]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-mq.c
Merge tag 'mfd-for-linus-3.16-1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23
24 #include <trace/events/block.h>
25
26 #include <linux/blk-mq.h>
27 #include "blk.h"
28 #include "blk-mq.h"
29 #include "blk-mq-tag.h"
30
31 static DEFINE_MUTEX(all_q_mutex);
32 static LIST_HEAD(all_q_list);
33
34 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
35
36 /*
37 * Check if any of the ctx's have pending work in this hardware queue
38 */
39 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
40 {
41 unsigned int i;
42
43 for (i = 0; i < hctx->ctx_map.map_size; i++)
44 if (hctx->ctx_map.map[i].word)
45 return true;
46
47 return false;
48 }
49
50 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
51 struct blk_mq_ctx *ctx)
52 {
53 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
54 }
55
56 #define CTX_TO_BIT(hctx, ctx) \
57 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
58
59 /*
60 * Mark this ctx as having pending work in this hardware queue
61 */
62 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
63 struct blk_mq_ctx *ctx)
64 {
65 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
66
67 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
68 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
69 }
70
71 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
72 struct blk_mq_ctx *ctx)
73 {
74 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
75
76 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
77 }
78
79 static int blk_mq_queue_enter(struct request_queue *q)
80 {
81 int ret;
82
83 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
84 smp_wmb();
85
86 /* we have problems freezing the queue if it's initializing */
87 if (!blk_queue_dying(q) &&
88 (!blk_queue_bypass(q) || !blk_queue_init_done(q)))
89 return 0;
90
91 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
92
93 spin_lock_irq(q->queue_lock);
94 ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq,
95 !blk_queue_bypass(q) || blk_queue_dying(q),
96 *q->queue_lock);
97 /* inc usage with lock hold to avoid freeze_queue runs here */
98 if (!ret && !blk_queue_dying(q))
99 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
100 else if (blk_queue_dying(q))
101 ret = -ENODEV;
102 spin_unlock_irq(q->queue_lock);
103
104 return ret;
105 }
106
107 static void blk_mq_queue_exit(struct request_queue *q)
108 {
109 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
110 }
111
112 static void __blk_mq_drain_queue(struct request_queue *q)
113 {
114 while (true) {
115 s64 count;
116
117 spin_lock_irq(q->queue_lock);
118 count = percpu_counter_sum(&q->mq_usage_counter);
119 spin_unlock_irq(q->queue_lock);
120
121 if (count == 0)
122 break;
123 blk_mq_run_queues(q, false);
124 msleep(10);
125 }
126 }
127
128 /*
129 * Guarantee no request is in use, so we can change any data structure of
130 * the queue afterward.
131 */
132 static void blk_mq_freeze_queue(struct request_queue *q)
133 {
134 bool drain;
135
136 spin_lock_irq(q->queue_lock);
137 drain = !q->bypass_depth++;
138 queue_flag_set(QUEUE_FLAG_BYPASS, q);
139 spin_unlock_irq(q->queue_lock);
140
141 if (drain)
142 __blk_mq_drain_queue(q);
143 }
144
145 void blk_mq_drain_queue(struct request_queue *q)
146 {
147 __blk_mq_drain_queue(q);
148 }
149
150 static void blk_mq_unfreeze_queue(struct request_queue *q)
151 {
152 bool wake = false;
153
154 spin_lock_irq(q->queue_lock);
155 if (!--q->bypass_depth) {
156 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
157 wake = true;
158 }
159 WARN_ON_ONCE(q->bypass_depth < 0);
160 spin_unlock_irq(q->queue_lock);
161 if (wake)
162 wake_up_all(&q->mq_freeze_wq);
163 }
164
165 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
166 {
167 return blk_mq_has_free_tags(hctx->tags);
168 }
169 EXPORT_SYMBOL(blk_mq_can_queue);
170
171 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
172 struct request *rq, unsigned int rw_flags)
173 {
174 if (blk_queue_io_stat(q))
175 rw_flags |= REQ_IO_STAT;
176
177 INIT_LIST_HEAD(&rq->queuelist);
178 /* csd/requeue_work/fifo_time is initialized before use */
179 rq->q = q;
180 rq->mq_ctx = ctx;
181 rq->cmd_flags |= rw_flags;
182 /* do not touch atomic flags, it needs atomic ops against the timer */
183 rq->cpu = -1;
184 INIT_HLIST_NODE(&rq->hash);
185 RB_CLEAR_NODE(&rq->rb_node);
186 rq->rq_disk = NULL;
187 rq->part = NULL;
188 rq->start_time = jiffies;
189 #ifdef CONFIG_BLK_CGROUP
190 rq->rl = NULL;
191 set_start_time_ns(rq);
192 rq->io_start_time_ns = 0;
193 #endif
194 rq->nr_phys_segments = 0;
195 #if defined(CONFIG_BLK_DEV_INTEGRITY)
196 rq->nr_integrity_segments = 0;
197 #endif
198 rq->special = NULL;
199 /* tag was already set */
200 rq->errors = 0;
201
202 rq->extra_len = 0;
203 rq->sense_len = 0;
204 rq->resid_len = 0;
205 rq->sense = NULL;
206
207 INIT_LIST_HEAD(&rq->timeout_list);
208 rq->timeout = 0;
209
210 rq->end_io = NULL;
211 rq->end_io_data = NULL;
212 rq->next_rq = NULL;
213
214 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
215 }
216
217 static struct request *
218 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
219 {
220 struct request *rq;
221 unsigned int tag;
222
223 tag = blk_mq_get_tag(data);
224 if (tag != BLK_MQ_TAG_FAIL) {
225 rq = data->hctx->tags->rqs[tag];
226
227 rq->cmd_flags = 0;
228 if (blk_mq_tag_busy(data->hctx)) {
229 rq->cmd_flags = REQ_MQ_INFLIGHT;
230 atomic_inc(&data->hctx->nr_active);
231 }
232
233 rq->tag = tag;
234 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
235 return rq;
236 }
237
238 return NULL;
239 }
240
241 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
242 bool reserved)
243 {
244 struct blk_mq_ctx *ctx;
245 struct blk_mq_hw_ctx *hctx;
246 struct request *rq;
247 struct blk_mq_alloc_data alloc_data;
248
249 if (blk_mq_queue_enter(q))
250 return NULL;
251
252 ctx = blk_mq_get_ctx(q);
253 hctx = q->mq_ops->map_queue(q, ctx->cpu);
254 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
255 reserved, ctx, hctx);
256
257 rq = __blk_mq_alloc_request(&alloc_data, rw);
258 if (!rq && (gfp & __GFP_WAIT)) {
259 __blk_mq_run_hw_queue(hctx);
260 blk_mq_put_ctx(ctx);
261
262 ctx = blk_mq_get_ctx(q);
263 hctx = q->mq_ops->map_queue(q, ctx->cpu);
264 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
265 hctx);
266 rq = __blk_mq_alloc_request(&alloc_data, rw);
267 ctx = alloc_data.ctx;
268 }
269 blk_mq_put_ctx(ctx);
270 return rq;
271 }
272 EXPORT_SYMBOL(blk_mq_alloc_request);
273
274 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
275 struct blk_mq_ctx *ctx, struct request *rq)
276 {
277 const int tag = rq->tag;
278 struct request_queue *q = rq->q;
279
280 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
281 atomic_dec(&hctx->nr_active);
282
283 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
284 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
285 blk_mq_queue_exit(q);
286 }
287
288 void blk_mq_free_request(struct request *rq)
289 {
290 struct blk_mq_ctx *ctx = rq->mq_ctx;
291 struct blk_mq_hw_ctx *hctx;
292 struct request_queue *q = rq->q;
293
294 ctx->rq_completed[rq_is_sync(rq)]++;
295
296 hctx = q->mq_ops->map_queue(q, ctx->cpu);
297 __blk_mq_free_request(hctx, ctx, rq);
298 }
299
300 /*
301 * Clone all relevant state from a request that has been put on hold in
302 * the flush state machine into the preallocated flush request that hangs
303 * off the request queue.
304 *
305 * For a driver the flush request should be invisible, that's why we are
306 * impersonating the original request here.
307 */
308 void blk_mq_clone_flush_request(struct request *flush_rq,
309 struct request *orig_rq)
310 {
311 struct blk_mq_hw_ctx *hctx =
312 orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu);
313
314 flush_rq->mq_ctx = orig_rq->mq_ctx;
315 flush_rq->tag = orig_rq->tag;
316 memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq),
317 hctx->cmd_size);
318 }
319
320 inline void __blk_mq_end_io(struct request *rq, int error)
321 {
322 blk_account_io_done(rq);
323
324 if (rq->end_io) {
325 rq->end_io(rq, error);
326 } else {
327 if (unlikely(blk_bidi_rq(rq)))
328 blk_mq_free_request(rq->next_rq);
329 blk_mq_free_request(rq);
330 }
331 }
332 EXPORT_SYMBOL(__blk_mq_end_io);
333
334 void blk_mq_end_io(struct request *rq, int error)
335 {
336 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
337 BUG();
338 __blk_mq_end_io(rq, error);
339 }
340 EXPORT_SYMBOL(blk_mq_end_io);
341
342 static void __blk_mq_complete_request_remote(void *data)
343 {
344 struct request *rq = data;
345
346 rq->q->softirq_done_fn(rq);
347 }
348
349 static void blk_mq_ipi_complete_request(struct request *rq)
350 {
351 struct blk_mq_ctx *ctx = rq->mq_ctx;
352 bool shared = false;
353 int cpu;
354
355 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
356 rq->q->softirq_done_fn(rq);
357 return;
358 }
359
360 cpu = get_cpu();
361 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
362 shared = cpus_share_cache(cpu, ctx->cpu);
363
364 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
365 rq->csd.func = __blk_mq_complete_request_remote;
366 rq->csd.info = rq;
367 rq->csd.flags = 0;
368 smp_call_function_single_async(ctx->cpu, &rq->csd);
369 } else {
370 rq->q->softirq_done_fn(rq);
371 }
372 put_cpu();
373 }
374
375 void __blk_mq_complete_request(struct request *rq)
376 {
377 struct request_queue *q = rq->q;
378
379 if (!q->softirq_done_fn)
380 blk_mq_end_io(rq, rq->errors);
381 else
382 blk_mq_ipi_complete_request(rq);
383 }
384
385 /**
386 * blk_mq_complete_request - end I/O on a request
387 * @rq: the request being processed
388 *
389 * Description:
390 * Ends all I/O on a request. It does not handle partial completions.
391 * The actual completion happens out-of-order, through a IPI handler.
392 **/
393 void blk_mq_complete_request(struct request *rq)
394 {
395 struct request_queue *q = rq->q;
396
397 if (unlikely(blk_should_fake_timeout(q)))
398 return;
399 if (!blk_mark_rq_complete(rq))
400 __blk_mq_complete_request(rq);
401 }
402 EXPORT_SYMBOL(blk_mq_complete_request);
403
404 static void blk_mq_start_request(struct request *rq, bool last)
405 {
406 struct request_queue *q = rq->q;
407
408 trace_block_rq_issue(q, rq);
409
410 rq->resid_len = blk_rq_bytes(rq);
411 if (unlikely(blk_bidi_rq(rq)))
412 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
413
414 blk_add_timer(rq);
415
416 /*
417 * Mark us as started and clear complete. Complete might have been
418 * set if requeue raced with timeout, which then marked it as
419 * complete. So be sure to clear complete again when we start
420 * the request, otherwise we'll ignore the completion event.
421 */
422 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
423 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
424 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
425 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
426
427 if (q->dma_drain_size && blk_rq_bytes(rq)) {
428 /*
429 * Make sure space for the drain appears. We know we can do
430 * this because max_hw_segments has been adjusted to be one
431 * fewer than the device can handle.
432 */
433 rq->nr_phys_segments++;
434 }
435
436 /*
437 * Flag the last request in the series so that drivers know when IO
438 * should be kicked off, if they don't do it on a per-request basis.
439 *
440 * Note: the flag isn't the only condition drivers should do kick off.
441 * If drive is busy, the last request might not have the bit set.
442 */
443 if (last)
444 rq->cmd_flags |= REQ_END;
445 }
446
447 static void __blk_mq_requeue_request(struct request *rq)
448 {
449 struct request_queue *q = rq->q;
450
451 trace_block_rq_requeue(q, rq);
452 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
453
454 rq->cmd_flags &= ~REQ_END;
455
456 if (q->dma_drain_size && blk_rq_bytes(rq))
457 rq->nr_phys_segments--;
458 }
459
460 void blk_mq_requeue_request(struct request *rq)
461 {
462 __blk_mq_requeue_request(rq);
463 blk_clear_rq_complete(rq);
464
465 BUG_ON(blk_queued_rq(rq));
466 blk_mq_add_to_requeue_list(rq, true);
467 }
468 EXPORT_SYMBOL(blk_mq_requeue_request);
469
470 static void blk_mq_requeue_work(struct work_struct *work)
471 {
472 struct request_queue *q =
473 container_of(work, struct request_queue, requeue_work);
474 LIST_HEAD(rq_list);
475 struct request *rq, *next;
476 unsigned long flags;
477
478 spin_lock_irqsave(&q->requeue_lock, flags);
479 list_splice_init(&q->requeue_list, &rq_list);
480 spin_unlock_irqrestore(&q->requeue_lock, flags);
481
482 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
483 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
484 continue;
485
486 rq->cmd_flags &= ~REQ_SOFTBARRIER;
487 list_del_init(&rq->queuelist);
488 blk_mq_insert_request(rq, true, false, false);
489 }
490
491 while (!list_empty(&rq_list)) {
492 rq = list_entry(rq_list.next, struct request, queuelist);
493 list_del_init(&rq->queuelist);
494 blk_mq_insert_request(rq, false, false, false);
495 }
496
497 blk_mq_run_queues(q, false);
498 }
499
500 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
501 {
502 struct request_queue *q = rq->q;
503 unsigned long flags;
504
505 /*
506 * We abuse this flag that is otherwise used by the I/O scheduler to
507 * request head insertation from the workqueue.
508 */
509 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
510
511 spin_lock_irqsave(&q->requeue_lock, flags);
512 if (at_head) {
513 rq->cmd_flags |= REQ_SOFTBARRIER;
514 list_add(&rq->queuelist, &q->requeue_list);
515 } else {
516 list_add_tail(&rq->queuelist, &q->requeue_list);
517 }
518 spin_unlock_irqrestore(&q->requeue_lock, flags);
519 }
520 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
521
522 void blk_mq_kick_requeue_list(struct request_queue *q)
523 {
524 kblockd_schedule_work(&q->requeue_work);
525 }
526 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
527
528 static inline bool is_flush_request(struct request *rq, unsigned int tag)
529 {
530 return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
531 rq->q->flush_rq->tag == tag);
532 }
533
534 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
535 {
536 struct request *rq = tags->rqs[tag];
537
538 if (!is_flush_request(rq, tag))
539 return rq;
540
541 return rq->q->flush_rq;
542 }
543 EXPORT_SYMBOL(blk_mq_tag_to_rq);
544
545 struct blk_mq_timeout_data {
546 struct blk_mq_hw_ctx *hctx;
547 unsigned long *next;
548 unsigned int *next_set;
549 };
550
551 static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
552 {
553 struct blk_mq_timeout_data *data = __data;
554 struct blk_mq_hw_ctx *hctx = data->hctx;
555 unsigned int tag;
556
557 /* It may not be in flight yet (this is where
558 * the REQ_ATOMIC_STARTED flag comes in). The requests are
559 * statically allocated, so we know it's always safe to access the
560 * memory associated with a bit offset into ->rqs[].
561 */
562 tag = 0;
563 do {
564 struct request *rq;
565
566 tag = find_next_zero_bit(free_tags, hctx->tags->nr_tags, tag);
567 if (tag >= hctx->tags->nr_tags)
568 break;
569
570 rq = blk_mq_tag_to_rq(hctx->tags, tag++);
571 if (rq->q != hctx->queue)
572 continue;
573 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
574 continue;
575
576 blk_rq_check_expired(rq, data->next, data->next_set);
577 } while (1);
578 }
579
580 static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
581 unsigned long *next,
582 unsigned int *next_set)
583 {
584 struct blk_mq_timeout_data data = {
585 .hctx = hctx,
586 .next = next,
587 .next_set = next_set,
588 };
589
590 /*
591 * Ask the tagging code to iterate busy requests, so we can
592 * check them for timeout.
593 */
594 blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
595 }
596
597 static enum blk_eh_timer_return blk_mq_rq_timed_out(struct request *rq)
598 {
599 struct request_queue *q = rq->q;
600
601 /*
602 * We know that complete is set at this point. If STARTED isn't set
603 * anymore, then the request isn't active and the "timeout" should
604 * just be ignored. This can happen due to the bitflag ordering.
605 * Timeout first checks if STARTED is set, and if it is, assumes
606 * the request is active. But if we race with completion, then
607 * we both flags will get cleared. So check here again, and ignore
608 * a timeout event with a request that isn't active.
609 */
610 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
611 return BLK_EH_NOT_HANDLED;
612
613 if (!q->mq_ops->timeout)
614 return BLK_EH_RESET_TIMER;
615
616 return q->mq_ops->timeout(rq);
617 }
618
619 static void blk_mq_rq_timer(unsigned long data)
620 {
621 struct request_queue *q = (struct request_queue *) data;
622 struct blk_mq_hw_ctx *hctx;
623 unsigned long next = 0;
624 int i, next_set = 0;
625
626 queue_for_each_hw_ctx(q, hctx, i) {
627 /*
628 * If not software queues are currently mapped to this
629 * hardware queue, there's nothing to check
630 */
631 if (!hctx->nr_ctx || !hctx->tags)
632 continue;
633
634 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
635 }
636
637 if (next_set) {
638 next = blk_rq_timeout(round_jiffies_up(next));
639 mod_timer(&q->timeout, next);
640 } else {
641 queue_for_each_hw_ctx(q, hctx, i)
642 blk_mq_tag_idle(hctx);
643 }
644 }
645
646 /*
647 * Reverse check our software queue for entries that we could potentially
648 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
649 * too much time checking for merges.
650 */
651 static bool blk_mq_attempt_merge(struct request_queue *q,
652 struct blk_mq_ctx *ctx, struct bio *bio)
653 {
654 struct request *rq;
655 int checked = 8;
656
657 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
658 int el_ret;
659
660 if (!checked--)
661 break;
662
663 if (!blk_rq_merge_ok(rq, bio))
664 continue;
665
666 el_ret = blk_try_merge(rq, bio);
667 if (el_ret == ELEVATOR_BACK_MERGE) {
668 if (bio_attempt_back_merge(q, rq, bio)) {
669 ctx->rq_merged++;
670 return true;
671 }
672 break;
673 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
674 if (bio_attempt_front_merge(q, rq, bio)) {
675 ctx->rq_merged++;
676 return true;
677 }
678 break;
679 }
680 }
681
682 return false;
683 }
684
685 /*
686 * Process software queues that have been marked busy, splicing them
687 * to the for-dispatch
688 */
689 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
690 {
691 struct blk_mq_ctx *ctx;
692 int i;
693
694 for (i = 0; i < hctx->ctx_map.map_size; i++) {
695 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
696 unsigned int off, bit;
697
698 if (!bm->word)
699 continue;
700
701 bit = 0;
702 off = i * hctx->ctx_map.bits_per_word;
703 do {
704 bit = find_next_bit(&bm->word, bm->depth, bit);
705 if (bit >= bm->depth)
706 break;
707
708 ctx = hctx->ctxs[bit + off];
709 clear_bit(bit, &bm->word);
710 spin_lock(&ctx->lock);
711 list_splice_tail_init(&ctx->rq_list, list);
712 spin_unlock(&ctx->lock);
713
714 bit++;
715 } while (1);
716 }
717 }
718
719 /*
720 * Run this hardware queue, pulling any software queues mapped to it in.
721 * Note that this function currently has various problems around ordering
722 * of IO. In particular, we'd like FIFO behaviour on handling existing
723 * items on the hctx->dispatch list. Ignore that for now.
724 */
725 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
726 {
727 struct request_queue *q = hctx->queue;
728 struct request *rq;
729 LIST_HEAD(rq_list);
730 int queued;
731
732 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
733
734 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
735 return;
736
737 hctx->run++;
738
739 /*
740 * Touch any software queue that has pending entries.
741 */
742 flush_busy_ctxs(hctx, &rq_list);
743
744 /*
745 * If we have previous entries on our dispatch list, grab them
746 * and stuff them at the front for more fair dispatch.
747 */
748 if (!list_empty_careful(&hctx->dispatch)) {
749 spin_lock(&hctx->lock);
750 if (!list_empty(&hctx->dispatch))
751 list_splice_init(&hctx->dispatch, &rq_list);
752 spin_unlock(&hctx->lock);
753 }
754
755 /*
756 * Now process all the entries, sending them to the driver.
757 */
758 queued = 0;
759 while (!list_empty(&rq_list)) {
760 int ret;
761
762 rq = list_first_entry(&rq_list, struct request, queuelist);
763 list_del_init(&rq->queuelist);
764
765 blk_mq_start_request(rq, list_empty(&rq_list));
766
767 ret = q->mq_ops->queue_rq(hctx, rq);
768 switch (ret) {
769 case BLK_MQ_RQ_QUEUE_OK:
770 queued++;
771 continue;
772 case BLK_MQ_RQ_QUEUE_BUSY:
773 list_add(&rq->queuelist, &rq_list);
774 __blk_mq_requeue_request(rq);
775 break;
776 default:
777 pr_err("blk-mq: bad return on queue: %d\n", ret);
778 case BLK_MQ_RQ_QUEUE_ERROR:
779 rq->errors = -EIO;
780 blk_mq_end_io(rq, rq->errors);
781 break;
782 }
783
784 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
785 break;
786 }
787
788 if (!queued)
789 hctx->dispatched[0]++;
790 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
791 hctx->dispatched[ilog2(queued) + 1]++;
792
793 /*
794 * Any items that need requeuing? Stuff them into hctx->dispatch,
795 * that is where we will continue on next queue run.
796 */
797 if (!list_empty(&rq_list)) {
798 spin_lock(&hctx->lock);
799 list_splice(&rq_list, &hctx->dispatch);
800 spin_unlock(&hctx->lock);
801 }
802 }
803
804 /*
805 * It'd be great if the workqueue API had a way to pass
806 * in a mask and had some smarts for more clever placement.
807 * For now we just round-robin here, switching for every
808 * BLK_MQ_CPU_WORK_BATCH queued items.
809 */
810 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
811 {
812 int cpu = hctx->next_cpu;
813
814 if (--hctx->next_cpu_batch <= 0) {
815 int next_cpu;
816
817 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
818 if (next_cpu >= nr_cpu_ids)
819 next_cpu = cpumask_first(hctx->cpumask);
820
821 hctx->next_cpu = next_cpu;
822 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
823 }
824
825 return cpu;
826 }
827
828 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
829 {
830 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
831 return;
832
833 if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
834 __blk_mq_run_hw_queue(hctx);
835 else if (hctx->queue->nr_hw_queues == 1)
836 kblockd_schedule_delayed_work(&hctx->run_work, 0);
837 else {
838 unsigned int cpu;
839
840 cpu = blk_mq_hctx_next_cpu(hctx);
841 kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
842 }
843 }
844
845 void blk_mq_run_queues(struct request_queue *q, bool async)
846 {
847 struct blk_mq_hw_ctx *hctx;
848 int i;
849
850 queue_for_each_hw_ctx(q, hctx, i) {
851 if ((!blk_mq_hctx_has_pending(hctx) &&
852 list_empty_careful(&hctx->dispatch)) ||
853 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
854 continue;
855
856 preempt_disable();
857 blk_mq_run_hw_queue(hctx, async);
858 preempt_enable();
859 }
860 }
861 EXPORT_SYMBOL(blk_mq_run_queues);
862
863 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
864 {
865 cancel_delayed_work(&hctx->run_work);
866 cancel_delayed_work(&hctx->delay_work);
867 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
868 }
869 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
870
871 void blk_mq_stop_hw_queues(struct request_queue *q)
872 {
873 struct blk_mq_hw_ctx *hctx;
874 int i;
875
876 queue_for_each_hw_ctx(q, hctx, i)
877 blk_mq_stop_hw_queue(hctx);
878 }
879 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
880
881 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
882 {
883 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
884
885 preempt_disable();
886 __blk_mq_run_hw_queue(hctx);
887 preempt_enable();
888 }
889 EXPORT_SYMBOL(blk_mq_start_hw_queue);
890
891 void blk_mq_start_hw_queues(struct request_queue *q)
892 {
893 struct blk_mq_hw_ctx *hctx;
894 int i;
895
896 queue_for_each_hw_ctx(q, hctx, i)
897 blk_mq_start_hw_queue(hctx);
898 }
899 EXPORT_SYMBOL(blk_mq_start_hw_queues);
900
901
902 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
903 {
904 struct blk_mq_hw_ctx *hctx;
905 int i;
906
907 queue_for_each_hw_ctx(q, hctx, i) {
908 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
909 continue;
910
911 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
912 preempt_disable();
913 blk_mq_run_hw_queue(hctx, async);
914 preempt_enable();
915 }
916 }
917 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
918
919 static void blk_mq_run_work_fn(struct work_struct *work)
920 {
921 struct blk_mq_hw_ctx *hctx;
922
923 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
924
925 __blk_mq_run_hw_queue(hctx);
926 }
927
928 static void blk_mq_delay_work_fn(struct work_struct *work)
929 {
930 struct blk_mq_hw_ctx *hctx;
931
932 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
933
934 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
935 __blk_mq_run_hw_queue(hctx);
936 }
937
938 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
939 {
940 unsigned long tmo = msecs_to_jiffies(msecs);
941
942 if (hctx->queue->nr_hw_queues == 1)
943 kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
944 else {
945 unsigned int cpu;
946
947 cpu = blk_mq_hctx_next_cpu(hctx);
948 kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
949 }
950 }
951 EXPORT_SYMBOL(blk_mq_delay_queue);
952
953 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
954 struct request *rq, bool at_head)
955 {
956 struct blk_mq_ctx *ctx = rq->mq_ctx;
957
958 trace_block_rq_insert(hctx->queue, rq);
959
960 if (at_head)
961 list_add(&rq->queuelist, &ctx->rq_list);
962 else
963 list_add_tail(&rq->queuelist, &ctx->rq_list);
964
965 blk_mq_hctx_mark_pending(hctx, ctx);
966 }
967
968 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
969 bool async)
970 {
971 struct request_queue *q = rq->q;
972 struct blk_mq_hw_ctx *hctx;
973 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
974
975 current_ctx = blk_mq_get_ctx(q);
976 if (!cpu_online(ctx->cpu))
977 rq->mq_ctx = ctx = current_ctx;
978
979 hctx = q->mq_ops->map_queue(q, ctx->cpu);
980
981 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA) &&
982 !(rq->cmd_flags & (REQ_FLUSH_SEQ))) {
983 blk_insert_flush(rq);
984 } else {
985 spin_lock(&ctx->lock);
986 __blk_mq_insert_request(hctx, rq, at_head);
987 spin_unlock(&ctx->lock);
988 }
989
990 if (run_queue)
991 blk_mq_run_hw_queue(hctx, async);
992
993 blk_mq_put_ctx(current_ctx);
994 }
995
996 static void blk_mq_insert_requests(struct request_queue *q,
997 struct blk_mq_ctx *ctx,
998 struct list_head *list,
999 int depth,
1000 bool from_schedule)
1001
1002 {
1003 struct blk_mq_hw_ctx *hctx;
1004 struct blk_mq_ctx *current_ctx;
1005
1006 trace_block_unplug(q, depth, !from_schedule);
1007
1008 current_ctx = blk_mq_get_ctx(q);
1009
1010 if (!cpu_online(ctx->cpu))
1011 ctx = current_ctx;
1012 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1013
1014 /*
1015 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1016 * offline now
1017 */
1018 spin_lock(&ctx->lock);
1019 while (!list_empty(list)) {
1020 struct request *rq;
1021
1022 rq = list_first_entry(list, struct request, queuelist);
1023 list_del_init(&rq->queuelist);
1024 rq->mq_ctx = ctx;
1025 __blk_mq_insert_request(hctx, rq, false);
1026 }
1027 spin_unlock(&ctx->lock);
1028
1029 blk_mq_run_hw_queue(hctx, from_schedule);
1030 blk_mq_put_ctx(current_ctx);
1031 }
1032
1033 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1034 {
1035 struct request *rqa = container_of(a, struct request, queuelist);
1036 struct request *rqb = container_of(b, struct request, queuelist);
1037
1038 return !(rqa->mq_ctx < rqb->mq_ctx ||
1039 (rqa->mq_ctx == rqb->mq_ctx &&
1040 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1041 }
1042
1043 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1044 {
1045 struct blk_mq_ctx *this_ctx;
1046 struct request_queue *this_q;
1047 struct request *rq;
1048 LIST_HEAD(list);
1049 LIST_HEAD(ctx_list);
1050 unsigned int depth;
1051
1052 list_splice_init(&plug->mq_list, &list);
1053
1054 list_sort(NULL, &list, plug_ctx_cmp);
1055
1056 this_q = NULL;
1057 this_ctx = NULL;
1058 depth = 0;
1059
1060 while (!list_empty(&list)) {
1061 rq = list_entry_rq(list.next);
1062 list_del_init(&rq->queuelist);
1063 BUG_ON(!rq->q);
1064 if (rq->mq_ctx != this_ctx) {
1065 if (this_ctx) {
1066 blk_mq_insert_requests(this_q, this_ctx,
1067 &ctx_list, depth,
1068 from_schedule);
1069 }
1070
1071 this_ctx = rq->mq_ctx;
1072 this_q = rq->q;
1073 depth = 0;
1074 }
1075
1076 depth++;
1077 list_add_tail(&rq->queuelist, &ctx_list);
1078 }
1079
1080 /*
1081 * If 'this_ctx' is set, we know we have entries to complete
1082 * on 'ctx_list'. Do those.
1083 */
1084 if (this_ctx) {
1085 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1086 from_schedule);
1087 }
1088 }
1089
1090 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1091 {
1092 init_request_from_bio(rq, bio);
1093
1094 if (blk_do_io_stat(rq))
1095 blk_account_io_start(rq, 1);
1096 }
1097
1098 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1099 struct blk_mq_ctx *ctx,
1100 struct request *rq, struct bio *bio)
1101 {
1102 struct request_queue *q = hctx->queue;
1103
1104 if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE)) {
1105 blk_mq_bio_to_request(rq, bio);
1106 spin_lock(&ctx->lock);
1107 insert_rq:
1108 __blk_mq_insert_request(hctx, rq, false);
1109 spin_unlock(&ctx->lock);
1110 return false;
1111 } else {
1112 spin_lock(&ctx->lock);
1113 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1114 blk_mq_bio_to_request(rq, bio);
1115 goto insert_rq;
1116 }
1117
1118 spin_unlock(&ctx->lock);
1119 __blk_mq_free_request(hctx, ctx, rq);
1120 return true;
1121 }
1122 }
1123
1124 struct blk_map_ctx {
1125 struct blk_mq_hw_ctx *hctx;
1126 struct blk_mq_ctx *ctx;
1127 };
1128
1129 static struct request *blk_mq_map_request(struct request_queue *q,
1130 struct bio *bio,
1131 struct blk_map_ctx *data)
1132 {
1133 struct blk_mq_hw_ctx *hctx;
1134 struct blk_mq_ctx *ctx;
1135 struct request *rq;
1136 int rw = bio_data_dir(bio);
1137 struct blk_mq_alloc_data alloc_data;
1138
1139 if (unlikely(blk_mq_queue_enter(q))) {
1140 bio_endio(bio, -EIO);
1141 return NULL;
1142 }
1143
1144 ctx = blk_mq_get_ctx(q);
1145 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1146
1147 if (rw_is_sync(bio->bi_rw))
1148 rw |= REQ_SYNC;
1149
1150 trace_block_getrq(q, bio, rw);
1151 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1152 hctx);
1153 rq = __blk_mq_alloc_request(&alloc_data, rw);
1154 if (unlikely(!rq)) {
1155 __blk_mq_run_hw_queue(hctx);
1156 blk_mq_put_ctx(ctx);
1157 trace_block_sleeprq(q, bio, rw);
1158
1159 ctx = blk_mq_get_ctx(q);
1160 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1161 blk_mq_set_alloc_data(&alloc_data, q,
1162 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1163 rq = __blk_mq_alloc_request(&alloc_data, rw);
1164 ctx = alloc_data.ctx;
1165 hctx = alloc_data.hctx;
1166 }
1167
1168 hctx->queued++;
1169 data->hctx = hctx;
1170 data->ctx = ctx;
1171 return rq;
1172 }
1173
1174 /*
1175 * Multiple hardware queue variant. This will not use per-process plugs,
1176 * but will attempt to bypass the hctx queueing if we can go straight to
1177 * hardware for SYNC IO.
1178 */
1179 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1180 {
1181 const int is_sync = rw_is_sync(bio->bi_rw);
1182 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1183 struct blk_map_ctx data;
1184 struct request *rq;
1185
1186 blk_queue_bounce(q, &bio);
1187
1188 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1189 bio_endio(bio, -EIO);
1190 return;
1191 }
1192
1193 rq = blk_mq_map_request(q, bio, &data);
1194 if (unlikely(!rq))
1195 return;
1196
1197 if (unlikely(is_flush_fua)) {
1198 blk_mq_bio_to_request(rq, bio);
1199 blk_insert_flush(rq);
1200 goto run_queue;
1201 }
1202
1203 if (is_sync) {
1204 int ret;
1205
1206 blk_mq_bio_to_request(rq, bio);
1207 blk_mq_start_request(rq, true);
1208
1209 /*
1210 * For OK queue, we are done. For error, kill it. Any other
1211 * error (busy), just add it to our list as we previously
1212 * would have done
1213 */
1214 ret = q->mq_ops->queue_rq(data.hctx, rq);
1215 if (ret == BLK_MQ_RQ_QUEUE_OK)
1216 goto done;
1217 else {
1218 __blk_mq_requeue_request(rq);
1219
1220 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1221 rq->errors = -EIO;
1222 blk_mq_end_io(rq, rq->errors);
1223 goto done;
1224 }
1225 }
1226 }
1227
1228 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1229 /*
1230 * For a SYNC request, send it to the hardware immediately. For
1231 * an ASYNC request, just ensure that we run it later on. The
1232 * latter allows for merging opportunities and more efficient
1233 * dispatching.
1234 */
1235 run_queue:
1236 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1237 }
1238 done:
1239 blk_mq_put_ctx(data.ctx);
1240 }
1241
1242 /*
1243 * Single hardware queue variant. This will attempt to use any per-process
1244 * plug for merging and IO deferral.
1245 */
1246 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1247 {
1248 const int is_sync = rw_is_sync(bio->bi_rw);
1249 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1250 unsigned int use_plug, request_count = 0;
1251 struct blk_map_ctx data;
1252 struct request *rq;
1253
1254 /*
1255 * If we have multiple hardware queues, just go directly to
1256 * one of those for sync IO.
1257 */
1258 use_plug = !is_flush_fua && !is_sync;
1259
1260 blk_queue_bounce(q, &bio);
1261
1262 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1263 bio_endio(bio, -EIO);
1264 return;
1265 }
1266
1267 if (use_plug && !blk_queue_nomerges(q) &&
1268 blk_attempt_plug_merge(q, bio, &request_count))
1269 return;
1270
1271 rq = blk_mq_map_request(q, bio, &data);
1272 if (unlikely(!rq))
1273 return;
1274
1275 if (unlikely(is_flush_fua)) {
1276 blk_mq_bio_to_request(rq, bio);
1277 blk_insert_flush(rq);
1278 goto run_queue;
1279 }
1280
1281 /*
1282 * A task plug currently exists. Since this is completely lockless,
1283 * utilize that to temporarily store requests until the task is
1284 * either done or scheduled away.
1285 */
1286 if (use_plug) {
1287 struct blk_plug *plug = current->plug;
1288
1289 if (plug) {
1290 blk_mq_bio_to_request(rq, bio);
1291 if (list_empty(&plug->mq_list))
1292 trace_block_plug(q);
1293 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1294 blk_flush_plug_list(plug, false);
1295 trace_block_plug(q);
1296 }
1297 list_add_tail(&rq->queuelist, &plug->mq_list);
1298 blk_mq_put_ctx(data.ctx);
1299 return;
1300 }
1301 }
1302
1303 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1304 /*
1305 * For a SYNC request, send it to the hardware immediately. For
1306 * an ASYNC request, just ensure that we run it later on. The
1307 * latter allows for merging opportunities and more efficient
1308 * dispatching.
1309 */
1310 run_queue:
1311 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1312 }
1313
1314 blk_mq_put_ctx(data.ctx);
1315 }
1316
1317 /*
1318 * Default mapping to a software queue, since we use one per CPU.
1319 */
1320 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1321 {
1322 return q->queue_hw_ctx[q->mq_map[cpu]];
1323 }
1324 EXPORT_SYMBOL(blk_mq_map_queue);
1325
1326 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1327 struct blk_mq_tags *tags, unsigned int hctx_idx)
1328 {
1329 struct page *page;
1330
1331 if (tags->rqs && set->ops->exit_request) {
1332 int i;
1333
1334 for (i = 0; i < tags->nr_tags; i++) {
1335 if (!tags->rqs[i])
1336 continue;
1337 set->ops->exit_request(set->driver_data, tags->rqs[i],
1338 hctx_idx, i);
1339 }
1340 }
1341
1342 while (!list_empty(&tags->page_list)) {
1343 page = list_first_entry(&tags->page_list, struct page, lru);
1344 list_del_init(&page->lru);
1345 __free_pages(page, page->private);
1346 }
1347
1348 kfree(tags->rqs);
1349
1350 blk_mq_free_tags(tags);
1351 }
1352
1353 static size_t order_to_size(unsigned int order)
1354 {
1355 return (size_t)PAGE_SIZE << order;
1356 }
1357
1358 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1359 unsigned int hctx_idx)
1360 {
1361 struct blk_mq_tags *tags;
1362 unsigned int i, j, entries_per_page, max_order = 4;
1363 size_t rq_size, left;
1364
1365 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1366 set->numa_node);
1367 if (!tags)
1368 return NULL;
1369
1370 INIT_LIST_HEAD(&tags->page_list);
1371
1372 tags->rqs = kmalloc_node(set->queue_depth * sizeof(struct request *),
1373 GFP_KERNEL, set->numa_node);
1374 if (!tags->rqs) {
1375 blk_mq_free_tags(tags);
1376 return NULL;
1377 }
1378
1379 /*
1380 * rq_size is the size of the request plus driver payload, rounded
1381 * to the cacheline size
1382 */
1383 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1384 cache_line_size());
1385 left = rq_size * set->queue_depth;
1386
1387 for (i = 0; i < set->queue_depth; ) {
1388 int this_order = max_order;
1389 struct page *page;
1390 int to_do;
1391 void *p;
1392
1393 while (left < order_to_size(this_order - 1) && this_order)
1394 this_order--;
1395
1396 do {
1397 page = alloc_pages_node(set->numa_node, GFP_KERNEL,
1398 this_order);
1399 if (page)
1400 break;
1401 if (!this_order--)
1402 break;
1403 if (order_to_size(this_order) < rq_size)
1404 break;
1405 } while (1);
1406
1407 if (!page)
1408 goto fail;
1409
1410 page->private = this_order;
1411 list_add_tail(&page->lru, &tags->page_list);
1412
1413 p = page_address(page);
1414 entries_per_page = order_to_size(this_order) / rq_size;
1415 to_do = min(entries_per_page, set->queue_depth - i);
1416 left -= to_do * rq_size;
1417 for (j = 0; j < to_do; j++) {
1418 tags->rqs[i] = p;
1419 if (set->ops->init_request) {
1420 if (set->ops->init_request(set->driver_data,
1421 tags->rqs[i], hctx_idx, i,
1422 set->numa_node))
1423 goto fail;
1424 }
1425
1426 p += rq_size;
1427 i++;
1428 }
1429 }
1430
1431 return tags;
1432
1433 fail:
1434 pr_warn("%s: failed to allocate requests\n", __func__);
1435 blk_mq_free_rq_map(set, tags, hctx_idx);
1436 return NULL;
1437 }
1438
1439 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1440 {
1441 kfree(bitmap->map);
1442 }
1443
1444 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1445 {
1446 unsigned int bpw = 8, total, num_maps, i;
1447
1448 bitmap->bits_per_word = bpw;
1449
1450 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1451 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1452 GFP_KERNEL, node);
1453 if (!bitmap->map)
1454 return -ENOMEM;
1455
1456 bitmap->map_size = num_maps;
1457
1458 total = nr_cpu_ids;
1459 for (i = 0; i < num_maps; i++) {
1460 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1461 total -= bitmap->map[i].depth;
1462 }
1463
1464 return 0;
1465 }
1466
1467 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1468 {
1469 struct request_queue *q = hctx->queue;
1470 struct blk_mq_ctx *ctx;
1471 LIST_HEAD(tmp);
1472
1473 /*
1474 * Move ctx entries to new CPU, if this one is going away.
1475 */
1476 ctx = __blk_mq_get_ctx(q, cpu);
1477
1478 spin_lock(&ctx->lock);
1479 if (!list_empty(&ctx->rq_list)) {
1480 list_splice_init(&ctx->rq_list, &tmp);
1481 blk_mq_hctx_clear_pending(hctx, ctx);
1482 }
1483 spin_unlock(&ctx->lock);
1484
1485 if (list_empty(&tmp))
1486 return NOTIFY_OK;
1487
1488 ctx = blk_mq_get_ctx(q);
1489 spin_lock(&ctx->lock);
1490
1491 while (!list_empty(&tmp)) {
1492 struct request *rq;
1493
1494 rq = list_first_entry(&tmp, struct request, queuelist);
1495 rq->mq_ctx = ctx;
1496 list_move_tail(&rq->queuelist, &ctx->rq_list);
1497 }
1498
1499 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1500 blk_mq_hctx_mark_pending(hctx, ctx);
1501
1502 spin_unlock(&ctx->lock);
1503
1504 blk_mq_run_hw_queue(hctx, true);
1505 blk_mq_put_ctx(ctx);
1506 return NOTIFY_OK;
1507 }
1508
1509 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1510 {
1511 struct request_queue *q = hctx->queue;
1512 struct blk_mq_tag_set *set = q->tag_set;
1513
1514 if (set->tags[hctx->queue_num])
1515 return NOTIFY_OK;
1516
1517 set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1518 if (!set->tags[hctx->queue_num])
1519 return NOTIFY_STOP;
1520
1521 hctx->tags = set->tags[hctx->queue_num];
1522 return NOTIFY_OK;
1523 }
1524
1525 static int blk_mq_hctx_notify(void *data, unsigned long action,
1526 unsigned int cpu)
1527 {
1528 struct blk_mq_hw_ctx *hctx = data;
1529
1530 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1531 return blk_mq_hctx_cpu_offline(hctx, cpu);
1532 else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1533 return blk_mq_hctx_cpu_online(hctx, cpu);
1534
1535 return NOTIFY_OK;
1536 }
1537
1538 static void blk_mq_exit_hw_queues(struct request_queue *q,
1539 struct blk_mq_tag_set *set, int nr_queue)
1540 {
1541 struct blk_mq_hw_ctx *hctx;
1542 unsigned int i;
1543
1544 queue_for_each_hw_ctx(q, hctx, i) {
1545 if (i == nr_queue)
1546 break;
1547
1548 blk_mq_tag_idle(hctx);
1549
1550 if (set->ops->exit_hctx)
1551 set->ops->exit_hctx(hctx, i);
1552
1553 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1554 kfree(hctx->ctxs);
1555 blk_mq_free_bitmap(&hctx->ctx_map);
1556 }
1557
1558 }
1559
1560 static void blk_mq_free_hw_queues(struct request_queue *q,
1561 struct blk_mq_tag_set *set)
1562 {
1563 struct blk_mq_hw_ctx *hctx;
1564 unsigned int i;
1565
1566 queue_for_each_hw_ctx(q, hctx, i) {
1567 free_cpumask_var(hctx->cpumask);
1568 kfree(hctx);
1569 }
1570 }
1571
1572 static int blk_mq_init_hw_queues(struct request_queue *q,
1573 struct blk_mq_tag_set *set)
1574 {
1575 struct blk_mq_hw_ctx *hctx;
1576 unsigned int i;
1577
1578 /*
1579 * Initialize hardware queues
1580 */
1581 queue_for_each_hw_ctx(q, hctx, i) {
1582 int node;
1583
1584 node = hctx->numa_node;
1585 if (node == NUMA_NO_NODE)
1586 node = hctx->numa_node = set->numa_node;
1587
1588 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1589 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1590 spin_lock_init(&hctx->lock);
1591 INIT_LIST_HEAD(&hctx->dispatch);
1592 hctx->queue = q;
1593 hctx->queue_num = i;
1594 hctx->flags = set->flags;
1595 hctx->cmd_size = set->cmd_size;
1596
1597 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1598 blk_mq_hctx_notify, hctx);
1599 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1600
1601 hctx->tags = set->tags[i];
1602
1603 /*
1604 * Allocate space for all possible cpus to avoid allocation in
1605 * runtime
1606 */
1607 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1608 GFP_KERNEL, node);
1609 if (!hctx->ctxs)
1610 break;
1611
1612 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1613 break;
1614
1615 hctx->nr_ctx = 0;
1616
1617 if (set->ops->init_hctx &&
1618 set->ops->init_hctx(hctx, set->driver_data, i))
1619 break;
1620 }
1621
1622 if (i == q->nr_hw_queues)
1623 return 0;
1624
1625 /*
1626 * Init failed
1627 */
1628 blk_mq_exit_hw_queues(q, set, i);
1629
1630 return 1;
1631 }
1632
1633 static void blk_mq_init_cpu_queues(struct request_queue *q,
1634 unsigned int nr_hw_queues)
1635 {
1636 unsigned int i;
1637
1638 for_each_possible_cpu(i) {
1639 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1640 struct blk_mq_hw_ctx *hctx;
1641
1642 memset(__ctx, 0, sizeof(*__ctx));
1643 __ctx->cpu = i;
1644 spin_lock_init(&__ctx->lock);
1645 INIT_LIST_HEAD(&__ctx->rq_list);
1646 __ctx->queue = q;
1647
1648 /* If the cpu isn't online, the cpu is mapped to first hctx */
1649 if (!cpu_online(i))
1650 continue;
1651
1652 hctx = q->mq_ops->map_queue(q, i);
1653 cpumask_set_cpu(i, hctx->cpumask);
1654 hctx->nr_ctx++;
1655
1656 /*
1657 * Set local node, IFF we have more than one hw queue. If
1658 * not, we remain on the home node of the device
1659 */
1660 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1661 hctx->numa_node = cpu_to_node(i);
1662 }
1663 }
1664
1665 static void blk_mq_map_swqueue(struct request_queue *q)
1666 {
1667 unsigned int i;
1668 struct blk_mq_hw_ctx *hctx;
1669 struct blk_mq_ctx *ctx;
1670
1671 queue_for_each_hw_ctx(q, hctx, i) {
1672 cpumask_clear(hctx->cpumask);
1673 hctx->nr_ctx = 0;
1674 }
1675
1676 /*
1677 * Map software to hardware queues
1678 */
1679 queue_for_each_ctx(q, ctx, i) {
1680 /* If the cpu isn't online, the cpu is mapped to first hctx */
1681 if (!cpu_online(i))
1682 continue;
1683
1684 hctx = q->mq_ops->map_queue(q, i);
1685 cpumask_set_cpu(i, hctx->cpumask);
1686 ctx->index_hw = hctx->nr_ctx;
1687 hctx->ctxs[hctx->nr_ctx++] = ctx;
1688 }
1689
1690 queue_for_each_hw_ctx(q, hctx, i) {
1691 /*
1692 * If not software queues are mapped to this hardware queue,
1693 * disable it and free the request entries
1694 */
1695 if (!hctx->nr_ctx) {
1696 struct blk_mq_tag_set *set = q->tag_set;
1697
1698 if (set->tags[i]) {
1699 blk_mq_free_rq_map(set, set->tags[i], i);
1700 set->tags[i] = NULL;
1701 hctx->tags = NULL;
1702 }
1703 continue;
1704 }
1705
1706 /*
1707 * Initialize batch roundrobin counts
1708 */
1709 hctx->next_cpu = cpumask_first(hctx->cpumask);
1710 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1711 }
1712 }
1713
1714 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1715 {
1716 struct blk_mq_hw_ctx *hctx;
1717 struct request_queue *q;
1718 bool shared;
1719 int i;
1720
1721 if (set->tag_list.next == set->tag_list.prev)
1722 shared = false;
1723 else
1724 shared = true;
1725
1726 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1727 blk_mq_freeze_queue(q);
1728
1729 queue_for_each_hw_ctx(q, hctx, i) {
1730 if (shared)
1731 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1732 else
1733 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1734 }
1735 blk_mq_unfreeze_queue(q);
1736 }
1737 }
1738
1739 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1740 {
1741 struct blk_mq_tag_set *set = q->tag_set;
1742
1743 blk_mq_freeze_queue(q);
1744
1745 mutex_lock(&set->tag_list_lock);
1746 list_del_init(&q->tag_set_list);
1747 blk_mq_update_tag_set_depth(set);
1748 mutex_unlock(&set->tag_list_lock);
1749
1750 blk_mq_unfreeze_queue(q);
1751 }
1752
1753 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1754 struct request_queue *q)
1755 {
1756 q->tag_set = set;
1757
1758 mutex_lock(&set->tag_list_lock);
1759 list_add_tail(&q->tag_set_list, &set->tag_list);
1760 blk_mq_update_tag_set_depth(set);
1761 mutex_unlock(&set->tag_list_lock);
1762 }
1763
1764 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1765 {
1766 struct blk_mq_hw_ctx **hctxs;
1767 struct blk_mq_ctx __percpu *ctx;
1768 struct request_queue *q;
1769 unsigned int *map;
1770 int i;
1771
1772 ctx = alloc_percpu(struct blk_mq_ctx);
1773 if (!ctx)
1774 return ERR_PTR(-ENOMEM);
1775
1776 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1777 set->numa_node);
1778
1779 if (!hctxs)
1780 goto err_percpu;
1781
1782 map = blk_mq_make_queue_map(set);
1783 if (!map)
1784 goto err_map;
1785
1786 for (i = 0; i < set->nr_hw_queues; i++) {
1787 int node = blk_mq_hw_queue_to_node(map, i);
1788
1789 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1790 GFP_KERNEL, node);
1791 if (!hctxs[i])
1792 goto err_hctxs;
1793
1794 if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
1795 goto err_hctxs;
1796
1797 atomic_set(&hctxs[i]->nr_active, 0);
1798 hctxs[i]->numa_node = node;
1799 hctxs[i]->queue_num = i;
1800 }
1801
1802 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1803 if (!q)
1804 goto err_hctxs;
1805
1806 if (percpu_counter_init(&q->mq_usage_counter, 0))
1807 goto err_map;
1808
1809 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1810 blk_queue_rq_timeout(q, 30000);
1811
1812 q->nr_queues = nr_cpu_ids;
1813 q->nr_hw_queues = set->nr_hw_queues;
1814 q->mq_map = map;
1815
1816 q->queue_ctx = ctx;
1817 q->queue_hw_ctx = hctxs;
1818
1819 q->mq_ops = set->ops;
1820 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1821
1822 if (!(set->flags & BLK_MQ_F_SG_MERGE))
1823 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1824
1825 q->sg_reserved_size = INT_MAX;
1826
1827 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1828 INIT_LIST_HEAD(&q->requeue_list);
1829 spin_lock_init(&q->requeue_lock);
1830
1831 if (q->nr_hw_queues > 1)
1832 blk_queue_make_request(q, blk_mq_make_request);
1833 else
1834 blk_queue_make_request(q, blk_sq_make_request);
1835
1836 blk_queue_rq_timed_out(q, blk_mq_rq_timed_out);
1837 if (set->timeout)
1838 blk_queue_rq_timeout(q, set->timeout);
1839
1840 /*
1841 * Do this after blk_queue_make_request() overrides it...
1842 */
1843 q->nr_requests = set->queue_depth;
1844
1845 if (set->ops->complete)
1846 blk_queue_softirq_done(q, set->ops->complete);
1847
1848 blk_mq_init_flush(q);
1849 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1850
1851 q->flush_rq = kzalloc(round_up(sizeof(struct request) +
1852 set->cmd_size, cache_line_size()),
1853 GFP_KERNEL);
1854 if (!q->flush_rq)
1855 goto err_hw;
1856
1857 if (blk_mq_init_hw_queues(q, set))
1858 goto err_flush_rq;
1859
1860 mutex_lock(&all_q_mutex);
1861 list_add_tail(&q->all_q_node, &all_q_list);
1862 mutex_unlock(&all_q_mutex);
1863
1864 blk_mq_add_queue_tag_set(set, q);
1865
1866 blk_mq_map_swqueue(q);
1867
1868 return q;
1869
1870 err_flush_rq:
1871 kfree(q->flush_rq);
1872 err_hw:
1873 blk_cleanup_queue(q);
1874 err_hctxs:
1875 kfree(map);
1876 for (i = 0; i < set->nr_hw_queues; i++) {
1877 if (!hctxs[i])
1878 break;
1879 free_cpumask_var(hctxs[i]->cpumask);
1880 kfree(hctxs[i]);
1881 }
1882 err_map:
1883 kfree(hctxs);
1884 err_percpu:
1885 free_percpu(ctx);
1886 return ERR_PTR(-ENOMEM);
1887 }
1888 EXPORT_SYMBOL(blk_mq_init_queue);
1889
1890 void blk_mq_free_queue(struct request_queue *q)
1891 {
1892 struct blk_mq_tag_set *set = q->tag_set;
1893
1894 blk_mq_del_queue_tag_set(q);
1895
1896 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
1897 blk_mq_free_hw_queues(q, set);
1898
1899 percpu_counter_destroy(&q->mq_usage_counter);
1900
1901 free_percpu(q->queue_ctx);
1902 kfree(q->queue_hw_ctx);
1903 kfree(q->mq_map);
1904
1905 q->queue_ctx = NULL;
1906 q->queue_hw_ctx = NULL;
1907 q->mq_map = NULL;
1908
1909 mutex_lock(&all_q_mutex);
1910 list_del_init(&q->all_q_node);
1911 mutex_unlock(&all_q_mutex);
1912 }
1913
1914 /* Basically redo blk_mq_init_queue with queue frozen */
1915 static void blk_mq_queue_reinit(struct request_queue *q)
1916 {
1917 blk_mq_freeze_queue(q);
1918
1919 blk_mq_sysfs_unregister(q);
1920
1921 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1922
1923 /*
1924 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1925 * we should change hctx numa_node according to new topology (this
1926 * involves free and re-allocate memory, worthy doing?)
1927 */
1928
1929 blk_mq_map_swqueue(q);
1930
1931 blk_mq_sysfs_register(q);
1932
1933 blk_mq_unfreeze_queue(q);
1934 }
1935
1936 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1937 unsigned long action, void *hcpu)
1938 {
1939 struct request_queue *q;
1940
1941 /*
1942 * Before new mappings are established, hotadded cpu might already
1943 * start handling requests. This doesn't break anything as we map
1944 * offline CPUs to first hardware queue. We will re-init the queue
1945 * below to get optimal settings.
1946 */
1947 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1948 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1949 return NOTIFY_OK;
1950
1951 mutex_lock(&all_q_mutex);
1952 list_for_each_entry(q, &all_q_list, all_q_node)
1953 blk_mq_queue_reinit(q);
1954 mutex_unlock(&all_q_mutex);
1955 return NOTIFY_OK;
1956 }
1957
1958 /*
1959 * Alloc a tag set to be associated with one or more request queues.
1960 * May fail with EINVAL for various error conditions. May adjust the
1961 * requested depth down, if if it too large. In that case, the set
1962 * value will be stored in set->queue_depth.
1963 */
1964 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
1965 {
1966 int i;
1967
1968 if (!set->nr_hw_queues)
1969 return -EINVAL;
1970 if (!set->queue_depth)
1971 return -EINVAL;
1972 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
1973 return -EINVAL;
1974
1975 if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
1976 return -EINVAL;
1977
1978 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
1979 pr_info("blk-mq: reduced tag depth to %u\n",
1980 BLK_MQ_MAX_DEPTH);
1981 set->queue_depth = BLK_MQ_MAX_DEPTH;
1982 }
1983
1984 set->tags = kmalloc_node(set->nr_hw_queues *
1985 sizeof(struct blk_mq_tags *),
1986 GFP_KERNEL, set->numa_node);
1987 if (!set->tags)
1988 goto out;
1989
1990 for (i = 0; i < set->nr_hw_queues; i++) {
1991 set->tags[i] = blk_mq_init_rq_map(set, i);
1992 if (!set->tags[i])
1993 goto out_unwind;
1994 }
1995
1996 mutex_init(&set->tag_list_lock);
1997 INIT_LIST_HEAD(&set->tag_list);
1998
1999 return 0;
2000
2001 out_unwind:
2002 while (--i >= 0)
2003 blk_mq_free_rq_map(set, set->tags[i], i);
2004 out:
2005 return -ENOMEM;
2006 }
2007 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2008
2009 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2010 {
2011 int i;
2012
2013 for (i = 0; i < set->nr_hw_queues; i++) {
2014 if (set->tags[i])
2015 blk_mq_free_rq_map(set, set->tags[i], i);
2016 }
2017
2018 kfree(set->tags);
2019 }
2020 EXPORT_SYMBOL(blk_mq_free_tag_set);
2021
2022 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2023 {
2024 struct blk_mq_tag_set *set = q->tag_set;
2025 struct blk_mq_hw_ctx *hctx;
2026 int i, ret;
2027
2028 if (!set || nr > set->queue_depth)
2029 return -EINVAL;
2030
2031 ret = 0;
2032 queue_for_each_hw_ctx(q, hctx, i) {
2033 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2034 if (ret)
2035 break;
2036 }
2037
2038 if (!ret)
2039 q->nr_requests = nr;
2040
2041 return ret;
2042 }
2043
2044 void blk_mq_disable_hotplug(void)
2045 {
2046 mutex_lock(&all_q_mutex);
2047 }
2048
2049 void blk_mq_enable_hotplug(void)
2050 {
2051 mutex_unlock(&all_q_mutex);
2052 }
2053
2054 static int __init blk_mq_init(void)
2055 {
2056 blk_mq_cpu_init();
2057
2058 /* Must be called after percpu_counter_hotcpu_callback() */
2059 hotcpu_notifier(blk_mq_queue_reinit_notify, -10);
2060
2061 return 0;
2062 }
2063 subsys_initcall(blk_mq_init);