]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-mq.c
dd276a9e138edd2dea233d5ec6880a8ed998655c
[mirror_ubuntu-artful-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static DEFINE_MUTEX(all_q_mutex);
41 static LIST_HEAD(all_q_list);
42
43 static void blk_mq_poll_stats_start(struct request_queue *q);
44 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
45
46 static int blk_mq_poll_stats_bkt(const struct request *rq)
47 {
48 int ddir, bytes, bucket;
49
50 ddir = rq_data_dir(rq);
51 bytes = blk_rq_bytes(rq);
52
53 bucket = ddir + 2*(ilog2(bytes) - 9);
54
55 if (bucket < 0)
56 return -1;
57 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
58 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
59
60 return bucket;
61 }
62
63 /*
64 * Check if any of the ctx's have pending work in this hardware queue
65 */
66 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
67 {
68 return sbitmap_any_bit_set(&hctx->ctx_map) ||
69 !list_empty_careful(&hctx->dispatch) ||
70 blk_mq_sched_has_work(hctx);
71 }
72
73 /*
74 * Mark this ctx as having pending work in this hardware queue
75 */
76 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
77 struct blk_mq_ctx *ctx)
78 {
79 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
80 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
81 }
82
83 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
84 struct blk_mq_ctx *ctx)
85 {
86 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
87 }
88
89 void blk_freeze_queue_start(struct request_queue *q)
90 {
91 int freeze_depth;
92
93 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
94 if (freeze_depth == 1) {
95 percpu_ref_kill(&q->q_usage_counter);
96 blk_mq_run_hw_queues(q, false);
97 }
98 }
99 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
100
101 void blk_mq_freeze_queue_wait(struct request_queue *q)
102 {
103 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
104 }
105 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
106
107 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
108 unsigned long timeout)
109 {
110 return wait_event_timeout(q->mq_freeze_wq,
111 percpu_ref_is_zero(&q->q_usage_counter),
112 timeout);
113 }
114 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
115
116 /*
117 * Guarantee no request is in use, so we can change any data structure of
118 * the queue afterward.
119 */
120 void blk_freeze_queue(struct request_queue *q)
121 {
122 /*
123 * In the !blk_mq case we are only calling this to kill the
124 * q_usage_counter, otherwise this increases the freeze depth
125 * and waits for it to return to zero. For this reason there is
126 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
127 * exported to drivers as the only user for unfreeze is blk_mq.
128 */
129 blk_freeze_queue_start(q);
130 blk_mq_freeze_queue_wait(q);
131 }
132
133 void blk_mq_freeze_queue(struct request_queue *q)
134 {
135 /*
136 * ...just an alias to keep freeze and unfreeze actions balanced
137 * in the blk_mq_* namespace
138 */
139 blk_freeze_queue(q);
140 }
141 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
142
143 void blk_mq_unfreeze_queue(struct request_queue *q)
144 {
145 int freeze_depth;
146
147 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
148 WARN_ON_ONCE(freeze_depth < 0);
149 if (!freeze_depth) {
150 percpu_ref_reinit(&q->q_usage_counter);
151 wake_up_all(&q->mq_freeze_wq);
152 }
153 }
154 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
155
156 /**
157 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
158 * @q: request queue.
159 *
160 * Note: this function does not prevent that the struct request end_io()
161 * callback function is invoked. Once this function is returned, we make
162 * sure no dispatch can happen until the queue is unquiesced via
163 * blk_mq_unquiesce_queue().
164 */
165 void blk_mq_quiesce_queue(struct request_queue *q)
166 {
167 struct blk_mq_hw_ctx *hctx;
168 unsigned int i;
169 bool rcu = false;
170
171 blk_mq_quiesce_queue_nowait(q);
172
173 queue_for_each_hw_ctx(q, hctx, i) {
174 if (hctx->flags & BLK_MQ_F_BLOCKING)
175 synchronize_srcu(&hctx->queue_rq_srcu);
176 else
177 rcu = true;
178 }
179 if (rcu)
180 synchronize_rcu();
181 }
182 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
183
184 /*
185 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
186 * @q: request queue.
187 *
188 * This function recovers queue into the state before quiescing
189 * which is done by blk_mq_quiesce_queue.
190 */
191 void blk_mq_unquiesce_queue(struct request_queue *q)
192 {
193 spin_lock_irq(q->queue_lock);
194 queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
195 spin_unlock_irq(q->queue_lock);
196
197 /* dispatch requests which are inserted during quiescing */
198 blk_mq_run_hw_queues(q, true);
199 }
200 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
201
202 void blk_mq_wake_waiters(struct request_queue *q)
203 {
204 struct blk_mq_hw_ctx *hctx;
205 unsigned int i;
206
207 queue_for_each_hw_ctx(q, hctx, i)
208 if (blk_mq_hw_queue_mapped(hctx))
209 blk_mq_tag_wakeup_all(hctx->tags, true);
210
211 /*
212 * If we are called because the queue has now been marked as
213 * dying, we need to ensure that processes currently waiting on
214 * the queue are notified as well.
215 */
216 wake_up_all(&q->mq_freeze_wq);
217 }
218
219 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
220 {
221 return blk_mq_has_free_tags(hctx->tags);
222 }
223 EXPORT_SYMBOL(blk_mq_can_queue);
224
225 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
226 unsigned int tag, unsigned int op)
227 {
228 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
229 struct request *rq = tags->static_rqs[tag];
230
231 if (data->flags & BLK_MQ_REQ_INTERNAL) {
232 rq->tag = -1;
233 rq->internal_tag = tag;
234 } else {
235 if (blk_mq_tag_busy(data->hctx)) {
236 rq->rq_flags = RQF_MQ_INFLIGHT;
237 atomic_inc(&data->hctx->nr_active);
238 }
239 rq->tag = tag;
240 rq->internal_tag = -1;
241 data->hctx->tags->rqs[rq->tag] = rq;
242 }
243
244 INIT_LIST_HEAD(&rq->queuelist);
245 /* csd/requeue_work/fifo_time is initialized before use */
246 rq->q = data->q;
247 rq->mq_ctx = data->ctx;
248 rq->cmd_flags = op;
249 if (blk_queue_io_stat(data->q))
250 rq->rq_flags |= RQF_IO_STAT;
251 /* do not touch atomic flags, it needs atomic ops against the timer */
252 rq->cpu = -1;
253 INIT_HLIST_NODE(&rq->hash);
254 RB_CLEAR_NODE(&rq->rb_node);
255 rq->rq_disk = NULL;
256 rq->part = NULL;
257 rq->start_time = jiffies;
258 #ifdef CONFIG_BLK_CGROUP
259 rq->rl = NULL;
260 set_start_time_ns(rq);
261 rq->io_start_time_ns = 0;
262 #endif
263 rq->nr_phys_segments = 0;
264 #if defined(CONFIG_BLK_DEV_INTEGRITY)
265 rq->nr_integrity_segments = 0;
266 #endif
267 rq->special = NULL;
268 /* tag was already set */
269 rq->extra_len = 0;
270
271 INIT_LIST_HEAD(&rq->timeout_list);
272 rq->timeout = 0;
273
274 rq->end_io = NULL;
275 rq->end_io_data = NULL;
276 rq->next_rq = NULL;
277
278 data->ctx->rq_dispatched[op_is_sync(op)]++;
279 return rq;
280 }
281
282 static struct request *blk_mq_get_request(struct request_queue *q,
283 struct bio *bio, unsigned int op,
284 struct blk_mq_alloc_data *data)
285 {
286 struct elevator_queue *e = q->elevator;
287 struct request *rq;
288 unsigned int tag;
289
290 blk_queue_enter_live(q);
291 data->q = q;
292 if (likely(!data->ctx))
293 data->ctx = blk_mq_get_ctx(q);
294 if (likely(!data->hctx))
295 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
296
297 if (e) {
298 data->flags |= BLK_MQ_REQ_INTERNAL;
299
300 /*
301 * Flush requests are special and go directly to the
302 * dispatch list.
303 */
304 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
305 e->type->ops.mq.limit_depth(op, data);
306 }
307
308 tag = blk_mq_get_tag(data);
309 if (tag == BLK_MQ_TAG_FAIL) {
310 blk_queue_exit(q);
311 return NULL;
312 }
313
314 rq = blk_mq_rq_ctx_init(data, tag, op);
315 if (!op_is_flush(op)) {
316 rq->elv.icq = NULL;
317 if (e && e->type->ops.mq.prepare_request) {
318 if (e->type->icq_cache && rq_ioc(bio))
319 blk_mq_sched_assign_ioc(rq, bio);
320
321 e->type->ops.mq.prepare_request(rq, bio);
322 rq->rq_flags |= RQF_ELVPRIV;
323 }
324 }
325 data->hctx->queued++;
326 return rq;
327 }
328
329 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
330 unsigned int flags)
331 {
332 struct blk_mq_alloc_data alloc_data = { .flags = flags };
333 struct request *rq;
334 int ret;
335
336 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
337 if (ret)
338 return ERR_PTR(ret);
339
340 rq = blk_mq_get_request(q, NULL, rw, &alloc_data);
341
342 blk_mq_put_ctx(alloc_data.ctx);
343 blk_queue_exit(q);
344
345 if (!rq)
346 return ERR_PTR(-EWOULDBLOCK);
347
348 rq->__data_len = 0;
349 rq->__sector = (sector_t) -1;
350 rq->bio = rq->biotail = NULL;
351 return rq;
352 }
353 EXPORT_SYMBOL(blk_mq_alloc_request);
354
355 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
356 unsigned int flags, unsigned int hctx_idx)
357 {
358 struct blk_mq_alloc_data alloc_data = { .flags = flags };
359 struct request *rq;
360 unsigned int cpu;
361 int ret;
362
363 /*
364 * If the tag allocator sleeps we could get an allocation for a
365 * different hardware context. No need to complicate the low level
366 * allocator for this for the rare use case of a command tied to
367 * a specific queue.
368 */
369 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
370 return ERR_PTR(-EINVAL);
371
372 if (hctx_idx >= q->nr_hw_queues)
373 return ERR_PTR(-EIO);
374
375 ret = blk_queue_enter(q, true);
376 if (ret)
377 return ERR_PTR(ret);
378
379 /*
380 * Check if the hardware context is actually mapped to anything.
381 * If not tell the caller that it should skip this queue.
382 */
383 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
384 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
385 blk_queue_exit(q);
386 return ERR_PTR(-EXDEV);
387 }
388 cpu = cpumask_first(alloc_data.hctx->cpumask);
389 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
390
391 rq = blk_mq_get_request(q, NULL, rw, &alloc_data);
392
393 blk_queue_exit(q);
394
395 if (!rq)
396 return ERR_PTR(-EWOULDBLOCK);
397
398 return rq;
399 }
400 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
401
402 void blk_mq_free_request(struct request *rq)
403 {
404 struct request_queue *q = rq->q;
405 struct elevator_queue *e = q->elevator;
406 struct blk_mq_ctx *ctx = rq->mq_ctx;
407 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
408 const int sched_tag = rq->internal_tag;
409
410 if (rq->rq_flags & RQF_ELVPRIV) {
411 if (e && e->type->ops.mq.finish_request)
412 e->type->ops.mq.finish_request(rq);
413 if (rq->elv.icq) {
414 put_io_context(rq->elv.icq->ioc);
415 rq->elv.icq = NULL;
416 }
417 }
418
419 ctx->rq_completed[rq_is_sync(rq)]++;
420 if (rq->rq_flags & RQF_MQ_INFLIGHT)
421 atomic_dec(&hctx->nr_active);
422
423 wbt_done(q->rq_wb, &rq->issue_stat);
424 rq->rq_flags = 0;
425
426 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
427 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
428 if (rq->tag != -1)
429 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
430 if (sched_tag != -1)
431 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
432 blk_mq_sched_restart(hctx);
433 blk_queue_exit(q);
434 }
435 EXPORT_SYMBOL_GPL(blk_mq_free_request);
436
437 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
438 {
439 blk_account_io_done(rq);
440
441 if (rq->end_io) {
442 wbt_done(rq->q->rq_wb, &rq->issue_stat);
443 rq->end_io(rq, error);
444 } else {
445 if (unlikely(blk_bidi_rq(rq)))
446 blk_mq_free_request(rq->next_rq);
447 blk_mq_free_request(rq);
448 }
449 }
450 EXPORT_SYMBOL(__blk_mq_end_request);
451
452 void blk_mq_end_request(struct request *rq, blk_status_t error)
453 {
454 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
455 BUG();
456 __blk_mq_end_request(rq, error);
457 }
458 EXPORT_SYMBOL(blk_mq_end_request);
459
460 static void __blk_mq_complete_request_remote(void *data)
461 {
462 struct request *rq = data;
463
464 rq->q->softirq_done_fn(rq);
465 }
466
467 static void __blk_mq_complete_request(struct request *rq)
468 {
469 struct blk_mq_ctx *ctx = rq->mq_ctx;
470 bool shared = false;
471 int cpu;
472
473 if (rq->internal_tag != -1)
474 blk_mq_sched_completed_request(rq);
475 if (rq->rq_flags & RQF_STATS) {
476 blk_mq_poll_stats_start(rq->q);
477 blk_stat_add(rq);
478 }
479
480 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
481 rq->q->softirq_done_fn(rq);
482 return;
483 }
484
485 cpu = get_cpu();
486 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
487 shared = cpus_share_cache(cpu, ctx->cpu);
488
489 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
490 rq->csd.func = __blk_mq_complete_request_remote;
491 rq->csd.info = rq;
492 rq->csd.flags = 0;
493 smp_call_function_single_async(ctx->cpu, &rq->csd);
494 } else {
495 rq->q->softirq_done_fn(rq);
496 }
497 put_cpu();
498 }
499
500 /**
501 * blk_mq_complete_request - end I/O on a request
502 * @rq: the request being processed
503 *
504 * Description:
505 * Ends all I/O on a request. It does not handle partial completions.
506 * The actual completion happens out-of-order, through a IPI handler.
507 **/
508 void blk_mq_complete_request(struct request *rq)
509 {
510 struct request_queue *q = rq->q;
511
512 if (unlikely(blk_should_fake_timeout(q)))
513 return;
514 if (!blk_mark_rq_complete(rq))
515 __blk_mq_complete_request(rq);
516 }
517 EXPORT_SYMBOL(blk_mq_complete_request);
518
519 int blk_mq_request_started(struct request *rq)
520 {
521 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
522 }
523 EXPORT_SYMBOL_GPL(blk_mq_request_started);
524
525 void blk_mq_start_request(struct request *rq)
526 {
527 struct request_queue *q = rq->q;
528
529 blk_mq_sched_started_request(rq);
530
531 trace_block_rq_issue(q, rq);
532
533 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
534 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
535 rq->rq_flags |= RQF_STATS;
536 wbt_issue(q->rq_wb, &rq->issue_stat);
537 }
538
539 blk_add_timer(rq);
540
541 /*
542 * Ensure that ->deadline is visible before set the started
543 * flag and clear the completed flag.
544 */
545 smp_mb__before_atomic();
546
547 /*
548 * Mark us as started and clear complete. Complete might have been
549 * set if requeue raced with timeout, which then marked it as
550 * complete. So be sure to clear complete again when we start
551 * the request, otherwise we'll ignore the completion event.
552 */
553 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
554 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
555 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
556 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
557
558 if (q->dma_drain_size && blk_rq_bytes(rq)) {
559 /*
560 * Make sure space for the drain appears. We know we can do
561 * this because max_hw_segments has been adjusted to be one
562 * fewer than the device can handle.
563 */
564 rq->nr_phys_segments++;
565 }
566 }
567 EXPORT_SYMBOL(blk_mq_start_request);
568
569 /*
570 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
571 * flag isn't set yet, so there may be race with timeout handler,
572 * but given rq->deadline is just set in .queue_rq() under
573 * this situation, the race won't be possible in reality because
574 * rq->timeout should be set as big enough to cover the window
575 * between blk_mq_start_request() called from .queue_rq() and
576 * clearing REQ_ATOM_STARTED here.
577 */
578 static void __blk_mq_requeue_request(struct request *rq)
579 {
580 struct request_queue *q = rq->q;
581
582 trace_block_rq_requeue(q, rq);
583 wbt_requeue(q->rq_wb, &rq->issue_stat);
584 blk_mq_sched_requeue_request(rq);
585
586 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
587 if (q->dma_drain_size && blk_rq_bytes(rq))
588 rq->nr_phys_segments--;
589 }
590 }
591
592 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
593 {
594 __blk_mq_requeue_request(rq);
595
596 BUG_ON(blk_queued_rq(rq));
597 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
598 }
599 EXPORT_SYMBOL(blk_mq_requeue_request);
600
601 static void blk_mq_requeue_work(struct work_struct *work)
602 {
603 struct request_queue *q =
604 container_of(work, struct request_queue, requeue_work.work);
605 LIST_HEAD(rq_list);
606 struct request *rq, *next;
607 unsigned long flags;
608
609 spin_lock_irqsave(&q->requeue_lock, flags);
610 list_splice_init(&q->requeue_list, &rq_list);
611 spin_unlock_irqrestore(&q->requeue_lock, flags);
612
613 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
614 if (!(rq->rq_flags & RQF_SOFTBARRIER))
615 continue;
616
617 rq->rq_flags &= ~RQF_SOFTBARRIER;
618 list_del_init(&rq->queuelist);
619 blk_mq_sched_insert_request(rq, true, false, false, true);
620 }
621
622 while (!list_empty(&rq_list)) {
623 rq = list_entry(rq_list.next, struct request, queuelist);
624 list_del_init(&rq->queuelist);
625 blk_mq_sched_insert_request(rq, false, false, false, true);
626 }
627
628 blk_mq_run_hw_queues(q, false);
629 }
630
631 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
632 bool kick_requeue_list)
633 {
634 struct request_queue *q = rq->q;
635 unsigned long flags;
636
637 /*
638 * We abuse this flag that is otherwise used by the I/O scheduler to
639 * request head insertation from the workqueue.
640 */
641 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
642
643 spin_lock_irqsave(&q->requeue_lock, flags);
644 if (at_head) {
645 rq->rq_flags |= RQF_SOFTBARRIER;
646 list_add(&rq->queuelist, &q->requeue_list);
647 } else {
648 list_add_tail(&rq->queuelist, &q->requeue_list);
649 }
650 spin_unlock_irqrestore(&q->requeue_lock, flags);
651
652 if (kick_requeue_list)
653 blk_mq_kick_requeue_list(q);
654 }
655 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
656
657 void blk_mq_kick_requeue_list(struct request_queue *q)
658 {
659 kblockd_schedule_delayed_work(&q->requeue_work, 0);
660 }
661 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
662
663 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
664 unsigned long msecs)
665 {
666 kblockd_schedule_delayed_work(&q->requeue_work,
667 msecs_to_jiffies(msecs));
668 }
669 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
670
671 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
672 {
673 if (tag < tags->nr_tags) {
674 prefetch(tags->rqs[tag]);
675 return tags->rqs[tag];
676 }
677
678 return NULL;
679 }
680 EXPORT_SYMBOL(blk_mq_tag_to_rq);
681
682 struct blk_mq_timeout_data {
683 unsigned long next;
684 unsigned int next_set;
685 };
686
687 void blk_mq_rq_timed_out(struct request *req, bool reserved)
688 {
689 const struct blk_mq_ops *ops = req->q->mq_ops;
690 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
691
692 /*
693 * We know that complete is set at this point. If STARTED isn't set
694 * anymore, then the request isn't active and the "timeout" should
695 * just be ignored. This can happen due to the bitflag ordering.
696 * Timeout first checks if STARTED is set, and if it is, assumes
697 * the request is active. But if we race with completion, then
698 * both flags will get cleared. So check here again, and ignore
699 * a timeout event with a request that isn't active.
700 */
701 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
702 return;
703
704 if (ops->timeout)
705 ret = ops->timeout(req, reserved);
706
707 switch (ret) {
708 case BLK_EH_HANDLED:
709 __blk_mq_complete_request(req);
710 break;
711 case BLK_EH_RESET_TIMER:
712 blk_add_timer(req);
713 blk_clear_rq_complete(req);
714 break;
715 case BLK_EH_NOT_HANDLED:
716 break;
717 default:
718 printk(KERN_ERR "block: bad eh return: %d\n", ret);
719 break;
720 }
721 }
722
723 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
724 struct request *rq, void *priv, bool reserved)
725 {
726 struct blk_mq_timeout_data *data = priv;
727
728 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
729 return;
730
731 /*
732 * The rq being checked may have been freed and reallocated
733 * out already here, we avoid this race by checking rq->deadline
734 * and REQ_ATOM_COMPLETE flag together:
735 *
736 * - if rq->deadline is observed as new value because of
737 * reusing, the rq won't be timed out because of timing.
738 * - if rq->deadline is observed as previous value,
739 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
740 * because we put a barrier between setting rq->deadline
741 * and clearing the flag in blk_mq_start_request(), so
742 * this rq won't be timed out too.
743 */
744 if (time_after_eq(jiffies, rq->deadline)) {
745 if (!blk_mark_rq_complete(rq))
746 blk_mq_rq_timed_out(rq, reserved);
747 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
748 data->next = rq->deadline;
749 data->next_set = 1;
750 }
751 }
752
753 static void blk_mq_timeout_work(struct work_struct *work)
754 {
755 struct request_queue *q =
756 container_of(work, struct request_queue, timeout_work);
757 struct blk_mq_timeout_data data = {
758 .next = 0,
759 .next_set = 0,
760 };
761 int i;
762
763 /* A deadlock might occur if a request is stuck requiring a
764 * timeout at the same time a queue freeze is waiting
765 * completion, since the timeout code would not be able to
766 * acquire the queue reference here.
767 *
768 * That's why we don't use blk_queue_enter here; instead, we use
769 * percpu_ref_tryget directly, because we need to be able to
770 * obtain a reference even in the short window between the queue
771 * starting to freeze, by dropping the first reference in
772 * blk_freeze_queue_start, and the moment the last request is
773 * consumed, marked by the instant q_usage_counter reaches
774 * zero.
775 */
776 if (!percpu_ref_tryget(&q->q_usage_counter))
777 return;
778
779 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
780
781 if (data.next_set) {
782 data.next = blk_rq_timeout(round_jiffies_up(data.next));
783 mod_timer(&q->timeout, data.next);
784 } else {
785 struct blk_mq_hw_ctx *hctx;
786
787 queue_for_each_hw_ctx(q, hctx, i) {
788 /* the hctx may be unmapped, so check it here */
789 if (blk_mq_hw_queue_mapped(hctx))
790 blk_mq_tag_idle(hctx);
791 }
792 }
793 blk_queue_exit(q);
794 }
795
796 struct flush_busy_ctx_data {
797 struct blk_mq_hw_ctx *hctx;
798 struct list_head *list;
799 };
800
801 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
802 {
803 struct flush_busy_ctx_data *flush_data = data;
804 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
805 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
806
807 sbitmap_clear_bit(sb, bitnr);
808 spin_lock(&ctx->lock);
809 list_splice_tail_init(&ctx->rq_list, flush_data->list);
810 spin_unlock(&ctx->lock);
811 return true;
812 }
813
814 /*
815 * Process software queues that have been marked busy, splicing them
816 * to the for-dispatch
817 */
818 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
819 {
820 struct flush_busy_ctx_data data = {
821 .hctx = hctx,
822 .list = list,
823 };
824
825 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
826 }
827 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
828
829 static inline unsigned int queued_to_index(unsigned int queued)
830 {
831 if (!queued)
832 return 0;
833
834 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
835 }
836
837 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
838 bool wait)
839 {
840 struct blk_mq_alloc_data data = {
841 .q = rq->q,
842 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
843 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
844 };
845
846 might_sleep_if(wait);
847
848 if (rq->tag != -1)
849 goto done;
850
851 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
852 data.flags |= BLK_MQ_REQ_RESERVED;
853
854 rq->tag = blk_mq_get_tag(&data);
855 if (rq->tag >= 0) {
856 if (blk_mq_tag_busy(data.hctx)) {
857 rq->rq_flags |= RQF_MQ_INFLIGHT;
858 atomic_inc(&data.hctx->nr_active);
859 }
860 data.hctx->tags->rqs[rq->tag] = rq;
861 }
862
863 done:
864 if (hctx)
865 *hctx = data.hctx;
866 return rq->tag != -1;
867 }
868
869 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
870 struct request *rq)
871 {
872 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
873 rq->tag = -1;
874
875 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
876 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
877 atomic_dec(&hctx->nr_active);
878 }
879 }
880
881 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
882 struct request *rq)
883 {
884 if (rq->tag == -1 || rq->internal_tag == -1)
885 return;
886
887 __blk_mq_put_driver_tag(hctx, rq);
888 }
889
890 static void blk_mq_put_driver_tag(struct request *rq)
891 {
892 struct blk_mq_hw_ctx *hctx;
893
894 if (rq->tag == -1 || rq->internal_tag == -1)
895 return;
896
897 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
898 __blk_mq_put_driver_tag(hctx, rq);
899 }
900
901 /*
902 * If we fail getting a driver tag because all the driver tags are already
903 * assigned and on the dispatch list, BUT the first entry does not have a
904 * tag, then we could deadlock. For that case, move entries with assigned
905 * driver tags to the front, leaving the set of tagged requests in the
906 * same order, and the untagged set in the same order.
907 */
908 static bool reorder_tags_to_front(struct list_head *list)
909 {
910 struct request *rq, *tmp, *first = NULL;
911
912 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
913 if (rq == first)
914 break;
915 if (rq->tag != -1) {
916 list_move(&rq->queuelist, list);
917 if (!first)
918 first = rq;
919 }
920 }
921
922 return first != NULL;
923 }
924
925 static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
926 void *key)
927 {
928 struct blk_mq_hw_ctx *hctx;
929
930 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
931
932 list_del(&wait->task_list);
933 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
934 blk_mq_run_hw_queue(hctx, true);
935 return 1;
936 }
937
938 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
939 {
940 struct sbq_wait_state *ws;
941
942 /*
943 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
944 * The thread which wins the race to grab this bit adds the hardware
945 * queue to the wait queue.
946 */
947 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
948 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
949 return false;
950
951 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
952 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
953
954 /*
955 * As soon as this returns, it's no longer safe to fiddle with
956 * hctx->dispatch_wait, since a completion can wake up the wait queue
957 * and unlock the bit.
958 */
959 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
960 return true;
961 }
962
963 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
964 {
965 struct blk_mq_hw_ctx *hctx;
966 struct request *rq;
967 int errors, queued;
968
969 if (list_empty(list))
970 return false;
971
972 /*
973 * Now process all the entries, sending them to the driver.
974 */
975 errors = queued = 0;
976 do {
977 struct blk_mq_queue_data bd;
978 blk_status_t ret;
979
980 rq = list_first_entry(list, struct request, queuelist);
981 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
982 if (!queued && reorder_tags_to_front(list))
983 continue;
984
985 /*
986 * The initial allocation attempt failed, so we need to
987 * rerun the hardware queue when a tag is freed.
988 */
989 if (!blk_mq_dispatch_wait_add(hctx))
990 break;
991
992 /*
993 * It's possible that a tag was freed in the window
994 * between the allocation failure and adding the
995 * hardware queue to the wait queue.
996 */
997 if (!blk_mq_get_driver_tag(rq, &hctx, false))
998 break;
999 }
1000
1001 list_del_init(&rq->queuelist);
1002
1003 bd.rq = rq;
1004
1005 /*
1006 * Flag last if we have no more requests, or if we have more
1007 * but can't assign a driver tag to it.
1008 */
1009 if (list_empty(list))
1010 bd.last = true;
1011 else {
1012 struct request *nxt;
1013
1014 nxt = list_first_entry(list, struct request, queuelist);
1015 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1016 }
1017
1018 ret = q->mq_ops->queue_rq(hctx, &bd);
1019 if (ret == BLK_STS_RESOURCE) {
1020 blk_mq_put_driver_tag_hctx(hctx, rq);
1021 list_add(&rq->queuelist, list);
1022 __blk_mq_requeue_request(rq);
1023 break;
1024 }
1025
1026 if (unlikely(ret != BLK_STS_OK)) {
1027 errors++;
1028 blk_mq_end_request(rq, BLK_STS_IOERR);
1029 continue;
1030 }
1031
1032 queued++;
1033 } while (!list_empty(list));
1034
1035 hctx->dispatched[queued_to_index(queued)]++;
1036
1037 /*
1038 * Any items that need requeuing? Stuff them into hctx->dispatch,
1039 * that is where we will continue on next queue run.
1040 */
1041 if (!list_empty(list)) {
1042 /*
1043 * If an I/O scheduler has been configured and we got a driver
1044 * tag for the next request already, free it again.
1045 */
1046 rq = list_first_entry(list, struct request, queuelist);
1047 blk_mq_put_driver_tag(rq);
1048
1049 spin_lock(&hctx->lock);
1050 list_splice_init(list, &hctx->dispatch);
1051 spin_unlock(&hctx->lock);
1052
1053 /*
1054 * If SCHED_RESTART was set by the caller of this function and
1055 * it is no longer set that means that it was cleared by another
1056 * thread and hence that a queue rerun is needed.
1057 *
1058 * If TAG_WAITING is set that means that an I/O scheduler has
1059 * been configured and another thread is waiting for a driver
1060 * tag. To guarantee fairness, do not rerun this hardware queue
1061 * but let the other thread grab the driver tag.
1062 *
1063 * If no I/O scheduler has been configured it is possible that
1064 * the hardware queue got stopped and restarted before requests
1065 * were pushed back onto the dispatch list. Rerun the queue to
1066 * avoid starvation. Notes:
1067 * - blk_mq_run_hw_queue() checks whether or not a queue has
1068 * been stopped before rerunning a queue.
1069 * - Some but not all block drivers stop a queue before
1070 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1071 * and dm-rq.
1072 */
1073 if (!blk_mq_sched_needs_restart(hctx) &&
1074 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1075 blk_mq_run_hw_queue(hctx, true);
1076 }
1077
1078 return (queued + errors) != 0;
1079 }
1080
1081 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1082 {
1083 int srcu_idx;
1084
1085 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1086 cpu_online(hctx->next_cpu));
1087
1088 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1089 rcu_read_lock();
1090 blk_mq_sched_dispatch_requests(hctx);
1091 rcu_read_unlock();
1092 } else {
1093 might_sleep();
1094
1095 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1096 blk_mq_sched_dispatch_requests(hctx);
1097 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1098 }
1099 }
1100
1101 /*
1102 * It'd be great if the workqueue API had a way to pass
1103 * in a mask and had some smarts for more clever placement.
1104 * For now we just round-robin here, switching for every
1105 * BLK_MQ_CPU_WORK_BATCH queued items.
1106 */
1107 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1108 {
1109 if (hctx->queue->nr_hw_queues == 1)
1110 return WORK_CPU_UNBOUND;
1111
1112 if (--hctx->next_cpu_batch <= 0) {
1113 int next_cpu;
1114
1115 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1116 if (next_cpu >= nr_cpu_ids)
1117 next_cpu = cpumask_first(hctx->cpumask);
1118
1119 hctx->next_cpu = next_cpu;
1120 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1121 }
1122
1123 return hctx->next_cpu;
1124 }
1125
1126 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1127 unsigned long msecs)
1128 {
1129 if (unlikely(blk_mq_hctx_stopped(hctx) ||
1130 !blk_mq_hw_queue_mapped(hctx)))
1131 return;
1132
1133 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1134 int cpu = get_cpu();
1135 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1136 __blk_mq_run_hw_queue(hctx);
1137 put_cpu();
1138 return;
1139 }
1140
1141 put_cpu();
1142 }
1143
1144 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1145 &hctx->run_work,
1146 msecs_to_jiffies(msecs));
1147 }
1148
1149 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1150 {
1151 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1152 }
1153 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1154
1155 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1156 {
1157 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1158 }
1159 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1160
1161 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1162 {
1163 struct blk_mq_hw_ctx *hctx;
1164 int i;
1165
1166 queue_for_each_hw_ctx(q, hctx, i) {
1167 if (!blk_mq_hctx_has_pending(hctx) ||
1168 blk_mq_hctx_stopped(hctx))
1169 continue;
1170
1171 blk_mq_run_hw_queue(hctx, async);
1172 }
1173 }
1174 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1175
1176 /**
1177 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1178 * @q: request queue.
1179 *
1180 * The caller is responsible for serializing this function against
1181 * blk_mq_{start,stop}_hw_queue().
1182 */
1183 bool blk_mq_queue_stopped(struct request_queue *q)
1184 {
1185 struct blk_mq_hw_ctx *hctx;
1186 int i;
1187
1188 queue_for_each_hw_ctx(q, hctx, i)
1189 if (blk_mq_hctx_stopped(hctx))
1190 return true;
1191
1192 return false;
1193 }
1194 EXPORT_SYMBOL(blk_mq_queue_stopped);
1195
1196 /*
1197 * This function is often used for pausing .queue_rq() by driver when
1198 * there isn't enough resource or some conditions aren't satisfied, and
1199 * BLK_MQ_RQ_QUEUE_BUSY is usually returned.
1200 *
1201 * We do not guarantee that dispatch can be drained or blocked
1202 * after blk_mq_stop_hw_queue() returns. Please use
1203 * blk_mq_quiesce_queue() for that requirement.
1204 */
1205 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1206 {
1207 cancel_delayed_work(&hctx->run_work);
1208
1209 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1210 }
1211 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1212
1213 /*
1214 * This function is often used for pausing .queue_rq() by driver when
1215 * there isn't enough resource or some conditions aren't satisfied, and
1216 * BLK_MQ_RQ_QUEUE_BUSY is usually returned.
1217 *
1218 * We do not guarantee that dispatch can be drained or blocked
1219 * after blk_mq_stop_hw_queues() returns. Please use
1220 * blk_mq_quiesce_queue() for that requirement.
1221 */
1222 void blk_mq_stop_hw_queues(struct request_queue *q)
1223 {
1224 struct blk_mq_hw_ctx *hctx;
1225 int i;
1226
1227 queue_for_each_hw_ctx(q, hctx, i)
1228 blk_mq_stop_hw_queue(hctx);
1229 }
1230 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1231
1232 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1233 {
1234 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1235
1236 blk_mq_run_hw_queue(hctx, false);
1237 }
1238 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1239
1240 void blk_mq_start_hw_queues(struct request_queue *q)
1241 {
1242 struct blk_mq_hw_ctx *hctx;
1243 int i;
1244
1245 queue_for_each_hw_ctx(q, hctx, i)
1246 blk_mq_start_hw_queue(hctx);
1247 }
1248 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1249
1250 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1251 {
1252 if (!blk_mq_hctx_stopped(hctx))
1253 return;
1254
1255 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1256 blk_mq_run_hw_queue(hctx, async);
1257 }
1258 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1259
1260 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1261 {
1262 struct blk_mq_hw_ctx *hctx;
1263 int i;
1264
1265 queue_for_each_hw_ctx(q, hctx, i)
1266 blk_mq_start_stopped_hw_queue(hctx, async);
1267 }
1268 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1269
1270 static void blk_mq_run_work_fn(struct work_struct *work)
1271 {
1272 struct blk_mq_hw_ctx *hctx;
1273
1274 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1275
1276 /*
1277 * If we are stopped, don't run the queue. The exception is if
1278 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1279 * the STOPPED bit and run it.
1280 */
1281 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1282 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1283 return;
1284
1285 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1286 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1287 }
1288
1289 __blk_mq_run_hw_queue(hctx);
1290 }
1291
1292
1293 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1294 {
1295 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1296 return;
1297
1298 /*
1299 * Stop the hw queue, then modify currently delayed work.
1300 * This should prevent us from running the queue prematurely.
1301 * Mark the queue as auto-clearing STOPPED when it runs.
1302 */
1303 blk_mq_stop_hw_queue(hctx);
1304 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1305 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1306 &hctx->run_work,
1307 msecs_to_jiffies(msecs));
1308 }
1309 EXPORT_SYMBOL(blk_mq_delay_queue);
1310
1311 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1312 struct request *rq,
1313 bool at_head)
1314 {
1315 struct blk_mq_ctx *ctx = rq->mq_ctx;
1316
1317 trace_block_rq_insert(hctx->queue, rq);
1318
1319 if (at_head)
1320 list_add(&rq->queuelist, &ctx->rq_list);
1321 else
1322 list_add_tail(&rq->queuelist, &ctx->rq_list);
1323 }
1324
1325 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1326 bool at_head)
1327 {
1328 struct blk_mq_ctx *ctx = rq->mq_ctx;
1329
1330 __blk_mq_insert_req_list(hctx, rq, at_head);
1331 blk_mq_hctx_mark_pending(hctx, ctx);
1332 }
1333
1334 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1335 struct list_head *list)
1336
1337 {
1338 /*
1339 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1340 * offline now
1341 */
1342 spin_lock(&ctx->lock);
1343 while (!list_empty(list)) {
1344 struct request *rq;
1345
1346 rq = list_first_entry(list, struct request, queuelist);
1347 BUG_ON(rq->mq_ctx != ctx);
1348 list_del_init(&rq->queuelist);
1349 __blk_mq_insert_req_list(hctx, rq, false);
1350 }
1351 blk_mq_hctx_mark_pending(hctx, ctx);
1352 spin_unlock(&ctx->lock);
1353 }
1354
1355 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1356 {
1357 struct request *rqa = container_of(a, struct request, queuelist);
1358 struct request *rqb = container_of(b, struct request, queuelist);
1359
1360 return !(rqa->mq_ctx < rqb->mq_ctx ||
1361 (rqa->mq_ctx == rqb->mq_ctx &&
1362 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1363 }
1364
1365 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1366 {
1367 struct blk_mq_ctx *this_ctx;
1368 struct request_queue *this_q;
1369 struct request *rq;
1370 LIST_HEAD(list);
1371 LIST_HEAD(ctx_list);
1372 unsigned int depth;
1373
1374 list_splice_init(&plug->mq_list, &list);
1375
1376 list_sort(NULL, &list, plug_ctx_cmp);
1377
1378 this_q = NULL;
1379 this_ctx = NULL;
1380 depth = 0;
1381
1382 while (!list_empty(&list)) {
1383 rq = list_entry_rq(list.next);
1384 list_del_init(&rq->queuelist);
1385 BUG_ON(!rq->q);
1386 if (rq->mq_ctx != this_ctx) {
1387 if (this_ctx) {
1388 trace_block_unplug(this_q, depth, from_schedule);
1389 blk_mq_sched_insert_requests(this_q, this_ctx,
1390 &ctx_list,
1391 from_schedule);
1392 }
1393
1394 this_ctx = rq->mq_ctx;
1395 this_q = rq->q;
1396 depth = 0;
1397 }
1398
1399 depth++;
1400 list_add_tail(&rq->queuelist, &ctx_list);
1401 }
1402
1403 /*
1404 * If 'this_ctx' is set, we know we have entries to complete
1405 * on 'ctx_list'. Do those.
1406 */
1407 if (this_ctx) {
1408 trace_block_unplug(this_q, depth, from_schedule);
1409 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1410 from_schedule);
1411 }
1412 }
1413
1414 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1415 {
1416 blk_init_request_from_bio(rq, bio);
1417
1418 blk_account_io_start(rq, true);
1419 }
1420
1421 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1422 {
1423 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1424 !blk_queue_nomerges(hctx->queue);
1425 }
1426
1427 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1428 struct blk_mq_ctx *ctx,
1429 struct request *rq)
1430 {
1431 spin_lock(&ctx->lock);
1432 __blk_mq_insert_request(hctx, rq, false);
1433 spin_unlock(&ctx->lock);
1434 }
1435
1436 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1437 {
1438 if (rq->tag != -1)
1439 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1440
1441 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1442 }
1443
1444 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1445 struct request *rq,
1446 blk_qc_t *cookie, bool may_sleep)
1447 {
1448 struct request_queue *q = rq->q;
1449 struct blk_mq_queue_data bd = {
1450 .rq = rq,
1451 .last = true,
1452 };
1453 blk_qc_t new_cookie;
1454 blk_status_t ret;
1455 bool run_queue = true;
1456
1457 /* RCU or SRCU read lock is needed before checking quiesced flag */
1458 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1459 run_queue = false;
1460 goto insert;
1461 }
1462
1463 if (q->elevator)
1464 goto insert;
1465
1466 if (!blk_mq_get_driver_tag(rq, NULL, false))
1467 goto insert;
1468
1469 new_cookie = request_to_qc_t(hctx, rq);
1470
1471 /*
1472 * For OK queue, we are done. For error, kill it. Any other
1473 * error (busy), just add it to our list as we previously
1474 * would have done
1475 */
1476 ret = q->mq_ops->queue_rq(hctx, &bd);
1477 switch (ret) {
1478 case BLK_STS_OK:
1479 *cookie = new_cookie;
1480 return;
1481 case BLK_STS_RESOURCE:
1482 __blk_mq_requeue_request(rq);
1483 goto insert;
1484 default:
1485 *cookie = BLK_QC_T_NONE;
1486 blk_mq_end_request(rq, ret);
1487 return;
1488 }
1489
1490 insert:
1491 blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1492 }
1493
1494 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1495 struct request *rq, blk_qc_t *cookie)
1496 {
1497 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1498 rcu_read_lock();
1499 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1500 rcu_read_unlock();
1501 } else {
1502 unsigned int srcu_idx;
1503
1504 might_sleep();
1505
1506 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1507 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
1508 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1509 }
1510 }
1511
1512 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1513 {
1514 const int is_sync = op_is_sync(bio->bi_opf);
1515 const int is_flush_fua = op_is_flush(bio->bi_opf);
1516 struct blk_mq_alloc_data data = { .flags = 0 };
1517 struct request *rq;
1518 unsigned int request_count = 0;
1519 struct blk_plug *plug;
1520 struct request *same_queue_rq = NULL;
1521 blk_qc_t cookie;
1522 unsigned int wb_acct;
1523
1524 blk_queue_bounce(q, &bio);
1525
1526 blk_queue_split(q, &bio);
1527
1528 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1529 bio_io_error(bio);
1530 return BLK_QC_T_NONE;
1531 }
1532
1533 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1534 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1535 return BLK_QC_T_NONE;
1536
1537 if (blk_mq_sched_bio_merge(q, bio))
1538 return BLK_QC_T_NONE;
1539
1540 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1541
1542 trace_block_getrq(q, bio, bio->bi_opf);
1543
1544 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1545 if (unlikely(!rq)) {
1546 __wbt_done(q->rq_wb, wb_acct);
1547 return BLK_QC_T_NONE;
1548 }
1549
1550 wbt_track(&rq->issue_stat, wb_acct);
1551
1552 cookie = request_to_qc_t(data.hctx, rq);
1553
1554 plug = current->plug;
1555 if (unlikely(is_flush_fua)) {
1556 blk_mq_put_ctx(data.ctx);
1557 blk_mq_bio_to_request(rq, bio);
1558 if (q->elevator) {
1559 blk_mq_sched_insert_request(rq, false, true, true,
1560 true);
1561 } else {
1562 blk_insert_flush(rq);
1563 blk_mq_run_hw_queue(data.hctx, true);
1564 }
1565 } else if (plug && q->nr_hw_queues == 1) {
1566 struct request *last = NULL;
1567
1568 blk_mq_put_ctx(data.ctx);
1569 blk_mq_bio_to_request(rq, bio);
1570
1571 /*
1572 * @request_count may become stale because of schedule
1573 * out, so check the list again.
1574 */
1575 if (list_empty(&plug->mq_list))
1576 request_count = 0;
1577 else if (blk_queue_nomerges(q))
1578 request_count = blk_plug_queued_count(q);
1579
1580 if (!request_count)
1581 trace_block_plug(q);
1582 else
1583 last = list_entry_rq(plug->mq_list.prev);
1584
1585 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1586 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1587 blk_flush_plug_list(plug, false);
1588 trace_block_plug(q);
1589 }
1590
1591 list_add_tail(&rq->queuelist, &plug->mq_list);
1592 } else if (plug && !blk_queue_nomerges(q)) {
1593 blk_mq_bio_to_request(rq, bio);
1594
1595 /*
1596 * We do limited plugging. If the bio can be merged, do that.
1597 * Otherwise the existing request in the plug list will be
1598 * issued. So the plug list will have one request at most
1599 * The plug list might get flushed before this. If that happens,
1600 * the plug list is empty, and same_queue_rq is invalid.
1601 */
1602 if (list_empty(&plug->mq_list))
1603 same_queue_rq = NULL;
1604 if (same_queue_rq)
1605 list_del_init(&same_queue_rq->queuelist);
1606 list_add_tail(&rq->queuelist, &plug->mq_list);
1607
1608 blk_mq_put_ctx(data.ctx);
1609
1610 if (same_queue_rq) {
1611 data.hctx = blk_mq_map_queue(q,
1612 same_queue_rq->mq_ctx->cpu);
1613 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1614 &cookie);
1615 }
1616 } else if (q->nr_hw_queues > 1 && is_sync) {
1617 blk_mq_put_ctx(data.ctx);
1618 blk_mq_bio_to_request(rq, bio);
1619 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1620 } else if (q->elevator) {
1621 blk_mq_put_ctx(data.ctx);
1622 blk_mq_bio_to_request(rq, bio);
1623 blk_mq_sched_insert_request(rq, false, true, true, true);
1624 } else {
1625 blk_mq_put_ctx(data.ctx);
1626 blk_mq_bio_to_request(rq, bio);
1627 blk_mq_queue_io(data.hctx, data.ctx, rq);
1628 blk_mq_run_hw_queue(data.hctx, true);
1629 }
1630
1631 return cookie;
1632 }
1633
1634 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1635 unsigned int hctx_idx)
1636 {
1637 struct page *page;
1638
1639 if (tags->rqs && set->ops->exit_request) {
1640 int i;
1641
1642 for (i = 0; i < tags->nr_tags; i++) {
1643 struct request *rq = tags->static_rqs[i];
1644
1645 if (!rq)
1646 continue;
1647 set->ops->exit_request(set, rq, hctx_idx);
1648 tags->static_rqs[i] = NULL;
1649 }
1650 }
1651
1652 while (!list_empty(&tags->page_list)) {
1653 page = list_first_entry(&tags->page_list, struct page, lru);
1654 list_del_init(&page->lru);
1655 /*
1656 * Remove kmemleak object previously allocated in
1657 * blk_mq_init_rq_map().
1658 */
1659 kmemleak_free(page_address(page));
1660 __free_pages(page, page->private);
1661 }
1662 }
1663
1664 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1665 {
1666 kfree(tags->rqs);
1667 tags->rqs = NULL;
1668 kfree(tags->static_rqs);
1669 tags->static_rqs = NULL;
1670
1671 blk_mq_free_tags(tags);
1672 }
1673
1674 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1675 unsigned int hctx_idx,
1676 unsigned int nr_tags,
1677 unsigned int reserved_tags)
1678 {
1679 struct blk_mq_tags *tags;
1680 int node;
1681
1682 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1683 if (node == NUMA_NO_NODE)
1684 node = set->numa_node;
1685
1686 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1687 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1688 if (!tags)
1689 return NULL;
1690
1691 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1692 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1693 node);
1694 if (!tags->rqs) {
1695 blk_mq_free_tags(tags);
1696 return NULL;
1697 }
1698
1699 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1700 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1701 node);
1702 if (!tags->static_rqs) {
1703 kfree(tags->rqs);
1704 blk_mq_free_tags(tags);
1705 return NULL;
1706 }
1707
1708 return tags;
1709 }
1710
1711 static size_t order_to_size(unsigned int order)
1712 {
1713 return (size_t)PAGE_SIZE << order;
1714 }
1715
1716 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1717 unsigned int hctx_idx, unsigned int depth)
1718 {
1719 unsigned int i, j, entries_per_page, max_order = 4;
1720 size_t rq_size, left;
1721 int node;
1722
1723 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1724 if (node == NUMA_NO_NODE)
1725 node = set->numa_node;
1726
1727 INIT_LIST_HEAD(&tags->page_list);
1728
1729 /*
1730 * rq_size is the size of the request plus driver payload, rounded
1731 * to the cacheline size
1732 */
1733 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1734 cache_line_size());
1735 left = rq_size * depth;
1736
1737 for (i = 0; i < depth; ) {
1738 int this_order = max_order;
1739 struct page *page;
1740 int to_do;
1741 void *p;
1742
1743 while (this_order && left < order_to_size(this_order - 1))
1744 this_order--;
1745
1746 do {
1747 page = alloc_pages_node(node,
1748 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1749 this_order);
1750 if (page)
1751 break;
1752 if (!this_order--)
1753 break;
1754 if (order_to_size(this_order) < rq_size)
1755 break;
1756 } while (1);
1757
1758 if (!page)
1759 goto fail;
1760
1761 page->private = this_order;
1762 list_add_tail(&page->lru, &tags->page_list);
1763
1764 p = page_address(page);
1765 /*
1766 * Allow kmemleak to scan these pages as they contain pointers
1767 * to additional allocations like via ops->init_request().
1768 */
1769 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1770 entries_per_page = order_to_size(this_order) / rq_size;
1771 to_do = min(entries_per_page, depth - i);
1772 left -= to_do * rq_size;
1773 for (j = 0; j < to_do; j++) {
1774 struct request *rq = p;
1775
1776 tags->static_rqs[i] = rq;
1777 if (set->ops->init_request) {
1778 if (set->ops->init_request(set, rq, hctx_idx,
1779 node)) {
1780 tags->static_rqs[i] = NULL;
1781 goto fail;
1782 }
1783 }
1784
1785 p += rq_size;
1786 i++;
1787 }
1788 }
1789 return 0;
1790
1791 fail:
1792 blk_mq_free_rqs(set, tags, hctx_idx);
1793 return -ENOMEM;
1794 }
1795
1796 /*
1797 * 'cpu' is going away. splice any existing rq_list entries from this
1798 * software queue to the hw queue dispatch list, and ensure that it
1799 * gets run.
1800 */
1801 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1802 {
1803 struct blk_mq_hw_ctx *hctx;
1804 struct blk_mq_ctx *ctx;
1805 LIST_HEAD(tmp);
1806
1807 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1808 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1809
1810 spin_lock(&ctx->lock);
1811 if (!list_empty(&ctx->rq_list)) {
1812 list_splice_init(&ctx->rq_list, &tmp);
1813 blk_mq_hctx_clear_pending(hctx, ctx);
1814 }
1815 spin_unlock(&ctx->lock);
1816
1817 if (list_empty(&tmp))
1818 return 0;
1819
1820 spin_lock(&hctx->lock);
1821 list_splice_tail_init(&tmp, &hctx->dispatch);
1822 spin_unlock(&hctx->lock);
1823
1824 blk_mq_run_hw_queue(hctx, true);
1825 return 0;
1826 }
1827
1828 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1829 {
1830 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1831 &hctx->cpuhp_dead);
1832 }
1833
1834 /* hctx->ctxs will be freed in queue's release handler */
1835 static void blk_mq_exit_hctx(struct request_queue *q,
1836 struct blk_mq_tag_set *set,
1837 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1838 {
1839 blk_mq_debugfs_unregister_hctx(hctx);
1840
1841 blk_mq_tag_idle(hctx);
1842
1843 if (set->ops->exit_request)
1844 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1845
1846 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1847
1848 if (set->ops->exit_hctx)
1849 set->ops->exit_hctx(hctx, hctx_idx);
1850
1851 if (hctx->flags & BLK_MQ_F_BLOCKING)
1852 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1853
1854 blk_mq_remove_cpuhp(hctx);
1855 blk_free_flush_queue(hctx->fq);
1856 sbitmap_free(&hctx->ctx_map);
1857 }
1858
1859 static void blk_mq_exit_hw_queues(struct request_queue *q,
1860 struct blk_mq_tag_set *set, int nr_queue)
1861 {
1862 struct blk_mq_hw_ctx *hctx;
1863 unsigned int i;
1864
1865 queue_for_each_hw_ctx(q, hctx, i) {
1866 if (i == nr_queue)
1867 break;
1868 blk_mq_exit_hctx(q, set, hctx, i);
1869 }
1870 }
1871
1872 static int blk_mq_init_hctx(struct request_queue *q,
1873 struct blk_mq_tag_set *set,
1874 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1875 {
1876 int node;
1877
1878 node = hctx->numa_node;
1879 if (node == NUMA_NO_NODE)
1880 node = hctx->numa_node = set->numa_node;
1881
1882 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1883 spin_lock_init(&hctx->lock);
1884 INIT_LIST_HEAD(&hctx->dispatch);
1885 hctx->queue = q;
1886 hctx->queue_num = hctx_idx;
1887 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1888
1889 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1890
1891 hctx->tags = set->tags[hctx_idx];
1892
1893 /*
1894 * Allocate space for all possible cpus to avoid allocation at
1895 * runtime
1896 */
1897 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1898 GFP_KERNEL, node);
1899 if (!hctx->ctxs)
1900 goto unregister_cpu_notifier;
1901
1902 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1903 node))
1904 goto free_ctxs;
1905
1906 hctx->nr_ctx = 0;
1907
1908 if (set->ops->init_hctx &&
1909 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1910 goto free_bitmap;
1911
1912 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
1913 goto exit_hctx;
1914
1915 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1916 if (!hctx->fq)
1917 goto sched_exit_hctx;
1918
1919 if (set->ops->init_request &&
1920 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
1921 node))
1922 goto free_fq;
1923
1924 if (hctx->flags & BLK_MQ_F_BLOCKING)
1925 init_srcu_struct(&hctx->queue_rq_srcu);
1926
1927 blk_mq_debugfs_register_hctx(q, hctx);
1928
1929 return 0;
1930
1931 free_fq:
1932 kfree(hctx->fq);
1933 sched_exit_hctx:
1934 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1935 exit_hctx:
1936 if (set->ops->exit_hctx)
1937 set->ops->exit_hctx(hctx, hctx_idx);
1938 free_bitmap:
1939 sbitmap_free(&hctx->ctx_map);
1940 free_ctxs:
1941 kfree(hctx->ctxs);
1942 unregister_cpu_notifier:
1943 blk_mq_remove_cpuhp(hctx);
1944 return -1;
1945 }
1946
1947 static void blk_mq_init_cpu_queues(struct request_queue *q,
1948 unsigned int nr_hw_queues)
1949 {
1950 unsigned int i;
1951
1952 for_each_possible_cpu(i) {
1953 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1954 struct blk_mq_hw_ctx *hctx;
1955
1956 __ctx->cpu = i;
1957 spin_lock_init(&__ctx->lock);
1958 INIT_LIST_HEAD(&__ctx->rq_list);
1959 __ctx->queue = q;
1960
1961 /* If the cpu isn't online, the cpu is mapped to first hctx */
1962 if (!cpu_online(i))
1963 continue;
1964
1965 hctx = blk_mq_map_queue(q, i);
1966
1967 /*
1968 * Set local node, IFF we have more than one hw queue. If
1969 * not, we remain on the home node of the device
1970 */
1971 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1972 hctx->numa_node = local_memory_node(cpu_to_node(i));
1973 }
1974 }
1975
1976 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1977 {
1978 int ret = 0;
1979
1980 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1981 set->queue_depth, set->reserved_tags);
1982 if (!set->tags[hctx_idx])
1983 return false;
1984
1985 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
1986 set->queue_depth);
1987 if (!ret)
1988 return true;
1989
1990 blk_mq_free_rq_map(set->tags[hctx_idx]);
1991 set->tags[hctx_idx] = NULL;
1992 return false;
1993 }
1994
1995 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
1996 unsigned int hctx_idx)
1997 {
1998 if (set->tags[hctx_idx]) {
1999 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2000 blk_mq_free_rq_map(set->tags[hctx_idx]);
2001 set->tags[hctx_idx] = NULL;
2002 }
2003 }
2004
2005 static void blk_mq_map_swqueue(struct request_queue *q,
2006 const struct cpumask *online_mask)
2007 {
2008 unsigned int i, hctx_idx;
2009 struct blk_mq_hw_ctx *hctx;
2010 struct blk_mq_ctx *ctx;
2011 struct blk_mq_tag_set *set = q->tag_set;
2012
2013 /*
2014 * Avoid others reading imcomplete hctx->cpumask through sysfs
2015 */
2016 mutex_lock(&q->sysfs_lock);
2017
2018 queue_for_each_hw_ctx(q, hctx, i) {
2019 cpumask_clear(hctx->cpumask);
2020 hctx->nr_ctx = 0;
2021 }
2022
2023 /*
2024 * Map software to hardware queues
2025 */
2026 for_each_possible_cpu(i) {
2027 /* If the cpu isn't online, the cpu is mapped to first hctx */
2028 if (!cpumask_test_cpu(i, online_mask))
2029 continue;
2030
2031 hctx_idx = q->mq_map[i];
2032 /* unmapped hw queue can be remapped after CPU topo changed */
2033 if (!set->tags[hctx_idx] &&
2034 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2035 /*
2036 * If tags initialization fail for some hctx,
2037 * that hctx won't be brought online. In this
2038 * case, remap the current ctx to hctx[0] which
2039 * is guaranteed to always have tags allocated
2040 */
2041 q->mq_map[i] = 0;
2042 }
2043
2044 ctx = per_cpu_ptr(q->queue_ctx, i);
2045 hctx = blk_mq_map_queue(q, i);
2046
2047 cpumask_set_cpu(i, hctx->cpumask);
2048 ctx->index_hw = hctx->nr_ctx;
2049 hctx->ctxs[hctx->nr_ctx++] = ctx;
2050 }
2051
2052 mutex_unlock(&q->sysfs_lock);
2053
2054 queue_for_each_hw_ctx(q, hctx, i) {
2055 /*
2056 * If no software queues are mapped to this hardware queue,
2057 * disable it and free the request entries.
2058 */
2059 if (!hctx->nr_ctx) {
2060 /* Never unmap queue 0. We need it as a
2061 * fallback in case of a new remap fails
2062 * allocation
2063 */
2064 if (i && set->tags[i])
2065 blk_mq_free_map_and_requests(set, i);
2066
2067 hctx->tags = NULL;
2068 continue;
2069 }
2070
2071 hctx->tags = set->tags[i];
2072 WARN_ON(!hctx->tags);
2073
2074 /*
2075 * Set the map size to the number of mapped software queues.
2076 * This is more accurate and more efficient than looping
2077 * over all possibly mapped software queues.
2078 */
2079 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2080
2081 /*
2082 * Initialize batch roundrobin counts
2083 */
2084 hctx->next_cpu = cpumask_first(hctx->cpumask);
2085 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2086 }
2087 }
2088
2089 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2090 {
2091 struct blk_mq_hw_ctx *hctx;
2092 int i;
2093
2094 queue_for_each_hw_ctx(q, hctx, i) {
2095 if (shared)
2096 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2097 else
2098 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2099 }
2100 }
2101
2102 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2103 {
2104 struct request_queue *q;
2105
2106 lockdep_assert_held(&set->tag_list_lock);
2107
2108 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2109 blk_mq_freeze_queue(q);
2110 queue_set_hctx_shared(q, shared);
2111 blk_mq_unfreeze_queue(q);
2112 }
2113 }
2114
2115 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2116 {
2117 struct blk_mq_tag_set *set = q->tag_set;
2118
2119 mutex_lock(&set->tag_list_lock);
2120 list_del_rcu(&q->tag_set_list);
2121 INIT_LIST_HEAD(&q->tag_set_list);
2122 if (list_is_singular(&set->tag_list)) {
2123 /* just transitioned to unshared */
2124 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2125 /* update existing queue */
2126 blk_mq_update_tag_set_depth(set, false);
2127 }
2128 mutex_unlock(&set->tag_list_lock);
2129
2130 synchronize_rcu();
2131 }
2132
2133 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2134 struct request_queue *q)
2135 {
2136 q->tag_set = set;
2137
2138 mutex_lock(&set->tag_list_lock);
2139
2140 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2141 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2142 set->flags |= BLK_MQ_F_TAG_SHARED;
2143 /* update existing queue */
2144 blk_mq_update_tag_set_depth(set, true);
2145 }
2146 if (set->flags & BLK_MQ_F_TAG_SHARED)
2147 queue_set_hctx_shared(q, true);
2148 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2149
2150 mutex_unlock(&set->tag_list_lock);
2151 }
2152
2153 /*
2154 * It is the actual release handler for mq, but we do it from
2155 * request queue's release handler for avoiding use-after-free
2156 * and headache because q->mq_kobj shouldn't have been introduced,
2157 * but we can't group ctx/kctx kobj without it.
2158 */
2159 void blk_mq_release(struct request_queue *q)
2160 {
2161 struct blk_mq_hw_ctx *hctx;
2162 unsigned int i;
2163
2164 /* hctx kobj stays in hctx */
2165 queue_for_each_hw_ctx(q, hctx, i) {
2166 if (!hctx)
2167 continue;
2168 kobject_put(&hctx->kobj);
2169 }
2170
2171 q->mq_map = NULL;
2172
2173 kfree(q->queue_hw_ctx);
2174
2175 /*
2176 * release .mq_kobj and sw queue's kobject now because
2177 * both share lifetime with request queue.
2178 */
2179 blk_mq_sysfs_deinit(q);
2180
2181 free_percpu(q->queue_ctx);
2182 }
2183
2184 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2185 {
2186 struct request_queue *uninit_q, *q;
2187
2188 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2189 if (!uninit_q)
2190 return ERR_PTR(-ENOMEM);
2191
2192 q = blk_mq_init_allocated_queue(set, uninit_q);
2193 if (IS_ERR(q))
2194 blk_cleanup_queue(uninit_q);
2195
2196 return q;
2197 }
2198 EXPORT_SYMBOL(blk_mq_init_queue);
2199
2200 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2201 struct request_queue *q)
2202 {
2203 int i, j;
2204 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2205
2206 blk_mq_sysfs_unregister(q);
2207 for (i = 0; i < set->nr_hw_queues; i++) {
2208 int node;
2209
2210 if (hctxs[i])
2211 continue;
2212
2213 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2214 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2215 GFP_KERNEL, node);
2216 if (!hctxs[i])
2217 break;
2218
2219 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2220 node)) {
2221 kfree(hctxs[i]);
2222 hctxs[i] = NULL;
2223 break;
2224 }
2225
2226 atomic_set(&hctxs[i]->nr_active, 0);
2227 hctxs[i]->numa_node = node;
2228 hctxs[i]->queue_num = i;
2229
2230 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2231 free_cpumask_var(hctxs[i]->cpumask);
2232 kfree(hctxs[i]);
2233 hctxs[i] = NULL;
2234 break;
2235 }
2236 blk_mq_hctx_kobj_init(hctxs[i]);
2237 }
2238 for (j = i; j < q->nr_hw_queues; j++) {
2239 struct blk_mq_hw_ctx *hctx = hctxs[j];
2240
2241 if (hctx) {
2242 if (hctx->tags)
2243 blk_mq_free_map_and_requests(set, j);
2244 blk_mq_exit_hctx(q, set, hctx, j);
2245 kobject_put(&hctx->kobj);
2246 hctxs[j] = NULL;
2247
2248 }
2249 }
2250 q->nr_hw_queues = i;
2251 blk_mq_sysfs_register(q);
2252 }
2253
2254 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2255 struct request_queue *q)
2256 {
2257 /* mark the queue as mq asap */
2258 q->mq_ops = set->ops;
2259
2260 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2261 blk_mq_poll_stats_bkt,
2262 BLK_MQ_POLL_STATS_BKTS, q);
2263 if (!q->poll_cb)
2264 goto err_exit;
2265
2266 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2267 if (!q->queue_ctx)
2268 goto err_exit;
2269
2270 /* init q->mq_kobj and sw queues' kobjects */
2271 blk_mq_sysfs_init(q);
2272
2273 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2274 GFP_KERNEL, set->numa_node);
2275 if (!q->queue_hw_ctx)
2276 goto err_percpu;
2277
2278 q->mq_map = set->mq_map;
2279
2280 blk_mq_realloc_hw_ctxs(set, q);
2281 if (!q->nr_hw_queues)
2282 goto err_hctxs;
2283
2284 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2285 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2286
2287 q->nr_queues = nr_cpu_ids;
2288
2289 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2290
2291 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2292 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2293
2294 q->sg_reserved_size = INT_MAX;
2295
2296 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2297 INIT_LIST_HEAD(&q->requeue_list);
2298 spin_lock_init(&q->requeue_lock);
2299
2300 blk_queue_make_request(q, blk_mq_make_request);
2301
2302 /*
2303 * Do this after blk_queue_make_request() overrides it...
2304 */
2305 q->nr_requests = set->queue_depth;
2306
2307 /*
2308 * Default to classic polling
2309 */
2310 q->poll_nsec = -1;
2311
2312 if (set->ops->complete)
2313 blk_queue_softirq_done(q, set->ops->complete);
2314
2315 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2316
2317 get_online_cpus();
2318 mutex_lock(&all_q_mutex);
2319
2320 list_add_tail(&q->all_q_node, &all_q_list);
2321 blk_mq_add_queue_tag_set(set, q);
2322 blk_mq_map_swqueue(q, cpu_online_mask);
2323
2324 mutex_unlock(&all_q_mutex);
2325 put_online_cpus();
2326
2327 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2328 int ret;
2329
2330 ret = blk_mq_sched_init(q);
2331 if (ret)
2332 return ERR_PTR(ret);
2333 }
2334
2335 return q;
2336
2337 err_hctxs:
2338 kfree(q->queue_hw_ctx);
2339 err_percpu:
2340 free_percpu(q->queue_ctx);
2341 err_exit:
2342 q->mq_ops = NULL;
2343 return ERR_PTR(-ENOMEM);
2344 }
2345 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2346
2347 void blk_mq_free_queue(struct request_queue *q)
2348 {
2349 struct blk_mq_tag_set *set = q->tag_set;
2350
2351 mutex_lock(&all_q_mutex);
2352 list_del_init(&q->all_q_node);
2353 mutex_unlock(&all_q_mutex);
2354
2355 blk_mq_del_queue_tag_set(q);
2356
2357 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2358 }
2359
2360 /* Basically redo blk_mq_init_queue with queue frozen */
2361 static void blk_mq_queue_reinit(struct request_queue *q,
2362 const struct cpumask *online_mask)
2363 {
2364 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2365
2366 blk_mq_debugfs_unregister_hctxs(q);
2367 blk_mq_sysfs_unregister(q);
2368
2369 /*
2370 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2371 * we should change hctx numa_node according to new topology (this
2372 * involves free and re-allocate memory, worthy doing?)
2373 */
2374
2375 blk_mq_map_swqueue(q, online_mask);
2376
2377 blk_mq_sysfs_register(q);
2378 blk_mq_debugfs_register_hctxs(q);
2379 }
2380
2381 /*
2382 * New online cpumask which is going to be set in this hotplug event.
2383 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2384 * one-by-one and dynamically allocating this could result in a failure.
2385 */
2386 static struct cpumask cpuhp_online_new;
2387
2388 static void blk_mq_queue_reinit_work(void)
2389 {
2390 struct request_queue *q;
2391
2392 mutex_lock(&all_q_mutex);
2393 /*
2394 * We need to freeze and reinit all existing queues. Freezing
2395 * involves synchronous wait for an RCU grace period and doing it
2396 * one by one may take a long time. Start freezing all queues in
2397 * one swoop and then wait for the completions so that freezing can
2398 * take place in parallel.
2399 */
2400 list_for_each_entry(q, &all_q_list, all_q_node)
2401 blk_freeze_queue_start(q);
2402 list_for_each_entry(q, &all_q_list, all_q_node)
2403 blk_mq_freeze_queue_wait(q);
2404
2405 list_for_each_entry(q, &all_q_list, all_q_node)
2406 blk_mq_queue_reinit(q, &cpuhp_online_new);
2407
2408 list_for_each_entry(q, &all_q_list, all_q_node)
2409 blk_mq_unfreeze_queue(q);
2410
2411 mutex_unlock(&all_q_mutex);
2412 }
2413
2414 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2415 {
2416 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2417 blk_mq_queue_reinit_work();
2418 return 0;
2419 }
2420
2421 /*
2422 * Before hotadded cpu starts handling requests, new mappings must be
2423 * established. Otherwise, these requests in hw queue might never be
2424 * dispatched.
2425 *
2426 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2427 * for CPU0, and ctx1 for CPU1).
2428 *
2429 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2430 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2431 *
2432 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2433 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2434 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2435 * ignored.
2436 */
2437 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2438 {
2439 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2440 cpumask_set_cpu(cpu, &cpuhp_online_new);
2441 blk_mq_queue_reinit_work();
2442 return 0;
2443 }
2444
2445 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2446 {
2447 int i;
2448
2449 for (i = 0; i < set->nr_hw_queues; i++)
2450 if (!__blk_mq_alloc_rq_map(set, i))
2451 goto out_unwind;
2452
2453 return 0;
2454
2455 out_unwind:
2456 while (--i >= 0)
2457 blk_mq_free_rq_map(set->tags[i]);
2458
2459 return -ENOMEM;
2460 }
2461
2462 /*
2463 * Allocate the request maps associated with this tag_set. Note that this
2464 * may reduce the depth asked for, if memory is tight. set->queue_depth
2465 * will be updated to reflect the allocated depth.
2466 */
2467 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2468 {
2469 unsigned int depth;
2470 int err;
2471
2472 depth = set->queue_depth;
2473 do {
2474 err = __blk_mq_alloc_rq_maps(set);
2475 if (!err)
2476 break;
2477
2478 set->queue_depth >>= 1;
2479 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2480 err = -ENOMEM;
2481 break;
2482 }
2483 } while (set->queue_depth);
2484
2485 if (!set->queue_depth || err) {
2486 pr_err("blk-mq: failed to allocate request map\n");
2487 return -ENOMEM;
2488 }
2489
2490 if (depth != set->queue_depth)
2491 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2492 depth, set->queue_depth);
2493
2494 return 0;
2495 }
2496
2497 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2498 {
2499 if (set->ops->map_queues)
2500 return set->ops->map_queues(set);
2501 else
2502 return blk_mq_map_queues(set);
2503 }
2504
2505 /*
2506 * Alloc a tag set to be associated with one or more request queues.
2507 * May fail with EINVAL for various error conditions. May adjust the
2508 * requested depth down, if if it too large. In that case, the set
2509 * value will be stored in set->queue_depth.
2510 */
2511 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2512 {
2513 int ret;
2514
2515 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2516
2517 if (!set->nr_hw_queues)
2518 return -EINVAL;
2519 if (!set->queue_depth)
2520 return -EINVAL;
2521 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2522 return -EINVAL;
2523
2524 if (!set->ops->queue_rq)
2525 return -EINVAL;
2526
2527 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2528 pr_info("blk-mq: reduced tag depth to %u\n",
2529 BLK_MQ_MAX_DEPTH);
2530 set->queue_depth = BLK_MQ_MAX_DEPTH;
2531 }
2532
2533 /*
2534 * If a crashdump is active, then we are potentially in a very
2535 * memory constrained environment. Limit us to 1 queue and
2536 * 64 tags to prevent using too much memory.
2537 */
2538 if (is_kdump_kernel()) {
2539 set->nr_hw_queues = 1;
2540 set->queue_depth = min(64U, set->queue_depth);
2541 }
2542 /*
2543 * There is no use for more h/w queues than cpus.
2544 */
2545 if (set->nr_hw_queues > nr_cpu_ids)
2546 set->nr_hw_queues = nr_cpu_ids;
2547
2548 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2549 GFP_KERNEL, set->numa_node);
2550 if (!set->tags)
2551 return -ENOMEM;
2552
2553 ret = -ENOMEM;
2554 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2555 GFP_KERNEL, set->numa_node);
2556 if (!set->mq_map)
2557 goto out_free_tags;
2558
2559 ret = blk_mq_update_queue_map(set);
2560 if (ret)
2561 goto out_free_mq_map;
2562
2563 ret = blk_mq_alloc_rq_maps(set);
2564 if (ret)
2565 goto out_free_mq_map;
2566
2567 mutex_init(&set->tag_list_lock);
2568 INIT_LIST_HEAD(&set->tag_list);
2569
2570 return 0;
2571
2572 out_free_mq_map:
2573 kfree(set->mq_map);
2574 set->mq_map = NULL;
2575 out_free_tags:
2576 kfree(set->tags);
2577 set->tags = NULL;
2578 return ret;
2579 }
2580 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2581
2582 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2583 {
2584 int i;
2585
2586 for (i = 0; i < nr_cpu_ids; i++)
2587 blk_mq_free_map_and_requests(set, i);
2588
2589 kfree(set->mq_map);
2590 set->mq_map = NULL;
2591
2592 kfree(set->tags);
2593 set->tags = NULL;
2594 }
2595 EXPORT_SYMBOL(blk_mq_free_tag_set);
2596
2597 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2598 {
2599 struct blk_mq_tag_set *set = q->tag_set;
2600 struct blk_mq_hw_ctx *hctx;
2601 int i, ret;
2602
2603 if (!set)
2604 return -EINVAL;
2605
2606 blk_mq_freeze_queue(q);
2607
2608 ret = 0;
2609 queue_for_each_hw_ctx(q, hctx, i) {
2610 if (!hctx->tags)
2611 continue;
2612 /*
2613 * If we're using an MQ scheduler, just update the scheduler
2614 * queue depth. This is similar to what the old code would do.
2615 */
2616 if (!hctx->sched_tags) {
2617 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2618 min(nr, set->queue_depth),
2619 false);
2620 } else {
2621 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2622 nr, true);
2623 }
2624 if (ret)
2625 break;
2626 }
2627
2628 if (!ret)
2629 q->nr_requests = nr;
2630
2631 blk_mq_unfreeze_queue(q);
2632
2633 return ret;
2634 }
2635
2636 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2637 int nr_hw_queues)
2638 {
2639 struct request_queue *q;
2640
2641 lockdep_assert_held(&set->tag_list_lock);
2642
2643 if (nr_hw_queues > nr_cpu_ids)
2644 nr_hw_queues = nr_cpu_ids;
2645 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2646 return;
2647
2648 list_for_each_entry(q, &set->tag_list, tag_set_list)
2649 blk_mq_freeze_queue(q);
2650
2651 set->nr_hw_queues = nr_hw_queues;
2652 blk_mq_update_queue_map(set);
2653 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2654 blk_mq_realloc_hw_ctxs(set, q);
2655 blk_mq_queue_reinit(q, cpu_online_mask);
2656 }
2657
2658 list_for_each_entry(q, &set->tag_list, tag_set_list)
2659 blk_mq_unfreeze_queue(q);
2660 }
2661
2662 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2663 {
2664 mutex_lock(&set->tag_list_lock);
2665 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2666 mutex_unlock(&set->tag_list_lock);
2667 }
2668 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2669
2670 /* Enable polling stats and return whether they were already enabled. */
2671 static bool blk_poll_stats_enable(struct request_queue *q)
2672 {
2673 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2674 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2675 return true;
2676 blk_stat_add_callback(q, q->poll_cb);
2677 return false;
2678 }
2679
2680 static void blk_mq_poll_stats_start(struct request_queue *q)
2681 {
2682 /*
2683 * We don't arm the callback if polling stats are not enabled or the
2684 * callback is already active.
2685 */
2686 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2687 blk_stat_is_active(q->poll_cb))
2688 return;
2689
2690 blk_stat_activate_msecs(q->poll_cb, 100);
2691 }
2692
2693 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2694 {
2695 struct request_queue *q = cb->data;
2696 int bucket;
2697
2698 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2699 if (cb->stat[bucket].nr_samples)
2700 q->poll_stat[bucket] = cb->stat[bucket];
2701 }
2702 }
2703
2704 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2705 struct blk_mq_hw_ctx *hctx,
2706 struct request *rq)
2707 {
2708 unsigned long ret = 0;
2709 int bucket;
2710
2711 /*
2712 * If stats collection isn't on, don't sleep but turn it on for
2713 * future users
2714 */
2715 if (!blk_poll_stats_enable(q))
2716 return 0;
2717
2718 /*
2719 * As an optimistic guess, use half of the mean service time
2720 * for this type of request. We can (and should) make this smarter.
2721 * For instance, if the completion latencies are tight, we can
2722 * get closer than just half the mean. This is especially
2723 * important on devices where the completion latencies are longer
2724 * than ~10 usec. We do use the stats for the relevant IO size
2725 * if available which does lead to better estimates.
2726 */
2727 bucket = blk_mq_poll_stats_bkt(rq);
2728 if (bucket < 0)
2729 return ret;
2730
2731 if (q->poll_stat[bucket].nr_samples)
2732 ret = (q->poll_stat[bucket].mean + 1) / 2;
2733
2734 return ret;
2735 }
2736
2737 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2738 struct blk_mq_hw_ctx *hctx,
2739 struct request *rq)
2740 {
2741 struct hrtimer_sleeper hs;
2742 enum hrtimer_mode mode;
2743 unsigned int nsecs;
2744 ktime_t kt;
2745
2746 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2747 return false;
2748
2749 /*
2750 * poll_nsec can be:
2751 *
2752 * -1: don't ever hybrid sleep
2753 * 0: use half of prev avg
2754 * >0: use this specific value
2755 */
2756 if (q->poll_nsec == -1)
2757 return false;
2758 else if (q->poll_nsec > 0)
2759 nsecs = q->poll_nsec;
2760 else
2761 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2762
2763 if (!nsecs)
2764 return false;
2765
2766 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2767
2768 /*
2769 * This will be replaced with the stats tracking code, using
2770 * 'avg_completion_time / 2' as the pre-sleep target.
2771 */
2772 kt = nsecs;
2773
2774 mode = HRTIMER_MODE_REL;
2775 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2776 hrtimer_set_expires(&hs.timer, kt);
2777
2778 hrtimer_init_sleeper(&hs, current);
2779 do {
2780 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2781 break;
2782 set_current_state(TASK_UNINTERRUPTIBLE);
2783 hrtimer_start_expires(&hs.timer, mode);
2784 if (hs.task)
2785 io_schedule();
2786 hrtimer_cancel(&hs.timer);
2787 mode = HRTIMER_MODE_ABS;
2788 } while (hs.task && !signal_pending(current));
2789
2790 __set_current_state(TASK_RUNNING);
2791 destroy_hrtimer_on_stack(&hs.timer);
2792 return true;
2793 }
2794
2795 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2796 {
2797 struct request_queue *q = hctx->queue;
2798 long state;
2799
2800 /*
2801 * If we sleep, have the caller restart the poll loop to reset
2802 * the state. Like for the other success return cases, the
2803 * caller is responsible for checking if the IO completed. If
2804 * the IO isn't complete, we'll get called again and will go
2805 * straight to the busy poll loop.
2806 */
2807 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2808 return true;
2809
2810 hctx->poll_considered++;
2811
2812 state = current->state;
2813 while (!need_resched()) {
2814 int ret;
2815
2816 hctx->poll_invoked++;
2817
2818 ret = q->mq_ops->poll(hctx, rq->tag);
2819 if (ret > 0) {
2820 hctx->poll_success++;
2821 set_current_state(TASK_RUNNING);
2822 return true;
2823 }
2824
2825 if (signal_pending_state(state, current))
2826 set_current_state(TASK_RUNNING);
2827
2828 if (current->state == TASK_RUNNING)
2829 return true;
2830 if (ret < 0)
2831 break;
2832 cpu_relax();
2833 }
2834
2835 return false;
2836 }
2837
2838 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2839 {
2840 struct blk_mq_hw_ctx *hctx;
2841 struct blk_plug *plug;
2842 struct request *rq;
2843
2844 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2845 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2846 return false;
2847
2848 plug = current->plug;
2849 if (plug)
2850 blk_flush_plug_list(plug, false);
2851
2852 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2853 if (!blk_qc_t_is_internal(cookie))
2854 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2855 else {
2856 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2857 /*
2858 * With scheduling, if the request has completed, we'll
2859 * get a NULL return here, as we clear the sched tag when
2860 * that happens. The request still remains valid, like always,
2861 * so we should be safe with just the NULL check.
2862 */
2863 if (!rq)
2864 return false;
2865 }
2866
2867 return __blk_mq_poll(hctx, rq);
2868 }
2869 EXPORT_SYMBOL_GPL(blk_mq_poll);
2870
2871 void blk_mq_disable_hotplug(void)
2872 {
2873 mutex_lock(&all_q_mutex);
2874 }
2875
2876 void blk_mq_enable_hotplug(void)
2877 {
2878 mutex_unlock(&all_q_mutex);
2879 }
2880
2881 static int __init blk_mq_init(void)
2882 {
2883 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2884 blk_mq_hctx_notify_dead);
2885
2886 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2887 blk_mq_queue_reinit_prepare,
2888 blk_mq_queue_reinit_dead);
2889 return 0;
2890 }
2891 subsys_initcall(blk_mq_init);