc_pages_node(node,
1744 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1745 this_order);
1746 if (page)
1747 break;
1748 if (!this_order--)
1749 break;
1750 if (order_to_size(this_order) < rq_size)
1751 break;
1752 } while (1);
1753
1754 if (!page)
1755 goto fail;
1756
1757 page->private = this_order;
1758 list_add_tail(&page->lru, &tags->page_list);
1759
1760 p = page_address(page);
1761 /*
1762 * Allow kmemleak to scan these pages as they contain pointers
1763 * to additional allocations like via ops->init_request().
1764 */
1765 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1766 entries_per_page = order_to_size(this_order) / rq_size;
1767 to_do = min(entries_per_page, depth - i);
1768 left -= to_do * rq_size;
1769 for (j = 0; j < to_do; j++) {
1770 struct request *rq = p;
1771
1772 tags->static_rqs[i] = rq;
1773 if (set->ops->init_request) {
1774 if (set->ops->init_request(set, rq, hctx_idx,
1775 node)) {
1776 tags->static_rqs[i] = NULL;
1777 goto fail;
1778 }
1779 }
1780
1781 p += rq_size;
1782 i++;
1783 }
1784 }
1785 return 0;
1786
1787 fail:
1788 blk_mq_free_rqs(set, tags, hctx_idx);
1789 return -ENOMEM;
1790 }
1791
1792 /*
1793 * 'cpu' is going away. splice any existing rq_list entries from this
1794 * software queue to the hw queue dispatch list, and ensure that it
1795 * gets run.
1796 */
1797 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1798 {
1799 struct blk_mq_hw_ctx *hctx;
1800 struct blk_mq_ctx *ctx;
1801 LIST_HEAD(tmp);
1802
1803 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1804 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1805
1806 spin_lock(&ctx->lock);
1807 if (!list_empty(&ctx->rq_list)) {
1808 list_splice_init(&ctx->rq_list, &tmp);
1809 blk_mq_hctx_clear_pending(hctx, ctx);
1810 }
1811 spin_unlock(&ctx->lock);
1812
1813 if (list_empty(&tmp))
1814 return 0;
1815
1816 spin_lock(&hctx->lock);
1817 list_splice_tail_init(&tmp, &hctx->dispatch);
1818 spin_unlock(&hctx->lock);
1819
1820 blk_mq_run_hw_queue(hctx, true);
1821 return 0;
1822 }
1823
1824 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1825 {
1826 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1827 &hctx->cpuhp_dead);
1828 }
1829
1830 /* hctx->ctxs will be freed in queue's release handler */
1831 static void blk_mq_exit_hctx(struct request_queue *q,
1832 struct blk_mq_tag_set *set,
1833 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1834 {
1835 blk_mq_debugfs_unregister_hctx(hctx);
1836
1837 blk_mq_tag_idle(hctx);
1838
1839 if (set->ops->exit_request)
1840 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1841
1842 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1843
1844 if (set->ops->exit_hctx)
1845 set->ops->exit_hctx(hctx, hctx_idx);
1846
1847 if (hctx->flags & BLK_MQ_F_BLOCKING)
1848 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1849
1850 blk_mq_remove_cpuhp(hctx);
1851 blk_free_flush_queue(hctx->fq);
1852 sbitmap_free(&hctx->ctx_map);
1853 }
1854
1855 static void blk_mq_exit_hw_queues(struct request_queue *q,
1856 struct blk_mq_tag_set *set, int nr_queue)
1857 {
1858 struct blk_mq_hw_ctx *hctx;
1859 unsigned int i;
1860
1861 queue_for_each_hw_ctx(q, hctx, i) {
1862 if (i == nr_queue)
1863 break;
1864 blk_mq_exit_hctx(q, set, hctx, i);
1865 }
1866 }
1867
1868 static int blk_mq_init_hctx(struct request_queue *q,
1869 struct blk_mq_tag_set *set,
1870 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1871 {
1872 int node;
1873
1874 node = hctx->numa_node;
1875 if (node == NUMA_NO_NODE)
1876 node = hctx->numa_node = set->numa_node;
1877
1878 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1879 spin_lock_init(&hctx->lock);
1880 INIT_LIST_HEAD(&hctx->dispatch);
1881 hctx->queue = q;
1882 hctx->queue_num = hctx_idx;
1883 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1884
1885 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1886
1887 hctx->tags = set->tags[hctx_idx];
1888
1889 /*
1890 * Allocate space for all possible cpus to avoid allocation at
1891 * runtime
1892 */
1893 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1894 GFP_KERNEL, node);
1895 if (!hctx->ctxs)
1896 goto unregister_cpu_notifier;
1897
1898 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1899 node))
1900 goto free_ctxs;
1901
1902 hctx->nr_ctx = 0;
1903
1904 if (set->ops->init_hctx &&
1905 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1906 goto free_bitmap;
1907
1908 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
1909 goto exit_hctx;
1910
1911 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1912 if (!hctx->fq)
1913 goto sched_exit_hctx;
1914
1915 if (set->ops->init_request &&
1916 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
1917 node))
1918 goto free_fq;
1919
1920 if (hctx->flags & BLK_MQ_F_BLOCKING)
1921 init_srcu_struct(&hctx->queue_rq_srcu);
1922
1923 blk_mq_debugfs_register_hctx(q, hctx);
1924
1925 return 0;
1926
1927 free_fq:
1928 kfree(hctx->fq);
1929 sched_exit_hctx:
1930 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1931 exit_hctx:
1932 if (set->ops->exit_hctx)
1933 set->ops->exit_hctx(hctx, hctx_idx);
1934 free_bitmap:
1935 sbitmap_free(&hctx->ctx_map);
1936 free_ctxs:
1937 kfree(hctx->ctxs);
1938 unregister_cpu_notifier:
1939 blk_mq_remove_cpuhp(hctx);
1940 return -1;
1941 }
1942
1943 static void blk_mq_init_cpu_queues(struct request_queue *q,
1944 unsigned int nr_hw_queues)
1945 {
1946 unsigned int i;
1947
1948 for_each_possible_cpu(i) {
1949 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1950 struct blk_mq_hw_ctx *hctx;
1951
1952 __ctx->cpu = i;
1953 spin_lock_init(&__ctx->lock);
1954 INIT_LIST_HEAD(&__ctx->rq_list);
1955 __ctx->queue = q;
1956
1957 /* If the cpu isn't online, the cpu is mapped to first hctx */
1958 if (!cpu_online(i))
1959 continue;
1960
1961 hctx = blk_mq_map_queue(q, i);
1962
1963 /*
1964 * Set local node, IFF we have more than one hw queue. If
1965 * not, we remain on the home node of the device
1966 */
1967 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1968 hctx->numa_node = local_memory_node(cpu_to_node(i));
1969 }
1970 }
1971
1972 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1973 {
1974 int ret = 0;
1975
1976 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1977 set->queue_depth, set->reserved_tags);
1978 if (!set->tags[hctx_idx])
1979 return false;
1980
1981 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
1982 set->queue_depth);
1983 if (!ret)
1984 return true;
1985
1986 blk_mq_free_rq_map(set->tags[hctx_idx]);
1987 set->tags[hctx_idx] = NULL;
1988 return false;
1989 }
1990
1991 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
1992 unsigned int hctx_idx)
1993 {
1994 if (set->tags[hctx_idx]) {
1995 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
1996 blk_mq_free_rq_map(set->tags[hctx_idx]);
1997 set->tags[hctx_idx] = NULL;
1998 }
1999 }
2000
2001 static void blk_mq_map_swqueue(struct request_queue *q,
2002 const struct cpumask *online_mask)
2003 {
2004 unsigned int i, hctx_idx;
2005 struct blk_mq_hw_ctx *hctx;
2006 struct blk_mq_ctx *ctx;
2007 struct blk_mq_tag_set *set = q->tag_set;
2008
2009 /*
2010 * Avoid others reading imcomplete hctx->cpumask through sysfs
2011 */
2012 mutex_lock(&q->sysfs_lock);
2013
2014 queue_for_each_hw_ctx(q, hctx, i) {
2015 cpumask_clear(hctx->cpumask);
2016 hctx->nr_ctx = 0;
2017 }
2018
2019 /*
2020 * Map software to hardware queues
2021 */
2022 for_each_possible_cpu(i) {
2023 /* If the cpu isn't online, the cpu is mapped to first hctx */
2024 if (!cpumask_test_cpu(i, online_mask))
2025 continue;
2026
2027 hctx_idx = q->mq_map[i];
2028 /* unmapped hw queue can be remapped after CPU topo changed */
2029 if (!set->tags[hctx_idx] &&
2030 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2031 /*
2032 * If tags initialization fail for some hctx,
2033 * that hctx won't be brought online. In this
2034 * case, remap the current ctx to hctx[0] which
2035 * is guaranteed to always have tags allocated
2036 */
2037 q->mq_map[i] = 0;
2038 }
2039
2040 ctx = per_cpu_ptr(q->queue_ctx, i);
2041 hctx = blk_mq_map_queue(q, i);
2042
2043 cpumask_set_cpu(i, hctx->cpumask);
2044 ctx->index_hw = hctx->nr_ctx;
2045 hctx->ctxs[hctx->nr_ctx++] = ctx;
2046 }
2047
2048 mutex_unlock(&q->sysfs_lock);
2049
2050 queue_for_each_hw_ctx(q, hctx, i) {
2051 /*
2052 * If no software queues are mapped to this hardware queue,
2053 * disable it and free the request entries.
2054 */
2055 if (!hctx->nr_ctx) {
2056 /* Never unmap queue 0. We need it as a
2057 * fallback in case of a new remap fails
2058 * allocation
2059 */
2060 if (i && set->tags[i])
2061 blk_mq_free_map_and_requests(set, i);
2062
2063 hctx->tags = NULL;
2064 continue;
2065 }
2066
2067 hctx->tags = set->tags[i];
2068 WARN_ON(!hctx->tags);
2069
2070 /*
2071 * Set the map size to the number of mapped software queues.
2072 * This is more accurate and more efficient than looping
2073 * over all possibly mapped software queues.
2074 */
2075 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2076
2077 /*
2078 * Initialize batch roundrobin counts
2079 */
2080 hctx->next_cpu = cpumask_first(hctx->cpumask);
2081 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2082 }
2083 }
2084
2085 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2086 {
2087 struct blk_mq_hw_ctx *hctx;
2088 int i;
2089
2090 queue_for_each_hw_ctx(q, hctx, i) {
2091 if (shared)
2092 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2093 else
2094 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2095 }
2096 }
2097
2098 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2099 {
2100 struct request_queue *q;
2101
2102 lockdep_assert_held(&set->tag_list_lock);
2103
2104 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2105 blk_mq_freeze_queue(q);
2106 queue_set_hctx_shared(q, shared);
2107 blk_mq_unfreeze_queue(q);
2108 }
2109 }
2110
2111 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2112 {
2113 struct blk_mq_tag_set *set = q->tag_set;
2114
2115 mutex_lock(&set->tag_list_lock);
2116 list_del_rcu(&q->tag_set_list);
2117 INIT_LIST_HEAD(&q->tag_set_list);
2118 if (list_is_singular(&set->tag_list)) {
2119 /* just transitioned to unshared */
2120 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2121 /* update existing queue */
2122 blk_mq_update_tag_set_depth(set, false);
2123 }
2124 mutex_unlock(&set->tag_list_lock);
2125
2126 synchronize_rcu();
2127 }
2128
2129 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2130 struct request_queue *q)
2131 {
2132 q->tag_set = set;
2133
2134 mutex_lock(&set->tag_list_lock);
2135
2136 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2137 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2138 set->flags |= BLK_MQ_F_TAG_SHARED;
2139 /* update existing queue */
2140 blk_mq_update_tag_set_depth(set, true);
2141 }
2142 if (set->flags & BLK_MQ_F_TAG_SHARED)
2143 queue_set_hctx_shared(q, true);
2144 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2145
2146 mutex_unlock(&set->tag_list_lock);
2147 }
2148
2149 /*
2150 * It is the actual release handler for mq, but we do it from
2151 * request queue's release handler for avoiding use-after-free
2152 * and headache because q->mq_kobj shouldn't have been introduced,
2153 * but we can't group ctx/kctx kobj without it.
2154 */
2155 void blk_mq_release(struct request_queue *q)
2156 {
2157 struct blk_mq_hw_ctx *hctx;
2158 unsigned int i;
2159
2160 /* hctx kobj stays in hctx */
2161 queue_for_each_hw_ctx(q, hctx, i) {
2162 if (!hctx)
2163 continue;
2164 kobject_put(&hctx->kobj);
2165 }
2166
2167 q->mq_map = NULL;
2168
2169 kfree(q->queue_hw_ctx);
2170
2171 /*
2172 * release .mq_kobj and sw queue's kobject now because
2173 * both share lifetime with request queue.
2174 */
2175 blk_mq_sysfs_deinit(q);
2176
2177 free_percpu(q->queue_ctx);
2178 }
2179
2180 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2181 {
2182 struct request_queue *uninit_q, *q;
2183
2184 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2185 if (!uninit_q)
2186 return ERR_PTR(-ENOMEM);
2187
2188 q = blk_mq_init_allocated_queue(set, uninit_q);
2189 if (IS_ERR(q))
2190 blk_cleanup_queue(uninit_q);
2191
2192 return q;
2193 }
2194 EXPORT_SYMBOL(blk_mq_init_queue);
2195
2196 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2197 struct request_queue *q)
2198 {
2199 int i, j;
2200 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2201
2202 blk_mq_sysfs_unregister(q);
2203 for (i = 0; i < set->nr_hw_queues; i++) {
2204 int node;
2205
2206 if (hctxs[i])
2207 continue;
2208
2209 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2210 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2211 GFP_KERNEL, node);
2212 if (!hctxs[i])
2213 break;
2214
2215 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2216 node)) {
2217 kfree(hctxs[i]);
2218 hctxs[i] = NULL;
2219 break;
2220 }
2221
2222 atomic_set(&hctxs[i]->nr_active, 0);
2223 hctxs[i]->numa_node = node;
2224 hctxs[i]->queue_num = i;
2225
2226 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2227 free_cpumask_var(hctxs[i]->cpumask);
2228 kfree(hctxs[i]);
2229 hctxs[i] = NULL;
2230 break;
2231 }
2232 blk_mq_hctx_kobj_init(hctxs[i]);
2233 }
2234 for (j = i; j < q->nr_hw_queues; j++) {
2235 struct blk_mq_hw_ctx *hctx = hctxs[j];
2236
2237 if (hctx) {
2238 if (hctx->tags)
2239 blk_mq_free_map_and_requests(set, j);
2240 blk_mq_exit_hctx(q, set, hctx, j);
2241 kobject_put(&hctx->kobj);
2242 hctxs[j] = NULL;
2243
2244 }
2245 }
2246 q->nr_hw_queues = i;
2247 blk_mq_sysfs_register(q);
2248 }
2249
2250 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2251 struct request_queue *q)
2252 {
2253 /* mark the queue as mq asap */
2254 q->mq_ops = set->ops;
2255
2256 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2257 blk_mq_poll_stats_bkt,
2258 BLK_MQ_POLL_STATS_BKTS, q);
2259 if (!q->poll_cb)
2260 goto err_exit;
2261
2262 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2263 if (!q->queue_ctx)
2264 goto err_exit;
2265
2266 /* init q->mq_kobj and sw queues' kobjects */
2267 blk_mq_sysfs_init(q);
2268
2269 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2270 GFP_KERNEL, set->numa_node);
2271 if (!q->queue_hw_ctx)
2272 goto err_percpu;
2273
2274 q->mq_map = set->mq_map;
2275
2276 blk_mq_realloc_hw_ctxs(set, q);
2277 if (!q->nr_hw_queues)
2278 goto err_hctxs;
2279
2280 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2281 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2282
2283 q->nr_queues = nr_cpu_ids;
2284
2285 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2286
2287 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2288 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2289
2290 q->sg_reserved_size = INT_MAX;
2291
2292 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2293 INIT_LIST_HEAD(&q->requeue_list);
2294 spin_lock_init(&q->requeue_lock);
2295
2296 blk_queue_make_request(q, blk_mq_make_request);
2297
2298 /*
2299 * Do this after blk_queue_make_request() overrides it...
2300 */
2301 q->nr_requests = set->queue_depth;
2302
2303 /*
2304 * Default to classic polling
2305 */
2306 q->poll_nsec = -1;
2307
2308 if (set->ops->complete)
2309 blk_queue_softirq_done(q, set->ops->complete);
2310
2311 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2312
2313 get_online_cpus();
2314 mutex_lock(&all_q_mutex);
2315
2316 list_add_tail(&q->all_q_node, &all_q_list);
2317 blk_mq_add_queue_tag_set(set, q);
2318 blk_mq_map_swqueue(q, cpu_online_mask);
2319
2320 mutex_unlock(&all_q_mutex);
2321 put_online_cpus();
2322
2323 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2324 int ret;
2325
2326 ret = blk_mq_sched_init(q);
2327 if (ret)
2328 return ERR_PTR(ret);
2329 }
2330
2331 return q;
2332
2333 err_hctxs:
2334 kfree(q->queue_hw_ctx);
2335 err_percpu:
2336 free_percpu(q->queue_ctx);
2337 err_exit:
2338 q->mq_ops = NULL;
2339 return ERR_PTR(-ENOMEM);
2340 }
2341 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2342
2343 void blk_mq_free_queue(struct request_queue *q)
2344 {
2345 struct blk_mq_tag_set *set = q->tag_set;
2346
2347 mutex_lock(&all_q_mutex);
2348 list_del_init(&q->all_q_node);
2349 mutex_unlock(&all_q_mutex);
2350
2351 blk_mq_del_queue_tag_set(q);
2352
2353 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2354 }
2355
2356 /* Basically redo blk_mq_init_queue with queue frozen */
2357 static void blk_mq_queue_reinit(struct request_queue *q,
2358 const struct cpumask *online_mask)
2359 {
2360 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2361
2362 blk_mq_debugfs_unregister_hctxs(q);
2363 blk_mq_sysfs_unregister(q);
2364
2365 /*
2366 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2367 * we should change hctx numa_node according to new topology (this
2368 * involves free and re-allocate memory, worthy doing?)
2369 */
2370
2371 blk_mq_map_swqueue(q, online_mask);
2372
2373 blk_mq_sysfs_register(q);
2374 blk_mq_debugfs_register_hctxs(q);
2375 }
2376
2377 /*
2378 * New online cpumask which is going to be set in this hotplug event.
2379 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2380 * one-by-one and dynamically allocating this could result in a failure.
2381 */
2382 static struct cpumask cpuhp_online_new;
2383
2384 static void blk_mq_queue_reinit_work(void)
2385 {
2386 struct request_queue *q;
2387
2388 mutex_lock(&all_q_mutex);
2389 /*
2390 * We need to freeze and reinit all existing queues. Freezing
2391 * involves synchronous wait for an RCU grace period and doing it
2392 * one by one may take a long time. Start freezing all queues in
2393 * one swoop and then wait for the completions so that freezing can
2394 * take place in parallel.
2395 */
2396 list_for_each_entry(q, &all_q_list, all_q_node)
2397 blk_freeze_queue_start(q);
2398 list_for_each_entry(q, &all_q_list, all_q_node)
2399 blk_mq_freeze_queue_wait(q);
2400
2401 list_for_each_entry(q, &all_q_list, all_q_node)
2402 blk_mq_queue_reinit(q, &cpuhp_online_new);
2403
2404 list_for_each_entry(q, &all_q_list, all_q_node)
2405 blk_mq_unfreeze_queue(q);
2406
2407 mutex_unlock(&all_q_mutex);
2408 }
2409
2410 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2411 {
2412 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2413 blk_mq_queue_reinit_work();
2414 return 0;
2415 }
2416
2417 /*
2418 * Before hotadded cpu starts handling requests, new mappings must be
2419 * established. Otherwise, these requests in hw queue might never be
2420 * dispatched.
2421 *
2422 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2423 * for CPU0, and ctx1 for CPU1).
2424 *
2425 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2426 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2427 *
2428 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2429 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2430 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2431 * ignored.
2432 */
2433 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2434 {
2435 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2436 cpumask_set_cpu(cpu, &cpuhp_online_new);
2437 blk_mq_queue_reinit_work();
2438 return 0;
2439 }
2440
2441 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2442 {
2443 int i;
2444
2445 for (i = 0; i < set->nr_hw_queues; i++)
2446 if (!__blk_mq_alloc_rq_map(set, i))
2447 goto out_unwind;
2448
2449 return 0;
2450
2451 out_unwind:
2452 while (--i >= 0)
2453 blk_mq_free_rq_map(set->tags[i]);
2454
2455 return -ENOMEM;
2456 }
2457
2458 /*
2459 * Allocate the request maps associated with this tag_set. Note that this
2460 * may reduce the depth asked for, if memory is tight. set->queue_depth
2461 * will be updated to reflect the allocated depth.
2462 */
2463 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2464 {
2465 unsigned int depth;
2466 int err;
2467
2468 depth = set->queue_depth;
2469 do {
2470 err = __blk_mq_alloc_rq_maps(set);
2471 if (!err)
2472 break;
2473
2474 set->queue_depth >>= 1;
2475 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2476 err = -ENOMEM;
2477 break;
2478 }
2479 } while (set->queue_depth);
2480
2481 if (!set->queue_depth || err) {
2482 pr_err("blk-mq: failed to allocate request map\n");
2483 return -ENOMEM;
2484 }
2485
2486 if (depth != set->queue_depth)
2487 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2488 depth, set->queue_depth);
2489
2490 return 0;
2491 }
2492
2493 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2494 {
2495 if (set->ops->map_queues)
2496 return set->ops->map_queues(set);
2497 else
2498 return blk_mq_map_queues(set);
2499 }
2500
2501 /*
2502 * Alloc a tag set to be associated with one or more request queues.
2503 * May fail with EINVAL for various error conditions. May adjust the
2504 * requested depth down, if if it too large. In that case, the set
2505 * value will be stored in set->queue_depth.
2506 */
2507 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2508 {
2509 int ret;
2510
2511 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2512
2513 if (!set->nr_hw_queues)
2514 return -EINVAL;
2515 if (!set->queue_depth)
2516 return -EINVAL;
2517 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2518 return -EINVAL;
2519
2520 if (!set->ops->queue_rq)
2521 return -EINVAL;
2522
2523 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2524 pr_info("blk-mq: reduced tag depth to %u\n",
2525 BLK_MQ_MAX_DEPTH);
2526 set->queue_depth = BLK_MQ_MAX_DEPTH;
2527 }
2528
2529 /*
2530 * If a crashdump is active, then we are potentially in a very
2531 * memory constrained environment. Limit us to 1 queue and
2532 * 64 tags to prevent using too much memory.
2533 */
2534 if (is_kdump_kernel()) {
2535 set->nr_hw_queues = 1;
2536 set->queue_depth = min(64U, set->queue_depth);
2537 }
2538 /*
2539 * There is no use for more h/w queues than cpus.
2540 */
2541 if (set->nr_hw_queues > nr_cpu_ids)
2542 set->nr_hw_queues = nr_cpu_ids;
2543
2544 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2545 GFP_KERNEL, set->numa_node);
2546 if (!set->tags)
2547 return -ENOMEM;
2548
2549 ret = -ENOMEM;
2550 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2551 GFP_KERNEL, set->numa_node);
2552 if (!set->mq_map)
2553 goto out_free_tags;
2554
2555 ret = blk_mq_update_queue_map(set);
2556 if (ret)
2557 goto out_free_mq_map;
2558
2559 ret = blk_mq_alloc_rq_maps(set);
2560 if (ret)
2561 goto out_free_mq_map;
2562
2563 mutex_init(&set->tag_list_lock);
2564 INIT_LIST_HEAD(&set->tag_list);
2565
2566 return 0;
2567
2568 out_free_mq_map:
2569 kfree(set->mq_map);
2570 set->mq_map = NULL;
2571 out_free_tags:
2572 kfree(set->tags);
2573 set->tags = NULL;
2574 return ret;
2575 }
2576 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2577
2578 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2579 {
2580 int i;
2581
2582 for (i = 0; i < nr_cpu_ids; i++)
2583 blk_mq_free_map_and_requests(set, i);
2584
2585 kfree(set->mq_map);
2586 set->mq_map = NULL;
2587
2588 kfree(set->tags);
2589 set->tags = NULL;
2590 }
2591 EXPORT_SYMBOL(blk_mq_free_tag_set);
2592
2593 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2594 {
2595 struct blk_mq_tag_set *set = q->tag_set;
2596 struct blk_mq_hw_ctx *hctx;
2597 int i, ret;
2598
2599 if (!set)
2600 return -EINVAL;
2601
2602 blk_mq_freeze_queue(q);
2603
2604 ret = 0;
2605 queue_for_each_hw_ctx(q, hctx, i) {
2606 if (!hctx->tags)
2607 continue;
2608 /*
2609 * If we're using an MQ scheduler, just update the scheduler
2610 * queue depth. This is similar to what the old code would do.
2611 */
2612 if (!hctx->sched_tags) {
2613 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2614 min(nr, set->queue_depth),
2615 false);
2616 } else {
2617 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2618 nr, true);
2619 }
2620 if (ret)
2621 break;
2622 }
2623
2624 if (!ret)
2625 q->nr_requests = nr;
2626
2627 blk_mq_unfreeze_queue(q);
2628
2629 return ret;
2630 }
2631
2632 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2633 int nr_hw_queues)
2634 {
2635 struct request_queue *q;
2636
2637 lockdep_assert_held(&set->tag_list_lock);
2638
2639 if (nr_hw_queues > nr_cpu_ids)
2640 nr_hw_queues = nr_cpu_ids;
2641 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2642 return;
2643
2644 list_for_each_entry(q, &set->tag_list, tag_set_list)
2645 blk_mq_freeze_queue(q);
2646
2647 set->nr_hw_queues = nr_hw_queues;
2648 blk_mq_update_queue_map(set);
2649 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2650 blk_mq_realloc_hw_ctxs(set, q);
2651 blk_mq_queue_reinit(q, cpu_online_mask);
2652 }
2653
2654 list_for_each_entry(q, &set->tag_list, tag_set_list)
2655 blk_mq_unfreeze_queue(q);
2656 }
2657
2658 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2659 {
2660 mutex_lock(&set->tag_list_lock);
2661 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2662 mutex_unlock(&set->tag_list_lock);
2663 }
2664 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2665
2666 /* Enable polling stats and return whether they were already enabled. */
2667 static bool blk_poll_stats_enable(struct request_queue *q)
2668 {
2669 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2670 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2671 return true;
2672 blk_stat_add_callback(q, q->poll_cb);
2673 return false;
2674 }
2675
2676 static void blk_mq_poll_stats_start(struct request_queue *q)
2677 {
2678 /*
2679 * We don't arm the callback if polling stats are not enabled or the
2680 * callback is already active.
2681 */
2682 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2683 blk_stat_is_active(q->poll_cb))
2684 return;
2685
2686 blk_stat_activate_msecs(q->poll_cb, 100);
2687 }
2688
2689 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2690 {
2691 struct request_queue *q = cb->data;
2692 int bucket;
2693
2694 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2695 if (cb->stat[bucket].nr_samples)
2696 q->poll_stat[bucket] = cb->stat[bucket];
2697 }
2698 }
2699
2700 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2701 struct blk_mq_hw_ctx *hctx,
2702 struct request *rq)
2703 {
2704 unsigned long ret = 0;
2705 int bucket;
2706
2707 /*
2708 * If stats collection isn't on, don't sleep but turn it on for
2709 * future users
2710 */
2711 if (!blk_poll_stats_enable(q))
2712 return 0;
2713
2714 /*
2715 * As an optimistic guess, use half of the mean service time
2716 * for this type of request. We can (and should) make this smarter.
2717 * For instance, if the completion latencies are tight, we can
2718 * get closer than just half the mean. This is especially
2719 * important on devices where the completion latencies are longer
2720 * than ~10 usec. We do use the stats for the relevant IO size
2721 * if available which does lead to better estimates.
2722 */
2723 bucket = blk_mq_poll_stats_bkt(rq);
2724 if (bucket < 0)
2725 return ret;
2726
2727 if (q->poll_stat[bucket].nr_samples)
2728 ret = (q->poll_stat[bucket].mean + 1) / 2;
2729
2730 return ret;
2731 }
2732
2733 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2734 struct blk_mq_hw_ctx *hctx,
2735 struct request *rq)
2736 {
2737 struct hrtimer_sleeper hs;
2738 enum hrtimer_mode mode;
2739 unsigned int nsecs;
2740 ktime_t kt;
2741
2742 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2743 return false;
2744
2745 /*
2746 * poll_nsec can be:
2747 *
2748 * -1: don't ever hybrid sleep
2749 * 0: use half of prev avg
2750 * >0: use this specific value
2751 */
2752 if (q->poll_nsec == -1)
2753 return false;
2754 else if (q->poll_nsec > 0)
2755 nsecs = q->poll_nsec;
2756 else
2757 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2758
2759 if (!nsecs)
2760 return false;
2761
2762 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2763
2764 /*
2765 * This will be replaced with the stats tracking code, using
2766 * 'avg_completion_time / 2' as the pre-sleep target.
2767 */
2768 kt = nsecs;
2769
2770 mode = HRTIMER_MODE_REL;
2771 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2772 hrtimer_set_expires(&hs.timer, kt);
2773
2774 hrtimer_init_sleeper(&hs, current);
2775 do {
2776 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2777 break;
2778 set_current_state(TASK_UNINTERRUPTIBLE);
2779 hrtimer_start_expires(&hs.timer, mode);
2780 if (hs.task)
2781 io_schedule();
2782 hrtimer_cancel(&hs.timer);
2783 mode = HRTIMER_MODE_ABS;
2784 } while (hs.task && !signal_pending(current));
2785
2786 __set_current_state(TASK_RUNNING);
2787 destroy_hrtimer_on_stack(&hs.timer);
2788 return true;
2789 }
2790
2791 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2792 {
2793 struct request_queue *q = hctx->queue;
2794 long state;
2795
2796 /*
2797 * If we sleep, have the caller restart the poll loop to reset
2798 * the state. Like for the other success return cases, the
2799 * caller is responsible for checking if the IO completed. If
2800 * the IO isn't complete, we'll get called again and will go
2801 * straight to the busy poll loop.
2802 */
2803 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2804 return true;
2805
2806 hctx->poll_considered++;
2807
2808 state = current->state;
2809 while (!need_resched()) {
2810 int ret;
2811
2812 hctx->poll_invoked++;
2813
2814 ret = q->mq_ops->poll(hctx, rq->tag);
2815 if (ret > 0) {
2816 hctx->poll_success++;
2817 set_current_state(TASK_RUNNING);
2818 return true;
2819 }
2820
2821 if (signal_pending_state(state, current))
2822 set_current_state(TASK_RUNNING);
2823
2824 if (current->state == TASK_RUNNING)
2825 return true;
2826 if (ret < 0)
2827 break;
2828 cpu_relax();
2829 }
2830
2831 return false;
2832 }
2833
2834 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2835 {
2836 struct blk_mq_hw_ctx *hctx;
2837 struct blk_plug *plug;
2838 struct request *rq;
2839
2840 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2841 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2842 return false;
2843
2844 plug = current->plug;
2845 if (plug)
2846 blk_flush_plug_list(plug, false);
2847
2848 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2849 if (!blk_qc_t_is_internal(cookie))
2850 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2851 else {
2852 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2853 /*
2854 * With scheduling, if the request has completed, we'll
2855 * get a NULL return here, as we clear the sched tag when
2856 * that happens. The request still remains valid, like always,
2857 * so we should be safe with just the NULL check.
2858 */
2859 if (!rq)
2860 return false;
2861 }
2862
2863 return __blk_mq_poll(hctx, rq);
2864 }
2865 EXPORT_SYMBOL_GPL(blk_mq_poll);
2866
2867 void blk_mq_disable_hotplug(void)
2868 {
2869 mutex_lock(&all_q_mutex);
2870 }
2871
2872 void blk_mq_enable_hotplug(void)
2873 {
2874 mutex_unlock(&all_q_mutex);
2875 }
2876
2877 static int __init blk_mq_init(void)
2878 {
2879 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2880 blk_mq_hctx_notify_dead);
2881
2882 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2883 blk_mq_queue_reinit_prepare,
2884 blk_mq_queue_reinit_dead);
2885 return 0;
2886 }
2887 subsys_initcall(blk_mq_init);