]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - block/blk-mq.c
block: deal with stale req count of plug list
[mirror_ubuntu-zesty-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
25 #include <linux/prefetch.h>
26
27 #include <trace/events/block.h>
28
29 #include <linux/blk-mq.h>
30 #include "blk.h"
31 #include "blk-mq.h"
32 #include "blk-mq-tag.h"
33 #include "blk-stat.h"
34 #include "blk-wbt.h"
35
36 static DEFINE_MUTEX(all_q_mutex);
37 static LIST_HEAD(all_q_list);
38
39 /*
40 * Check if any of the ctx's have pending work in this hardware queue
41 */
42 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
43 {
44 return sbitmap_any_bit_set(&hctx->ctx_map);
45 }
46
47 /*
48 * Mark this ctx as having pending work in this hardware queue
49 */
50 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
51 struct blk_mq_ctx *ctx)
52 {
53 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
54 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
55 }
56
57 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
58 struct blk_mq_ctx *ctx)
59 {
60 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
61 }
62
63 void blk_mq_freeze_queue_start(struct request_queue *q)
64 {
65 int freeze_depth;
66
67 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
68 if (freeze_depth == 1) {
69 percpu_ref_kill(&q->q_usage_counter);
70 blk_mq_run_hw_queues(q, false);
71 }
72 }
73 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
74
75 static void blk_mq_freeze_queue_wait(struct request_queue *q)
76 {
77 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
78 }
79
80 /*
81 * Guarantee no request is in use, so we can change any data structure of
82 * the queue afterward.
83 */
84 void blk_freeze_queue(struct request_queue *q)
85 {
86 /*
87 * In the !blk_mq case we are only calling this to kill the
88 * q_usage_counter, otherwise this increases the freeze depth
89 * and waits for it to return to zero. For this reason there is
90 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
91 * exported to drivers as the only user for unfreeze is blk_mq.
92 */
93 blk_mq_freeze_queue_start(q);
94 blk_mq_freeze_queue_wait(q);
95 }
96
97 void blk_mq_freeze_queue(struct request_queue *q)
98 {
99 /*
100 * ...just an alias to keep freeze and unfreeze actions balanced
101 * in the blk_mq_* namespace
102 */
103 blk_freeze_queue(q);
104 }
105 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
106
107 void blk_mq_unfreeze_queue(struct request_queue *q)
108 {
109 int freeze_depth;
110
111 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
112 WARN_ON_ONCE(freeze_depth < 0);
113 if (!freeze_depth) {
114 percpu_ref_reinit(&q->q_usage_counter);
115 wake_up_all(&q->mq_freeze_wq);
116 }
117 }
118 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
119
120 /**
121 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
122 * @q: request queue.
123 *
124 * Note: this function does not prevent that the struct request end_io()
125 * callback function is invoked. Additionally, it is not prevented that
126 * new queue_rq() calls occur unless the queue has been stopped first.
127 */
128 void blk_mq_quiesce_queue(struct request_queue *q)
129 {
130 struct blk_mq_hw_ctx *hctx;
131 unsigned int i;
132 bool rcu = false;
133
134 blk_mq_stop_hw_queues(q);
135
136 queue_for_each_hw_ctx(q, hctx, i) {
137 if (hctx->flags & BLK_MQ_F_BLOCKING)
138 synchronize_srcu(&hctx->queue_rq_srcu);
139 else
140 rcu = true;
141 }
142 if (rcu)
143 synchronize_rcu();
144 }
145 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
146
147 void blk_mq_wake_waiters(struct request_queue *q)
148 {
149 struct blk_mq_hw_ctx *hctx;
150 unsigned int i;
151
152 queue_for_each_hw_ctx(q, hctx, i)
153 if (blk_mq_hw_queue_mapped(hctx))
154 blk_mq_tag_wakeup_all(hctx->tags, true);
155
156 /*
157 * If we are called because the queue has now been marked as
158 * dying, we need to ensure that processes currently waiting on
159 * the queue are notified as well.
160 */
161 wake_up_all(&q->mq_freeze_wq);
162 }
163
164 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
165 {
166 return blk_mq_has_free_tags(hctx->tags);
167 }
168 EXPORT_SYMBOL(blk_mq_can_queue);
169
170 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
171 struct request *rq, unsigned int op)
172 {
173 INIT_LIST_HEAD(&rq->queuelist);
174 /* csd/requeue_work/fifo_time is initialized before use */
175 rq->q = q;
176 rq->mq_ctx = ctx;
177 rq->cmd_flags = op;
178 if (blk_queue_io_stat(q))
179 rq->rq_flags |= RQF_IO_STAT;
180 /* do not touch atomic flags, it needs atomic ops against the timer */
181 rq->cpu = -1;
182 INIT_HLIST_NODE(&rq->hash);
183 RB_CLEAR_NODE(&rq->rb_node);
184 rq->rq_disk = NULL;
185 rq->part = NULL;
186 rq->start_time = jiffies;
187 #ifdef CONFIG_BLK_CGROUP
188 rq->rl = NULL;
189 set_start_time_ns(rq);
190 rq->io_start_time_ns = 0;
191 #endif
192 rq->nr_phys_segments = 0;
193 #if defined(CONFIG_BLK_DEV_INTEGRITY)
194 rq->nr_integrity_segments = 0;
195 #endif
196 rq->special = NULL;
197 /* tag was already set */
198 rq->errors = 0;
199
200 rq->cmd = rq->__cmd;
201
202 rq->extra_len = 0;
203 rq->sense_len = 0;
204 rq->resid_len = 0;
205 rq->sense = NULL;
206
207 INIT_LIST_HEAD(&rq->timeout_list);
208 rq->timeout = 0;
209
210 rq->end_io = NULL;
211 rq->end_io_data = NULL;
212 rq->next_rq = NULL;
213
214 ctx->rq_dispatched[op_is_sync(op)]++;
215 }
216
217 static struct request *
218 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, unsigned int op)
219 {
220 struct request *rq;
221 unsigned int tag;
222
223 tag = blk_mq_get_tag(data);
224 if (tag != BLK_MQ_TAG_FAIL) {
225 rq = data->hctx->tags->rqs[tag];
226
227 if (blk_mq_tag_busy(data->hctx)) {
228 rq->rq_flags = RQF_MQ_INFLIGHT;
229 atomic_inc(&data->hctx->nr_active);
230 }
231
232 rq->tag = tag;
233 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
234 return rq;
235 }
236
237 return NULL;
238 }
239
240 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
241 unsigned int flags)
242 {
243 struct blk_mq_ctx *ctx;
244 struct blk_mq_hw_ctx *hctx;
245 struct request *rq;
246 struct blk_mq_alloc_data alloc_data;
247 int ret;
248
249 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
250 if (ret)
251 return ERR_PTR(ret);
252
253 ctx = blk_mq_get_ctx(q);
254 hctx = blk_mq_map_queue(q, ctx->cpu);
255 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
256 rq = __blk_mq_alloc_request(&alloc_data, rw);
257 blk_mq_put_ctx(ctx);
258
259 if (!rq) {
260 blk_queue_exit(q);
261 return ERR_PTR(-EWOULDBLOCK);
262 }
263
264 rq->__data_len = 0;
265 rq->__sector = (sector_t) -1;
266 rq->bio = rq->biotail = NULL;
267 return rq;
268 }
269 EXPORT_SYMBOL(blk_mq_alloc_request);
270
271 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
272 unsigned int flags, unsigned int hctx_idx)
273 {
274 struct blk_mq_hw_ctx *hctx;
275 struct blk_mq_ctx *ctx;
276 struct request *rq;
277 struct blk_mq_alloc_data alloc_data;
278 int ret;
279
280 /*
281 * If the tag allocator sleeps we could get an allocation for a
282 * different hardware context. No need to complicate the low level
283 * allocator for this for the rare use case of a command tied to
284 * a specific queue.
285 */
286 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
287 return ERR_PTR(-EINVAL);
288
289 if (hctx_idx >= q->nr_hw_queues)
290 return ERR_PTR(-EIO);
291
292 ret = blk_queue_enter(q, true);
293 if (ret)
294 return ERR_PTR(ret);
295
296 /*
297 * Check if the hardware context is actually mapped to anything.
298 * If not tell the caller that it should skip this queue.
299 */
300 hctx = q->queue_hw_ctx[hctx_idx];
301 if (!blk_mq_hw_queue_mapped(hctx)) {
302 ret = -EXDEV;
303 goto out_queue_exit;
304 }
305 ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));
306
307 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
308 rq = __blk_mq_alloc_request(&alloc_data, rw);
309 if (!rq) {
310 ret = -EWOULDBLOCK;
311 goto out_queue_exit;
312 }
313
314 return rq;
315
316 out_queue_exit:
317 blk_queue_exit(q);
318 return ERR_PTR(ret);
319 }
320 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
321
322 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
323 struct blk_mq_ctx *ctx, struct request *rq)
324 {
325 const int tag = rq->tag;
326 struct request_queue *q = rq->q;
327
328 if (rq->rq_flags & RQF_MQ_INFLIGHT)
329 atomic_dec(&hctx->nr_active);
330
331 wbt_done(q->rq_wb, &rq->issue_stat);
332 rq->rq_flags = 0;
333
334 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
335 blk_mq_put_tag(hctx, ctx, tag);
336 blk_queue_exit(q);
337 }
338
339 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
340 {
341 struct blk_mq_ctx *ctx = rq->mq_ctx;
342
343 ctx->rq_completed[rq_is_sync(rq)]++;
344 __blk_mq_free_request(hctx, ctx, rq);
345
346 }
347 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
348
349 void blk_mq_free_request(struct request *rq)
350 {
351 blk_mq_free_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
352 }
353 EXPORT_SYMBOL_GPL(blk_mq_free_request);
354
355 inline void __blk_mq_end_request(struct request *rq, int error)
356 {
357 blk_account_io_done(rq);
358
359 if (rq->end_io) {
360 wbt_done(rq->q->rq_wb, &rq->issue_stat);
361 rq->end_io(rq, error);
362 } else {
363 if (unlikely(blk_bidi_rq(rq)))
364 blk_mq_free_request(rq->next_rq);
365 blk_mq_free_request(rq);
366 }
367 }
368 EXPORT_SYMBOL(__blk_mq_end_request);
369
370 void blk_mq_end_request(struct request *rq, int error)
371 {
372 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
373 BUG();
374 __blk_mq_end_request(rq, error);
375 }
376 EXPORT_SYMBOL(blk_mq_end_request);
377
378 static void __blk_mq_complete_request_remote(void *data)
379 {
380 struct request *rq = data;
381
382 rq->q->softirq_done_fn(rq);
383 }
384
385 static void blk_mq_ipi_complete_request(struct request *rq)
386 {
387 struct blk_mq_ctx *ctx = rq->mq_ctx;
388 bool shared = false;
389 int cpu;
390
391 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
392 rq->q->softirq_done_fn(rq);
393 return;
394 }
395
396 cpu = get_cpu();
397 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
398 shared = cpus_share_cache(cpu, ctx->cpu);
399
400 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
401 rq->csd.func = __blk_mq_complete_request_remote;
402 rq->csd.info = rq;
403 rq->csd.flags = 0;
404 smp_call_function_single_async(ctx->cpu, &rq->csd);
405 } else {
406 rq->q->softirq_done_fn(rq);
407 }
408 put_cpu();
409 }
410
411 static void blk_mq_stat_add(struct request *rq)
412 {
413 if (rq->rq_flags & RQF_STATS) {
414 /*
415 * We could rq->mq_ctx here, but there's less of a risk
416 * of races if we have the completion event add the stats
417 * to the local software queue.
418 */
419 struct blk_mq_ctx *ctx;
420
421 ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
422 blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
423 }
424 }
425
426 static void __blk_mq_complete_request(struct request *rq)
427 {
428 struct request_queue *q = rq->q;
429
430 blk_mq_stat_add(rq);
431
432 if (!q->softirq_done_fn)
433 blk_mq_end_request(rq, rq->errors);
434 else
435 blk_mq_ipi_complete_request(rq);
436 }
437
438 /**
439 * blk_mq_complete_request - end I/O on a request
440 * @rq: the request being processed
441 *
442 * Description:
443 * Ends all I/O on a request. It does not handle partial completions.
444 * The actual completion happens out-of-order, through a IPI handler.
445 **/
446 void blk_mq_complete_request(struct request *rq, int error)
447 {
448 struct request_queue *q = rq->q;
449
450 if (unlikely(blk_should_fake_timeout(q)))
451 return;
452 if (!blk_mark_rq_complete(rq)) {
453 rq->errors = error;
454 __blk_mq_complete_request(rq);
455 }
456 }
457 EXPORT_SYMBOL(blk_mq_complete_request);
458
459 int blk_mq_request_started(struct request *rq)
460 {
461 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
462 }
463 EXPORT_SYMBOL_GPL(blk_mq_request_started);
464
465 void blk_mq_start_request(struct request *rq)
466 {
467 struct request_queue *q = rq->q;
468
469 trace_block_rq_issue(q, rq);
470
471 rq->resid_len = blk_rq_bytes(rq);
472 if (unlikely(blk_bidi_rq(rq)))
473 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
474
475 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
476 blk_stat_set_issue_time(&rq->issue_stat);
477 rq->rq_flags |= RQF_STATS;
478 wbt_issue(q->rq_wb, &rq->issue_stat);
479 }
480
481 blk_add_timer(rq);
482
483 /*
484 * Ensure that ->deadline is visible before set the started
485 * flag and clear the completed flag.
486 */
487 smp_mb__before_atomic();
488
489 /*
490 * Mark us as started and clear complete. Complete might have been
491 * set if requeue raced with timeout, which then marked it as
492 * complete. So be sure to clear complete again when we start
493 * the request, otherwise we'll ignore the completion event.
494 */
495 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
496 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
497 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
498 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
499
500 if (q->dma_drain_size && blk_rq_bytes(rq)) {
501 /*
502 * Make sure space for the drain appears. We know we can do
503 * this because max_hw_segments has been adjusted to be one
504 * fewer than the device can handle.
505 */
506 rq->nr_phys_segments++;
507 }
508 }
509 EXPORT_SYMBOL(blk_mq_start_request);
510
511 static void __blk_mq_requeue_request(struct request *rq)
512 {
513 struct request_queue *q = rq->q;
514
515 trace_block_rq_requeue(q, rq);
516 wbt_requeue(q->rq_wb, &rq->issue_stat);
517
518 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
519 if (q->dma_drain_size && blk_rq_bytes(rq))
520 rq->nr_phys_segments--;
521 }
522 }
523
524 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
525 {
526 __blk_mq_requeue_request(rq);
527
528 BUG_ON(blk_queued_rq(rq));
529 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
530 }
531 EXPORT_SYMBOL(blk_mq_requeue_request);
532
533 static void blk_mq_requeue_work(struct work_struct *work)
534 {
535 struct request_queue *q =
536 container_of(work, struct request_queue, requeue_work.work);
537 LIST_HEAD(rq_list);
538 struct request *rq, *next;
539 unsigned long flags;
540
541 spin_lock_irqsave(&q->requeue_lock, flags);
542 list_splice_init(&q->requeue_list, &rq_list);
543 spin_unlock_irqrestore(&q->requeue_lock, flags);
544
545 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
546 if (!(rq->rq_flags & RQF_SOFTBARRIER))
547 continue;
548
549 rq->rq_flags &= ~RQF_SOFTBARRIER;
550 list_del_init(&rq->queuelist);
551 blk_mq_insert_request(rq, true, false, false);
552 }
553
554 while (!list_empty(&rq_list)) {
555 rq = list_entry(rq_list.next, struct request, queuelist);
556 list_del_init(&rq->queuelist);
557 blk_mq_insert_request(rq, false, false, false);
558 }
559
560 blk_mq_run_hw_queues(q, false);
561 }
562
563 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
564 bool kick_requeue_list)
565 {
566 struct request_queue *q = rq->q;
567 unsigned long flags;
568
569 /*
570 * We abuse this flag that is otherwise used by the I/O scheduler to
571 * request head insertation from the workqueue.
572 */
573 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
574
575 spin_lock_irqsave(&q->requeue_lock, flags);
576 if (at_head) {
577 rq->rq_flags |= RQF_SOFTBARRIER;
578 list_add(&rq->queuelist, &q->requeue_list);
579 } else {
580 list_add_tail(&rq->queuelist, &q->requeue_list);
581 }
582 spin_unlock_irqrestore(&q->requeue_lock, flags);
583
584 if (kick_requeue_list)
585 blk_mq_kick_requeue_list(q);
586 }
587 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
588
589 void blk_mq_kick_requeue_list(struct request_queue *q)
590 {
591 kblockd_schedule_delayed_work(&q->requeue_work, 0);
592 }
593 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
594
595 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
596 unsigned long msecs)
597 {
598 kblockd_schedule_delayed_work(&q->requeue_work,
599 msecs_to_jiffies(msecs));
600 }
601 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
602
603 void blk_mq_abort_requeue_list(struct request_queue *q)
604 {
605 unsigned long flags;
606 LIST_HEAD(rq_list);
607
608 spin_lock_irqsave(&q->requeue_lock, flags);
609 list_splice_init(&q->requeue_list, &rq_list);
610 spin_unlock_irqrestore(&q->requeue_lock, flags);
611
612 while (!list_empty(&rq_list)) {
613 struct request *rq;
614
615 rq = list_first_entry(&rq_list, struct request, queuelist);
616 list_del_init(&rq->queuelist);
617 rq->errors = -EIO;
618 blk_mq_end_request(rq, rq->errors);
619 }
620 }
621 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
622
623 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
624 {
625 if (tag < tags->nr_tags) {
626 prefetch(tags->rqs[tag]);
627 return tags->rqs[tag];
628 }
629
630 return NULL;
631 }
632 EXPORT_SYMBOL(blk_mq_tag_to_rq);
633
634 struct blk_mq_timeout_data {
635 unsigned long next;
636 unsigned int next_set;
637 };
638
639 void blk_mq_rq_timed_out(struct request *req, bool reserved)
640 {
641 struct blk_mq_ops *ops = req->q->mq_ops;
642 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
643
644 /*
645 * We know that complete is set at this point. If STARTED isn't set
646 * anymore, then the request isn't active and the "timeout" should
647 * just be ignored. This can happen due to the bitflag ordering.
648 * Timeout first checks if STARTED is set, and if it is, assumes
649 * the request is active. But if we race with completion, then
650 * we both flags will get cleared. So check here again, and ignore
651 * a timeout event with a request that isn't active.
652 */
653 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
654 return;
655
656 if (ops->timeout)
657 ret = ops->timeout(req, reserved);
658
659 switch (ret) {
660 case BLK_EH_HANDLED:
661 __blk_mq_complete_request(req);
662 break;
663 case BLK_EH_RESET_TIMER:
664 blk_add_timer(req);
665 blk_clear_rq_complete(req);
666 break;
667 case BLK_EH_NOT_HANDLED:
668 break;
669 default:
670 printk(KERN_ERR "block: bad eh return: %d\n", ret);
671 break;
672 }
673 }
674
675 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
676 struct request *rq, void *priv, bool reserved)
677 {
678 struct blk_mq_timeout_data *data = priv;
679
680 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
681 /*
682 * If a request wasn't started before the queue was
683 * marked dying, kill it here or it'll go unnoticed.
684 */
685 if (unlikely(blk_queue_dying(rq->q))) {
686 rq->errors = -EIO;
687 blk_mq_end_request(rq, rq->errors);
688 }
689 return;
690 }
691
692 if (time_after_eq(jiffies, rq->deadline)) {
693 if (!blk_mark_rq_complete(rq))
694 blk_mq_rq_timed_out(rq, reserved);
695 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
696 data->next = rq->deadline;
697 data->next_set = 1;
698 }
699 }
700
701 static void blk_mq_timeout_work(struct work_struct *work)
702 {
703 struct request_queue *q =
704 container_of(work, struct request_queue, timeout_work);
705 struct blk_mq_timeout_data data = {
706 .next = 0,
707 .next_set = 0,
708 };
709 int i;
710
711 /* A deadlock might occur if a request is stuck requiring a
712 * timeout at the same time a queue freeze is waiting
713 * completion, since the timeout code would not be able to
714 * acquire the queue reference here.
715 *
716 * That's why we don't use blk_queue_enter here; instead, we use
717 * percpu_ref_tryget directly, because we need to be able to
718 * obtain a reference even in the short window between the queue
719 * starting to freeze, by dropping the first reference in
720 * blk_mq_freeze_queue_start, and the moment the last request is
721 * consumed, marked by the instant q_usage_counter reaches
722 * zero.
723 */
724 if (!percpu_ref_tryget(&q->q_usage_counter))
725 return;
726
727 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
728
729 if (data.next_set) {
730 data.next = blk_rq_timeout(round_jiffies_up(data.next));
731 mod_timer(&q->timeout, data.next);
732 } else {
733 struct blk_mq_hw_ctx *hctx;
734
735 queue_for_each_hw_ctx(q, hctx, i) {
736 /* the hctx may be unmapped, so check it here */
737 if (blk_mq_hw_queue_mapped(hctx))
738 blk_mq_tag_idle(hctx);
739 }
740 }
741 blk_queue_exit(q);
742 }
743
744 /*
745 * Reverse check our software queue for entries that we could potentially
746 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
747 * too much time checking for merges.
748 */
749 static bool blk_mq_attempt_merge(struct request_queue *q,
750 struct blk_mq_ctx *ctx, struct bio *bio)
751 {
752 struct request *rq;
753 int checked = 8;
754
755 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
756 int el_ret;
757
758 if (!checked--)
759 break;
760
761 if (!blk_rq_merge_ok(rq, bio))
762 continue;
763
764 el_ret = blk_try_merge(rq, bio);
765 if (el_ret == ELEVATOR_BACK_MERGE) {
766 if (bio_attempt_back_merge(q, rq, bio)) {
767 ctx->rq_merged++;
768 return true;
769 }
770 break;
771 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
772 if (bio_attempt_front_merge(q, rq, bio)) {
773 ctx->rq_merged++;
774 return true;
775 }
776 break;
777 }
778 }
779
780 return false;
781 }
782
783 struct flush_busy_ctx_data {
784 struct blk_mq_hw_ctx *hctx;
785 struct list_head *list;
786 };
787
788 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
789 {
790 struct flush_busy_ctx_data *flush_data = data;
791 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
792 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
793
794 sbitmap_clear_bit(sb, bitnr);
795 spin_lock(&ctx->lock);
796 list_splice_tail_init(&ctx->rq_list, flush_data->list);
797 spin_unlock(&ctx->lock);
798 return true;
799 }
800
801 /*
802 * Process software queues that have been marked busy, splicing them
803 * to the for-dispatch
804 */
805 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
806 {
807 struct flush_busy_ctx_data data = {
808 .hctx = hctx,
809 .list = list,
810 };
811
812 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
813 }
814
815 static inline unsigned int queued_to_index(unsigned int queued)
816 {
817 if (!queued)
818 return 0;
819
820 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
821 }
822
823 /*
824 * Run this hardware queue, pulling any software queues mapped to it in.
825 * Note that this function currently has various problems around ordering
826 * of IO. In particular, we'd like FIFO behaviour on handling existing
827 * items on the hctx->dispatch list. Ignore that for now.
828 */
829 static void blk_mq_process_rq_list(struct blk_mq_hw_ctx *hctx)
830 {
831 struct request_queue *q = hctx->queue;
832 struct request *rq;
833 LIST_HEAD(rq_list);
834 LIST_HEAD(driver_list);
835 struct list_head *dptr;
836 int queued;
837
838 if (unlikely(blk_mq_hctx_stopped(hctx)))
839 return;
840
841 hctx->run++;
842
843 /*
844 * Touch any software queue that has pending entries.
845 */
846 flush_busy_ctxs(hctx, &rq_list);
847
848 /*
849 * If we have previous entries on our dispatch list, grab them
850 * and stuff them at the front for more fair dispatch.
851 */
852 if (!list_empty_careful(&hctx->dispatch)) {
853 spin_lock(&hctx->lock);
854 if (!list_empty(&hctx->dispatch))
855 list_splice_init(&hctx->dispatch, &rq_list);
856 spin_unlock(&hctx->lock);
857 }
858
859 /*
860 * Start off with dptr being NULL, so we start the first request
861 * immediately, even if we have more pending.
862 */
863 dptr = NULL;
864
865 /*
866 * Now process all the entries, sending them to the driver.
867 */
868 queued = 0;
869 while (!list_empty(&rq_list)) {
870 struct blk_mq_queue_data bd;
871 int ret;
872
873 rq = list_first_entry(&rq_list, struct request, queuelist);
874 list_del_init(&rq->queuelist);
875
876 bd.rq = rq;
877 bd.list = dptr;
878 bd.last = list_empty(&rq_list);
879
880 ret = q->mq_ops->queue_rq(hctx, &bd);
881 switch (ret) {
882 case BLK_MQ_RQ_QUEUE_OK:
883 queued++;
884 break;
885 case BLK_MQ_RQ_QUEUE_BUSY:
886 list_add(&rq->queuelist, &rq_list);
887 __blk_mq_requeue_request(rq);
888 break;
889 default:
890 pr_err("blk-mq: bad return on queue: %d\n", ret);
891 case BLK_MQ_RQ_QUEUE_ERROR:
892 rq->errors = -EIO;
893 blk_mq_end_request(rq, rq->errors);
894 break;
895 }
896
897 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
898 break;
899
900 /*
901 * We've done the first request. If we have more than 1
902 * left in the list, set dptr to defer issue.
903 */
904 if (!dptr && rq_list.next != rq_list.prev)
905 dptr = &driver_list;
906 }
907
908 hctx->dispatched[queued_to_index(queued)]++;
909
910 /*
911 * Any items that need requeuing? Stuff them into hctx->dispatch,
912 * that is where we will continue on next queue run.
913 */
914 if (!list_empty(&rq_list)) {
915 spin_lock(&hctx->lock);
916 list_splice(&rq_list, &hctx->dispatch);
917 spin_unlock(&hctx->lock);
918 /*
919 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
920 * it's possible the queue is stopped and restarted again
921 * before this. Queue restart will dispatch requests. And since
922 * requests in rq_list aren't added into hctx->dispatch yet,
923 * the requests in rq_list might get lost.
924 *
925 * blk_mq_run_hw_queue() already checks the STOPPED bit
926 **/
927 blk_mq_run_hw_queue(hctx, true);
928 }
929 }
930
931 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
932 {
933 int srcu_idx;
934
935 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
936 cpu_online(hctx->next_cpu));
937
938 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
939 rcu_read_lock();
940 blk_mq_process_rq_list(hctx);
941 rcu_read_unlock();
942 } else {
943 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
944 blk_mq_process_rq_list(hctx);
945 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
946 }
947 }
948
949 /*
950 * It'd be great if the workqueue API had a way to pass
951 * in a mask and had some smarts for more clever placement.
952 * For now we just round-robin here, switching for every
953 * BLK_MQ_CPU_WORK_BATCH queued items.
954 */
955 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
956 {
957 if (hctx->queue->nr_hw_queues == 1)
958 return WORK_CPU_UNBOUND;
959
960 if (--hctx->next_cpu_batch <= 0) {
961 int next_cpu;
962
963 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
964 if (next_cpu >= nr_cpu_ids)
965 next_cpu = cpumask_first(hctx->cpumask);
966
967 hctx->next_cpu = next_cpu;
968 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
969 }
970
971 return hctx->next_cpu;
972 }
973
974 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
975 {
976 if (unlikely(blk_mq_hctx_stopped(hctx) ||
977 !blk_mq_hw_queue_mapped(hctx)))
978 return;
979
980 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
981 int cpu = get_cpu();
982 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
983 __blk_mq_run_hw_queue(hctx);
984 put_cpu();
985 return;
986 }
987
988 put_cpu();
989 }
990
991 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
992 }
993
994 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
995 {
996 struct blk_mq_hw_ctx *hctx;
997 int i;
998
999 queue_for_each_hw_ctx(q, hctx, i) {
1000 if ((!blk_mq_hctx_has_pending(hctx) &&
1001 list_empty_careful(&hctx->dispatch)) ||
1002 blk_mq_hctx_stopped(hctx))
1003 continue;
1004
1005 blk_mq_run_hw_queue(hctx, async);
1006 }
1007 }
1008 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1009
1010 /**
1011 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1012 * @q: request queue.
1013 *
1014 * The caller is responsible for serializing this function against
1015 * blk_mq_{start,stop}_hw_queue().
1016 */
1017 bool blk_mq_queue_stopped(struct request_queue *q)
1018 {
1019 struct blk_mq_hw_ctx *hctx;
1020 int i;
1021
1022 queue_for_each_hw_ctx(q, hctx, i)
1023 if (blk_mq_hctx_stopped(hctx))
1024 return true;
1025
1026 return false;
1027 }
1028 EXPORT_SYMBOL(blk_mq_queue_stopped);
1029
1030 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1031 {
1032 cancel_work(&hctx->run_work);
1033 cancel_delayed_work(&hctx->delay_work);
1034 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1035 }
1036 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1037
1038 void blk_mq_stop_hw_queues(struct request_queue *q)
1039 {
1040 struct blk_mq_hw_ctx *hctx;
1041 int i;
1042
1043 queue_for_each_hw_ctx(q, hctx, i)
1044 blk_mq_stop_hw_queue(hctx);
1045 }
1046 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1047
1048 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1049 {
1050 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1051
1052 blk_mq_run_hw_queue(hctx, false);
1053 }
1054 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1055
1056 void blk_mq_start_hw_queues(struct request_queue *q)
1057 {
1058 struct blk_mq_hw_ctx *hctx;
1059 int i;
1060
1061 queue_for_each_hw_ctx(q, hctx, i)
1062 blk_mq_start_hw_queue(hctx);
1063 }
1064 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1065
1066 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1067 {
1068 struct blk_mq_hw_ctx *hctx;
1069 int i;
1070
1071 queue_for_each_hw_ctx(q, hctx, i) {
1072 if (!blk_mq_hctx_stopped(hctx))
1073 continue;
1074
1075 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1076 blk_mq_run_hw_queue(hctx, async);
1077 }
1078 }
1079 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1080
1081 static void blk_mq_run_work_fn(struct work_struct *work)
1082 {
1083 struct blk_mq_hw_ctx *hctx;
1084
1085 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1086
1087 __blk_mq_run_hw_queue(hctx);
1088 }
1089
1090 static void blk_mq_delay_work_fn(struct work_struct *work)
1091 {
1092 struct blk_mq_hw_ctx *hctx;
1093
1094 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1095
1096 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1097 __blk_mq_run_hw_queue(hctx);
1098 }
1099
1100 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1101 {
1102 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1103 return;
1104
1105 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1106 &hctx->delay_work, msecs_to_jiffies(msecs));
1107 }
1108 EXPORT_SYMBOL(blk_mq_delay_queue);
1109
1110 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1111 struct request *rq,
1112 bool at_head)
1113 {
1114 struct blk_mq_ctx *ctx = rq->mq_ctx;
1115
1116 trace_block_rq_insert(hctx->queue, rq);
1117
1118 if (at_head)
1119 list_add(&rq->queuelist, &ctx->rq_list);
1120 else
1121 list_add_tail(&rq->queuelist, &ctx->rq_list);
1122 }
1123
1124 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
1125 struct request *rq, bool at_head)
1126 {
1127 struct blk_mq_ctx *ctx = rq->mq_ctx;
1128
1129 __blk_mq_insert_req_list(hctx, rq, at_head);
1130 blk_mq_hctx_mark_pending(hctx, ctx);
1131 }
1132
1133 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1134 bool async)
1135 {
1136 struct blk_mq_ctx *ctx = rq->mq_ctx;
1137 struct request_queue *q = rq->q;
1138 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1139
1140 spin_lock(&ctx->lock);
1141 __blk_mq_insert_request(hctx, rq, at_head);
1142 spin_unlock(&ctx->lock);
1143
1144 if (run_queue)
1145 blk_mq_run_hw_queue(hctx, async);
1146 }
1147
1148 static void blk_mq_insert_requests(struct request_queue *q,
1149 struct blk_mq_ctx *ctx,
1150 struct list_head *list,
1151 int depth,
1152 bool from_schedule)
1153
1154 {
1155 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1156
1157 trace_block_unplug(q, depth, !from_schedule);
1158
1159 /*
1160 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1161 * offline now
1162 */
1163 spin_lock(&ctx->lock);
1164 while (!list_empty(list)) {
1165 struct request *rq;
1166
1167 rq = list_first_entry(list, struct request, queuelist);
1168 BUG_ON(rq->mq_ctx != ctx);
1169 list_del_init(&rq->queuelist);
1170 __blk_mq_insert_req_list(hctx, rq, false);
1171 }
1172 blk_mq_hctx_mark_pending(hctx, ctx);
1173 spin_unlock(&ctx->lock);
1174
1175 blk_mq_run_hw_queue(hctx, from_schedule);
1176 }
1177
1178 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1179 {
1180 struct request *rqa = container_of(a, struct request, queuelist);
1181 struct request *rqb = container_of(b, struct request, queuelist);
1182
1183 return !(rqa->mq_ctx < rqb->mq_ctx ||
1184 (rqa->mq_ctx == rqb->mq_ctx &&
1185 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1186 }
1187
1188 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1189 {
1190 struct blk_mq_ctx *this_ctx;
1191 struct request_queue *this_q;
1192 struct request *rq;
1193 LIST_HEAD(list);
1194 LIST_HEAD(ctx_list);
1195 unsigned int depth;
1196
1197 list_splice_init(&plug->mq_list, &list);
1198
1199 list_sort(NULL, &list, plug_ctx_cmp);
1200
1201 this_q = NULL;
1202 this_ctx = NULL;
1203 depth = 0;
1204
1205 while (!list_empty(&list)) {
1206 rq = list_entry_rq(list.next);
1207 list_del_init(&rq->queuelist);
1208 BUG_ON(!rq->q);
1209 if (rq->mq_ctx != this_ctx) {
1210 if (this_ctx) {
1211 blk_mq_insert_requests(this_q, this_ctx,
1212 &ctx_list, depth,
1213 from_schedule);
1214 }
1215
1216 this_ctx = rq->mq_ctx;
1217 this_q = rq->q;
1218 depth = 0;
1219 }
1220
1221 depth++;
1222 list_add_tail(&rq->queuelist, &ctx_list);
1223 }
1224
1225 /*
1226 * If 'this_ctx' is set, we know we have entries to complete
1227 * on 'ctx_list'. Do those.
1228 */
1229 if (this_ctx) {
1230 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1231 from_schedule);
1232 }
1233 }
1234
1235 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1236 {
1237 init_request_from_bio(rq, bio);
1238
1239 blk_account_io_start(rq, 1);
1240 }
1241
1242 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1243 {
1244 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1245 !blk_queue_nomerges(hctx->queue);
1246 }
1247
1248 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1249 struct blk_mq_ctx *ctx,
1250 struct request *rq, struct bio *bio)
1251 {
1252 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1253 blk_mq_bio_to_request(rq, bio);
1254 spin_lock(&ctx->lock);
1255 insert_rq:
1256 __blk_mq_insert_request(hctx, rq, false);
1257 spin_unlock(&ctx->lock);
1258 return false;
1259 } else {
1260 struct request_queue *q = hctx->queue;
1261
1262 spin_lock(&ctx->lock);
1263 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1264 blk_mq_bio_to_request(rq, bio);
1265 goto insert_rq;
1266 }
1267
1268 spin_unlock(&ctx->lock);
1269 __blk_mq_free_request(hctx, ctx, rq);
1270 return true;
1271 }
1272 }
1273
1274 static struct request *blk_mq_map_request(struct request_queue *q,
1275 struct bio *bio,
1276 struct blk_mq_alloc_data *data)
1277 {
1278 struct blk_mq_hw_ctx *hctx;
1279 struct blk_mq_ctx *ctx;
1280 struct request *rq;
1281
1282 blk_queue_enter_live(q);
1283 ctx = blk_mq_get_ctx(q);
1284 hctx = blk_mq_map_queue(q, ctx->cpu);
1285
1286 trace_block_getrq(q, bio, bio->bi_opf);
1287 blk_mq_set_alloc_data(data, q, 0, ctx, hctx);
1288 rq = __blk_mq_alloc_request(data, bio->bi_opf);
1289
1290 data->hctx->queued++;
1291 return rq;
1292 }
1293
1294 static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie)
1295 {
1296 int ret;
1297 struct request_queue *q = rq->q;
1298 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
1299 struct blk_mq_queue_data bd = {
1300 .rq = rq,
1301 .list = NULL,
1302 .last = 1
1303 };
1304 blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1305
1306 if (blk_mq_hctx_stopped(hctx))
1307 goto insert;
1308
1309 /*
1310 * For OK queue, we are done. For error, kill it. Any other
1311 * error (busy), just add it to our list as we previously
1312 * would have done
1313 */
1314 ret = q->mq_ops->queue_rq(hctx, &bd);
1315 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1316 *cookie = new_cookie;
1317 return;
1318 }
1319
1320 __blk_mq_requeue_request(rq);
1321
1322 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1323 *cookie = BLK_QC_T_NONE;
1324 rq->errors = -EIO;
1325 blk_mq_end_request(rq, rq->errors);
1326 return;
1327 }
1328
1329 insert:
1330 blk_mq_insert_request(rq, false, true, true);
1331 }
1332
1333 /*
1334 * Multiple hardware queue variant. This will not use per-process plugs,
1335 * but will attempt to bypass the hctx queueing if we can go straight to
1336 * hardware for SYNC IO.
1337 */
1338 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1339 {
1340 const int is_sync = op_is_sync(bio->bi_opf);
1341 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1342 struct blk_mq_alloc_data data;
1343 struct request *rq;
1344 unsigned int request_count = 0, srcu_idx;
1345 struct blk_plug *plug;
1346 struct request *same_queue_rq = NULL;
1347 blk_qc_t cookie;
1348 unsigned int wb_acct;
1349
1350 blk_queue_bounce(q, &bio);
1351
1352 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1353 bio_io_error(bio);
1354 return BLK_QC_T_NONE;
1355 }
1356
1357 blk_queue_split(q, &bio, q->bio_split);
1358
1359 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1360 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1361 return BLK_QC_T_NONE;
1362
1363 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1364
1365 rq = blk_mq_map_request(q, bio, &data);
1366 if (unlikely(!rq)) {
1367 __wbt_done(q->rq_wb, wb_acct);
1368 return BLK_QC_T_NONE;
1369 }
1370
1371 wbt_track(&rq->issue_stat, wb_acct);
1372
1373 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1374
1375 if (unlikely(is_flush_fua)) {
1376 blk_mq_bio_to_request(rq, bio);
1377 blk_insert_flush(rq);
1378 goto run_queue;
1379 }
1380
1381 plug = current->plug;
1382 /*
1383 * If the driver supports defer issued based on 'last', then
1384 * queue it up like normal since we can potentially save some
1385 * CPU this way.
1386 */
1387 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1388 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1389 struct request *old_rq = NULL;
1390
1391 blk_mq_bio_to_request(rq, bio);
1392
1393 /*
1394 * We do limited plugging. If the bio can be merged, do that.
1395 * Otherwise the existing request in the plug list will be
1396 * issued. So the plug list will have one request at most
1397 */
1398 if (plug) {
1399 /*
1400 * The plug list might get flushed before this. If that
1401 * happens, same_queue_rq is invalid and plug list is
1402 * empty
1403 */
1404 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1405 old_rq = same_queue_rq;
1406 list_del_init(&old_rq->queuelist);
1407 }
1408 list_add_tail(&rq->queuelist, &plug->mq_list);
1409 } else /* is_sync */
1410 old_rq = rq;
1411 blk_mq_put_ctx(data.ctx);
1412 if (!old_rq)
1413 goto done;
1414
1415 if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
1416 rcu_read_lock();
1417 blk_mq_try_issue_directly(old_rq, &cookie);
1418 rcu_read_unlock();
1419 } else {
1420 srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
1421 blk_mq_try_issue_directly(old_rq, &cookie);
1422 srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
1423 }
1424 goto done;
1425 }
1426
1427 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1428 /*
1429 * For a SYNC request, send it to the hardware immediately. For
1430 * an ASYNC request, just ensure that we run it later on. The
1431 * latter allows for merging opportunities and more efficient
1432 * dispatching.
1433 */
1434 run_queue:
1435 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1436 }
1437 blk_mq_put_ctx(data.ctx);
1438 done:
1439 return cookie;
1440 }
1441
1442 /*
1443 * Single hardware queue variant. This will attempt to use any per-process
1444 * plug for merging and IO deferral.
1445 */
1446 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1447 {
1448 const int is_sync = op_is_sync(bio->bi_opf);
1449 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1450 struct blk_plug *plug;
1451 unsigned int request_count = 0;
1452 struct blk_mq_alloc_data data;
1453 struct request *rq;
1454 blk_qc_t cookie;
1455 unsigned int wb_acct;
1456
1457 blk_queue_bounce(q, &bio);
1458
1459 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1460 bio_io_error(bio);
1461 return BLK_QC_T_NONE;
1462 }
1463
1464 blk_queue_split(q, &bio, q->bio_split);
1465
1466 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1467 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1468 return BLK_QC_T_NONE;
1469 } else
1470 request_count = blk_plug_queued_count(q);
1471
1472 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1473
1474 rq = blk_mq_map_request(q, bio, &data);
1475 if (unlikely(!rq)) {
1476 __wbt_done(q->rq_wb, wb_acct);
1477 return BLK_QC_T_NONE;
1478 }
1479
1480 wbt_track(&rq->issue_stat, wb_acct);
1481
1482 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1483
1484 if (unlikely(is_flush_fua)) {
1485 blk_mq_bio_to_request(rq, bio);
1486 blk_insert_flush(rq);
1487 goto run_queue;
1488 }
1489
1490 /*
1491 * A task plug currently exists. Since this is completely lockless,
1492 * utilize that to temporarily store requests until the task is
1493 * either done or scheduled away.
1494 */
1495 plug = current->plug;
1496 if (plug) {
1497 struct request *last = NULL;
1498
1499 blk_mq_bio_to_request(rq, bio);
1500
1501 /*
1502 * @request_count may become stale because of schedule
1503 * out, so check the list again.
1504 */
1505 if (list_empty(&plug->mq_list))
1506 request_count = 0;
1507 if (!request_count)
1508 trace_block_plug(q);
1509 else
1510 last = list_entry_rq(plug->mq_list.prev);
1511
1512 blk_mq_put_ctx(data.ctx);
1513
1514 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1515 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1516 blk_flush_plug_list(plug, false);
1517 trace_block_plug(q);
1518 }
1519
1520 list_add_tail(&rq->queuelist, &plug->mq_list);
1521 return cookie;
1522 }
1523
1524 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1525 /*
1526 * For a SYNC request, send it to the hardware immediately. For
1527 * an ASYNC request, just ensure that we run it later on. The
1528 * latter allows for merging opportunities and more efficient
1529 * dispatching.
1530 */
1531 run_queue:
1532 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1533 }
1534
1535 blk_mq_put_ctx(data.ctx);
1536 return cookie;
1537 }
1538
1539 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1540 struct blk_mq_tags *tags, unsigned int hctx_idx)
1541 {
1542 struct page *page;
1543
1544 if (tags->rqs && set->ops->exit_request) {
1545 int i;
1546
1547 for (i = 0; i < tags->nr_tags; i++) {
1548 if (!tags->rqs[i])
1549 continue;
1550 set->ops->exit_request(set->driver_data, tags->rqs[i],
1551 hctx_idx, i);
1552 tags->rqs[i] = NULL;
1553 }
1554 }
1555
1556 while (!list_empty(&tags->page_list)) {
1557 page = list_first_entry(&tags->page_list, struct page, lru);
1558 list_del_init(&page->lru);
1559 /*
1560 * Remove kmemleak object previously allocated in
1561 * blk_mq_init_rq_map().
1562 */
1563 kmemleak_free(page_address(page));
1564 __free_pages(page, page->private);
1565 }
1566
1567 kfree(tags->rqs);
1568
1569 blk_mq_free_tags(tags);
1570 }
1571
1572 static size_t order_to_size(unsigned int order)
1573 {
1574 return (size_t)PAGE_SIZE << order;
1575 }
1576
1577 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1578 unsigned int hctx_idx)
1579 {
1580 struct blk_mq_tags *tags;
1581 unsigned int i, j, entries_per_page, max_order = 4;
1582 size_t rq_size, left;
1583
1584 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1585 set->numa_node,
1586 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1587 if (!tags)
1588 return NULL;
1589
1590 INIT_LIST_HEAD(&tags->page_list);
1591
1592 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1593 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1594 set->numa_node);
1595 if (!tags->rqs) {
1596 blk_mq_free_tags(tags);
1597 return NULL;
1598 }
1599
1600 /*
1601 * rq_size is the size of the request plus driver payload, rounded
1602 * to the cacheline size
1603 */
1604 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1605 cache_line_size());
1606 left = rq_size * set->queue_depth;
1607
1608 for (i = 0; i < set->queue_depth; ) {
1609 int this_order = max_order;
1610 struct page *page;
1611 int to_do;
1612 void *p;
1613
1614 while (this_order && left < order_to_size(this_order - 1))
1615 this_order--;
1616
1617 do {
1618 page = alloc_pages_node(set->numa_node,
1619 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1620 this_order);
1621 if (page)
1622 break;
1623 if (!this_order--)
1624 break;
1625 if (order_to_size(this_order) < rq_size)
1626 break;
1627 } while (1);
1628
1629 if (!page)
1630 goto fail;
1631
1632 page->private = this_order;
1633 list_add_tail(&page->lru, &tags->page_list);
1634
1635 p = page_address(page);
1636 /*
1637 * Allow kmemleak to scan these pages as they contain pointers
1638 * to additional allocations like via ops->init_request().
1639 */
1640 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1641 entries_per_page = order_to_size(this_order) / rq_size;
1642 to_do = min(entries_per_page, set->queue_depth - i);
1643 left -= to_do * rq_size;
1644 for (j = 0; j < to_do; j++) {
1645 tags->rqs[i] = p;
1646 if (set->ops->init_request) {
1647 if (set->ops->init_request(set->driver_data,
1648 tags->rqs[i], hctx_idx, i,
1649 set->numa_node)) {
1650 tags->rqs[i] = NULL;
1651 goto fail;
1652 }
1653 }
1654
1655 p += rq_size;
1656 i++;
1657 }
1658 }
1659 return tags;
1660
1661 fail:
1662 blk_mq_free_rq_map(set, tags, hctx_idx);
1663 return NULL;
1664 }
1665
1666 /*
1667 * 'cpu' is going away. splice any existing rq_list entries from this
1668 * software queue to the hw queue dispatch list, and ensure that it
1669 * gets run.
1670 */
1671 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1672 {
1673 struct blk_mq_hw_ctx *hctx;
1674 struct blk_mq_ctx *ctx;
1675 LIST_HEAD(tmp);
1676
1677 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1678 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1679
1680 spin_lock(&ctx->lock);
1681 if (!list_empty(&ctx->rq_list)) {
1682 list_splice_init(&ctx->rq_list, &tmp);
1683 blk_mq_hctx_clear_pending(hctx, ctx);
1684 }
1685 spin_unlock(&ctx->lock);
1686
1687 if (list_empty(&tmp))
1688 return 0;
1689
1690 spin_lock(&hctx->lock);
1691 list_splice_tail_init(&tmp, &hctx->dispatch);
1692 spin_unlock(&hctx->lock);
1693
1694 blk_mq_run_hw_queue(hctx, true);
1695 return 0;
1696 }
1697
1698 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1699 {
1700 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1701 &hctx->cpuhp_dead);
1702 }
1703
1704 /* hctx->ctxs will be freed in queue's release handler */
1705 static void blk_mq_exit_hctx(struct request_queue *q,
1706 struct blk_mq_tag_set *set,
1707 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1708 {
1709 unsigned flush_start_tag = set->queue_depth;
1710
1711 blk_mq_tag_idle(hctx);
1712
1713 if (set->ops->exit_request)
1714 set->ops->exit_request(set->driver_data,
1715 hctx->fq->flush_rq, hctx_idx,
1716 flush_start_tag + hctx_idx);
1717
1718 if (set->ops->exit_hctx)
1719 set->ops->exit_hctx(hctx, hctx_idx);
1720
1721 if (hctx->flags & BLK_MQ_F_BLOCKING)
1722 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1723
1724 blk_mq_remove_cpuhp(hctx);
1725 blk_free_flush_queue(hctx->fq);
1726 sbitmap_free(&hctx->ctx_map);
1727 }
1728
1729 static void blk_mq_exit_hw_queues(struct request_queue *q,
1730 struct blk_mq_tag_set *set, int nr_queue)
1731 {
1732 struct blk_mq_hw_ctx *hctx;
1733 unsigned int i;
1734
1735 queue_for_each_hw_ctx(q, hctx, i) {
1736 if (i == nr_queue)
1737 break;
1738 blk_mq_exit_hctx(q, set, hctx, i);
1739 }
1740 }
1741
1742 static void blk_mq_free_hw_queues(struct request_queue *q,
1743 struct blk_mq_tag_set *set)
1744 {
1745 struct blk_mq_hw_ctx *hctx;
1746 unsigned int i;
1747
1748 queue_for_each_hw_ctx(q, hctx, i)
1749 free_cpumask_var(hctx->cpumask);
1750 }
1751
1752 static int blk_mq_init_hctx(struct request_queue *q,
1753 struct blk_mq_tag_set *set,
1754 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1755 {
1756 int node;
1757 unsigned flush_start_tag = set->queue_depth;
1758
1759 node = hctx->numa_node;
1760 if (node == NUMA_NO_NODE)
1761 node = hctx->numa_node = set->numa_node;
1762
1763 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1764 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1765 spin_lock_init(&hctx->lock);
1766 INIT_LIST_HEAD(&hctx->dispatch);
1767 hctx->queue = q;
1768 hctx->queue_num = hctx_idx;
1769 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1770
1771 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1772
1773 hctx->tags = set->tags[hctx_idx];
1774
1775 /*
1776 * Allocate space for all possible cpus to avoid allocation at
1777 * runtime
1778 */
1779 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1780 GFP_KERNEL, node);
1781 if (!hctx->ctxs)
1782 goto unregister_cpu_notifier;
1783
1784 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1785 node))
1786 goto free_ctxs;
1787
1788 hctx->nr_ctx = 0;
1789
1790 if (set->ops->init_hctx &&
1791 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1792 goto free_bitmap;
1793
1794 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1795 if (!hctx->fq)
1796 goto exit_hctx;
1797
1798 if (set->ops->init_request &&
1799 set->ops->init_request(set->driver_data,
1800 hctx->fq->flush_rq, hctx_idx,
1801 flush_start_tag + hctx_idx, node))
1802 goto free_fq;
1803
1804 if (hctx->flags & BLK_MQ_F_BLOCKING)
1805 init_srcu_struct(&hctx->queue_rq_srcu);
1806
1807 return 0;
1808
1809 free_fq:
1810 kfree(hctx->fq);
1811 exit_hctx:
1812 if (set->ops->exit_hctx)
1813 set->ops->exit_hctx(hctx, hctx_idx);
1814 free_bitmap:
1815 sbitmap_free(&hctx->ctx_map);
1816 free_ctxs:
1817 kfree(hctx->ctxs);
1818 unregister_cpu_notifier:
1819 blk_mq_remove_cpuhp(hctx);
1820 return -1;
1821 }
1822
1823 static void blk_mq_init_cpu_queues(struct request_queue *q,
1824 unsigned int nr_hw_queues)
1825 {
1826 unsigned int i;
1827
1828 for_each_possible_cpu(i) {
1829 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1830 struct blk_mq_hw_ctx *hctx;
1831
1832 memset(__ctx, 0, sizeof(*__ctx));
1833 __ctx->cpu = i;
1834 spin_lock_init(&__ctx->lock);
1835 INIT_LIST_HEAD(&__ctx->rq_list);
1836 __ctx->queue = q;
1837 blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
1838 blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
1839
1840 /* If the cpu isn't online, the cpu is mapped to first hctx */
1841 if (!cpu_online(i))
1842 continue;
1843
1844 hctx = blk_mq_map_queue(q, i);
1845
1846 /*
1847 * Set local node, IFF we have more than one hw queue. If
1848 * not, we remain on the home node of the device
1849 */
1850 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1851 hctx->numa_node = local_memory_node(cpu_to_node(i));
1852 }
1853 }
1854
1855 static void blk_mq_map_swqueue(struct request_queue *q,
1856 const struct cpumask *online_mask)
1857 {
1858 unsigned int i;
1859 struct blk_mq_hw_ctx *hctx;
1860 struct blk_mq_ctx *ctx;
1861 struct blk_mq_tag_set *set = q->tag_set;
1862
1863 /*
1864 * Avoid others reading imcomplete hctx->cpumask through sysfs
1865 */
1866 mutex_lock(&q->sysfs_lock);
1867
1868 queue_for_each_hw_ctx(q, hctx, i) {
1869 cpumask_clear(hctx->cpumask);
1870 hctx->nr_ctx = 0;
1871 }
1872
1873 /*
1874 * Map software to hardware queues
1875 */
1876 for_each_possible_cpu(i) {
1877 /* If the cpu isn't online, the cpu is mapped to first hctx */
1878 if (!cpumask_test_cpu(i, online_mask))
1879 continue;
1880
1881 ctx = per_cpu_ptr(q->queue_ctx, i);
1882 hctx = blk_mq_map_queue(q, i);
1883
1884 cpumask_set_cpu(i, hctx->cpumask);
1885 ctx->index_hw = hctx->nr_ctx;
1886 hctx->ctxs[hctx->nr_ctx++] = ctx;
1887 }
1888
1889 mutex_unlock(&q->sysfs_lock);
1890
1891 queue_for_each_hw_ctx(q, hctx, i) {
1892 /*
1893 * If no software queues are mapped to this hardware queue,
1894 * disable it and free the request entries.
1895 */
1896 if (!hctx->nr_ctx) {
1897 if (set->tags[i]) {
1898 blk_mq_free_rq_map(set, set->tags[i], i);
1899 set->tags[i] = NULL;
1900 }
1901 hctx->tags = NULL;
1902 continue;
1903 }
1904
1905 /* unmapped hw queue can be remapped after CPU topo changed */
1906 if (!set->tags[i])
1907 set->tags[i] = blk_mq_init_rq_map(set, i);
1908 hctx->tags = set->tags[i];
1909 WARN_ON(!hctx->tags);
1910
1911 /*
1912 * Set the map size to the number of mapped software queues.
1913 * This is more accurate and more efficient than looping
1914 * over all possibly mapped software queues.
1915 */
1916 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
1917
1918 /*
1919 * Initialize batch roundrobin counts
1920 */
1921 hctx->next_cpu = cpumask_first(hctx->cpumask);
1922 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1923 }
1924 }
1925
1926 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1927 {
1928 struct blk_mq_hw_ctx *hctx;
1929 int i;
1930
1931 queue_for_each_hw_ctx(q, hctx, i) {
1932 if (shared)
1933 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1934 else
1935 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1936 }
1937 }
1938
1939 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
1940 {
1941 struct request_queue *q;
1942
1943 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1944 blk_mq_freeze_queue(q);
1945 queue_set_hctx_shared(q, shared);
1946 blk_mq_unfreeze_queue(q);
1947 }
1948 }
1949
1950 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1951 {
1952 struct blk_mq_tag_set *set = q->tag_set;
1953
1954 mutex_lock(&set->tag_list_lock);
1955 list_del_init(&q->tag_set_list);
1956 if (list_is_singular(&set->tag_list)) {
1957 /* just transitioned to unshared */
1958 set->flags &= ~BLK_MQ_F_TAG_SHARED;
1959 /* update existing queue */
1960 blk_mq_update_tag_set_depth(set, false);
1961 }
1962 mutex_unlock(&set->tag_list_lock);
1963 }
1964
1965 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1966 struct request_queue *q)
1967 {
1968 q->tag_set = set;
1969
1970 mutex_lock(&set->tag_list_lock);
1971
1972 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
1973 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
1974 set->flags |= BLK_MQ_F_TAG_SHARED;
1975 /* update existing queue */
1976 blk_mq_update_tag_set_depth(set, true);
1977 }
1978 if (set->flags & BLK_MQ_F_TAG_SHARED)
1979 queue_set_hctx_shared(q, true);
1980 list_add_tail(&q->tag_set_list, &set->tag_list);
1981
1982 mutex_unlock(&set->tag_list_lock);
1983 }
1984
1985 /*
1986 * It is the actual release handler for mq, but we do it from
1987 * request queue's release handler for avoiding use-after-free
1988 * and headache because q->mq_kobj shouldn't have been introduced,
1989 * but we can't group ctx/kctx kobj without it.
1990 */
1991 void blk_mq_release(struct request_queue *q)
1992 {
1993 struct blk_mq_hw_ctx *hctx;
1994 unsigned int i;
1995
1996 /* hctx kobj stays in hctx */
1997 queue_for_each_hw_ctx(q, hctx, i) {
1998 if (!hctx)
1999 continue;
2000 kfree(hctx->ctxs);
2001 kfree(hctx);
2002 }
2003
2004 q->mq_map = NULL;
2005
2006 kfree(q->queue_hw_ctx);
2007
2008 /* ctx kobj stays in queue_ctx */
2009 free_percpu(q->queue_ctx);
2010 }
2011
2012 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2013 {
2014 struct request_queue *uninit_q, *q;
2015
2016 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2017 if (!uninit_q)
2018 return ERR_PTR(-ENOMEM);
2019
2020 q = blk_mq_init_allocated_queue(set, uninit_q);
2021 if (IS_ERR(q))
2022 blk_cleanup_queue(uninit_q);
2023
2024 return q;
2025 }
2026 EXPORT_SYMBOL(blk_mq_init_queue);
2027
2028 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2029 struct request_queue *q)
2030 {
2031 int i, j;
2032 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2033
2034 blk_mq_sysfs_unregister(q);
2035 for (i = 0; i < set->nr_hw_queues; i++) {
2036 int node;
2037
2038 if (hctxs[i])
2039 continue;
2040
2041 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2042 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2043 GFP_KERNEL, node);
2044 if (!hctxs[i])
2045 break;
2046
2047 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2048 node)) {
2049 kfree(hctxs[i]);
2050 hctxs[i] = NULL;
2051 break;
2052 }
2053
2054 atomic_set(&hctxs[i]->nr_active, 0);
2055 hctxs[i]->numa_node = node;
2056 hctxs[i]->queue_num = i;
2057
2058 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2059 free_cpumask_var(hctxs[i]->cpumask);
2060 kfree(hctxs[i]);
2061 hctxs[i] = NULL;
2062 break;
2063 }
2064 blk_mq_hctx_kobj_init(hctxs[i]);
2065 }
2066 for (j = i; j < q->nr_hw_queues; j++) {
2067 struct blk_mq_hw_ctx *hctx = hctxs[j];
2068
2069 if (hctx) {
2070 if (hctx->tags) {
2071 blk_mq_free_rq_map(set, hctx->tags, j);
2072 set->tags[j] = NULL;
2073 }
2074 blk_mq_exit_hctx(q, set, hctx, j);
2075 free_cpumask_var(hctx->cpumask);
2076 kobject_put(&hctx->kobj);
2077 kfree(hctx->ctxs);
2078 kfree(hctx);
2079 hctxs[j] = NULL;
2080
2081 }
2082 }
2083 q->nr_hw_queues = i;
2084 blk_mq_sysfs_register(q);
2085 }
2086
2087 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2088 struct request_queue *q)
2089 {
2090 /* mark the queue as mq asap */
2091 q->mq_ops = set->ops;
2092
2093 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2094 if (!q->queue_ctx)
2095 goto err_exit;
2096
2097 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2098 GFP_KERNEL, set->numa_node);
2099 if (!q->queue_hw_ctx)
2100 goto err_percpu;
2101
2102 q->mq_map = set->mq_map;
2103
2104 blk_mq_realloc_hw_ctxs(set, q);
2105 if (!q->nr_hw_queues)
2106 goto err_hctxs;
2107
2108 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2109 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2110
2111 q->nr_queues = nr_cpu_ids;
2112
2113 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2114
2115 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2116 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2117
2118 q->sg_reserved_size = INT_MAX;
2119
2120 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2121 INIT_LIST_HEAD(&q->requeue_list);
2122 spin_lock_init(&q->requeue_lock);
2123
2124 if (q->nr_hw_queues > 1)
2125 blk_queue_make_request(q, blk_mq_make_request);
2126 else
2127 blk_queue_make_request(q, blk_sq_make_request);
2128
2129 /*
2130 * Do this after blk_queue_make_request() overrides it...
2131 */
2132 q->nr_requests = set->queue_depth;
2133
2134 if (set->ops->complete)
2135 blk_queue_softirq_done(q, set->ops->complete);
2136
2137 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2138
2139 get_online_cpus();
2140 mutex_lock(&all_q_mutex);
2141
2142 list_add_tail(&q->all_q_node, &all_q_list);
2143 blk_mq_add_queue_tag_set(set, q);
2144 blk_mq_map_swqueue(q, cpu_online_mask);
2145
2146 mutex_unlock(&all_q_mutex);
2147 put_online_cpus();
2148
2149 return q;
2150
2151 err_hctxs:
2152 kfree(q->queue_hw_ctx);
2153 err_percpu:
2154 free_percpu(q->queue_ctx);
2155 err_exit:
2156 q->mq_ops = NULL;
2157 return ERR_PTR(-ENOMEM);
2158 }
2159 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2160
2161 void blk_mq_free_queue(struct request_queue *q)
2162 {
2163 struct blk_mq_tag_set *set = q->tag_set;
2164
2165 mutex_lock(&all_q_mutex);
2166 list_del_init(&q->all_q_node);
2167 mutex_unlock(&all_q_mutex);
2168
2169 wbt_exit(q);
2170
2171 blk_mq_del_queue_tag_set(q);
2172
2173 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2174 blk_mq_free_hw_queues(q, set);
2175 }
2176
2177 /* Basically redo blk_mq_init_queue with queue frozen */
2178 static void blk_mq_queue_reinit(struct request_queue *q,
2179 const struct cpumask *online_mask)
2180 {
2181 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2182
2183 blk_mq_sysfs_unregister(q);
2184
2185 /*
2186 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2187 * we should change hctx numa_node according to new topology (this
2188 * involves free and re-allocate memory, worthy doing?)
2189 */
2190
2191 blk_mq_map_swqueue(q, online_mask);
2192
2193 blk_mq_sysfs_register(q);
2194 }
2195
2196 /*
2197 * New online cpumask which is going to be set in this hotplug event.
2198 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2199 * one-by-one and dynamically allocating this could result in a failure.
2200 */
2201 static struct cpumask cpuhp_online_new;
2202
2203 static void blk_mq_queue_reinit_work(void)
2204 {
2205 struct request_queue *q;
2206
2207 mutex_lock(&all_q_mutex);
2208 /*
2209 * We need to freeze and reinit all existing queues. Freezing
2210 * involves synchronous wait for an RCU grace period and doing it
2211 * one by one may take a long time. Start freezing all queues in
2212 * one swoop and then wait for the completions so that freezing can
2213 * take place in parallel.
2214 */
2215 list_for_each_entry(q, &all_q_list, all_q_node)
2216 blk_mq_freeze_queue_start(q);
2217 list_for_each_entry(q, &all_q_list, all_q_node) {
2218 blk_mq_freeze_queue_wait(q);
2219
2220 /*
2221 * timeout handler can't touch hw queue during the
2222 * reinitialization
2223 */
2224 del_timer_sync(&q->timeout);
2225 }
2226
2227 list_for_each_entry(q, &all_q_list, all_q_node)
2228 blk_mq_queue_reinit(q, &cpuhp_online_new);
2229
2230 list_for_each_entry(q, &all_q_list, all_q_node)
2231 blk_mq_unfreeze_queue(q);
2232
2233 mutex_unlock(&all_q_mutex);
2234 }
2235
2236 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2237 {
2238 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2239 blk_mq_queue_reinit_work();
2240 return 0;
2241 }
2242
2243 /*
2244 * Before hotadded cpu starts handling requests, new mappings must be
2245 * established. Otherwise, these requests in hw queue might never be
2246 * dispatched.
2247 *
2248 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2249 * for CPU0, and ctx1 for CPU1).
2250 *
2251 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2252 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2253 *
2254 * And then while running hw queue, flush_busy_ctxs() finds bit0 is set in
2255 * pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2256 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list
2257 * is ignored.
2258 */
2259 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2260 {
2261 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2262 cpumask_set_cpu(cpu, &cpuhp_online_new);
2263 blk_mq_queue_reinit_work();
2264 return 0;
2265 }
2266
2267 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2268 {
2269 int i;
2270
2271 for (i = 0; i < set->nr_hw_queues; i++) {
2272 set->tags[i] = blk_mq_init_rq_map(set, i);
2273 if (!set->tags[i])
2274 goto out_unwind;
2275 }
2276
2277 return 0;
2278
2279 out_unwind:
2280 while (--i >= 0)
2281 blk_mq_free_rq_map(set, set->tags[i], i);
2282
2283 return -ENOMEM;
2284 }
2285
2286 /*
2287 * Allocate the request maps associated with this tag_set. Note that this
2288 * may reduce the depth asked for, if memory is tight. set->queue_depth
2289 * will be updated to reflect the allocated depth.
2290 */
2291 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2292 {
2293 unsigned int depth;
2294 int err;
2295
2296 depth = set->queue_depth;
2297 do {
2298 err = __blk_mq_alloc_rq_maps(set);
2299 if (!err)
2300 break;
2301
2302 set->queue_depth >>= 1;
2303 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2304 err = -ENOMEM;
2305 break;
2306 }
2307 } while (set->queue_depth);
2308
2309 if (!set->queue_depth || err) {
2310 pr_err("blk-mq: failed to allocate request map\n");
2311 return -ENOMEM;
2312 }
2313
2314 if (depth != set->queue_depth)
2315 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2316 depth, set->queue_depth);
2317
2318 return 0;
2319 }
2320
2321 /*
2322 * Alloc a tag set to be associated with one or more request queues.
2323 * May fail with EINVAL for various error conditions. May adjust the
2324 * requested depth down, if if it too large. In that case, the set
2325 * value will be stored in set->queue_depth.
2326 */
2327 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2328 {
2329 int ret;
2330
2331 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2332
2333 if (!set->nr_hw_queues)
2334 return -EINVAL;
2335 if (!set->queue_depth)
2336 return -EINVAL;
2337 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2338 return -EINVAL;
2339
2340 if (!set->ops->queue_rq)
2341 return -EINVAL;
2342
2343 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2344 pr_info("blk-mq: reduced tag depth to %u\n",
2345 BLK_MQ_MAX_DEPTH);
2346 set->queue_depth = BLK_MQ_MAX_DEPTH;
2347 }
2348
2349 /*
2350 * If a crashdump is active, then we are potentially in a very
2351 * memory constrained environment. Limit us to 1 queue and
2352 * 64 tags to prevent using too much memory.
2353 */
2354 if (is_kdump_kernel()) {
2355 set->nr_hw_queues = 1;
2356 set->queue_depth = min(64U, set->queue_depth);
2357 }
2358 /*
2359 * There is no use for more h/w queues than cpus.
2360 */
2361 if (set->nr_hw_queues > nr_cpu_ids)
2362 set->nr_hw_queues = nr_cpu_ids;
2363
2364 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2365 GFP_KERNEL, set->numa_node);
2366 if (!set->tags)
2367 return -ENOMEM;
2368
2369 ret = -ENOMEM;
2370 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2371 GFP_KERNEL, set->numa_node);
2372 if (!set->mq_map)
2373 goto out_free_tags;
2374
2375 if (set->ops->map_queues)
2376 ret = set->ops->map_queues(set);
2377 else
2378 ret = blk_mq_map_queues(set);
2379 if (ret)
2380 goto out_free_mq_map;
2381
2382 ret = blk_mq_alloc_rq_maps(set);
2383 if (ret)
2384 goto out_free_mq_map;
2385
2386 mutex_init(&set->tag_list_lock);
2387 INIT_LIST_HEAD(&set->tag_list);
2388
2389 return 0;
2390
2391 out_free_mq_map:
2392 kfree(set->mq_map);
2393 set->mq_map = NULL;
2394 out_free_tags:
2395 kfree(set->tags);
2396 set->tags = NULL;
2397 return ret;
2398 }
2399 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2400
2401 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2402 {
2403 int i;
2404
2405 for (i = 0; i < nr_cpu_ids; i++) {
2406 if (set->tags[i])
2407 blk_mq_free_rq_map(set, set->tags[i], i);
2408 }
2409
2410 kfree(set->mq_map);
2411 set->mq_map = NULL;
2412
2413 kfree(set->tags);
2414 set->tags = NULL;
2415 }
2416 EXPORT_SYMBOL(blk_mq_free_tag_set);
2417
2418 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2419 {
2420 struct blk_mq_tag_set *set = q->tag_set;
2421 struct blk_mq_hw_ctx *hctx;
2422 int i, ret;
2423
2424 if (!set || nr > set->queue_depth)
2425 return -EINVAL;
2426
2427 ret = 0;
2428 queue_for_each_hw_ctx(q, hctx, i) {
2429 if (!hctx->tags)
2430 continue;
2431 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2432 if (ret)
2433 break;
2434 }
2435
2436 if (!ret)
2437 q->nr_requests = nr;
2438
2439 return ret;
2440 }
2441
2442 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2443 {
2444 struct request_queue *q;
2445
2446 if (nr_hw_queues > nr_cpu_ids)
2447 nr_hw_queues = nr_cpu_ids;
2448 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2449 return;
2450
2451 list_for_each_entry(q, &set->tag_list, tag_set_list)
2452 blk_mq_freeze_queue(q);
2453
2454 set->nr_hw_queues = nr_hw_queues;
2455 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2456 blk_mq_realloc_hw_ctxs(set, q);
2457
2458 if (q->nr_hw_queues > 1)
2459 blk_queue_make_request(q, blk_mq_make_request);
2460 else
2461 blk_queue_make_request(q, blk_sq_make_request);
2462
2463 blk_mq_queue_reinit(q, cpu_online_mask);
2464 }
2465
2466 list_for_each_entry(q, &set->tag_list, tag_set_list)
2467 blk_mq_unfreeze_queue(q);
2468 }
2469 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2470
2471 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2472 {
2473 struct request_queue *q = hctx->queue;
2474 long state;
2475
2476 hctx->poll_considered++;
2477
2478 state = current->state;
2479 while (!need_resched()) {
2480 int ret;
2481
2482 hctx->poll_invoked++;
2483
2484 ret = q->mq_ops->poll(hctx, rq->tag);
2485 if (ret > 0) {
2486 hctx->poll_success++;
2487 set_current_state(TASK_RUNNING);
2488 return true;
2489 }
2490
2491 if (signal_pending_state(state, current))
2492 set_current_state(TASK_RUNNING);
2493
2494 if (current->state == TASK_RUNNING)
2495 return true;
2496 if (ret < 0)
2497 break;
2498 cpu_relax();
2499 }
2500
2501 return false;
2502 }
2503
2504 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2505 {
2506 struct blk_mq_hw_ctx *hctx;
2507 struct blk_plug *plug;
2508 struct request *rq;
2509
2510 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2511 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2512 return false;
2513
2514 plug = current->plug;
2515 if (plug)
2516 blk_flush_plug_list(plug, false);
2517
2518 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2519 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2520
2521 return __blk_mq_poll(hctx, rq);
2522 }
2523 EXPORT_SYMBOL_GPL(blk_mq_poll);
2524
2525 void blk_mq_disable_hotplug(void)
2526 {
2527 mutex_lock(&all_q_mutex);
2528 }
2529
2530 void blk_mq_enable_hotplug(void)
2531 {
2532 mutex_unlock(&all_q_mutex);
2533 }
2534
2535 static int __init blk_mq_init(void)
2536 {
2537 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2538 blk_mq_hctx_notify_dead);
2539
2540 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2541 blk_mq_queue_reinit_prepare,
2542 blk_mq_queue_reinit_dead);
2543 return 0;
2544 }
2545 subsys_initcall(blk_mq_init);