]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-mq.c
e1d650804c8eee0dcad4483fed62bb4955a48a5b
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static DEFINE_MUTEX(all_q_mutex);
41 static LIST_HEAD(all_q_list);
42
43 static void blk_mq_poll_stats_start(struct request_queue *q);
44 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
45 static void __blk_mq_stop_hw_queues(struct request_queue *q, bool sync);
46
47 static int blk_mq_poll_stats_bkt(const struct request *rq)
48 {
49 int ddir, bytes, bucket;
50
51 ddir = rq_data_dir(rq);
52 bytes = blk_rq_bytes(rq);
53
54 bucket = ddir + 2*(ilog2(bytes) - 9);
55
56 if (bucket < 0)
57 return -1;
58 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
59 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
60
61 return bucket;
62 }
63
64 /*
65 * Check if any of the ctx's have pending work in this hardware queue
66 */
67 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
68 {
69 return sbitmap_any_bit_set(&hctx->ctx_map) ||
70 !list_empty_careful(&hctx->dispatch) ||
71 blk_mq_sched_has_work(hctx);
72 }
73
74 /*
75 * Mark this ctx as having pending work in this hardware queue
76 */
77 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
78 struct blk_mq_ctx *ctx)
79 {
80 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
81 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
82 }
83
84 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
85 struct blk_mq_ctx *ctx)
86 {
87 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
88 }
89
90 void blk_freeze_queue_start(struct request_queue *q)
91 {
92 int freeze_depth;
93
94 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
95 if (freeze_depth == 1) {
96 percpu_ref_kill(&q->q_usage_counter);
97 blk_mq_run_hw_queues(q, false);
98 }
99 }
100 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
101
102 void blk_mq_freeze_queue_wait(struct request_queue *q)
103 {
104 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
105 }
106 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
107
108 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
109 unsigned long timeout)
110 {
111 return wait_event_timeout(q->mq_freeze_wq,
112 percpu_ref_is_zero(&q->q_usage_counter),
113 timeout);
114 }
115 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
116
117 /*
118 * Guarantee no request is in use, so we can change any data structure of
119 * the queue afterward.
120 */
121 void blk_freeze_queue(struct request_queue *q)
122 {
123 /*
124 * In the !blk_mq case we are only calling this to kill the
125 * q_usage_counter, otherwise this increases the freeze depth
126 * and waits for it to return to zero. For this reason there is
127 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
128 * exported to drivers as the only user for unfreeze is blk_mq.
129 */
130 blk_freeze_queue_start(q);
131 blk_mq_freeze_queue_wait(q);
132 }
133
134 void blk_mq_freeze_queue(struct request_queue *q)
135 {
136 /*
137 * ...just an alias to keep freeze and unfreeze actions balanced
138 * in the blk_mq_* namespace
139 */
140 blk_freeze_queue(q);
141 }
142 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
143
144 void blk_mq_unfreeze_queue(struct request_queue *q)
145 {
146 int freeze_depth;
147
148 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
149 WARN_ON_ONCE(freeze_depth < 0);
150 if (!freeze_depth) {
151 percpu_ref_reinit(&q->q_usage_counter);
152 wake_up_all(&q->mq_freeze_wq);
153 }
154 }
155 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
156
157 /**
158 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
159 * @q: request queue.
160 *
161 * Note: this function does not prevent that the struct request end_io()
162 * callback function is invoked. Additionally, it is not prevented that
163 * new queue_rq() calls occur unless the queue has been stopped first.
164 */
165 void blk_mq_quiesce_queue(struct request_queue *q)
166 {
167 struct blk_mq_hw_ctx *hctx;
168 unsigned int i;
169 bool rcu = false;
170
171 __blk_mq_stop_hw_queues(q, true);
172
173 queue_for_each_hw_ctx(q, hctx, i) {
174 if (hctx->flags & BLK_MQ_F_BLOCKING)
175 synchronize_srcu(&hctx->queue_rq_srcu);
176 else
177 rcu = true;
178 }
179 if (rcu)
180 synchronize_rcu();
181 }
182 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
183
184 void blk_mq_wake_waiters(struct request_queue *q)
185 {
186 struct blk_mq_hw_ctx *hctx;
187 unsigned int i;
188
189 queue_for_each_hw_ctx(q, hctx, i)
190 if (blk_mq_hw_queue_mapped(hctx))
191 blk_mq_tag_wakeup_all(hctx->tags, true);
192
193 /*
194 * If we are called because the queue has now been marked as
195 * dying, we need to ensure that processes currently waiting on
196 * the queue are notified as well.
197 */
198 wake_up_all(&q->mq_freeze_wq);
199 }
200
201 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
202 {
203 return blk_mq_has_free_tags(hctx->tags);
204 }
205 EXPORT_SYMBOL(blk_mq_can_queue);
206
207 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
208 struct request *rq, unsigned int op)
209 {
210 INIT_LIST_HEAD(&rq->queuelist);
211 /* csd/requeue_work/fifo_time is initialized before use */
212 rq->q = q;
213 rq->mq_ctx = ctx;
214 rq->cmd_flags = op;
215 if (blk_queue_io_stat(q))
216 rq->rq_flags |= RQF_IO_STAT;
217 /* do not touch atomic flags, it needs atomic ops against the timer */
218 rq->cpu = -1;
219 INIT_HLIST_NODE(&rq->hash);
220 RB_CLEAR_NODE(&rq->rb_node);
221 rq->rq_disk = NULL;
222 rq->part = NULL;
223 rq->start_time = jiffies;
224 #ifdef CONFIG_BLK_CGROUP
225 rq->rl = NULL;
226 set_start_time_ns(rq);
227 rq->io_start_time_ns = 0;
228 #endif
229 rq->nr_phys_segments = 0;
230 #if defined(CONFIG_BLK_DEV_INTEGRITY)
231 rq->nr_integrity_segments = 0;
232 #endif
233 rq->special = NULL;
234 /* tag was already set */
235 rq->extra_len = 0;
236
237 INIT_LIST_HEAD(&rq->timeout_list);
238 rq->timeout = 0;
239
240 rq->end_io = NULL;
241 rq->end_io_data = NULL;
242 rq->next_rq = NULL;
243
244 ctx->rq_dispatched[op_is_sync(op)]++;
245 }
246
247 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
248 unsigned int op)
249 {
250 struct request *rq;
251 unsigned int tag;
252
253 tag = blk_mq_get_tag(data);
254 if (tag != BLK_MQ_TAG_FAIL) {
255 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
256
257 rq = tags->static_rqs[tag];
258
259 if (data->flags & BLK_MQ_REQ_INTERNAL) {
260 rq->tag = -1;
261 rq->internal_tag = tag;
262 } else {
263 if (blk_mq_tag_busy(data->hctx)) {
264 rq->rq_flags = RQF_MQ_INFLIGHT;
265 atomic_inc(&data->hctx->nr_active);
266 }
267 rq->tag = tag;
268 rq->internal_tag = -1;
269 data->hctx->tags->rqs[rq->tag] = rq;
270 }
271
272 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
273 return rq;
274 }
275
276 return NULL;
277 }
278 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
279
280 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
281 unsigned int flags)
282 {
283 struct blk_mq_alloc_data alloc_data = { .flags = flags };
284 struct request *rq;
285 int ret;
286
287 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
288 if (ret)
289 return ERR_PTR(ret);
290
291 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
292
293 blk_mq_put_ctx(alloc_data.ctx);
294 blk_queue_exit(q);
295
296 if (!rq)
297 return ERR_PTR(-EWOULDBLOCK);
298
299 rq->__data_len = 0;
300 rq->__sector = (sector_t) -1;
301 rq->bio = rq->biotail = NULL;
302 return rq;
303 }
304 EXPORT_SYMBOL(blk_mq_alloc_request);
305
306 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
307 unsigned int flags, unsigned int hctx_idx)
308 {
309 struct blk_mq_alloc_data alloc_data = { .flags = flags };
310 struct request *rq;
311 unsigned int cpu;
312 int ret;
313
314 /*
315 * If the tag allocator sleeps we could get an allocation for a
316 * different hardware context. No need to complicate the low level
317 * allocator for this for the rare use case of a command tied to
318 * a specific queue.
319 */
320 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
321 return ERR_PTR(-EINVAL);
322
323 if (hctx_idx >= q->nr_hw_queues)
324 return ERR_PTR(-EIO);
325
326 ret = blk_queue_enter(q, true);
327 if (ret)
328 return ERR_PTR(ret);
329
330 /*
331 * Check if the hardware context is actually mapped to anything.
332 * If not tell the caller that it should skip this queue.
333 */
334 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
335 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
336 blk_queue_exit(q);
337 return ERR_PTR(-EXDEV);
338 }
339 cpu = cpumask_first(alloc_data.hctx->cpumask);
340 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
341
342 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
343
344 blk_queue_exit(q);
345
346 if (!rq)
347 return ERR_PTR(-EWOULDBLOCK);
348
349 return rq;
350 }
351 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
352
353 void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
354 struct request *rq)
355 {
356 const int sched_tag = rq->internal_tag;
357 struct request_queue *q = rq->q;
358
359 if (rq->rq_flags & RQF_MQ_INFLIGHT)
360 atomic_dec(&hctx->nr_active);
361
362 wbt_done(q->rq_wb, &rq->issue_stat);
363 rq->rq_flags = 0;
364
365 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
366 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
367 if (rq->tag != -1)
368 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
369 if (sched_tag != -1)
370 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
371 blk_mq_sched_restart(hctx);
372 blk_queue_exit(q);
373 }
374
375 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
376 struct request *rq)
377 {
378 struct blk_mq_ctx *ctx = rq->mq_ctx;
379
380 ctx->rq_completed[rq_is_sync(rq)]++;
381 __blk_mq_finish_request(hctx, ctx, rq);
382 }
383
384 void blk_mq_finish_request(struct request *rq)
385 {
386 blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
387 }
388 EXPORT_SYMBOL_GPL(blk_mq_finish_request);
389
390 void blk_mq_free_request(struct request *rq)
391 {
392 blk_mq_sched_put_request(rq);
393 }
394 EXPORT_SYMBOL_GPL(blk_mq_free_request);
395
396 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
397 {
398 blk_account_io_done(rq);
399
400 if (rq->end_io) {
401 wbt_done(rq->q->rq_wb, &rq->issue_stat);
402 rq->end_io(rq, error);
403 } else {
404 if (unlikely(blk_bidi_rq(rq)))
405 blk_mq_free_request(rq->next_rq);
406 blk_mq_free_request(rq);
407 }
408 }
409 EXPORT_SYMBOL(__blk_mq_end_request);
410
411 void blk_mq_end_request(struct request *rq, blk_status_t error)
412 {
413 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
414 BUG();
415 __blk_mq_end_request(rq, error);
416 }
417 EXPORT_SYMBOL(blk_mq_end_request);
418
419 static void __blk_mq_complete_request_remote(void *data)
420 {
421 struct request *rq = data;
422
423 rq->q->softirq_done_fn(rq);
424 }
425
426 static void __blk_mq_complete_request(struct request *rq)
427 {
428 struct blk_mq_ctx *ctx = rq->mq_ctx;
429 bool shared = false;
430 int cpu;
431
432 if (rq->internal_tag != -1)
433 blk_mq_sched_completed_request(rq);
434 if (rq->rq_flags & RQF_STATS) {
435 blk_mq_poll_stats_start(rq->q);
436 blk_stat_add(rq);
437 }
438
439 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
440 rq->q->softirq_done_fn(rq);
441 return;
442 }
443
444 cpu = get_cpu();
445 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
446 shared = cpus_share_cache(cpu, ctx->cpu);
447
448 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
449 rq->csd.func = __blk_mq_complete_request_remote;
450 rq->csd.info = rq;
451 rq->csd.flags = 0;
452 smp_call_function_single_async(ctx->cpu, &rq->csd);
453 } else {
454 rq->q->softirq_done_fn(rq);
455 }
456 put_cpu();
457 }
458
459 /**
460 * blk_mq_complete_request - end I/O on a request
461 * @rq: the request being processed
462 *
463 * Description:
464 * Ends all I/O on a request. It does not handle partial completions.
465 * The actual completion happens out-of-order, through a IPI handler.
466 **/
467 void blk_mq_complete_request(struct request *rq)
468 {
469 struct request_queue *q = rq->q;
470
471 if (unlikely(blk_should_fake_timeout(q)))
472 return;
473 if (!blk_mark_rq_complete(rq))
474 __blk_mq_complete_request(rq);
475 }
476 EXPORT_SYMBOL(blk_mq_complete_request);
477
478 int blk_mq_request_started(struct request *rq)
479 {
480 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
481 }
482 EXPORT_SYMBOL_GPL(blk_mq_request_started);
483
484 void blk_mq_start_request(struct request *rq)
485 {
486 struct request_queue *q = rq->q;
487
488 blk_mq_sched_started_request(rq);
489
490 trace_block_rq_issue(q, rq);
491
492 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
493 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
494 rq->rq_flags |= RQF_STATS;
495 wbt_issue(q->rq_wb, &rq->issue_stat);
496 }
497
498 blk_add_timer(rq);
499
500 /*
501 * Ensure that ->deadline is visible before set the started
502 * flag and clear the completed flag.
503 */
504 smp_mb__before_atomic();
505
506 /*
507 * Mark us as started and clear complete. Complete might have been
508 * set if requeue raced with timeout, which then marked it as
509 * complete. So be sure to clear complete again when we start
510 * the request, otherwise we'll ignore the completion event.
511 */
512 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
513 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
514 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
515 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
516
517 if (q->dma_drain_size && blk_rq_bytes(rq)) {
518 /*
519 * Make sure space for the drain appears. We know we can do
520 * this because max_hw_segments has been adjusted to be one
521 * fewer than the device can handle.
522 */
523 rq->nr_phys_segments++;
524 }
525 }
526 EXPORT_SYMBOL(blk_mq_start_request);
527
528 /*
529 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
530 * flag isn't set yet, so there may be race with timeout handler,
531 * but given rq->deadline is just set in .queue_rq() under
532 * this situation, the race won't be possible in reality because
533 * rq->timeout should be set as big enough to cover the window
534 * between blk_mq_start_request() called from .queue_rq() and
535 * clearing REQ_ATOM_STARTED here.
536 */
537 static void __blk_mq_requeue_request(struct request *rq)
538 {
539 struct request_queue *q = rq->q;
540
541 trace_block_rq_requeue(q, rq);
542 wbt_requeue(q->rq_wb, &rq->issue_stat);
543 blk_mq_sched_requeue_request(rq);
544
545 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
546 if (q->dma_drain_size && blk_rq_bytes(rq))
547 rq->nr_phys_segments--;
548 }
549 }
550
551 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
552 {
553 __blk_mq_requeue_request(rq);
554
555 BUG_ON(blk_queued_rq(rq));
556 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
557 }
558 EXPORT_SYMBOL(blk_mq_requeue_request);
559
560 static void blk_mq_requeue_work(struct work_struct *work)
561 {
562 struct request_queue *q =
563 container_of(work, struct request_queue, requeue_work.work);
564 LIST_HEAD(rq_list);
565 struct request *rq, *next;
566 unsigned long flags;
567
568 spin_lock_irqsave(&q->requeue_lock, flags);
569 list_splice_init(&q->requeue_list, &rq_list);
570 spin_unlock_irqrestore(&q->requeue_lock, flags);
571
572 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
573 if (!(rq->rq_flags & RQF_SOFTBARRIER))
574 continue;
575
576 rq->rq_flags &= ~RQF_SOFTBARRIER;
577 list_del_init(&rq->queuelist);
578 blk_mq_sched_insert_request(rq, true, false, false, true);
579 }
580
581 while (!list_empty(&rq_list)) {
582 rq = list_entry(rq_list.next, struct request, queuelist);
583 list_del_init(&rq->queuelist);
584 blk_mq_sched_insert_request(rq, false, false, false, true);
585 }
586
587 blk_mq_run_hw_queues(q, false);
588 }
589
590 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
591 bool kick_requeue_list)
592 {
593 struct request_queue *q = rq->q;
594 unsigned long flags;
595
596 /*
597 * We abuse this flag that is otherwise used by the I/O scheduler to
598 * request head insertation from the workqueue.
599 */
600 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
601
602 spin_lock_irqsave(&q->requeue_lock, flags);
603 if (at_head) {
604 rq->rq_flags |= RQF_SOFTBARRIER;
605 list_add(&rq->queuelist, &q->requeue_list);
606 } else {
607 list_add_tail(&rq->queuelist, &q->requeue_list);
608 }
609 spin_unlock_irqrestore(&q->requeue_lock, flags);
610
611 if (kick_requeue_list)
612 blk_mq_kick_requeue_list(q);
613 }
614 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
615
616 void blk_mq_kick_requeue_list(struct request_queue *q)
617 {
618 kblockd_schedule_delayed_work(&q->requeue_work, 0);
619 }
620 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
621
622 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
623 unsigned long msecs)
624 {
625 kblockd_schedule_delayed_work(&q->requeue_work,
626 msecs_to_jiffies(msecs));
627 }
628 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
629
630 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
631 {
632 if (tag < tags->nr_tags) {
633 prefetch(tags->rqs[tag]);
634 return tags->rqs[tag];
635 }
636
637 return NULL;
638 }
639 EXPORT_SYMBOL(blk_mq_tag_to_rq);
640
641 struct blk_mq_timeout_data {
642 unsigned long next;
643 unsigned int next_set;
644 };
645
646 void blk_mq_rq_timed_out(struct request *req, bool reserved)
647 {
648 const struct blk_mq_ops *ops = req->q->mq_ops;
649 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
650
651 /*
652 * We know that complete is set at this point. If STARTED isn't set
653 * anymore, then the request isn't active and the "timeout" should
654 * just be ignored. This can happen due to the bitflag ordering.
655 * Timeout first checks if STARTED is set, and if it is, assumes
656 * the request is active. But if we race with completion, then
657 * both flags will get cleared. So check here again, and ignore
658 * a timeout event with a request that isn't active.
659 */
660 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
661 return;
662
663 if (ops->timeout)
664 ret = ops->timeout(req, reserved);
665
666 switch (ret) {
667 case BLK_EH_HANDLED:
668 __blk_mq_complete_request(req);
669 break;
670 case BLK_EH_RESET_TIMER:
671 blk_add_timer(req);
672 blk_clear_rq_complete(req);
673 break;
674 case BLK_EH_NOT_HANDLED:
675 break;
676 default:
677 printk(KERN_ERR "block: bad eh return: %d\n", ret);
678 break;
679 }
680 }
681
682 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
683 struct request *rq, void *priv, bool reserved)
684 {
685 struct blk_mq_timeout_data *data = priv;
686
687 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
688 return;
689
690 /*
691 * The rq being checked may have been freed and reallocated
692 * out already here, we avoid this race by checking rq->deadline
693 * and REQ_ATOM_COMPLETE flag together:
694 *
695 * - if rq->deadline is observed as new value because of
696 * reusing, the rq won't be timed out because of timing.
697 * - if rq->deadline is observed as previous value,
698 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
699 * because we put a barrier between setting rq->deadline
700 * and clearing the flag in blk_mq_start_request(), so
701 * this rq won't be timed out too.
702 */
703 if (time_after_eq(jiffies, rq->deadline)) {
704 if (!blk_mark_rq_complete(rq))
705 blk_mq_rq_timed_out(rq, reserved);
706 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
707 data->next = rq->deadline;
708 data->next_set = 1;
709 }
710 }
711
712 static void blk_mq_timeout_work(struct work_struct *work)
713 {
714 struct request_queue *q =
715 container_of(work, struct request_queue, timeout_work);
716 struct blk_mq_timeout_data data = {
717 .next = 0,
718 .next_set = 0,
719 };
720 int i;
721
722 /* A deadlock might occur if a request is stuck requiring a
723 * timeout at the same time a queue freeze is waiting
724 * completion, since the timeout code would not be able to
725 * acquire the queue reference here.
726 *
727 * That's why we don't use blk_queue_enter here; instead, we use
728 * percpu_ref_tryget directly, because we need to be able to
729 * obtain a reference even in the short window between the queue
730 * starting to freeze, by dropping the first reference in
731 * blk_freeze_queue_start, and the moment the last request is
732 * consumed, marked by the instant q_usage_counter reaches
733 * zero.
734 */
735 if (!percpu_ref_tryget(&q->q_usage_counter))
736 return;
737
738 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
739
740 if (data.next_set) {
741 data.next = blk_rq_timeout(round_jiffies_up(data.next));
742 mod_timer(&q->timeout, data.next);
743 } else {
744 struct blk_mq_hw_ctx *hctx;
745
746 queue_for_each_hw_ctx(q, hctx, i) {
747 /* the hctx may be unmapped, so check it here */
748 if (blk_mq_hw_queue_mapped(hctx))
749 blk_mq_tag_idle(hctx);
750 }
751 }
752 blk_queue_exit(q);
753 }
754
755 struct flush_busy_ctx_data {
756 struct blk_mq_hw_ctx *hctx;
757 struct list_head *list;
758 };
759
760 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
761 {
762 struct flush_busy_ctx_data *flush_data = data;
763 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
764 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
765
766 sbitmap_clear_bit(sb, bitnr);
767 spin_lock(&ctx->lock);
768 list_splice_tail_init(&ctx->rq_list, flush_data->list);
769 spin_unlock(&ctx->lock);
770 return true;
771 }
772
773 /*
774 * Process software queues that have been marked busy, splicing them
775 * to the for-dispatch
776 */
777 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
778 {
779 struct flush_busy_ctx_data data = {
780 .hctx = hctx,
781 .list = list,
782 };
783
784 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
785 }
786 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
787
788 static inline unsigned int queued_to_index(unsigned int queued)
789 {
790 if (!queued)
791 return 0;
792
793 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
794 }
795
796 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
797 bool wait)
798 {
799 struct blk_mq_alloc_data data = {
800 .q = rq->q,
801 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
802 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
803 };
804
805 might_sleep_if(wait);
806
807 if (rq->tag != -1)
808 goto done;
809
810 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
811 data.flags |= BLK_MQ_REQ_RESERVED;
812
813 rq->tag = blk_mq_get_tag(&data);
814 if (rq->tag >= 0) {
815 if (blk_mq_tag_busy(data.hctx)) {
816 rq->rq_flags |= RQF_MQ_INFLIGHT;
817 atomic_inc(&data.hctx->nr_active);
818 }
819 data.hctx->tags->rqs[rq->tag] = rq;
820 }
821
822 done:
823 if (hctx)
824 *hctx = data.hctx;
825 return rq->tag != -1;
826 }
827
828 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
829 struct request *rq)
830 {
831 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
832 rq->tag = -1;
833
834 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
835 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
836 atomic_dec(&hctx->nr_active);
837 }
838 }
839
840 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
841 struct request *rq)
842 {
843 if (rq->tag == -1 || rq->internal_tag == -1)
844 return;
845
846 __blk_mq_put_driver_tag(hctx, rq);
847 }
848
849 static void blk_mq_put_driver_tag(struct request *rq)
850 {
851 struct blk_mq_hw_ctx *hctx;
852
853 if (rq->tag == -1 || rq->internal_tag == -1)
854 return;
855
856 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
857 __blk_mq_put_driver_tag(hctx, rq);
858 }
859
860 /*
861 * If we fail getting a driver tag because all the driver tags are already
862 * assigned and on the dispatch list, BUT the first entry does not have a
863 * tag, then we could deadlock. For that case, move entries with assigned
864 * driver tags to the front, leaving the set of tagged requests in the
865 * same order, and the untagged set in the same order.
866 */
867 static bool reorder_tags_to_front(struct list_head *list)
868 {
869 struct request *rq, *tmp, *first = NULL;
870
871 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
872 if (rq == first)
873 break;
874 if (rq->tag != -1) {
875 list_move(&rq->queuelist, list);
876 if (!first)
877 first = rq;
878 }
879 }
880
881 return first != NULL;
882 }
883
884 static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
885 void *key)
886 {
887 struct blk_mq_hw_ctx *hctx;
888
889 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
890
891 list_del(&wait->task_list);
892 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
893 blk_mq_run_hw_queue(hctx, true);
894 return 1;
895 }
896
897 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
898 {
899 struct sbq_wait_state *ws;
900
901 /*
902 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
903 * The thread which wins the race to grab this bit adds the hardware
904 * queue to the wait queue.
905 */
906 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
907 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
908 return false;
909
910 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
911 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
912
913 /*
914 * As soon as this returns, it's no longer safe to fiddle with
915 * hctx->dispatch_wait, since a completion can wake up the wait queue
916 * and unlock the bit.
917 */
918 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
919 return true;
920 }
921
922 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
923 {
924 struct blk_mq_hw_ctx *hctx;
925 struct request *rq;
926 int errors, queued;
927
928 if (list_empty(list))
929 return false;
930
931 /*
932 * Now process all the entries, sending them to the driver.
933 */
934 errors = queued = 0;
935 do {
936 struct blk_mq_queue_data bd;
937 blk_status_t ret;
938
939 rq = list_first_entry(list, struct request, queuelist);
940 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
941 if (!queued && reorder_tags_to_front(list))
942 continue;
943
944 /*
945 * The initial allocation attempt failed, so we need to
946 * rerun the hardware queue when a tag is freed.
947 */
948 if (!blk_mq_dispatch_wait_add(hctx))
949 break;
950
951 /*
952 * It's possible that a tag was freed in the window
953 * between the allocation failure and adding the
954 * hardware queue to the wait queue.
955 */
956 if (!blk_mq_get_driver_tag(rq, &hctx, false))
957 break;
958 }
959
960 list_del_init(&rq->queuelist);
961
962 bd.rq = rq;
963
964 /*
965 * Flag last if we have no more requests, or if we have more
966 * but can't assign a driver tag to it.
967 */
968 if (list_empty(list))
969 bd.last = true;
970 else {
971 struct request *nxt;
972
973 nxt = list_first_entry(list, struct request, queuelist);
974 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
975 }
976
977 ret = q->mq_ops->queue_rq(hctx, &bd);
978 if (ret == BLK_STS_RESOURCE) {
979 blk_mq_put_driver_tag_hctx(hctx, rq);
980 list_add(&rq->queuelist, list);
981 __blk_mq_requeue_request(rq);
982 break;
983 }
984
985 if (unlikely(ret != BLK_STS_OK)) {
986 errors++;
987 blk_mq_end_request(rq, BLK_STS_IOERR);
988 continue;
989 }
990
991 queued++;
992 } while (!list_empty(list));
993
994 hctx->dispatched[queued_to_index(queued)]++;
995
996 /*
997 * Any items that need requeuing? Stuff them into hctx->dispatch,
998 * that is where we will continue on next queue run.
999 */
1000 if (!list_empty(list)) {
1001 /*
1002 * If an I/O scheduler has been configured and we got a driver
1003 * tag for the next request already, free it again.
1004 */
1005 rq = list_first_entry(list, struct request, queuelist);
1006 blk_mq_put_driver_tag(rq);
1007
1008 spin_lock(&hctx->lock);
1009 list_splice_init(list, &hctx->dispatch);
1010 spin_unlock(&hctx->lock);
1011
1012 /*
1013 * If SCHED_RESTART was set by the caller of this function and
1014 * it is no longer set that means that it was cleared by another
1015 * thread and hence that a queue rerun is needed.
1016 *
1017 * If TAG_WAITING is set that means that an I/O scheduler has
1018 * been configured and another thread is waiting for a driver
1019 * tag. To guarantee fairness, do not rerun this hardware queue
1020 * but let the other thread grab the driver tag.
1021 *
1022 * If no I/O scheduler has been configured it is possible that
1023 * the hardware queue got stopped and restarted before requests
1024 * were pushed back onto the dispatch list. Rerun the queue to
1025 * avoid starvation. Notes:
1026 * - blk_mq_run_hw_queue() checks whether or not a queue has
1027 * been stopped before rerunning a queue.
1028 * - Some but not all block drivers stop a queue before
1029 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1030 * and dm-rq.
1031 */
1032 if (!blk_mq_sched_needs_restart(hctx) &&
1033 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1034 blk_mq_run_hw_queue(hctx, true);
1035 }
1036
1037 return (queued + errors) != 0;
1038 }
1039
1040 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1041 {
1042 int srcu_idx;
1043
1044 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1045 cpu_online(hctx->next_cpu));
1046
1047 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1048 rcu_read_lock();
1049 blk_mq_sched_dispatch_requests(hctx);
1050 rcu_read_unlock();
1051 } else {
1052 might_sleep();
1053
1054 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1055 blk_mq_sched_dispatch_requests(hctx);
1056 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1057 }
1058 }
1059
1060 /*
1061 * It'd be great if the workqueue API had a way to pass
1062 * in a mask and had some smarts for more clever placement.
1063 * For now we just round-robin here, switching for every
1064 * BLK_MQ_CPU_WORK_BATCH queued items.
1065 */
1066 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1067 {
1068 if (hctx->queue->nr_hw_queues == 1)
1069 return WORK_CPU_UNBOUND;
1070
1071 if (--hctx->next_cpu_batch <= 0) {
1072 int next_cpu;
1073
1074 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1075 if (next_cpu >= nr_cpu_ids)
1076 next_cpu = cpumask_first(hctx->cpumask);
1077
1078 hctx->next_cpu = next_cpu;
1079 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1080 }
1081
1082 return hctx->next_cpu;
1083 }
1084
1085 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1086 unsigned long msecs)
1087 {
1088 if (unlikely(blk_mq_hctx_stopped(hctx) ||
1089 !blk_mq_hw_queue_mapped(hctx)))
1090 return;
1091
1092 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1093 int cpu = get_cpu();
1094 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1095 __blk_mq_run_hw_queue(hctx);
1096 put_cpu();
1097 return;
1098 }
1099
1100 put_cpu();
1101 }
1102
1103 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1104 &hctx->run_work,
1105 msecs_to_jiffies(msecs));
1106 }
1107
1108 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1109 {
1110 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1111 }
1112 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1113
1114 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1115 {
1116 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1117 }
1118 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1119
1120 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1121 {
1122 struct blk_mq_hw_ctx *hctx;
1123 int i;
1124
1125 queue_for_each_hw_ctx(q, hctx, i) {
1126 if (!blk_mq_hctx_has_pending(hctx) ||
1127 blk_mq_hctx_stopped(hctx))
1128 continue;
1129
1130 blk_mq_run_hw_queue(hctx, async);
1131 }
1132 }
1133 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1134
1135 /**
1136 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1137 * @q: request queue.
1138 *
1139 * The caller is responsible for serializing this function against
1140 * blk_mq_{start,stop}_hw_queue().
1141 */
1142 bool blk_mq_queue_stopped(struct request_queue *q)
1143 {
1144 struct blk_mq_hw_ctx *hctx;
1145 int i;
1146
1147 queue_for_each_hw_ctx(q, hctx, i)
1148 if (blk_mq_hctx_stopped(hctx))
1149 return true;
1150
1151 return false;
1152 }
1153 EXPORT_SYMBOL(blk_mq_queue_stopped);
1154
1155 static void __blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx, bool sync)
1156 {
1157 if (sync)
1158 cancel_delayed_work_sync(&hctx->run_work);
1159 else
1160 cancel_delayed_work(&hctx->run_work);
1161
1162 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1163 }
1164
1165 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1166 {
1167 __blk_mq_stop_hw_queue(hctx, false);
1168 }
1169 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1170
1171 static void __blk_mq_stop_hw_queues(struct request_queue *q, bool sync)
1172 {
1173 struct blk_mq_hw_ctx *hctx;
1174 int i;
1175
1176 queue_for_each_hw_ctx(q, hctx, i)
1177 __blk_mq_stop_hw_queue(hctx, sync);
1178 }
1179
1180 void blk_mq_stop_hw_queues(struct request_queue *q)
1181 {
1182 __blk_mq_stop_hw_queues(q, false);
1183 }
1184 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1185
1186 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1187 {
1188 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1189
1190 blk_mq_run_hw_queue(hctx, false);
1191 }
1192 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1193
1194 void blk_mq_start_hw_queues(struct request_queue *q)
1195 {
1196 struct blk_mq_hw_ctx *hctx;
1197 int i;
1198
1199 queue_for_each_hw_ctx(q, hctx, i)
1200 blk_mq_start_hw_queue(hctx);
1201 }
1202 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1203
1204 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1205 {
1206 if (!blk_mq_hctx_stopped(hctx))
1207 return;
1208
1209 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1210 blk_mq_run_hw_queue(hctx, async);
1211 }
1212 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1213
1214 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1215 {
1216 struct blk_mq_hw_ctx *hctx;
1217 int i;
1218
1219 queue_for_each_hw_ctx(q, hctx, i)
1220 blk_mq_start_stopped_hw_queue(hctx, async);
1221 }
1222 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1223
1224 static void blk_mq_run_work_fn(struct work_struct *work)
1225 {
1226 struct blk_mq_hw_ctx *hctx;
1227
1228 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1229
1230 /*
1231 * If we are stopped, don't run the queue. The exception is if
1232 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1233 * the STOPPED bit and run it.
1234 */
1235 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1236 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1237 return;
1238
1239 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1240 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1241 }
1242
1243 __blk_mq_run_hw_queue(hctx);
1244 }
1245
1246
1247 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1248 {
1249 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1250 return;
1251
1252 /*
1253 * Stop the hw queue, then modify currently delayed work.
1254 * This should prevent us from running the queue prematurely.
1255 * Mark the queue as auto-clearing STOPPED when it runs.
1256 */
1257 blk_mq_stop_hw_queue(hctx);
1258 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1259 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1260 &hctx->run_work,
1261 msecs_to_jiffies(msecs));
1262 }
1263 EXPORT_SYMBOL(blk_mq_delay_queue);
1264
1265 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1266 struct request *rq,
1267 bool at_head)
1268 {
1269 struct blk_mq_ctx *ctx = rq->mq_ctx;
1270
1271 trace_block_rq_insert(hctx->queue, rq);
1272
1273 if (at_head)
1274 list_add(&rq->queuelist, &ctx->rq_list);
1275 else
1276 list_add_tail(&rq->queuelist, &ctx->rq_list);
1277 }
1278
1279 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1280 bool at_head)
1281 {
1282 struct blk_mq_ctx *ctx = rq->mq_ctx;
1283
1284 __blk_mq_insert_req_list(hctx, rq, at_head);
1285 blk_mq_hctx_mark_pending(hctx, ctx);
1286 }
1287
1288 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1289 struct list_head *list)
1290
1291 {
1292 /*
1293 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1294 * offline now
1295 */
1296 spin_lock(&ctx->lock);
1297 while (!list_empty(list)) {
1298 struct request *rq;
1299
1300 rq = list_first_entry(list, struct request, queuelist);
1301 BUG_ON(rq->mq_ctx != ctx);
1302 list_del_init(&rq->queuelist);
1303 __blk_mq_insert_req_list(hctx, rq, false);
1304 }
1305 blk_mq_hctx_mark_pending(hctx, ctx);
1306 spin_unlock(&ctx->lock);
1307 }
1308
1309 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1310 {
1311 struct request *rqa = container_of(a, struct request, queuelist);
1312 struct request *rqb = container_of(b, struct request, queuelist);
1313
1314 return !(rqa->mq_ctx < rqb->mq_ctx ||
1315 (rqa->mq_ctx == rqb->mq_ctx &&
1316 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1317 }
1318
1319 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1320 {
1321 struct blk_mq_ctx *this_ctx;
1322 struct request_queue *this_q;
1323 struct request *rq;
1324 LIST_HEAD(list);
1325 LIST_HEAD(ctx_list);
1326 unsigned int depth;
1327
1328 list_splice_init(&plug->mq_list, &list);
1329
1330 list_sort(NULL, &list, plug_ctx_cmp);
1331
1332 this_q = NULL;
1333 this_ctx = NULL;
1334 depth = 0;
1335
1336 while (!list_empty(&list)) {
1337 rq = list_entry_rq(list.next);
1338 list_del_init(&rq->queuelist);
1339 BUG_ON(!rq->q);
1340 if (rq->mq_ctx != this_ctx) {
1341 if (this_ctx) {
1342 trace_block_unplug(this_q, depth, from_schedule);
1343 blk_mq_sched_insert_requests(this_q, this_ctx,
1344 &ctx_list,
1345 from_schedule);
1346 }
1347
1348 this_ctx = rq->mq_ctx;
1349 this_q = rq->q;
1350 depth = 0;
1351 }
1352
1353 depth++;
1354 list_add_tail(&rq->queuelist, &ctx_list);
1355 }
1356
1357 /*
1358 * If 'this_ctx' is set, we know we have entries to complete
1359 * on 'ctx_list'. Do those.
1360 */
1361 if (this_ctx) {
1362 trace_block_unplug(this_q, depth, from_schedule);
1363 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1364 from_schedule);
1365 }
1366 }
1367
1368 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1369 {
1370 blk_init_request_from_bio(rq, bio);
1371
1372 blk_account_io_start(rq, true);
1373 }
1374
1375 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1376 {
1377 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1378 !blk_queue_nomerges(hctx->queue);
1379 }
1380
1381 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1382 struct blk_mq_ctx *ctx,
1383 struct request *rq)
1384 {
1385 spin_lock(&ctx->lock);
1386 __blk_mq_insert_request(hctx, rq, false);
1387 spin_unlock(&ctx->lock);
1388 }
1389
1390 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1391 {
1392 if (rq->tag != -1)
1393 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1394
1395 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1396 }
1397
1398 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1399 struct request *rq,
1400 blk_qc_t *cookie, bool may_sleep)
1401 {
1402 struct request_queue *q = rq->q;
1403 struct blk_mq_queue_data bd = {
1404 .rq = rq,
1405 .last = true,
1406 };
1407 blk_qc_t new_cookie;
1408 blk_status_t ret;
1409 bool run_queue = true;
1410
1411 if (blk_mq_hctx_stopped(hctx)) {
1412 run_queue = false;
1413 goto insert;
1414 }
1415
1416 if (q->elevator)
1417 goto insert;
1418
1419 if (!blk_mq_get_driver_tag(rq, NULL, false))
1420 goto insert;
1421
1422 new_cookie = request_to_qc_t(hctx, rq);
1423
1424 /*
1425 * For OK queue, we are done. For error, kill it. Any other
1426 * error (busy), just add it to our list as we previously
1427 * would have done
1428 */
1429 ret = q->mq_ops->queue_rq(hctx, &bd);
1430 switch (ret) {
1431 case BLK_STS_OK:
1432 *cookie = new_cookie;
1433 return;
1434 case BLK_STS_RESOURCE:
1435 __blk_mq_requeue_request(rq);
1436 goto insert;
1437 default:
1438 *cookie = BLK_QC_T_NONE;
1439 blk_mq_end_request(rq, ret);
1440 return;
1441 }
1442
1443 insert:
1444 blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1445 }
1446
1447 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1448 struct request *rq, blk_qc_t *cookie)
1449 {
1450 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1451 rcu_read_lock();
1452 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1453 rcu_read_unlock();
1454 } else {
1455 unsigned int srcu_idx;
1456
1457 might_sleep();
1458
1459 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1460 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
1461 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1462 }
1463 }
1464
1465 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1466 {
1467 const int is_sync = op_is_sync(bio->bi_opf);
1468 const int is_flush_fua = op_is_flush(bio->bi_opf);
1469 struct blk_mq_alloc_data data = { .flags = 0 };
1470 struct request *rq;
1471 unsigned int request_count = 0;
1472 struct blk_plug *plug;
1473 struct request *same_queue_rq = NULL;
1474 blk_qc_t cookie;
1475 unsigned int wb_acct;
1476
1477 blk_queue_bounce(q, &bio);
1478
1479 blk_queue_split(q, &bio, q->bio_split);
1480
1481 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1482 bio_io_error(bio);
1483 return BLK_QC_T_NONE;
1484 }
1485
1486 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1487 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1488 return BLK_QC_T_NONE;
1489
1490 if (blk_mq_sched_bio_merge(q, bio))
1491 return BLK_QC_T_NONE;
1492
1493 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1494
1495 trace_block_getrq(q, bio, bio->bi_opf);
1496
1497 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1498 if (unlikely(!rq)) {
1499 __wbt_done(q->rq_wb, wb_acct);
1500 return BLK_QC_T_NONE;
1501 }
1502
1503 wbt_track(&rq->issue_stat, wb_acct);
1504
1505 cookie = request_to_qc_t(data.hctx, rq);
1506
1507 plug = current->plug;
1508 if (unlikely(is_flush_fua)) {
1509 blk_mq_put_ctx(data.ctx);
1510 blk_mq_bio_to_request(rq, bio);
1511 if (q->elevator) {
1512 blk_mq_sched_insert_request(rq, false, true, true,
1513 true);
1514 } else {
1515 blk_insert_flush(rq);
1516 blk_mq_run_hw_queue(data.hctx, true);
1517 }
1518 } else if (plug && q->nr_hw_queues == 1) {
1519 struct request *last = NULL;
1520
1521 blk_mq_put_ctx(data.ctx);
1522 blk_mq_bio_to_request(rq, bio);
1523
1524 /*
1525 * @request_count may become stale because of schedule
1526 * out, so check the list again.
1527 */
1528 if (list_empty(&plug->mq_list))
1529 request_count = 0;
1530 else if (blk_queue_nomerges(q))
1531 request_count = blk_plug_queued_count(q);
1532
1533 if (!request_count)
1534 trace_block_plug(q);
1535 else
1536 last = list_entry_rq(plug->mq_list.prev);
1537
1538 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1539 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1540 blk_flush_plug_list(plug, false);
1541 trace_block_plug(q);
1542 }
1543
1544 list_add_tail(&rq->queuelist, &plug->mq_list);
1545 } else if (plug && !blk_queue_nomerges(q)) {
1546 blk_mq_bio_to_request(rq, bio);
1547
1548 /*
1549 * We do limited plugging. If the bio can be merged, do that.
1550 * Otherwise the existing request in the plug list will be
1551 * issued. So the plug list will have one request at most
1552 * The plug list might get flushed before this. If that happens,
1553 * the plug list is empty, and same_queue_rq is invalid.
1554 */
1555 if (list_empty(&plug->mq_list))
1556 same_queue_rq = NULL;
1557 if (same_queue_rq)
1558 list_del_init(&same_queue_rq->queuelist);
1559 list_add_tail(&rq->queuelist, &plug->mq_list);
1560
1561 blk_mq_put_ctx(data.ctx);
1562
1563 if (same_queue_rq) {
1564 data.hctx = blk_mq_map_queue(q,
1565 same_queue_rq->mq_ctx->cpu);
1566 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1567 &cookie);
1568 }
1569 } else if (q->nr_hw_queues > 1 && is_sync) {
1570 blk_mq_put_ctx(data.ctx);
1571 blk_mq_bio_to_request(rq, bio);
1572 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1573 } else if (q->elevator) {
1574 blk_mq_put_ctx(data.ctx);
1575 blk_mq_bio_to_request(rq, bio);
1576 blk_mq_sched_insert_request(rq, false, true, true, true);
1577 } else {
1578 blk_mq_put_ctx(data.ctx);
1579 blk_mq_bio_to_request(rq, bio);
1580 blk_mq_queue_io(data.hctx, data.ctx, rq);
1581 blk_mq_run_hw_queue(data.hctx, true);
1582 }
1583
1584 return cookie;
1585 }
1586
1587 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1588 unsigned int hctx_idx)
1589 {
1590 struct page *page;
1591
1592 if (tags->rqs && set->ops->exit_request) {
1593 int i;
1594
1595 for (i = 0; i < tags->nr_tags; i++) {
1596 struct request *rq = tags->static_rqs[i];
1597
1598 if (!rq)
1599 continue;
1600 set->ops->exit_request(set, rq, hctx_idx);
1601 tags->static_rqs[i] = NULL;
1602 }
1603 }
1604
1605 while (!list_empty(&tags->page_list)) {
1606 page = list_first_entry(&tags->page_list, struct page, lru);
1607 list_del_init(&page->lru);
1608 /*
1609 * Remove kmemleak object previously allocated in
1610 * blk_mq_init_rq_map().
1611 */
1612 kmemleak_free(page_address(page));
1613 __free_pages(page, page->private);
1614 }
1615 }
1616
1617 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1618 {
1619 kfree(tags->rqs);
1620 tags->rqs = NULL;
1621 kfree(tags->static_rqs);
1622 tags->static_rqs = NULL;
1623
1624 blk_mq_free_tags(tags);
1625 }
1626
1627 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1628 unsigned int hctx_idx,
1629 unsigned int nr_tags,
1630 unsigned int reserved_tags)
1631 {
1632 struct blk_mq_tags *tags;
1633 int node;
1634
1635 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1636 if (node == NUMA_NO_NODE)
1637 node = set->numa_node;
1638
1639 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1640 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1641 if (!tags)
1642 return NULL;
1643
1644 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1645 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1646 node);
1647 if (!tags->rqs) {
1648 blk_mq_free_tags(tags);
1649 return NULL;
1650 }
1651
1652 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1653 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1654 node);
1655 if (!tags->static_rqs) {
1656 kfree(tags->rqs);
1657 blk_mq_free_tags(tags);
1658 return NULL;
1659 }
1660
1661 return tags;
1662 }
1663
1664 static size_t order_to_size(unsigned int order)
1665 {
1666 return (size_t)PAGE_SIZE << order;
1667 }
1668
1669 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1670 unsigned int hctx_idx, unsigned int depth)
1671 {
1672 unsigned int i, j, entries_per_page, max_order = 4;
1673 size_t rq_size, left;
1674 int node;
1675
1676 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1677 if (node == NUMA_NO_NODE)
1678 node = set->numa_node;
1679
1680 INIT_LIST_HEAD(&tags->page_list);
1681
1682 /*
1683 * rq_size is the size of the request plus driver payload, rounded
1684 * to the cacheline size
1685 */
1686 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1687 cache_line_size());
1688 left = rq_size * depth;
1689
1690 for (i = 0; i < depth; ) {
1691 int this_order = max_order;
1692 struct page *page;
1693 int to_do;
1694 void *p;
1695
1696 while (this_order && left < order_to_size(this_order - 1))
1697 this_order--;
1698
1699 do {
1700 page = alloc_pages_node(node,
1701 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1702 this_order);
1703 if (page)
1704 break;
1705 if (!this_order--)
1706 break;
1707 if (order_to_size(this_order) < rq_size)
1708 break;
1709 } while (1);
1710
1711 if (!page)
1712 goto fail;
1713
1714 page->private = this_order;
1715 list_add_tail(&page->lru, &tags->page_list);
1716
1717 p = page_address(page);
1718 /*
1719 * Allow kmemleak to scan these pages as they contain pointers
1720 * to additional allocations like via ops->init_request().
1721 */
1722 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1723 entries_per_page = order_to_size(this_order) / rq_size;
1724 to_do = min(entries_per_page, depth - i);
1725 left -= to_do * rq_size;
1726 for (j = 0; j < to_do; j++) {
1727 struct request *rq = p;
1728
1729 tags->static_rqs[i] = rq;
1730 if (set->ops->init_request) {
1731 if (set->ops->init_request(set, rq, hctx_idx,
1732 node)) {
1733 tags->static_rqs[i] = NULL;
1734 goto fail;
1735 }
1736 }
1737
1738 p += rq_size;
1739 i++;
1740 }
1741 }
1742 return 0;
1743
1744 fail:
1745 blk_mq_free_rqs(set, tags, hctx_idx);
1746 return -ENOMEM;
1747 }
1748
1749 /*
1750 * 'cpu' is going away. splice any existing rq_list entries from this
1751 * software queue to the hw queue dispatch list, and ensure that it
1752 * gets run.
1753 */
1754 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1755 {
1756 struct blk_mq_hw_ctx *hctx;
1757 struct blk_mq_ctx *ctx;
1758 LIST_HEAD(tmp);
1759
1760 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1761 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1762
1763 spin_lock(&ctx->lock);
1764 if (!list_empty(&ctx->rq_list)) {
1765 list_splice_init(&ctx->rq_list, &tmp);
1766 blk_mq_hctx_clear_pending(hctx, ctx);
1767 }
1768 spin_unlock(&ctx->lock);
1769
1770 if (list_empty(&tmp))
1771 return 0;
1772
1773 spin_lock(&hctx->lock);
1774 list_splice_tail_init(&tmp, &hctx->dispatch);
1775 spin_unlock(&hctx->lock);
1776
1777 blk_mq_run_hw_queue(hctx, true);
1778 return 0;
1779 }
1780
1781 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1782 {
1783 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1784 &hctx->cpuhp_dead);
1785 }
1786
1787 /* hctx->ctxs will be freed in queue's release handler */
1788 static void blk_mq_exit_hctx(struct request_queue *q,
1789 struct blk_mq_tag_set *set,
1790 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1791 {
1792 blk_mq_debugfs_unregister_hctx(hctx);
1793
1794 blk_mq_tag_idle(hctx);
1795
1796 if (set->ops->exit_request)
1797 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1798
1799 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1800
1801 if (set->ops->exit_hctx)
1802 set->ops->exit_hctx(hctx, hctx_idx);
1803
1804 if (hctx->flags & BLK_MQ_F_BLOCKING)
1805 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1806
1807 blk_mq_remove_cpuhp(hctx);
1808 blk_free_flush_queue(hctx->fq);
1809 sbitmap_free(&hctx->ctx_map);
1810 }
1811
1812 static void blk_mq_exit_hw_queues(struct request_queue *q,
1813 struct blk_mq_tag_set *set, int nr_queue)
1814 {
1815 struct blk_mq_hw_ctx *hctx;
1816 unsigned int i;
1817
1818 queue_for_each_hw_ctx(q, hctx, i) {
1819 if (i == nr_queue)
1820 break;
1821 blk_mq_exit_hctx(q, set, hctx, i);
1822 }
1823 }
1824
1825 static int blk_mq_init_hctx(struct request_queue *q,
1826 struct blk_mq_tag_set *set,
1827 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1828 {
1829 int node;
1830
1831 node = hctx->numa_node;
1832 if (node == NUMA_NO_NODE)
1833 node = hctx->numa_node = set->numa_node;
1834
1835 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1836 spin_lock_init(&hctx->lock);
1837 INIT_LIST_HEAD(&hctx->dispatch);
1838 hctx->queue = q;
1839 hctx->queue_num = hctx_idx;
1840 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1841
1842 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1843
1844 hctx->tags = set->tags[hctx_idx];
1845
1846 /*
1847 * Allocate space for all possible cpus to avoid allocation at
1848 * runtime
1849 */
1850 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1851 GFP_KERNEL, node);
1852 if (!hctx->ctxs)
1853 goto unregister_cpu_notifier;
1854
1855 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1856 node))
1857 goto free_ctxs;
1858
1859 hctx->nr_ctx = 0;
1860
1861 if (set->ops->init_hctx &&
1862 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1863 goto free_bitmap;
1864
1865 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
1866 goto exit_hctx;
1867
1868 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1869 if (!hctx->fq)
1870 goto sched_exit_hctx;
1871
1872 if (set->ops->init_request &&
1873 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
1874 node))
1875 goto free_fq;
1876
1877 if (hctx->flags & BLK_MQ_F_BLOCKING)
1878 init_srcu_struct(&hctx->queue_rq_srcu);
1879
1880 blk_mq_debugfs_register_hctx(q, hctx);
1881
1882 return 0;
1883
1884 free_fq:
1885 kfree(hctx->fq);
1886 sched_exit_hctx:
1887 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1888 exit_hctx:
1889 if (set->ops->exit_hctx)
1890 set->ops->exit_hctx(hctx, hctx_idx);
1891 free_bitmap:
1892 sbitmap_free(&hctx->ctx_map);
1893 free_ctxs:
1894 kfree(hctx->ctxs);
1895 unregister_cpu_notifier:
1896 blk_mq_remove_cpuhp(hctx);
1897 return -1;
1898 }
1899
1900 static void blk_mq_init_cpu_queues(struct request_queue *q,
1901 unsigned int nr_hw_queues)
1902 {
1903 unsigned int i;
1904
1905 for_each_possible_cpu(i) {
1906 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1907 struct blk_mq_hw_ctx *hctx;
1908
1909 __ctx->cpu = i;
1910 spin_lock_init(&__ctx->lock);
1911 INIT_LIST_HEAD(&__ctx->rq_list);
1912 __ctx->queue = q;
1913
1914 /* If the cpu isn't online, the cpu is mapped to first hctx */
1915 if (!cpu_online(i))
1916 continue;
1917
1918 hctx = blk_mq_map_queue(q, i);
1919
1920 /*
1921 * Set local node, IFF we have more than one hw queue. If
1922 * not, we remain on the home node of the device
1923 */
1924 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1925 hctx->numa_node = local_memory_node(cpu_to_node(i));
1926 }
1927 }
1928
1929 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1930 {
1931 int ret = 0;
1932
1933 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1934 set->queue_depth, set->reserved_tags);
1935 if (!set->tags[hctx_idx])
1936 return false;
1937
1938 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
1939 set->queue_depth);
1940 if (!ret)
1941 return true;
1942
1943 blk_mq_free_rq_map(set->tags[hctx_idx]);
1944 set->tags[hctx_idx] = NULL;
1945 return false;
1946 }
1947
1948 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
1949 unsigned int hctx_idx)
1950 {
1951 if (set->tags[hctx_idx]) {
1952 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
1953 blk_mq_free_rq_map(set->tags[hctx_idx]);
1954 set->tags[hctx_idx] = NULL;
1955 }
1956 }
1957
1958 static void blk_mq_map_swqueue(struct request_queue *q,
1959 const struct cpumask *online_mask)
1960 {
1961 unsigned int i, hctx_idx;
1962 struct blk_mq_hw_ctx *hctx;
1963 struct blk_mq_ctx *ctx;
1964 struct blk_mq_tag_set *set = q->tag_set;
1965
1966 /*
1967 * Avoid others reading imcomplete hctx->cpumask through sysfs
1968 */
1969 mutex_lock(&q->sysfs_lock);
1970
1971 queue_for_each_hw_ctx(q, hctx, i) {
1972 cpumask_clear(hctx->cpumask);
1973 hctx->nr_ctx = 0;
1974 }
1975
1976 /*
1977 * Map software to hardware queues
1978 */
1979 for_each_possible_cpu(i) {
1980 /* If the cpu isn't online, the cpu is mapped to first hctx */
1981 if (!cpumask_test_cpu(i, online_mask))
1982 continue;
1983
1984 hctx_idx = q->mq_map[i];
1985 /* unmapped hw queue can be remapped after CPU topo changed */
1986 if (!set->tags[hctx_idx] &&
1987 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
1988 /*
1989 * If tags initialization fail for some hctx,
1990 * that hctx won't be brought online. In this
1991 * case, remap the current ctx to hctx[0] which
1992 * is guaranteed to always have tags allocated
1993 */
1994 q->mq_map[i] = 0;
1995 }
1996
1997 ctx = per_cpu_ptr(q->queue_ctx, i);
1998 hctx = blk_mq_map_queue(q, i);
1999
2000 cpumask_set_cpu(i, hctx->cpumask);
2001 ctx->index_hw = hctx->nr_ctx;
2002 hctx->ctxs[hctx->nr_ctx++] = ctx;
2003 }
2004
2005 mutex_unlock(&q->sysfs_lock);
2006
2007 queue_for_each_hw_ctx(q, hctx, i) {
2008 /*
2009 * If no software queues are mapped to this hardware queue,
2010 * disable it and free the request entries.
2011 */
2012 if (!hctx->nr_ctx) {
2013 /* Never unmap queue 0. We need it as a
2014 * fallback in case of a new remap fails
2015 * allocation
2016 */
2017 if (i && set->tags[i])
2018 blk_mq_free_map_and_requests(set, i);
2019
2020 hctx->tags = NULL;
2021 continue;
2022 }
2023
2024 hctx->tags = set->tags[i];
2025 WARN_ON(!hctx->tags);
2026
2027 /*
2028 * Set the map size to the number of mapped software queues.
2029 * This is more accurate and more efficient than looping
2030 * over all possibly mapped software queues.
2031 */
2032 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2033
2034 /*
2035 * Initialize batch roundrobin counts
2036 */
2037 hctx->next_cpu = cpumask_first(hctx->cpumask);
2038 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2039 }
2040 }
2041
2042 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2043 {
2044 struct blk_mq_hw_ctx *hctx;
2045 int i;
2046
2047 queue_for_each_hw_ctx(q, hctx, i) {
2048 if (shared)
2049 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2050 else
2051 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2052 }
2053 }
2054
2055 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2056 {
2057 struct request_queue *q;
2058
2059 lockdep_assert_held(&set->tag_list_lock);
2060
2061 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2062 blk_mq_freeze_queue(q);
2063 queue_set_hctx_shared(q, shared);
2064 blk_mq_unfreeze_queue(q);
2065 }
2066 }
2067
2068 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2069 {
2070 struct blk_mq_tag_set *set = q->tag_set;
2071
2072 mutex_lock(&set->tag_list_lock);
2073 list_del_rcu(&q->tag_set_list);
2074 INIT_LIST_HEAD(&q->tag_set_list);
2075 if (list_is_singular(&set->tag_list)) {
2076 /* just transitioned to unshared */
2077 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2078 /* update existing queue */
2079 blk_mq_update_tag_set_depth(set, false);
2080 }
2081 mutex_unlock(&set->tag_list_lock);
2082
2083 synchronize_rcu();
2084 }
2085
2086 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2087 struct request_queue *q)
2088 {
2089 q->tag_set = set;
2090
2091 mutex_lock(&set->tag_list_lock);
2092
2093 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2094 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2095 set->flags |= BLK_MQ_F_TAG_SHARED;
2096 /* update existing queue */
2097 blk_mq_update_tag_set_depth(set, true);
2098 }
2099 if (set->flags & BLK_MQ_F_TAG_SHARED)
2100 queue_set_hctx_shared(q, true);
2101 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2102
2103 mutex_unlock(&set->tag_list_lock);
2104 }
2105
2106 /*
2107 * It is the actual release handler for mq, but we do it from
2108 * request queue's release handler for avoiding use-after-free
2109 * and headache because q->mq_kobj shouldn't have been introduced,
2110 * but we can't group ctx/kctx kobj without it.
2111 */
2112 void blk_mq_release(struct request_queue *q)
2113 {
2114 struct blk_mq_hw_ctx *hctx;
2115 unsigned int i;
2116
2117 /* hctx kobj stays in hctx */
2118 queue_for_each_hw_ctx(q, hctx, i) {
2119 if (!hctx)
2120 continue;
2121 kobject_put(&hctx->kobj);
2122 }
2123
2124 q->mq_map = NULL;
2125
2126 kfree(q->queue_hw_ctx);
2127
2128 /*
2129 * release .mq_kobj and sw queue's kobject now because
2130 * both share lifetime with request queue.
2131 */
2132 blk_mq_sysfs_deinit(q);
2133
2134 free_percpu(q->queue_ctx);
2135 }
2136
2137 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2138 {
2139 struct request_queue *uninit_q, *q;
2140
2141 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2142 if (!uninit_q)
2143 return ERR_PTR(-ENOMEM);
2144
2145 q = blk_mq_init_allocated_queue(set, uninit_q);
2146 if (IS_ERR(q))
2147 blk_cleanup_queue(uninit_q);
2148
2149 return q;
2150 }
2151 EXPORT_SYMBOL(blk_mq_init_queue);
2152
2153 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2154 struct request_queue *q)
2155 {
2156 int i, j;
2157 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2158
2159 blk_mq_sysfs_unregister(q);
2160 for (i = 0; i < set->nr_hw_queues; i++) {
2161 int node;
2162
2163 if (hctxs[i])
2164 continue;
2165
2166 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2167 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2168 GFP_KERNEL, node);
2169 if (!hctxs[i])
2170 break;
2171
2172 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2173 node)) {
2174 kfree(hctxs[i]);
2175 hctxs[i] = NULL;
2176 break;
2177 }
2178
2179 atomic_set(&hctxs[i]->nr_active, 0);
2180 hctxs[i]->numa_node = node;
2181 hctxs[i]->queue_num = i;
2182
2183 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2184 free_cpumask_var(hctxs[i]->cpumask);
2185 kfree(hctxs[i]);
2186 hctxs[i] = NULL;
2187 break;
2188 }
2189 blk_mq_hctx_kobj_init(hctxs[i]);
2190 }
2191 for (j = i; j < q->nr_hw_queues; j++) {
2192 struct blk_mq_hw_ctx *hctx = hctxs[j];
2193
2194 if (hctx) {
2195 if (hctx->tags)
2196 blk_mq_free_map_and_requests(set, j);
2197 blk_mq_exit_hctx(q, set, hctx, j);
2198 kobject_put(&hctx->kobj);
2199 hctxs[j] = NULL;
2200
2201 }
2202 }
2203 q->nr_hw_queues = i;
2204 blk_mq_sysfs_register(q);
2205 }
2206
2207 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2208 struct request_queue *q)
2209 {
2210 /* mark the queue as mq asap */
2211 q->mq_ops = set->ops;
2212
2213 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2214 blk_mq_poll_stats_bkt,
2215 BLK_MQ_POLL_STATS_BKTS, q);
2216 if (!q->poll_cb)
2217 goto err_exit;
2218
2219 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2220 if (!q->queue_ctx)
2221 goto err_exit;
2222
2223 /* init q->mq_kobj and sw queues' kobjects */
2224 blk_mq_sysfs_init(q);
2225
2226 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2227 GFP_KERNEL, set->numa_node);
2228 if (!q->queue_hw_ctx)
2229 goto err_percpu;
2230
2231 q->mq_map = set->mq_map;
2232
2233 blk_mq_realloc_hw_ctxs(set, q);
2234 if (!q->nr_hw_queues)
2235 goto err_hctxs;
2236
2237 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2238 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2239
2240 q->nr_queues = nr_cpu_ids;
2241
2242 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2243
2244 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2245 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2246
2247 q->sg_reserved_size = INT_MAX;
2248
2249 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2250 INIT_LIST_HEAD(&q->requeue_list);
2251 spin_lock_init(&q->requeue_lock);
2252
2253 blk_queue_make_request(q, blk_mq_make_request);
2254
2255 /*
2256 * Do this after blk_queue_make_request() overrides it...
2257 */
2258 q->nr_requests = set->queue_depth;
2259
2260 /*
2261 * Default to classic polling
2262 */
2263 q->poll_nsec = -1;
2264
2265 if (set->ops->complete)
2266 blk_queue_softirq_done(q, set->ops->complete);
2267
2268 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2269
2270 get_online_cpus();
2271 mutex_lock(&all_q_mutex);
2272
2273 list_add_tail(&q->all_q_node, &all_q_list);
2274 blk_mq_add_queue_tag_set(set, q);
2275 blk_mq_map_swqueue(q, cpu_online_mask);
2276
2277 mutex_unlock(&all_q_mutex);
2278 put_online_cpus();
2279
2280 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2281 int ret;
2282
2283 ret = blk_mq_sched_init(q);
2284 if (ret)
2285 return ERR_PTR(ret);
2286 }
2287
2288 return q;
2289
2290 err_hctxs:
2291 kfree(q->queue_hw_ctx);
2292 err_percpu:
2293 free_percpu(q->queue_ctx);
2294 err_exit:
2295 q->mq_ops = NULL;
2296 return ERR_PTR(-ENOMEM);
2297 }
2298 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2299
2300 void blk_mq_free_queue(struct request_queue *q)
2301 {
2302 struct blk_mq_tag_set *set = q->tag_set;
2303
2304 mutex_lock(&all_q_mutex);
2305 list_del_init(&q->all_q_node);
2306 mutex_unlock(&all_q_mutex);
2307
2308 blk_mq_del_queue_tag_set(q);
2309
2310 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2311 }
2312
2313 /* Basically redo blk_mq_init_queue with queue frozen */
2314 static void blk_mq_queue_reinit(struct request_queue *q,
2315 const struct cpumask *online_mask)
2316 {
2317 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2318
2319 blk_mq_debugfs_unregister_hctxs(q);
2320 blk_mq_sysfs_unregister(q);
2321
2322 /*
2323 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2324 * we should change hctx numa_node according to new topology (this
2325 * involves free and re-allocate memory, worthy doing?)
2326 */
2327
2328 blk_mq_map_swqueue(q, online_mask);
2329
2330 blk_mq_sysfs_register(q);
2331 blk_mq_debugfs_register_hctxs(q);
2332 }
2333
2334 /*
2335 * New online cpumask which is going to be set in this hotplug event.
2336 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2337 * one-by-one and dynamically allocating this could result in a failure.
2338 */
2339 static struct cpumask cpuhp_online_new;
2340
2341 static void blk_mq_queue_reinit_work(void)
2342 {
2343 struct request_queue *q;
2344
2345 mutex_lock(&all_q_mutex);
2346 /*
2347 * We need to freeze and reinit all existing queues. Freezing
2348 * involves synchronous wait for an RCU grace period and doing it
2349 * one by one may take a long time. Start freezing all queues in
2350 * one swoop and then wait for the completions so that freezing can
2351 * take place in parallel.
2352 */
2353 list_for_each_entry(q, &all_q_list, all_q_node)
2354 blk_freeze_queue_start(q);
2355 list_for_each_entry(q, &all_q_list, all_q_node)
2356 blk_mq_freeze_queue_wait(q);
2357
2358 list_for_each_entry(q, &all_q_list, all_q_node)
2359 blk_mq_queue_reinit(q, &cpuhp_online_new);
2360
2361 list_for_each_entry(q, &all_q_list, all_q_node)
2362 blk_mq_unfreeze_queue(q);
2363
2364 mutex_unlock(&all_q_mutex);
2365 }
2366
2367 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2368 {
2369 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2370 blk_mq_queue_reinit_work();
2371 return 0;
2372 }
2373
2374 /*
2375 * Before hotadded cpu starts handling requests, new mappings must be
2376 * established. Otherwise, these requests in hw queue might never be
2377 * dispatched.
2378 *
2379 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2380 * for CPU0, and ctx1 for CPU1).
2381 *
2382 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2383 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2384 *
2385 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2386 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2387 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2388 * ignored.
2389 */
2390 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2391 {
2392 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2393 cpumask_set_cpu(cpu, &cpuhp_online_new);
2394 blk_mq_queue_reinit_work();
2395 return 0;
2396 }
2397
2398 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2399 {
2400 int i;
2401
2402 for (i = 0; i < set->nr_hw_queues; i++)
2403 if (!__blk_mq_alloc_rq_map(set, i))
2404 goto out_unwind;
2405
2406 return 0;
2407
2408 out_unwind:
2409 while (--i >= 0)
2410 blk_mq_free_rq_map(set->tags[i]);
2411
2412 return -ENOMEM;
2413 }
2414
2415 /*
2416 * Allocate the request maps associated with this tag_set. Note that this
2417 * may reduce the depth asked for, if memory is tight. set->queue_depth
2418 * will be updated to reflect the allocated depth.
2419 */
2420 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2421 {
2422 unsigned int depth;
2423 int err;
2424
2425 depth = set->queue_depth;
2426 do {
2427 err = __blk_mq_alloc_rq_maps(set);
2428 if (!err)
2429 break;
2430
2431 set->queue_depth >>= 1;
2432 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2433 err = -ENOMEM;
2434 break;
2435 }
2436 } while (set->queue_depth);
2437
2438 if (!set->queue_depth || err) {
2439 pr_err("blk-mq: failed to allocate request map\n");
2440 return -ENOMEM;
2441 }
2442
2443 if (depth != set->queue_depth)
2444 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2445 depth, set->queue_depth);
2446
2447 return 0;
2448 }
2449
2450 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2451 {
2452 if (set->ops->map_queues)
2453 return set->ops->map_queues(set);
2454 else
2455 return blk_mq_map_queues(set);
2456 }
2457
2458 /*
2459 * Alloc a tag set to be associated with one or more request queues.
2460 * May fail with EINVAL for various error conditions. May adjust the
2461 * requested depth down, if if it too large. In that case, the set
2462 * value will be stored in set->queue_depth.
2463 */
2464 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2465 {
2466 int ret;
2467
2468 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2469
2470 if (!set->nr_hw_queues)
2471 return -EINVAL;
2472 if (!set->queue_depth)
2473 return -EINVAL;
2474 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2475 return -EINVAL;
2476
2477 if (!set->ops->queue_rq)
2478 return -EINVAL;
2479
2480 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2481 pr_info("blk-mq: reduced tag depth to %u\n",
2482 BLK_MQ_MAX_DEPTH);
2483 set->queue_depth = BLK_MQ_MAX_DEPTH;
2484 }
2485
2486 /*
2487 * If a crashdump is active, then we are potentially in a very
2488 * memory constrained environment. Limit us to 1 queue and
2489 * 64 tags to prevent using too much memory.
2490 */
2491 if (is_kdump_kernel()) {
2492 set->nr_hw_queues = 1;
2493 set->queue_depth = min(64U, set->queue_depth);
2494 }
2495 /*
2496 * There is no use for more h/w queues than cpus.
2497 */
2498 if (set->nr_hw_queues > nr_cpu_ids)
2499 set->nr_hw_queues = nr_cpu_ids;
2500
2501 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2502 GFP_KERNEL, set->numa_node);
2503 if (!set->tags)
2504 return -ENOMEM;
2505
2506 ret = -ENOMEM;
2507 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2508 GFP_KERNEL, set->numa_node);
2509 if (!set->mq_map)
2510 goto out_free_tags;
2511
2512 ret = blk_mq_update_queue_map(set);
2513 if (ret)
2514 goto out_free_mq_map;
2515
2516 ret = blk_mq_alloc_rq_maps(set);
2517 if (ret)
2518 goto out_free_mq_map;
2519
2520 mutex_init(&set->tag_list_lock);
2521 INIT_LIST_HEAD(&set->tag_list);
2522
2523 return 0;
2524
2525 out_free_mq_map:
2526 kfree(set->mq_map);
2527 set->mq_map = NULL;
2528 out_free_tags:
2529 kfree(set->tags);
2530 set->tags = NULL;
2531 return ret;
2532 }
2533 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2534
2535 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2536 {
2537 int i;
2538
2539 for (i = 0; i < nr_cpu_ids; i++)
2540 blk_mq_free_map_and_requests(set, i);
2541
2542 kfree(set->mq_map);
2543 set->mq_map = NULL;
2544
2545 kfree(set->tags);
2546 set->tags = NULL;
2547 }
2548 EXPORT_SYMBOL(blk_mq_free_tag_set);
2549
2550 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2551 {
2552 struct blk_mq_tag_set *set = q->tag_set;
2553 struct blk_mq_hw_ctx *hctx;
2554 int i, ret;
2555
2556 if (!set)
2557 return -EINVAL;
2558
2559 blk_mq_freeze_queue(q);
2560
2561 ret = 0;
2562 queue_for_each_hw_ctx(q, hctx, i) {
2563 if (!hctx->tags)
2564 continue;
2565 /*
2566 * If we're using an MQ scheduler, just update the scheduler
2567 * queue depth. This is similar to what the old code would do.
2568 */
2569 if (!hctx->sched_tags) {
2570 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2571 min(nr, set->queue_depth),
2572 false);
2573 } else {
2574 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2575 nr, true);
2576 }
2577 if (ret)
2578 break;
2579 }
2580
2581 if (!ret)
2582 q->nr_requests = nr;
2583
2584 blk_mq_unfreeze_queue(q);
2585
2586 return ret;
2587 }
2588
2589 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2590 int nr_hw_queues)
2591 {
2592 struct request_queue *q;
2593
2594 lockdep_assert_held(&set->tag_list_lock);
2595
2596 if (nr_hw_queues > nr_cpu_ids)
2597 nr_hw_queues = nr_cpu_ids;
2598 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2599 return;
2600
2601 list_for_each_entry(q, &set->tag_list, tag_set_list)
2602 blk_mq_freeze_queue(q);
2603
2604 set->nr_hw_queues = nr_hw_queues;
2605 blk_mq_update_queue_map(set);
2606 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2607 blk_mq_realloc_hw_ctxs(set, q);
2608 blk_mq_queue_reinit(q, cpu_online_mask);
2609 }
2610
2611 list_for_each_entry(q, &set->tag_list, tag_set_list)
2612 blk_mq_unfreeze_queue(q);
2613 }
2614
2615 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2616 {
2617 mutex_lock(&set->tag_list_lock);
2618 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2619 mutex_unlock(&set->tag_list_lock);
2620 }
2621 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2622
2623 /* Enable polling stats and return whether they were already enabled. */
2624 static bool blk_poll_stats_enable(struct request_queue *q)
2625 {
2626 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2627 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2628 return true;
2629 blk_stat_add_callback(q, q->poll_cb);
2630 return false;
2631 }
2632
2633 static void blk_mq_poll_stats_start(struct request_queue *q)
2634 {
2635 /*
2636 * We don't arm the callback if polling stats are not enabled or the
2637 * callback is already active.
2638 */
2639 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2640 blk_stat_is_active(q->poll_cb))
2641 return;
2642
2643 blk_stat_activate_msecs(q->poll_cb, 100);
2644 }
2645
2646 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2647 {
2648 struct request_queue *q = cb->data;
2649 int bucket;
2650
2651 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2652 if (cb->stat[bucket].nr_samples)
2653 q->poll_stat[bucket] = cb->stat[bucket];
2654 }
2655 }
2656
2657 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2658 struct blk_mq_hw_ctx *hctx,
2659 struct request *rq)
2660 {
2661 unsigned long ret = 0;
2662 int bucket;
2663
2664 /*
2665 * If stats collection isn't on, don't sleep but turn it on for
2666 * future users
2667 */
2668 if (!blk_poll_stats_enable(q))
2669 return 0;
2670
2671 /*
2672 * As an optimistic guess, use half of the mean service time
2673 * for this type of request. We can (and should) make this smarter.
2674 * For instance, if the completion latencies are tight, we can
2675 * get closer than just half the mean. This is especially
2676 * important on devices where the completion latencies are longer
2677 * than ~10 usec. We do use the stats for the relevant IO size
2678 * if available which does lead to better estimates.
2679 */
2680 bucket = blk_mq_poll_stats_bkt(rq);
2681 if (bucket < 0)
2682 return ret;
2683
2684 if (q->poll_stat[bucket].nr_samples)
2685 ret = (q->poll_stat[bucket].mean + 1) / 2;
2686
2687 return ret;
2688 }
2689
2690 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2691 struct blk_mq_hw_ctx *hctx,
2692 struct request *rq)
2693 {
2694 struct hrtimer_sleeper hs;
2695 enum hrtimer_mode mode;
2696 unsigned int nsecs;
2697 ktime_t kt;
2698
2699 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2700 return false;
2701
2702 /*
2703 * poll_nsec can be:
2704 *
2705 * -1: don't ever hybrid sleep
2706 * 0: use half of prev avg
2707 * >0: use this specific value
2708 */
2709 if (q->poll_nsec == -1)
2710 return false;
2711 else if (q->poll_nsec > 0)
2712 nsecs = q->poll_nsec;
2713 else
2714 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2715
2716 if (!nsecs)
2717 return false;
2718
2719 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2720
2721 /*
2722 * This will be replaced with the stats tracking code, using
2723 * 'avg_completion_time / 2' as the pre-sleep target.
2724 */
2725 kt = nsecs;
2726
2727 mode = HRTIMER_MODE_REL;
2728 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2729 hrtimer_set_expires(&hs.timer, kt);
2730
2731 hrtimer_init_sleeper(&hs, current);
2732 do {
2733 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2734 break;
2735 set_current_state(TASK_UNINTERRUPTIBLE);
2736 hrtimer_start_expires(&hs.timer, mode);
2737 if (hs.task)
2738 io_schedule();
2739 hrtimer_cancel(&hs.timer);
2740 mode = HRTIMER_MODE_ABS;
2741 } while (hs.task && !signal_pending(current));
2742
2743 __set_current_state(TASK_RUNNING);
2744 destroy_hrtimer_on_stack(&hs.timer);
2745 return true;
2746 }
2747
2748 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2749 {
2750 struct request_queue *q = hctx->queue;
2751 long state;
2752
2753 /*
2754 * If we sleep, have the caller restart the poll loop to reset
2755 * the state. Like for the other success return cases, the
2756 * caller is responsible for checking if the IO completed. If
2757 * the IO isn't complete, we'll get called again and will go
2758 * straight to the busy poll loop.
2759 */
2760 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2761 return true;
2762
2763 hctx->poll_considered++;
2764
2765 state = current->state;
2766 while (!need_resched()) {
2767 int ret;
2768
2769 hctx->poll_invoked++;
2770
2771 ret = q->mq_ops->poll(hctx, rq->tag);
2772 if (ret > 0) {
2773 hctx->poll_success++;
2774 set_current_state(TASK_RUNNING);
2775 return true;
2776 }
2777
2778 if (signal_pending_state(state, current))
2779 set_current_state(TASK_RUNNING);
2780
2781 if (current->state == TASK_RUNNING)
2782 return true;
2783 if (ret < 0)
2784 break;
2785 cpu_relax();
2786 }
2787
2788 return false;
2789 }
2790
2791 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2792 {
2793 struct blk_mq_hw_ctx *hctx;
2794 struct blk_plug *plug;
2795 struct request *rq;
2796
2797 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2798 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2799 return false;
2800
2801 plug = current->plug;
2802 if (plug)
2803 blk_flush_plug_list(plug, false);
2804
2805 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2806 if (!blk_qc_t_is_internal(cookie))
2807 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2808 else {
2809 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2810 /*
2811 * With scheduling, if the request has completed, we'll
2812 * get a NULL return here, as we clear the sched tag when
2813 * that happens. The request still remains valid, like always,
2814 * so we should be safe with just the NULL check.
2815 */
2816 if (!rq)
2817 return false;
2818 }
2819
2820 return __blk_mq_poll(hctx, rq);
2821 }
2822 EXPORT_SYMBOL_GPL(blk_mq_poll);
2823
2824 void blk_mq_disable_hotplug(void)
2825 {
2826 mutex_lock(&all_q_mutex);
2827 }
2828
2829 void blk_mq_enable_hotplug(void)
2830 {
2831 mutex_unlock(&all_q_mutex);
2832 }
2833
2834 static int __init blk_mq_init(void)
2835 {
2836 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2837 blk_mq_hctx_notify_dead);
2838
2839 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2840 blk_mq_queue_reinit_prepare,
2841 blk_mq_queue_reinit_dead);
2842 return 0;
2843 }
2844 subsys_initcall(blk_mq_init);