]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - block/blk-mq.c
Merge tag 'tag-chrome-platform-for-v5.7' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-jammy-kernel.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Block multiqueue core code
4 *
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
7 */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29
30 #include <trace/events/block.h>
31
32 #include <linux/blk-mq.h>
33 #include <linux/t10-pi.h>
34 #include "blk.h"
35 #include "blk-mq.h"
36 #include "blk-mq-debugfs.h"
37 #include "blk-mq-tag.h"
38 #include "blk-pm.h"
39 #include "blk-stat.h"
40 #include "blk-mq-sched.h"
41 #include "blk-rq-qos.h"
42
43 static void blk_mq_poll_stats_start(struct request_queue *q);
44 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
45
46 static int blk_mq_poll_stats_bkt(const struct request *rq)
47 {
48 int ddir, sectors, bucket;
49
50 ddir = rq_data_dir(rq);
51 sectors = blk_rq_stats_sectors(rq);
52
53 bucket = ddir + 2 * ilog2(sectors);
54
55 if (bucket < 0)
56 return -1;
57 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
58 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
59
60 return bucket;
61 }
62
63 /*
64 * Check if any of the ctx, dispatch list or elevator
65 * have pending work in this hardware queue.
66 */
67 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
68 {
69 return !list_empty_careful(&hctx->dispatch) ||
70 sbitmap_any_bit_set(&hctx->ctx_map) ||
71 blk_mq_sched_has_work(hctx);
72 }
73
74 /*
75 * Mark this ctx as having pending work in this hardware queue
76 */
77 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
78 struct blk_mq_ctx *ctx)
79 {
80 const int bit = ctx->index_hw[hctx->type];
81
82 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
83 sbitmap_set_bit(&hctx->ctx_map, bit);
84 }
85
86 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
87 struct blk_mq_ctx *ctx)
88 {
89 const int bit = ctx->index_hw[hctx->type];
90
91 sbitmap_clear_bit(&hctx->ctx_map, bit);
92 }
93
94 struct mq_inflight {
95 struct hd_struct *part;
96 unsigned int inflight[2];
97 };
98
99 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
100 struct request *rq, void *priv,
101 bool reserved)
102 {
103 struct mq_inflight *mi = priv;
104
105 if (rq->part == mi->part)
106 mi->inflight[rq_data_dir(rq)]++;
107
108 return true;
109 }
110
111 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
112 {
113 struct mq_inflight mi = { .part = part };
114
115 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
116
117 return mi.inflight[0] + mi.inflight[1];
118 }
119
120 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
121 unsigned int inflight[2])
122 {
123 struct mq_inflight mi = { .part = part };
124
125 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
126 inflight[0] = mi.inflight[0];
127 inflight[1] = mi.inflight[1];
128 }
129
130 void blk_freeze_queue_start(struct request_queue *q)
131 {
132 mutex_lock(&q->mq_freeze_lock);
133 if (++q->mq_freeze_depth == 1) {
134 percpu_ref_kill(&q->q_usage_counter);
135 mutex_unlock(&q->mq_freeze_lock);
136 if (queue_is_mq(q))
137 blk_mq_run_hw_queues(q, false);
138 } else {
139 mutex_unlock(&q->mq_freeze_lock);
140 }
141 }
142 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
143
144 void blk_mq_freeze_queue_wait(struct request_queue *q)
145 {
146 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
147 }
148 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
149
150 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
151 unsigned long timeout)
152 {
153 return wait_event_timeout(q->mq_freeze_wq,
154 percpu_ref_is_zero(&q->q_usage_counter),
155 timeout);
156 }
157 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
158
159 /*
160 * Guarantee no request is in use, so we can change any data structure of
161 * the queue afterward.
162 */
163 void blk_freeze_queue(struct request_queue *q)
164 {
165 /*
166 * In the !blk_mq case we are only calling this to kill the
167 * q_usage_counter, otherwise this increases the freeze depth
168 * and waits for it to return to zero. For this reason there is
169 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
170 * exported to drivers as the only user for unfreeze is blk_mq.
171 */
172 blk_freeze_queue_start(q);
173 blk_mq_freeze_queue_wait(q);
174 }
175
176 void blk_mq_freeze_queue(struct request_queue *q)
177 {
178 /*
179 * ...just an alias to keep freeze and unfreeze actions balanced
180 * in the blk_mq_* namespace
181 */
182 blk_freeze_queue(q);
183 }
184 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
185
186 void blk_mq_unfreeze_queue(struct request_queue *q)
187 {
188 mutex_lock(&q->mq_freeze_lock);
189 q->mq_freeze_depth--;
190 WARN_ON_ONCE(q->mq_freeze_depth < 0);
191 if (!q->mq_freeze_depth) {
192 percpu_ref_resurrect(&q->q_usage_counter);
193 wake_up_all(&q->mq_freeze_wq);
194 }
195 mutex_unlock(&q->mq_freeze_lock);
196 }
197 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
198
199 /*
200 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
201 * mpt3sas driver such that this function can be removed.
202 */
203 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
204 {
205 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
206 }
207 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
208
209 /**
210 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
211 * @q: request queue.
212 *
213 * Note: this function does not prevent that the struct request end_io()
214 * callback function is invoked. Once this function is returned, we make
215 * sure no dispatch can happen until the queue is unquiesced via
216 * blk_mq_unquiesce_queue().
217 */
218 void blk_mq_quiesce_queue(struct request_queue *q)
219 {
220 struct blk_mq_hw_ctx *hctx;
221 unsigned int i;
222 bool rcu = false;
223
224 blk_mq_quiesce_queue_nowait(q);
225
226 queue_for_each_hw_ctx(q, hctx, i) {
227 if (hctx->flags & BLK_MQ_F_BLOCKING)
228 synchronize_srcu(hctx->srcu);
229 else
230 rcu = true;
231 }
232 if (rcu)
233 synchronize_rcu();
234 }
235 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
236
237 /*
238 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
239 * @q: request queue.
240 *
241 * This function recovers queue into the state before quiescing
242 * which is done by blk_mq_quiesce_queue.
243 */
244 void blk_mq_unquiesce_queue(struct request_queue *q)
245 {
246 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
247
248 /* dispatch requests which are inserted during quiescing */
249 blk_mq_run_hw_queues(q, true);
250 }
251 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
252
253 void blk_mq_wake_waiters(struct request_queue *q)
254 {
255 struct blk_mq_hw_ctx *hctx;
256 unsigned int i;
257
258 queue_for_each_hw_ctx(q, hctx, i)
259 if (blk_mq_hw_queue_mapped(hctx))
260 blk_mq_tag_wakeup_all(hctx->tags, true);
261 }
262
263 /*
264 * Only need start/end time stamping if we have iostat or
265 * blk stats enabled, or using an IO scheduler.
266 */
267 static inline bool blk_mq_need_time_stamp(struct request *rq)
268 {
269 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
270 }
271
272 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
273 unsigned int tag, unsigned int op, u64 alloc_time_ns)
274 {
275 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
276 struct request *rq = tags->static_rqs[tag];
277 req_flags_t rq_flags = 0;
278
279 if (data->flags & BLK_MQ_REQ_INTERNAL) {
280 rq->tag = -1;
281 rq->internal_tag = tag;
282 } else {
283 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
284 rq_flags = RQF_MQ_INFLIGHT;
285 atomic_inc(&data->hctx->nr_active);
286 }
287 rq->tag = tag;
288 rq->internal_tag = -1;
289 data->hctx->tags->rqs[rq->tag] = rq;
290 }
291
292 /* csd/requeue_work/fifo_time is initialized before use */
293 rq->q = data->q;
294 rq->mq_ctx = data->ctx;
295 rq->mq_hctx = data->hctx;
296 rq->rq_flags = rq_flags;
297 rq->cmd_flags = op;
298 if (data->flags & BLK_MQ_REQ_PREEMPT)
299 rq->rq_flags |= RQF_PREEMPT;
300 if (blk_queue_io_stat(data->q))
301 rq->rq_flags |= RQF_IO_STAT;
302 INIT_LIST_HEAD(&rq->queuelist);
303 INIT_HLIST_NODE(&rq->hash);
304 RB_CLEAR_NODE(&rq->rb_node);
305 rq->rq_disk = NULL;
306 rq->part = NULL;
307 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
308 rq->alloc_time_ns = alloc_time_ns;
309 #endif
310 if (blk_mq_need_time_stamp(rq))
311 rq->start_time_ns = ktime_get_ns();
312 else
313 rq->start_time_ns = 0;
314 rq->io_start_time_ns = 0;
315 rq->stats_sectors = 0;
316 rq->nr_phys_segments = 0;
317 #if defined(CONFIG_BLK_DEV_INTEGRITY)
318 rq->nr_integrity_segments = 0;
319 #endif
320 /* tag was already set */
321 rq->extra_len = 0;
322 WRITE_ONCE(rq->deadline, 0);
323
324 rq->timeout = 0;
325
326 rq->end_io = NULL;
327 rq->end_io_data = NULL;
328
329 data->ctx->rq_dispatched[op_is_sync(op)]++;
330 refcount_set(&rq->ref, 1);
331 return rq;
332 }
333
334 static struct request *blk_mq_get_request(struct request_queue *q,
335 struct bio *bio,
336 struct blk_mq_alloc_data *data)
337 {
338 struct elevator_queue *e = q->elevator;
339 struct request *rq;
340 unsigned int tag;
341 bool clear_ctx_on_error = false;
342 u64 alloc_time_ns = 0;
343
344 blk_queue_enter_live(q);
345
346 /* alloc_time includes depth and tag waits */
347 if (blk_queue_rq_alloc_time(q))
348 alloc_time_ns = ktime_get_ns();
349
350 data->q = q;
351 if (likely(!data->ctx)) {
352 data->ctx = blk_mq_get_ctx(q);
353 clear_ctx_on_error = true;
354 }
355 if (likely(!data->hctx))
356 data->hctx = blk_mq_map_queue(q, data->cmd_flags,
357 data->ctx);
358 if (data->cmd_flags & REQ_NOWAIT)
359 data->flags |= BLK_MQ_REQ_NOWAIT;
360
361 if (e) {
362 data->flags |= BLK_MQ_REQ_INTERNAL;
363
364 /*
365 * Flush requests are special and go directly to the
366 * dispatch list. Don't include reserved tags in the
367 * limiting, as it isn't useful.
368 */
369 if (!op_is_flush(data->cmd_flags) &&
370 e->type->ops.limit_depth &&
371 !(data->flags & BLK_MQ_REQ_RESERVED))
372 e->type->ops.limit_depth(data->cmd_flags, data);
373 } else {
374 blk_mq_tag_busy(data->hctx);
375 }
376
377 tag = blk_mq_get_tag(data);
378 if (tag == BLK_MQ_TAG_FAIL) {
379 if (clear_ctx_on_error)
380 data->ctx = NULL;
381 blk_queue_exit(q);
382 return NULL;
383 }
384
385 rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags, alloc_time_ns);
386 if (!op_is_flush(data->cmd_flags)) {
387 rq->elv.icq = NULL;
388 if (e && e->type->ops.prepare_request) {
389 if (e->type->icq_cache)
390 blk_mq_sched_assign_ioc(rq);
391
392 e->type->ops.prepare_request(rq, bio);
393 rq->rq_flags |= RQF_ELVPRIV;
394 }
395 }
396 data->hctx->queued++;
397 return rq;
398 }
399
400 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
401 blk_mq_req_flags_t flags)
402 {
403 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
404 struct request *rq;
405 int ret;
406
407 ret = blk_queue_enter(q, flags);
408 if (ret)
409 return ERR_PTR(ret);
410
411 rq = blk_mq_get_request(q, NULL, &alloc_data);
412 blk_queue_exit(q);
413
414 if (!rq)
415 return ERR_PTR(-EWOULDBLOCK);
416
417 rq->__data_len = 0;
418 rq->__sector = (sector_t) -1;
419 rq->bio = rq->biotail = NULL;
420 return rq;
421 }
422 EXPORT_SYMBOL(blk_mq_alloc_request);
423
424 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
425 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
426 {
427 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
428 struct request *rq;
429 unsigned int cpu;
430 int ret;
431
432 /*
433 * If the tag allocator sleeps we could get an allocation for a
434 * different hardware context. No need to complicate the low level
435 * allocator for this for the rare use case of a command tied to
436 * a specific queue.
437 */
438 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
439 return ERR_PTR(-EINVAL);
440
441 if (hctx_idx >= q->nr_hw_queues)
442 return ERR_PTR(-EIO);
443
444 ret = blk_queue_enter(q, flags);
445 if (ret)
446 return ERR_PTR(ret);
447
448 /*
449 * Check if the hardware context is actually mapped to anything.
450 * If not tell the caller that it should skip this queue.
451 */
452 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
453 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
454 blk_queue_exit(q);
455 return ERR_PTR(-EXDEV);
456 }
457 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
458 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
459
460 rq = blk_mq_get_request(q, NULL, &alloc_data);
461 blk_queue_exit(q);
462
463 if (!rq)
464 return ERR_PTR(-EWOULDBLOCK);
465
466 return rq;
467 }
468 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
469
470 static void __blk_mq_free_request(struct request *rq)
471 {
472 struct request_queue *q = rq->q;
473 struct blk_mq_ctx *ctx = rq->mq_ctx;
474 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
475 const int sched_tag = rq->internal_tag;
476
477 blk_pm_mark_last_busy(rq);
478 rq->mq_hctx = NULL;
479 if (rq->tag != -1)
480 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
481 if (sched_tag != -1)
482 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
483 blk_mq_sched_restart(hctx);
484 blk_queue_exit(q);
485 }
486
487 void blk_mq_free_request(struct request *rq)
488 {
489 struct request_queue *q = rq->q;
490 struct elevator_queue *e = q->elevator;
491 struct blk_mq_ctx *ctx = rq->mq_ctx;
492 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
493
494 if (rq->rq_flags & RQF_ELVPRIV) {
495 if (e && e->type->ops.finish_request)
496 e->type->ops.finish_request(rq);
497 if (rq->elv.icq) {
498 put_io_context(rq->elv.icq->ioc);
499 rq->elv.icq = NULL;
500 }
501 }
502
503 ctx->rq_completed[rq_is_sync(rq)]++;
504 if (rq->rq_flags & RQF_MQ_INFLIGHT)
505 atomic_dec(&hctx->nr_active);
506
507 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
508 laptop_io_completion(q->backing_dev_info);
509
510 rq_qos_done(q, rq);
511
512 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
513 if (refcount_dec_and_test(&rq->ref))
514 __blk_mq_free_request(rq);
515 }
516 EXPORT_SYMBOL_GPL(blk_mq_free_request);
517
518 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
519 {
520 u64 now = 0;
521
522 if (blk_mq_need_time_stamp(rq))
523 now = ktime_get_ns();
524
525 if (rq->rq_flags & RQF_STATS) {
526 blk_mq_poll_stats_start(rq->q);
527 blk_stat_add(rq, now);
528 }
529
530 if (rq->internal_tag != -1)
531 blk_mq_sched_completed_request(rq, now);
532
533 blk_account_io_done(rq, now);
534
535 if (rq->end_io) {
536 rq_qos_done(rq->q, rq);
537 rq->end_io(rq, error);
538 } else {
539 blk_mq_free_request(rq);
540 }
541 }
542 EXPORT_SYMBOL(__blk_mq_end_request);
543
544 void blk_mq_end_request(struct request *rq, blk_status_t error)
545 {
546 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
547 BUG();
548 __blk_mq_end_request(rq, error);
549 }
550 EXPORT_SYMBOL(blk_mq_end_request);
551
552 static void __blk_mq_complete_request_remote(void *data)
553 {
554 struct request *rq = data;
555 struct request_queue *q = rq->q;
556
557 q->mq_ops->complete(rq);
558 }
559
560 static void __blk_mq_complete_request(struct request *rq)
561 {
562 struct blk_mq_ctx *ctx = rq->mq_ctx;
563 struct request_queue *q = rq->q;
564 bool shared = false;
565 int cpu;
566
567 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
568 /*
569 * Most of single queue controllers, there is only one irq vector
570 * for handling IO completion, and the only irq's affinity is set
571 * as all possible CPUs. On most of ARCHs, this affinity means the
572 * irq is handled on one specific CPU.
573 *
574 * So complete IO reqeust in softirq context in case of single queue
575 * for not degrading IO performance by irqsoff latency.
576 */
577 if (q->nr_hw_queues == 1) {
578 __blk_complete_request(rq);
579 return;
580 }
581
582 /*
583 * For a polled request, always complete locallly, it's pointless
584 * to redirect the completion.
585 */
586 if ((rq->cmd_flags & REQ_HIPRI) ||
587 !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
588 q->mq_ops->complete(rq);
589 return;
590 }
591
592 cpu = get_cpu();
593 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
594 shared = cpus_share_cache(cpu, ctx->cpu);
595
596 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
597 rq->csd.func = __blk_mq_complete_request_remote;
598 rq->csd.info = rq;
599 rq->csd.flags = 0;
600 smp_call_function_single_async(ctx->cpu, &rq->csd);
601 } else {
602 q->mq_ops->complete(rq);
603 }
604 put_cpu();
605 }
606
607 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
608 __releases(hctx->srcu)
609 {
610 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
611 rcu_read_unlock();
612 else
613 srcu_read_unlock(hctx->srcu, srcu_idx);
614 }
615
616 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
617 __acquires(hctx->srcu)
618 {
619 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
620 /* shut up gcc false positive */
621 *srcu_idx = 0;
622 rcu_read_lock();
623 } else
624 *srcu_idx = srcu_read_lock(hctx->srcu);
625 }
626
627 /**
628 * blk_mq_complete_request - end I/O on a request
629 * @rq: the request being processed
630 *
631 * Description:
632 * Ends all I/O on a request. It does not handle partial completions.
633 * The actual completion happens out-of-order, through a IPI handler.
634 **/
635 bool blk_mq_complete_request(struct request *rq)
636 {
637 if (unlikely(blk_should_fake_timeout(rq->q)))
638 return false;
639 __blk_mq_complete_request(rq);
640 return true;
641 }
642 EXPORT_SYMBOL(blk_mq_complete_request);
643
644 /**
645 * blk_mq_start_request - Start processing a request
646 * @rq: Pointer to request to be started
647 *
648 * Function used by device drivers to notify the block layer that a request
649 * is going to be processed now, so blk layer can do proper initializations
650 * such as starting the timeout timer.
651 */
652 void blk_mq_start_request(struct request *rq)
653 {
654 struct request_queue *q = rq->q;
655
656 trace_block_rq_issue(q, rq);
657
658 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
659 rq->io_start_time_ns = ktime_get_ns();
660 rq->stats_sectors = blk_rq_sectors(rq);
661 rq->rq_flags |= RQF_STATS;
662 rq_qos_issue(q, rq);
663 }
664
665 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
666
667 blk_add_timer(rq);
668 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
669
670 if (q->dma_drain_size && blk_rq_bytes(rq)) {
671 /*
672 * Make sure space for the drain appears. We know we can do
673 * this because max_hw_segments has been adjusted to be one
674 * fewer than the device can handle.
675 */
676 rq->nr_phys_segments++;
677 }
678
679 #ifdef CONFIG_BLK_DEV_INTEGRITY
680 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
681 q->integrity.profile->prepare_fn(rq);
682 #endif
683 }
684 EXPORT_SYMBOL(blk_mq_start_request);
685
686 static void __blk_mq_requeue_request(struct request *rq)
687 {
688 struct request_queue *q = rq->q;
689
690 blk_mq_put_driver_tag(rq);
691
692 trace_block_rq_requeue(q, rq);
693 rq_qos_requeue(q, rq);
694
695 if (blk_mq_request_started(rq)) {
696 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
697 rq->rq_flags &= ~RQF_TIMED_OUT;
698 if (q->dma_drain_size && blk_rq_bytes(rq))
699 rq->nr_phys_segments--;
700 }
701 }
702
703 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
704 {
705 __blk_mq_requeue_request(rq);
706
707 /* this request will be re-inserted to io scheduler queue */
708 blk_mq_sched_requeue_request(rq);
709
710 BUG_ON(!list_empty(&rq->queuelist));
711 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
712 }
713 EXPORT_SYMBOL(blk_mq_requeue_request);
714
715 static void blk_mq_requeue_work(struct work_struct *work)
716 {
717 struct request_queue *q =
718 container_of(work, struct request_queue, requeue_work.work);
719 LIST_HEAD(rq_list);
720 struct request *rq, *next;
721
722 spin_lock_irq(&q->requeue_lock);
723 list_splice_init(&q->requeue_list, &rq_list);
724 spin_unlock_irq(&q->requeue_lock);
725
726 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
727 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
728 continue;
729
730 rq->rq_flags &= ~RQF_SOFTBARRIER;
731 list_del_init(&rq->queuelist);
732 /*
733 * If RQF_DONTPREP, rq has contained some driver specific
734 * data, so insert it to hctx dispatch list to avoid any
735 * merge.
736 */
737 if (rq->rq_flags & RQF_DONTPREP)
738 blk_mq_request_bypass_insert(rq, false, false);
739 else
740 blk_mq_sched_insert_request(rq, true, false, false);
741 }
742
743 while (!list_empty(&rq_list)) {
744 rq = list_entry(rq_list.next, struct request, queuelist);
745 list_del_init(&rq->queuelist);
746 blk_mq_sched_insert_request(rq, false, false, false);
747 }
748
749 blk_mq_run_hw_queues(q, false);
750 }
751
752 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
753 bool kick_requeue_list)
754 {
755 struct request_queue *q = rq->q;
756 unsigned long flags;
757
758 /*
759 * We abuse this flag that is otherwise used by the I/O scheduler to
760 * request head insertion from the workqueue.
761 */
762 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
763
764 spin_lock_irqsave(&q->requeue_lock, flags);
765 if (at_head) {
766 rq->rq_flags |= RQF_SOFTBARRIER;
767 list_add(&rq->queuelist, &q->requeue_list);
768 } else {
769 list_add_tail(&rq->queuelist, &q->requeue_list);
770 }
771 spin_unlock_irqrestore(&q->requeue_lock, flags);
772
773 if (kick_requeue_list)
774 blk_mq_kick_requeue_list(q);
775 }
776
777 void blk_mq_kick_requeue_list(struct request_queue *q)
778 {
779 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
780 }
781 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
782
783 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
784 unsigned long msecs)
785 {
786 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
787 msecs_to_jiffies(msecs));
788 }
789 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
790
791 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
792 {
793 if (tag < tags->nr_tags) {
794 prefetch(tags->rqs[tag]);
795 return tags->rqs[tag];
796 }
797
798 return NULL;
799 }
800 EXPORT_SYMBOL(blk_mq_tag_to_rq);
801
802 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
803 void *priv, bool reserved)
804 {
805 /*
806 * If we find a request that is inflight and the queue matches,
807 * we know the queue is busy. Return false to stop the iteration.
808 */
809 if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
810 bool *busy = priv;
811
812 *busy = true;
813 return false;
814 }
815
816 return true;
817 }
818
819 bool blk_mq_queue_inflight(struct request_queue *q)
820 {
821 bool busy = false;
822
823 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
824 return busy;
825 }
826 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
827
828 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
829 {
830 req->rq_flags |= RQF_TIMED_OUT;
831 if (req->q->mq_ops->timeout) {
832 enum blk_eh_timer_return ret;
833
834 ret = req->q->mq_ops->timeout(req, reserved);
835 if (ret == BLK_EH_DONE)
836 return;
837 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
838 }
839
840 blk_add_timer(req);
841 }
842
843 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
844 {
845 unsigned long deadline;
846
847 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
848 return false;
849 if (rq->rq_flags & RQF_TIMED_OUT)
850 return false;
851
852 deadline = READ_ONCE(rq->deadline);
853 if (time_after_eq(jiffies, deadline))
854 return true;
855
856 if (*next == 0)
857 *next = deadline;
858 else if (time_after(*next, deadline))
859 *next = deadline;
860 return false;
861 }
862
863 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
864 struct request *rq, void *priv, bool reserved)
865 {
866 unsigned long *next = priv;
867
868 /*
869 * Just do a quick check if it is expired before locking the request in
870 * so we're not unnecessarilly synchronizing across CPUs.
871 */
872 if (!blk_mq_req_expired(rq, next))
873 return true;
874
875 /*
876 * We have reason to believe the request may be expired. Take a
877 * reference on the request to lock this request lifetime into its
878 * currently allocated context to prevent it from being reallocated in
879 * the event the completion by-passes this timeout handler.
880 *
881 * If the reference was already released, then the driver beat the
882 * timeout handler to posting a natural completion.
883 */
884 if (!refcount_inc_not_zero(&rq->ref))
885 return true;
886
887 /*
888 * The request is now locked and cannot be reallocated underneath the
889 * timeout handler's processing. Re-verify this exact request is truly
890 * expired; if it is not expired, then the request was completed and
891 * reallocated as a new request.
892 */
893 if (blk_mq_req_expired(rq, next))
894 blk_mq_rq_timed_out(rq, reserved);
895
896 if (is_flush_rq(rq, hctx))
897 rq->end_io(rq, 0);
898 else if (refcount_dec_and_test(&rq->ref))
899 __blk_mq_free_request(rq);
900
901 return true;
902 }
903
904 static void blk_mq_timeout_work(struct work_struct *work)
905 {
906 struct request_queue *q =
907 container_of(work, struct request_queue, timeout_work);
908 unsigned long next = 0;
909 struct blk_mq_hw_ctx *hctx;
910 int i;
911
912 /* A deadlock might occur if a request is stuck requiring a
913 * timeout at the same time a queue freeze is waiting
914 * completion, since the timeout code would not be able to
915 * acquire the queue reference here.
916 *
917 * That's why we don't use blk_queue_enter here; instead, we use
918 * percpu_ref_tryget directly, because we need to be able to
919 * obtain a reference even in the short window between the queue
920 * starting to freeze, by dropping the first reference in
921 * blk_freeze_queue_start, and the moment the last request is
922 * consumed, marked by the instant q_usage_counter reaches
923 * zero.
924 */
925 if (!percpu_ref_tryget(&q->q_usage_counter))
926 return;
927
928 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
929
930 if (next != 0) {
931 mod_timer(&q->timeout, next);
932 } else {
933 /*
934 * Request timeouts are handled as a forward rolling timer. If
935 * we end up here it means that no requests are pending and
936 * also that no request has been pending for a while. Mark
937 * each hctx as idle.
938 */
939 queue_for_each_hw_ctx(q, hctx, i) {
940 /* the hctx may be unmapped, so check it here */
941 if (blk_mq_hw_queue_mapped(hctx))
942 blk_mq_tag_idle(hctx);
943 }
944 }
945 blk_queue_exit(q);
946 }
947
948 struct flush_busy_ctx_data {
949 struct blk_mq_hw_ctx *hctx;
950 struct list_head *list;
951 };
952
953 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
954 {
955 struct flush_busy_ctx_data *flush_data = data;
956 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
957 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
958 enum hctx_type type = hctx->type;
959
960 spin_lock(&ctx->lock);
961 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
962 sbitmap_clear_bit(sb, bitnr);
963 spin_unlock(&ctx->lock);
964 return true;
965 }
966
967 /*
968 * Process software queues that have been marked busy, splicing them
969 * to the for-dispatch
970 */
971 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
972 {
973 struct flush_busy_ctx_data data = {
974 .hctx = hctx,
975 .list = list,
976 };
977
978 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
979 }
980 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
981
982 struct dispatch_rq_data {
983 struct blk_mq_hw_ctx *hctx;
984 struct request *rq;
985 };
986
987 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
988 void *data)
989 {
990 struct dispatch_rq_data *dispatch_data = data;
991 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
992 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
993 enum hctx_type type = hctx->type;
994
995 spin_lock(&ctx->lock);
996 if (!list_empty(&ctx->rq_lists[type])) {
997 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
998 list_del_init(&dispatch_data->rq->queuelist);
999 if (list_empty(&ctx->rq_lists[type]))
1000 sbitmap_clear_bit(sb, bitnr);
1001 }
1002 spin_unlock(&ctx->lock);
1003
1004 return !dispatch_data->rq;
1005 }
1006
1007 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1008 struct blk_mq_ctx *start)
1009 {
1010 unsigned off = start ? start->index_hw[hctx->type] : 0;
1011 struct dispatch_rq_data data = {
1012 .hctx = hctx,
1013 .rq = NULL,
1014 };
1015
1016 __sbitmap_for_each_set(&hctx->ctx_map, off,
1017 dispatch_rq_from_ctx, &data);
1018
1019 return data.rq;
1020 }
1021
1022 static inline unsigned int queued_to_index(unsigned int queued)
1023 {
1024 if (!queued)
1025 return 0;
1026
1027 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1028 }
1029
1030 bool blk_mq_get_driver_tag(struct request *rq)
1031 {
1032 struct blk_mq_alloc_data data = {
1033 .q = rq->q,
1034 .hctx = rq->mq_hctx,
1035 .flags = BLK_MQ_REQ_NOWAIT,
1036 .cmd_flags = rq->cmd_flags,
1037 };
1038 bool shared;
1039
1040 if (rq->tag != -1)
1041 return true;
1042
1043 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1044 data.flags |= BLK_MQ_REQ_RESERVED;
1045
1046 shared = blk_mq_tag_busy(data.hctx);
1047 rq->tag = blk_mq_get_tag(&data);
1048 if (rq->tag >= 0) {
1049 if (shared) {
1050 rq->rq_flags |= RQF_MQ_INFLIGHT;
1051 atomic_inc(&data.hctx->nr_active);
1052 }
1053 data.hctx->tags->rqs[rq->tag] = rq;
1054 }
1055
1056 return rq->tag != -1;
1057 }
1058
1059 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1060 int flags, void *key)
1061 {
1062 struct blk_mq_hw_ctx *hctx;
1063
1064 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1065
1066 spin_lock(&hctx->dispatch_wait_lock);
1067 if (!list_empty(&wait->entry)) {
1068 struct sbitmap_queue *sbq;
1069
1070 list_del_init(&wait->entry);
1071 sbq = &hctx->tags->bitmap_tags;
1072 atomic_dec(&sbq->ws_active);
1073 }
1074 spin_unlock(&hctx->dispatch_wait_lock);
1075
1076 blk_mq_run_hw_queue(hctx, true);
1077 return 1;
1078 }
1079
1080 /*
1081 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1082 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1083 * restart. For both cases, take care to check the condition again after
1084 * marking us as waiting.
1085 */
1086 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1087 struct request *rq)
1088 {
1089 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1090 struct wait_queue_head *wq;
1091 wait_queue_entry_t *wait;
1092 bool ret;
1093
1094 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1095 blk_mq_sched_mark_restart_hctx(hctx);
1096
1097 /*
1098 * It's possible that a tag was freed in the window between the
1099 * allocation failure and adding the hardware queue to the wait
1100 * queue.
1101 *
1102 * Don't clear RESTART here, someone else could have set it.
1103 * At most this will cost an extra queue run.
1104 */
1105 return blk_mq_get_driver_tag(rq);
1106 }
1107
1108 wait = &hctx->dispatch_wait;
1109 if (!list_empty_careful(&wait->entry))
1110 return false;
1111
1112 wq = &bt_wait_ptr(sbq, hctx)->wait;
1113
1114 spin_lock_irq(&wq->lock);
1115 spin_lock(&hctx->dispatch_wait_lock);
1116 if (!list_empty(&wait->entry)) {
1117 spin_unlock(&hctx->dispatch_wait_lock);
1118 spin_unlock_irq(&wq->lock);
1119 return false;
1120 }
1121
1122 atomic_inc(&sbq->ws_active);
1123 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1124 __add_wait_queue(wq, wait);
1125
1126 /*
1127 * It's possible that a tag was freed in the window between the
1128 * allocation failure and adding the hardware queue to the wait
1129 * queue.
1130 */
1131 ret = blk_mq_get_driver_tag(rq);
1132 if (!ret) {
1133 spin_unlock(&hctx->dispatch_wait_lock);
1134 spin_unlock_irq(&wq->lock);
1135 return false;
1136 }
1137
1138 /*
1139 * We got a tag, remove ourselves from the wait queue to ensure
1140 * someone else gets the wakeup.
1141 */
1142 list_del_init(&wait->entry);
1143 atomic_dec(&sbq->ws_active);
1144 spin_unlock(&hctx->dispatch_wait_lock);
1145 spin_unlock_irq(&wq->lock);
1146
1147 return true;
1148 }
1149
1150 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1151 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1152 /*
1153 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1154 * - EWMA is one simple way to compute running average value
1155 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1156 * - take 4 as factor for avoiding to get too small(0) result, and this
1157 * factor doesn't matter because EWMA decreases exponentially
1158 */
1159 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1160 {
1161 unsigned int ewma;
1162
1163 if (hctx->queue->elevator)
1164 return;
1165
1166 ewma = hctx->dispatch_busy;
1167
1168 if (!ewma && !busy)
1169 return;
1170
1171 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1172 if (busy)
1173 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1174 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1175
1176 hctx->dispatch_busy = ewma;
1177 }
1178
1179 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1180
1181 static void blk_mq_handle_dev_resource(struct request *rq,
1182 struct list_head *list)
1183 {
1184 struct request *next =
1185 list_first_entry_or_null(list, struct request, queuelist);
1186
1187 /*
1188 * If an I/O scheduler has been configured and we got a driver tag for
1189 * the next request already, free it.
1190 */
1191 if (next)
1192 blk_mq_put_driver_tag(next);
1193
1194 list_add(&rq->queuelist, list);
1195 __blk_mq_requeue_request(rq);
1196 }
1197
1198 /*
1199 * Returns true if we did some work AND can potentially do more.
1200 */
1201 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1202 bool got_budget)
1203 {
1204 struct blk_mq_hw_ctx *hctx;
1205 struct request *rq, *nxt;
1206 bool no_tag = false;
1207 int errors, queued;
1208 blk_status_t ret = BLK_STS_OK;
1209
1210 if (list_empty(list))
1211 return false;
1212
1213 WARN_ON(!list_is_singular(list) && got_budget);
1214
1215 /*
1216 * Now process all the entries, sending them to the driver.
1217 */
1218 errors = queued = 0;
1219 do {
1220 struct blk_mq_queue_data bd;
1221
1222 rq = list_first_entry(list, struct request, queuelist);
1223
1224 hctx = rq->mq_hctx;
1225 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1226 break;
1227
1228 if (!blk_mq_get_driver_tag(rq)) {
1229 /*
1230 * The initial allocation attempt failed, so we need to
1231 * rerun the hardware queue when a tag is freed. The
1232 * waitqueue takes care of that. If the queue is run
1233 * before we add this entry back on the dispatch list,
1234 * we'll re-run it below.
1235 */
1236 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1237 blk_mq_put_dispatch_budget(hctx);
1238 /*
1239 * For non-shared tags, the RESTART check
1240 * will suffice.
1241 */
1242 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1243 no_tag = true;
1244 break;
1245 }
1246 }
1247
1248 list_del_init(&rq->queuelist);
1249
1250 bd.rq = rq;
1251
1252 /*
1253 * Flag last if we have no more requests, or if we have more
1254 * but can't assign a driver tag to it.
1255 */
1256 if (list_empty(list))
1257 bd.last = true;
1258 else {
1259 nxt = list_first_entry(list, struct request, queuelist);
1260 bd.last = !blk_mq_get_driver_tag(nxt);
1261 }
1262
1263 ret = q->mq_ops->queue_rq(hctx, &bd);
1264 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1265 blk_mq_handle_dev_resource(rq, list);
1266 break;
1267 }
1268
1269 if (unlikely(ret != BLK_STS_OK)) {
1270 errors++;
1271 blk_mq_end_request(rq, BLK_STS_IOERR);
1272 continue;
1273 }
1274
1275 queued++;
1276 } while (!list_empty(list));
1277
1278 hctx->dispatched[queued_to_index(queued)]++;
1279
1280 /*
1281 * Any items that need requeuing? Stuff them into hctx->dispatch,
1282 * that is where we will continue on next queue run.
1283 */
1284 if (!list_empty(list)) {
1285 bool needs_restart;
1286
1287 /*
1288 * If we didn't flush the entire list, we could have told
1289 * the driver there was more coming, but that turned out to
1290 * be a lie.
1291 */
1292 if (q->mq_ops->commit_rqs)
1293 q->mq_ops->commit_rqs(hctx);
1294
1295 spin_lock(&hctx->lock);
1296 list_splice_tail_init(list, &hctx->dispatch);
1297 spin_unlock(&hctx->lock);
1298
1299 /*
1300 * If SCHED_RESTART was set by the caller of this function and
1301 * it is no longer set that means that it was cleared by another
1302 * thread and hence that a queue rerun is needed.
1303 *
1304 * If 'no_tag' is set, that means that we failed getting
1305 * a driver tag with an I/O scheduler attached. If our dispatch
1306 * waitqueue is no longer active, ensure that we run the queue
1307 * AFTER adding our entries back to the list.
1308 *
1309 * If no I/O scheduler has been configured it is possible that
1310 * the hardware queue got stopped and restarted before requests
1311 * were pushed back onto the dispatch list. Rerun the queue to
1312 * avoid starvation. Notes:
1313 * - blk_mq_run_hw_queue() checks whether or not a queue has
1314 * been stopped before rerunning a queue.
1315 * - Some but not all block drivers stop a queue before
1316 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1317 * and dm-rq.
1318 *
1319 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1320 * bit is set, run queue after a delay to avoid IO stalls
1321 * that could otherwise occur if the queue is idle.
1322 */
1323 needs_restart = blk_mq_sched_needs_restart(hctx);
1324 if (!needs_restart ||
1325 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1326 blk_mq_run_hw_queue(hctx, true);
1327 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1328 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1329
1330 blk_mq_update_dispatch_busy(hctx, true);
1331 return false;
1332 } else
1333 blk_mq_update_dispatch_busy(hctx, false);
1334
1335 /*
1336 * If the host/device is unable to accept more work, inform the
1337 * caller of that.
1338 */
1339 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1340 return false;
1341
1342 return (queued + errors) != 0;
1343 }
1344
1345 /**
1346 * __blk_mq_run_hw_queue - Run a hardware queue.
1347 * @hctx: Pointer to the hardware queue to run.
1348 *
1349 * Send pending requests to the hardware.
1350 */
1351 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1352 {
1353 int srcu_idx;
1354
1355 /*
1356 * We should be running this queue from one of the CPUs that
1357 * are mapped to it.
1358 *
1359 * There are at least two related races now between setting
1360 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1361 * __blk_mq_run_hw_queue():
1362 *
1363 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1364 * but later it becomes online, then this warning is harmless
1365 * at all
1366 *
1367 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1368 * but later it becomes offline, then the warning can't be
1369 * triggered, and we depend on blk-mq timeout handler to
1370 * handle dispatched requests to this hctx
1371 */
1372 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1373 cpu_online(hctx->next_cpu)) {
1374 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1375 raw_smp_processor_id(),
1376 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1377 dump_stack();
1378 }
1379
1380 /*
1381 * We can't run the queue inline with ints disabled. Ensure that
1382 * we catch bad users of this early.
1383 */
1384 WARN_ON_ONCE(in_interrupt());
1385
1386 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1387
1388 hctx_lock(hctx, &srcu_idx);
1389 blk_mq_sched_dispatch_requests(hctx);
1390 hctx_unlock(hctx, srcu_idx);
1391 }
1392
1393 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1394 {
1395 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1396
1397 if (cpu >= nr_cpu_ids)
1398 cpu = cpumask_first(hctx->cpumask);
1399 return cpu;
1400 }
1401
1402 /*
1403 * It'd be great if the workqueue API had a way to pass
1404 * in a mask and had some smarts for more clever placement.
1405 * For now we just round-robin here, switching for every
1406 * BLK_MQ_CPU_WORK_BATCH queued items.
1407 */
1408 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1409 {
1410 bool tried = false;
1411 int next_cpu = hctx->next_cpu;
1412
1413 if (hctx->queue->nr_hw_queues == 1)
1414 return WORK_CPU_UNBOUND;
1415
1416 if (--hctx->next_cpu_batch <= 0) {
1417 select_cpu:
1418 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1419 cpu_online_mask);
1420 if (next_cpu >= nr_cpu_ids)
1421 next_cpu = blk_mq_first_mapped_cpu(hctx);
1422 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1423 }
1424
1425 /*
1426 * Do unbound schedule if we can't find a online CPU for this hctx,
1427 * and it should only happen in the path of handling CPU DEAD.
1428 */
1429 if (!cpu_online(next_cpu)) {
1430 if (!tried) {
1431 tried = true;
1432 goto select_cpu;
1433 }
1434
1435 /*
1436 * Make sure to re-select CPU next time once after CPUs
1437 * in hctx->cpumask become online again.
1438 */
1439 hctx->next_cpu = next_cpu;
1440 hctx->next_cpu_batch = 1;
1441 return WORK_CPU_UNBOUND;
1442 }
1443
1444 hctx->next_cpu = next_cpu;
1445 return next_cpu;
1446 }
1447
1448 /**
1449 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1450 * @hctx: Pointer to the hardware queue to run.
1451 * @async: If we want to run the queue asynchronously.
1452 * @msecs: Microseconds of delay to wait before running the queue.
1453 *
1454 * If !@async, try to run the queue now. Else, run the queue asynchronously and
1455 * with a delay of @msecs.
1456 */
1457 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1458 unsigned long msecs)
1459 {
1460 if (unlikely(blk_mq_hctx_stopped(hctx)))
1461 return;
1462
1463 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1464 int cpu = get_cpu();
1465 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1466 __blk_mq_run_hw_queue(hctx);
1467 put_cpu();
1468 return;
1469 }
1470
1471 put_cpu();
1472 }
1473
1474 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1475 msecs_to_jiffies(msecs));
1476 }
1477
1478 /**
1479 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1480 * @hctx: Pointer to the hardware queue to run.
1481 * @msecs: Microseconds of delay to wait before running the queue.
1482 *
1483 * Run a hardware queue asynchronously with a delay of @msecs.
1484 */
1485 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1486 {
1487 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1488 }
1489 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1490
1491 /**
1492 * blk_mq_run_hw_queue - Start to run a hardware queue.
1493 * @hctx: Pointer to the hardware queue to run.
1494 * @async: If we want to run the queue asynchronously.
1495 *
1496 * Check if the request queue is not in a quiesced state and if there are
1497 * pending requests to be sent. If this is true, run the queue to send requests
1498 * to hardware.
1499 */
1500 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1501 {
1502 int srcu_idx;
1503 bool need_run;
1504
1505 /*
1506 * When queue is quiesced, we may be switching io scheduler, or
1507 * updating nr_hw_queues, or other things, and we can't run queue
1508 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1509 *
1510 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1511 * quiesced.
1512 */
1513 hctx_lock(hctx, &srcu_idx);
1514 need_run = !blk_queue_quiesced(hctx->queue) &&
1515 blk_mq_hctx_has_pending(hctx);
1516 hctx_unlock(hctx, srcu_idx);
1517
1518 if (need_run)
1519 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1520 }
1521 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1522
1523 /**
1524 * blk_mq_run_hw_queue - Run all hardware queues in a request queue.
1525 * @q: Pointer to the request queue to run.
1526 * @async: If we want to run the queue asynchronously.
1527 */
1528 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1529 {
1530 struct blk_mq_hw_ctx *hctx;
1531 int i;
1532
1533 queue_for_each_hw_ctx(q, hctx, i) {
1534 if (blk_mq_hctx_stopped(hctx))
1535 continue;
1536
1537 blk_mq_run_hw_queue(hctx, async);
1538 }
1539 }
1540 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1541
1542 /**
1543 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1544 * @q: request queue.
1545 *
1546 * The caller is responsible for serializing this function against
1547 * blk_mq_{start,stop}_hw_queue().
1548 */
1549 bool blk_mq_queue_stopped(struct request_queue *q)
1550 {
1551 struct blk_mq_hw_ctx *hctx;
1552 int i;
1553
1554 queue_for_each_hw_ctx(q, hctx, i)
1555 if (blk_mq_hctx_stopped(hctx))
1556 return true;
1557
1558 return false;
1559 }
1560 EXPORT_SYMBOL(blk_mq_queue_stopped);
1561
1562 /*
1563 * This function is often used for pausing .queue_rq() by driver when
1564 * there isn't enough resource or some conditions aren't satisfied, and
1565 * BLK_STS_RESOURCE is usually returned.
1566 *
1567 * We do not guarantee that dispatch can be drained or blocked
1568 * after blk_mq_stop_hw_queue() returns. Please use
1569 * blk_mq_quiesce_queue() for that requirement.
1570 */
1571 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1572 {
1573 cancel_delayed_work(&hctx->run_work);
1574
1575 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1576 }
1577 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1578
1579 /*
1580 * This function is often used for pausing .queue_rq() by driver when
1581 * there isn't enough resource or some conditions aren't satisfied, and
1582 * BLK_STS_RESOURCE is usually returned.
1583 *
1584 * We do not guarantee that dispatch can be drained or blocked
1585 * after blk_mq_stop_hw_queues() returns. Please use
1586 * blk_mq_quiesce_queue() for that requirement.
1587 */
1588 void blk_mq_stop_hw_queues(struct request_queue *q)
1589 {
1590 struct blk_mq_hw_ctx *hctx;
1591 int i;
1592
1593 queue_for_each_hw_ctx(q, hctx, i)
1594 blk_mq_stop_hw_queue(hctx);
1595 }
1596 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1597
1598 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1599 {
1600 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1601
1602 blk_mq_run_hw_queue(hctx, false);
1603 }
1604 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1605
1606 void blk_mq_start_hw_queues(struct request_queue *q)
1607 {
1608 struct blk_mq_hw_ctx *hctx;
1609 int i;
1610
1611 queue_for_each_hw_ctx(q, hctx, i)
1612 blk_mq_start_hw_queue(hctx);
1613 }
1614 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1615
1616 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1617 {
1618 if (!blk_mq_hctx_stopped(hctx))
1619 return;
1620
1621 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1622 blk_mq_run_hw_queue(hctx, async);
1623 }
1624 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1625
1626 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1627 {
1628 struct blk_mq_hw_ctx *hctx;
1629 int i;
1630
1631 queue_for_each_hw_ctx(q, hctx, i)
1632 blk_mq_start_stopped_hw_queue(hctx, async);
1633 }
1634 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1635
1636 static void blk_mq_run_work_fn(struct work_struct *work)
1637 {
1638 struct blk_mq_hw_ctx *hctx;
1639
1640 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1641
1642 /*
1643 * If we are stopped, don't run the queue.
1644 */
1645 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1646 return;
1647
1648 __blk_mq_run_hw_queue(hctx);
1649 }
1650
1651 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1652 struct request *rq,
1653 bool at_head)
1654 {
1655 struct blk_mq_ctx *ctx = rq->mq_ctx;
1656 enum hctx_type type = hctx->type;
1657
1658 lockdep_assert_held(&ctx->lock);
1659
1660 trace_block_rq_insert(hctx->queue, rq);
1661
1662 if (at_head)
1663 list_add(&rq->queuelist, &ctx->rq_lists[type]);
1664 else
1665 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1666 }
1667
1668 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1669 bool at_head)
1670 {
1671 struct blk_mq_ctx *ctx = rq->mq_ctx;
1672
1673 lockdep_assert_held(&ctx->lock);
1674
1675 __blk_mq_insert_req_list(hctx, rq, at_head);
1676 blk_mq_hctx_mark_pending(hctx, ctx);
1677 }
1678
1679 /**
1680 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1681 * @rq: Pointer to request to be inserted.
1682 * @run_queue: If we should run the hardware queue after inserting the request.
1683 *
1684 * Should only be used carefully, when the caller knows we want to
1685 * bypass a potential IO scheduler on the target device.
1686 */
1687 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1688 bool run_queue)
1689 {
1690 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1691
1692 spin_lock(&hctx->lock);
1693 if (at_head)
1694 list_add(&rq->queuelist, &hctx->dispatch);
1695 else
1696 list_add_tail(&rq->queuelist, &hctx->dispatch);
1697 spin_unlock(&hctx->lock);
1698
1699 if (run_queue)
1700 blk_mq_run_hw_queue(hctx, false);
1701 }
1702
1703 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1704 struct list_head *list)
1705
1706 {
1707 struct request *rq;
1708 enum hctx_type type = hctx->type;
1709
1710 /*
1711 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1712 * offline now
1713 */
1714 list_for_each_entry(rq, list, queuelist) {
1715 BUG_ON(rq->mq_ctx != ctx);
1716 trace_block_rq_insert(hctx->queue, rq);
1717 }
1718
1719 spin_lock(&ctx->lock);
1720 list_splice_tail_init(list, &ctx->rq_lists[type]);
1721 blk_mq_hctx_mark_pending(hctx, ctx);
1722 spin_unlock(&ctx->lock);
1723 }
1724
1725 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1726 {
1727 struct request *rqa = container_of(a, struct request, queuelist);
1728 struct request *rqb = container_of(b, struct request, queuelist);
1729
1730 if (rqa->mq_ctx != rqb->mq_ctx)
1731 return rqa->mq_ctx > rqb->mq_ctx;
1732 if (rqa->mq_hctx != rqb->mq_hctx)
1733 return rqa->mq_hctx > rqb->mq_hctx;
1734
1735 return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1736 }
1737
1738 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1739 {
1740 LIST_HEAD(list);
1741
1742 if (list_empty(&plug->mq_list))
1743 return;
1744 list_splice_init(&plug->mq_list, &list);
1745
1746 if (plug->rq_count > 2 && plug->multiple_queues)
1747 list_sort(NULL, &list, plug_rq_cmp);
1748
1749 plug->rq_count = 0;
1750
1751 do {
1752 struct list_head rq_list;
1753 struct request *rq, *head_rq = list_entry_rq(list.next);
1754 struct list_head *pos = &head_rq->queuelist; /* skip first */
1755 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1756 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1757 unsigned int depth = 1;
1758
1759 list_for_each_continue(pos, &list) {
1760 rq = list_entry_rq(pos);
1761 BUG_ON(!rq->q);
1762 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1763 break;
1764 depth++;
1765 }
1766
1767 list_cut_before(&rq_list, &list, pos);
1768 trace_block_unplug(head_rq->q, depth, !from_schedule);
1769 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1770 from_schedule);
1771 } while(!list_empty(&list));
1772 }
1773
1774 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1775 unsigned int nr_segs)
1776 {
1777 if (bio->bi_opf & REQ_RAHEAD)
1778 rq->cmd_flags |= REQ_FAILFAST_MASK;
1779
1780 rq->__sector = bio->bi_iter.bi_sector;
1781 rq->write_hint = bio->bi_write_hint;
1782 blk_rq_bio_prep(rq, bio, nr_segs);
1783
1784 blk_account_io_start(rq, true);
1785 }
1786
1787 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1788 struct request *rq,
1789 blk_qc_t *cookie, bool last)
1790 {
1791 struct request_queue *q = rq->q;
1792 struct blk_mq_queue_data bd = {
1793 .rq = rq,
1794 .last = last,
1795 };
1796 blk_qc_t new_cookie;
1797 blk_status_t ret;
1798
1799 new_cookie = request_to_qc_t(hctx, rq);
1800
1801 /*
1802 * For OK queue, we are done. For error, caller may kill it.
1803 * Any other error (busy), just add it to our list as we
1804 * previously would have done.
1805 */
1806 ret = q->mq_ops->queue_rq(hctx, &bd);
1807 switch (ret) {
1808 case BLK_STS_OK:
1809 blk_mq_update_dispatch_busy(hctx, false);
1810 *cookie = new_cookie;
1811 break;
1812 case BLK_STS_RESOURCE:
1813 case BLK_STS_DEV_RESOURCE:
1814 blk_mq_update_dispatch_busy(hctx, true);
1815 __blk_mq_requeue_request(rq);
1816 break;
1817 default:
1818 blk_mq_update_dispatch_busy(hctx, false);
1819 *cookie = BLK_QC_T_NONE;
1820 break;
1821 }
1822
1823 return ret;
1824 }
1825
1826 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1827 struct request *rq,
1828 blk_qc_t *cookie,
1829 bool bypass_insert, bool last)
1830 {
1831 struct request_queue *q = rq->q;
1832 bool run_queue = true;
1833
1834 /*
1835 * RCU or SRCU read lock is needed before checking quiesced flag.
1836 *
1837 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1838 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1839 * and avoid driver to try to dispatch again.
1840 */
1841 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1842 run_queue = false;
1843 bypass_insert = false;
1844 goto insert;
1845 }
1846
1847 if (q->elevator && !bypass_insert)
1848 goto insert;
1849
1850 if (!blk_mq_get_dispatch_budget(hctx))
1851 goto insert;
1852
1853 if (!blk_mq_get_driver_tag(rq)) {
1854 blk_mq_put_dispatch_budget(hctx);
1855 goto insert;
1856 }
1857
1858 return __blk_mq_issue_directly(hctx, rq, cookie, last);
1859 insert:
1860 if (bypass_insert)
1861 return BLK_STS_RESOURCE;
1862
1863 blk_mq_request_bypass_insert(rq, false, run_queue);
1864 return BLK_STS_OK;
1865 }
1866
1867 /**
1868 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
1869 * @hctx: Pointer of the associated hardware queue.
1870 * @rq: Pointer to request to be sent.
1871 * @cookie: Request queue cookie.
1872 *
1873 * If the device has enough resources to accept a new request now, send the
1874 * request directly to device driver. Else, insert at hctx->dispatch queue, so
1875 * we can try send it another time in the future. Requests inserted at this
1876 * queue have higher priority.
1877 */
1878 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1879 struct request *rq, blk_qc_t *cookie)
1880 {
1881 blk_status_t ret;
1882 int srcu_idx;
1883
1884 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1885
1886 hctx_lock(hctx, &srcu_idx);
1887
1888 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
1889 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1890 blk_mq_request_bypass_insert(rq, false, true);
1891 else if (ret != BLK_STS_OK)
1892 blk_mq_end_request(rq, ret);
1893
1894 hctx_unlock(hctx, srcu_idx);
1895 }
1896
1897 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
1898 {
1899 blk_status_t ret;
1900 int srcu_idx;
1901 blk_qc_t unused_cookie;
1902 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1903
1904 hctx_lock(hctx, &srcu_idx);
1905 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
1906 hctx_unlock(hctx, srcu_idx);
1907
1908 return ret;
1909 }
1910
1911 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1912 struct list_head *list)
1913 {
1914 while (!list_empty(list)) {
1915 blk_status_t ret;
1916 struct request *rq = list_first_entry(list, struct request,
1917 queuelist);
1918
1919 list_del_init(&rq->queuelist);
1920 ret = blk_mq_request_issue_directly(rq, list_empty(list));
1921 if (ret != BLK_STS_OK) {
1922 if (ret == BLK_STS_RESOURCE ||
1923 ret == BLK_STS_DEV_RESOURCE) {
1924 blk_mq_request_bypass_insert(rq, false,
1925 list_empty(list));
1926 break;
1927 }
1928 blk_mq_end_request(rq, ret);
1929 }
1930 }
1931
1932 /*
1933 * If we didn't flush the entire list, we could have told
1934 * the driver there was more coming, but that turned out to
1935 * be a lie.
1936 */
1937 if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs)
1938 hctx->queue->mq_ops->commit_rqs(hctx);
1939 }
1940
1941 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1942 {
1943 list_add_tail(&rq->queuelist, &plug->mq_list);
1944 plug->rq_count++;
1945 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
1946 struct request *tmp;
1947
1948 tmp = list_first_entry(&plug->mq_list, struct request,
1949 queuelist);
1950 if (tmp->q != rq->q)
1951 plug->multiple_queues = true;
1952 }
1953 }
1954
1955 /**
1956 * blk_mq_make_request - Create and send a request to block device.
1957 * @q: Request queue pointer.
1958 * @bio: Bio pointer.
1959 *
1960 * Builds up a request structure from @q and @bio and send to the device. The
1961 * request may not be queued directly to hardware if:
1962 * * This request can be merged with another one
1963 * * We want to place request at plug queue for possible future merging
1964 * * There is an IO scheduler active at this queue
1965 *
1966 * It will not queue the request if there is an error with the bio, or at the
1967 * request creation.
1968 *
1969 * Returns: Request queue cookie.
1970 */
1971 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1972 {
1973 const int is_sync = op_is_sync(bio->bi_opf);
1974 const int is_flush_fua = op_is_flush(bio->bi_opf);
1975 struct blk_mq_alloc_data data = { .flags = 0};
1976 struct request *rq;
1977 struct blk_plug *plug;
1978 struct request *same_queue_rq = NULL;
1979 unsigned int nr_segs;
1980 blk_qc_t cookie;
1981
1982 blk_queue_bounce(q, &bio);
1983 __blk_queue_split(q, &bio, &nr_segs);
1984
1985 if (!bio_integrity_prep(bio))
1986 return BLK_QC_T_NONE;
1987
1988 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1989 blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
1990 return BLK_QC_T_NONE;
1991
1992 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
1993 return BLK_QC_T_NONE;
1994
1995 rq_qos_throttle(q, bio);
1996
1997 data.cmd_flags = bio->bi_opf;
1998 rq = blk_mq_get_request(q, bio, &data);
1999 if (unlikely(!rq)) {
2000 rq_qos_cleanup(q, bio);
2001 if (bio->bi_opf & REQ_NOWAIT)
2002 bio_wouldblock_error(bio);
2003 return BLK_QC_T_NONE;
2004 }
2005
2006 trace_block_getrq(q, bio, bio->bi_opf);
2007
2008 rq_qos_track(q, rq, bio);
2009
2010 cookie = request_to_qc_t(data.hctx, rq);
2011
2012 blk_mq_bio_to_request(rq, bio, nr_segs);
2013
2014 plug = blk_mq_plug(q, bio);
2015 if (unlikely(is_flush_fua)) {
2016 /* Bypass scheduler for flush requests */
2017 blk_insert_flush(rq);
2018 blk_mq_run_hw_queue(data.hctx, true);
2019 } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs ||
2020 !blk_queue_nonrot(q))) {
2021 /*
2022 * Use plugging if we have a ->commit_rqs() hook as well, as
2023 * we know the driver uses bd->last in a smart fashion.
2024 *
2025 * Use normal plugging if this disk is slow HDD, as sequential
2026 * IO may benefit a lot from plug merging.
2027 */
2028 unsigned int request_count = plug->rq_count;
2029 struct request *last = NULL;
2030
2031 if (!request_count)
2032 trace_block_plug(q);
2033 else
2034 last = list_entry_rq(plug->mq_list.prev);
2035
2036 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2037 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2038 blk_flush_plug_list(plug, false);
2039 trace_block_plug(q);
2040 }
2041
2042 blk_add_rq_to_plug(plug, rq);
2043 } else if (q->elevator) {
2044 /* Insert the request at the IO scheduler queue */
2045 blk_mq_sched_insert_request(rq, false, true, true);
2046 } else if (plug && !blk_queue_nomerges(q)) {
2047 /*
2048 * We do limited plugging. If the bio can be merged, do that.
2049 * Otherwise the existing request in the plug list will be
2050 * issued. So the plug list will have one request at most
2051 * The plug list might get flushed before this. If that happens,
2052 * the plug list is empty, and same_queue_rq is invalid.
2053 */
2054 if (list_empty(&plug->mq_list))
2055 same_queue_rq = NULL;
2056 if (same_queue_rq) {
2057 list_del_init(&same_queue_rq->queuelist);
2058 plug->rq_count--;
2059 }
2060 blk_add_rq_to_plug(plug, rq);
2061 trace_block_plug(q);
2062
2063 if (same_queue_rq) {
2064 data.hctx = same_queue_rq->mq_hctx;
2065 trace_block_unplug(q, 1, true);
2066 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2067 &cookie);
2068 }
2069 } else if ((q->nr_hw_queues > 1 && is_sync) ||
2070 !data.hctx->dispatch_busy) {
2071 /*
2072 * There is no scheduler and we can try to send directly
2073 * to the hardware.
2074 */
2075 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2076 } else {
2077 /* Default case. */
2078 blk_mq_sched_insert_request(rq, false, true, true);
2079 }
2080
2081 return cookie;
2082 }
2083
2084 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2085 unsigned int hctx_idx)
2086 {
2087 struct page *page;
2088
2089 if (tags->rqs && set->ops->exit_request) {
2090 int i;
2091
2092 for (i = 0; i < tags->nr_tags; i++) {
2093 struct request *rq = tags->static_rqs[i];
2094
2095 if (!rq)
2096 continue;
2097 set->ops->exit_request(set, rq, hctx_idx);
2098 tags->static_rqs[i] = NULL;
2099 }
2100 }
2101
2102 while (!list_empty(&tags->page_list)) {
2103 page = list_first_entry(&tags->page_list, struct page, lru);
2104 list_del_init(&page->lru);
2105 /*
2106 * Remove kmemleak object previously allocated in
2107 * blk_mq_alloc_rqs().
2108 */
2109 kmemleak_free(page_address(page));
2110 __free_pages(page, page->private);
2111 }
2112 }
2113
2114 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2115 {
2116 kfree(tags->rqs);
2117 tags->rqs = NULL;
2118 kfree(tags->static_rqs);
2119 tags->static_rqs = NULL;
2120
2121 blk_mq_free_tags(tags);
2122 }
2123
2124 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2125 unsigned int hctx_idx,
2126 unsigned int nr_tags,
2127 unsigned int reserved_tags)
2128 {
2129 struct blk_mq_tags *tags;
2130 int node;
2131
2132 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2133 if (node == NUMA_NO_NODE)
2134 node = set->numa_node;
2135
2136 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2137 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2138 if (!tags)
2139 return NULL;
2140
2141 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2142 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2143 node);
2144 if (!tags->rqs) {
2145 blk_mq_free_tags(tags);
2146 return NULL;
2147 }
2148
2149 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2150 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2151 node);
2152 if (!tags->static_rqs) {
2153 kfree(tags->rqs);
2154 blk_mq_free_tags(tags);
2155 return NULL;
2156 }
2157
2158 return tags;
2159 }
2160
2161 static size_t order_to_size(unsigned int order)
2162 {
2163 return (size_t)PAGE_SIZE << order;
2164 }
2165
2166 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2167 unsigned int hctx_idx, int node)
2168 {
2169 int ret;
2170
2171 if (set->ops->init_request) {
2172 ret = set->ops->init_request(set, rq, hctx_idx, node);
2173 if (ret)
2174 return ret;
2175 }
2176
2177 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2178 return 0;
2179 }
2180
2181 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2182 unsigned int hctx_idx, unsigned int depth)
2183 {
2184 unsigned int i, j, entries_per_page, max_order = 4;
2185 size_t rq_size, left;
2186 int node;
2187
2188 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2189 if (node == NUMA_NO_NODE)
2190 node = set->numa_node;
2191
2192 INIT_LIST_HEAD(&tags->page_list);
2193
2194 /*
2195 * rq_size is the size of the request plus driver payload, rounded
2196 * to the cacheline size
2197 */
2198 rq_size = round_up(sizeof(struct request) + set->cmd_size,
2199 cache_line_size());
2200 left = rq_size * depth;
2201
2202 for (i = 0; i < depth; ) {
2203 int this_order = max_order;
2204 struct page *page;
2205 int to_do;
2206 void *p;
2207
2208 while (this_order && left < order_to_size(this_order - 1))
2209 this_order--;
2210
2211 do {
2212 page = alloc_pages_node(node,
2213 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2214 this_order);
2215 if (page)
2216 break;
2217 if (!this_order--)
2218 break;
2219 if (order_to_size(this_order) < rq_size)
2220 break;
2221 } while (1);
2222
2223 if (!page)
2224 goto fail;
2225
2226 page->private = this_order;
2227 list_add_tail(&page->lru, &tags->page_list);
2228
2229 p = page_address(page);
2230 /*
2231 * Allow kmemleak to scan these pages as they contain pointers
2232 * to additional allocations like via ops->init_request().
2233 */
2234 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2235 entries_per_page = order_to_size(this_order) / rq_size;
2236 to_do = min(entries_per_page, depth - i);
2237 left -= to_do * rq_size;
2238 for (j = 0; j < to_do; j++) {
2239 struct request *rq = p;
2240
2241 tags->static_rqs[i] = rq;
2242 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2243 tags->static_rqs[i] = NULL;
2244 goto fail;
2245 }
2246
2247 p += rq_size;
2248 i++;
2249 }
2250 }
2251 return 0;
2252
2253 fail:
2254 blk_mq_free_rqs(set, tags, hctx_idx);
2255 return -ENOMEM;
2256 }
2257
2258 /*
2259 * 'cpu' is going away. splice any existing rq_list entries from this
2260 * software queue to the hw queue dispatch list, and ensure that it
2261 * gets run.
2262 */
2263 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2264 {
2265 struct blk_mq_hw_ctx *hctx;
2266 struct blk_mq_ctx *ctx;
2267 LIST_HEAD(tmp);
2268 enum hctx_type type;
2269
2270 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2271 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2272 type = hctx->type;
2273
2274 spin_lock(&ctx->lock);
2275 if (!list_empty(&ctx->rq_lists[type])) {
2276 list_splice_init(&ctx->rq_lists[type], &tmp);
2277 blk_mq_hctx_clear_pending(hctx, ctx);
2278 }
2279 spin_unlock(&ctx->lock);
2280
2281 if (list_empty(&tmp))
2282 return 0;
2283
2284 spin_lock(&hctx->lock);
2285 list_splice_tail_init(&tmp, &hctx->dispatch);
2286 spin_unlock(&hctx->lock);
2287
2288 blk_mq_run_hw_queue(hctx, true);
2289 return 0;
2290 }
2291
2292 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2293 {
2294 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2295 &hctx->cpuhp_dead);
2296 }
2297
2298 /* hctx->ctxs will be freed in queue's release handler */
2299 static void blk_mq_exit_hctx(struct request_queue *q,
2300 struct blk_mq_tag_set *set,
2301 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2302 {
2303 if (blk_mq_hw_queue_mapped(hctx))
2304 blk_mq_tag_idle(hctx);
2305
2306 if (set->ops->exit_request)
2307 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2308
2309 if (set->ops->exit_hctx)
2310 set->ops->exit_hctx(hctx, hctx_idx);
2311
2312 blk_mq_remove_cpuhp(hctx);
2313
2314 spin_lock(&q->unused_hctx_lock);
2315 list_add(&hctx->hctx_list, &q->unused_hctx_list);
2316 spin_unlock(&q->unused_hctx_lock);
2317 }
2318
2319 static void blk_mq_exit_hw_queues(struct request_queue *q,
2320 struct blk_mq_tag_set *set, int nr_queue)
2321 {
2322 struct blk_mq_hw_ctx *hctx;
2323 unsigned int i;
2324
2325 queue_for_each_hw_ctx(q, hctx, i) {
2326 if (i == nr_queue)
2327 break;
2328 blk_mq_debugfs_unregister_hctx(hctx);
2329 blk_mq_exit_hctx(q, set, hctx, i);
2330 }
2331 }
2332
2333 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2334 {
2335 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2336
2337 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2338 __alignof__(struct blk_mq_hw_ctx)) !=
2339 sizeof(struct blk_mq_hw_ctx));
2340
2341 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2342 hw_ctx_size += sizeof(struct srcu_struct);
2343
2344 return hw_ctx_size;
2345 }
2346
2347 static int blk_mq_init_hctx(struct request_queue *q,
2348 struct blk_mq_tag_set *set,
2349 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2350 {
2351 hctx->queue_num = hctx_idx;
2352
2353 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2354
2355 hctx->tags = set->tags[hctx_idx];
2356
2357 if (set->ops->init_hctx &&
2358 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2359 goto unregister_cpu_notifier;
2360
2361 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2362 hctx->numa_node))
2363 goto exit_hctx;
2364 return 0;
2365
2366 exit_hctx:
2367 if (set->ops->exit_hctx)
2368 set->ops->exit_hctx(hctx, hctx_idx);
2369 unregister_cpu_notifier:
2370 blk_mq_remove_cpuhp(hctx);
2371 return -1;
2372 }
2373
2374 static struct blk_mq_hw_ctx *
2375 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2376 int node)
2377 {
2378 struct blk_mq_hw_ctx *hctx;
2379 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2380
2381 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2382 if (!hctx)
2383 goto fail_alloc_hctx;
2384
2385 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2386 goto free_hctx;
2387
2388 atomic_set(&hctx->nr_active, 0);
2389 if (node == NUMA_NO_NODE)
2390 node = set->numa_node;
2391 hctx->numa_node = node;
2392
2393 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2394 spin_lock_init(&hctx->lock);
2395 INIT_LIST_HEAD(&hctx->dispatch);
2396 hctx->queue = q;
2397 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2398
2399 INIT_LIST_HEAD(&hctx->hctx_list);
2400
2401 /*
2402 * Allocate space for all possible cpus to avoid allocation at
2403 * runtime
2404 */
2405 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2406 gfp, node);
2407 if (!hctx->ctxs)
2408 goto free_cpumask;
2409
2410 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2411 gfp, node))
2412 goto free_ctxs;
2413 hctx->nr_ctx = 0;
2414
2415 spin_lock_init(&hctx->dispatch_wait_lock);
2416 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2417 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2418
2419 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2420 if (!hctx->fq)
2421 goto free_bitmap;
2422
2423 if (hctx->flags & BLK_MQ_F_BLOCKING)
2424 init_srcu_struct(hctx->srcu);
2425 blk_mq_hctx_kobj_init(hctx);
2426
2427 return hctx;
2428
2429 free_bitmap:
2430 sbitmap_free(&hctx->ctx_map);
2431 free_ctxs:
2432 kfree(hctx->ctxs);
2433 free_cpumask:
2434 free_cpumask_var(hctx->cpumask);
2435 free_hctx:
2436 kfree(hctx);
2437 fail_alloc_hctx:
2438 return NULL;
2439 }
2440
2441 static void blk_mq_init_cpu_queues(struct request_queue *q,
2442 unsigned int nr_hw_queues)
2443 {
2444 struct blk_mq_tag_set *set = q->tag_set;
2445 unsigned int i, j;
2446
2447 for_each_possible_cpu(i) {
2448 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2449 struct blk_mq_hw_ctx *hctx;
2450 int k;
2451
2452 __ctx->cpu = i;
2453 spin_lock_init(&__ctx->lock);
2454 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2455 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2456
2457 __ctx->queue = q;
2458
2459 /*
2460 * Set local node, IFF we have more than one hw queue. If
2461 * not, we remain on the home node of the device
2462 */
2463 for (j = 0; j < set->nr_maps; j++) {
2464 hctx = blk_mq_map_queue_type(q, j, i);
2465 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2466 hctx->numa_node = local_memory_node(cpu_to_node(i));
2467 }
2468 }
2469 }
2470
2471 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2472 {
2473 int ret = 0;
2474
2475 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2476 set->queue_depth, set->reserved_tags);
2477 if (!set->tags[hctx_idx])
2478 return false;
2479
2480 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2481 set->queue_depth);
2482 if (!ret)
2483 return true;
2484
2485 blk_mq_free_rq_map(set->tags[hctx_idx]);
2486 set->tags[hctx_idx] = NULL;
2487 return false;
2488 }
2489
2490 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2491 unsigned int hctx_idx)
2492 {
2493 if (set->tags && set->tags[hctx_idx]) {
2494 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2495 blk_mq_free_rq_map(set->tags[hctx_idx]);
2496 set->tags[hctx_idx] = NULL;
2497 }
2498 }
2499
2500 static void blk_mq_map_swqueue(struct request_queue *q)
2501 {
2502 unsigned int i, j, hctx_idx;
2503 struct blk_mq_hw_ctx *hctx;
2504 struct blk_mq_ctx *ctx;
2505 struct blk_mq_tag_set *set = q->tag_set;
2506
2507 queue_for_each_hw_ctx(q, hctx, i) {
2508 cpumask_clear(hctx->cpumask);
2509 hctx->nr_ctx = 0;
2510 hctx->dispatch_from = NULL;
2511 }
2512
2513 /*
2514 * Map software to hardware queues.
2515 *
2516 * If the cpu isn't present, the cpu is mapped to first hctx.
2517 */
2518 for_each_possible_cpu(i) {
2519 hctx_idx = set->map[HCTX_TYPE_DEFAULT].mq_map[i];
2520 /* unmapped hw queue can be remapped after CPU topo changed */
2521 if (!set->tags[hctx_idx] &&
2522 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2523 /*
2524 * If tags initialization fail for some hctx,
2525 * that hctx won't be brought online. In this
2526 * case, remap the current ctx to hctx[0] which
2527 * is guaranteed to always have tags allocated
2528 */
2529 set->map[HCTX_TYPE_DEFAULT].mq_map[i] = 0;
2530 }
2531
2532 ctx = per_cpu_ptr(q->queue_ctx, i);
2533 for (j = 0; j < set->nr_maps; j++) {
2534 if (!set->map[j].nr_queues) {
2535 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2536 HCTX_TYPE_DEFAULT, i);
2537 continue;
2538 }
2539
2540 hctx = blk_mq_map_queue_type(q, j, i);
2541 ctx->hctxs[j] = hctx;
2542 /*
2543 * If the CPU is already set in the mask, then we've
2544 * mapped this one already. This can happen if
2545 * devices share queues across queue maps.
2546 */
2547 if (cpumask_test_cpu(i, hctx->cpumask))
2548 continue;
2549
2550 cpumask_set_cpu(i, hctx->cpumask);
2551 hctx->type = j;
2552 ctx->index_hw[hctx->type] = hctx->nr_ctx;
2553 hctx->ctxs[hctx->nr_ctx++] = ctx;
2554
2555 /*
2556 * If the nr_ctx type overflows, we have exceeded the
2557 * amount of sw queues we can support.
2558 */
2559 BUG_ON(!hctx->nr_ctx);
2560 }
2561
2562 for (; j < HCTX_MAX_TYPES; j++)
2563 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2564 HCTX_TYPE_DEFAULT, i);
2565 }
2566
2567 queue_for_each_hw_ctx(q, hctx, i) {
2568 /*
2569 * If no software queues are mapped to this hardware queue,
2570 * disable it and free the request entries.
2571 */
2572 if (!hctx->nr_ctx) {
2573 /* Never unmap queue 0. We need it as a
2574 * fallback in case of a new remap fails
2575 * allocation
2576 */
2577 if (i && set->tags[i])
2578 blk_mq_free_map_and_requests(set, i);
2579
2580 hctx->tags = NULL;
2581 continue;
2582 }
2583
2584 hctx->tags = set->tags[i];
2585 WARN_ON(!hctx->tags);
2586
2587 /*
2588 * Set the map size to the number of mapped software queues.
2589 * This is more accurate and more efficient than looping
2590 * over all possibly mapped software queues.
2591 */
2592 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2593
2594 /*
2595 * Initialize batch roundrobin counts
2596 */
2597 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2598 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2599 }
2600 }
2601
2602 /*
2603 * Caller needs to ensure that we're either frozen/quiesced, or that
2604 * the queue isn't live yet.
2605 */
2606 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2607 {
2608 struct blk_mq_hw_ctx *hctx;
2609 int i;
2610
2611 queue_for_each_hw_ctx(q, hctx, i) {
2612 if (shared)
2613 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2614 else
2615 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2616 }
2617 }
2618
2619 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2620 bool shared)
2621 {
2622 struct request_queue *q;
2623
2624 lockdep_assert_held(&set->tag_list_lock);
2625
2626 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2627 blk_mq_freeze_queue(q);
2628 queue_set_hctx_shared(q, shared);
2629 blk_mq_unfreeze_queue(q);
2630 }
2631 }
2632
2633 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2634 {
2635 struct blk_mq_tag_set *set = q->tag_set;
2636
2637 mutex_lock(&set->tag_list_lock);
2638 list_del_rcu(&q->tag_set_list);
2639 if (list_is_singular(&set->tag_list)) {
2640 /* just transitioned to unshared */
2641 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2642 /* update existing queue */
2643 blk_mq_update_tag_set_depth(set, false);
2644 }
2645 mutex_unlock(&set->tag_list_lock);
2646 INIT_LIST_HEAD(&q->tag_set_list);
2647 }
2648
2649 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2650 struct request_queue *q)
2651 {
2652 mutex_lock(&set->tag_list_lock);
2653
2654 /*
2655 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2656 */
2657 if (!list_empty(&set->tag_list) &&
2658 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2659 set->flags |= BLK_MQ_F_TAG_SHARED;
2660 /* update existing queue */
2661 blk_mq_update_tag_set_depth(set, true);
2662 }
2663 if (set->flags & BLK_MQ_F_TAG_SHARED)
2664 queue_set_hctx_shared(q, true);
2665 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2666
2667 mutex_unlock(&set->tag_list_lock);
2668 }
2669
2670 /* All allocations will be freed in release handler of q->mq_kobj */
2671 static int blk_mq_alloc_ctxs(struct request_queue *q)
2672 {
2673 struct blk_mq_ctxs *ctxs;
2674 int cpu;
2675
2676 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2677 if (!ctxs)
2678 return -ENOMEM;
2679
2680 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2681 if (!ctxs->queue_ctx)
2682 goto fail;
2683
2684 for_each_possible_cpu(cpu) {
2685 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2686 ctx->ctxs = ctxs;
2687 }
2688
2689 q->mq_kobj = &ctxs->kobj;
2690 q->queue_ctx = ctxs->queue_ctx;
2691
2692 return 0;
2693 fail:
2694 kfree(ctxs);
2695 return -ENOMEM;
2696 }
2697
2698 /*
2699 * It is the actual release handler for mq, but we do it from
2700 * request queue's release handler for avoiding use-after-free
2701 * and headache because q->mq_kobj shouldn't have been introduced,
2702 * but we can't group ctx/kctx kobj without it.
2703 */
2704 void blk_mq_release(struct request_queue *q)
2705 {
2706 struct blk_mq_hw_ctx *hctx, *next;
2707 int i;
2708
2709 queue_for_each_hw_ctx(q, hctx, i)
2710 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
2711
2712 /* all hctx are in .unused_hctx_list now */
2713 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
2714 list_del_init(&hctx->hctx_list);
2715 kobject_put(&hctx->kobj);
2716 }
2717
2718 kfree(q->queue_hw_ctx);
2719
2720 /*
2721 * release .mq_kobj and sw queue's kobject now because
2722 * both share lifetime with request queue.
2723 */
2724 blk_mq_sysfs_deinit(q);
2725 }
2726
2727 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
2728 void *queuedata)
2729 {
2730 struct request_queue *uninit_q, *q;
2731
2732 uninit_q = __blk_alloc_queue(set->numa_node);
2733 if (!uninit_q)
2734 return ERR_PTR(-ENOMEM);
2735 uninit_q->queuedata = queuedata;
2736
2737 /*
2738 * Initialize the queue without an elevator. device_add_disk() will do
2739 * the initialization.
2740 */
2741 q = blk_mq_init_allocated_queue(set, uninit_q, false);
2742 if (IS_ERR(q))
2743 blk_cleanup_queue(uninit_q);
2744
2745 return q;
2746 }
2747 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
2748
2749 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2750 {
2751 return blk_mq_init_queue_data(set, NULL);
2752 }
2753 EXPORT_SYMBOL(blk_mq_init_queue);
2754
2755 /*
2756 * Helper for setting up a queue with mq ops, given queue depth, and
2757 * the passed in mq ops flags.
2758 */
2759 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2760 const struct blk_mq_ops *ops,
2761 unsigned int queue_depth,
2762 unsigned int set_flags)
2763 {
2764 struct request_queue *q;
2765 int ret;
2766
2767 memset(set, 0, sizeof(*set));
2768 set->ops = ops;
2769 set->nr_hw_queues = 1;
2770 set->nr_maps = 1;
2771 set->queue_depth = queue_depth;
2772 set->numa_node = NUMA_NO_NODE;
2773 set->flags = set_flags;
2774
2775 ret = blk_mq_alloc_tag_set(set);
2776 if (ret)
2777 return ERR_PTR(ret);
2778
2779 q = blk_mq_init_queue(set);
2780 if (IS_ERR(q)) {
2781 blk_mq_free_tag_set(set);
2782 return q;
2783 }
2784
2785 return q;
2786 }
2787 EXPORT_SYMBOL(blk_mq_init_sq_queue);
2788
2789 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2790 struct blk_mq_tag_set *set, struct request_queue *q,
2791 int hctx_idx, int node)
2792 {
2793 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
2794
2795 /* reuse dead hctx first */
2796 spin_lock(&q->unused_hctx_lock);
2797 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
2798 if (tmp->numa_node == node) {
2799 hctx = tmp;
2800 break;
2801 }
2802 }
2803 if (hctx)
2804 list_del_init(&hctx->hctx_list);
2805 spin_unlock(&q->unused_hctx_lock);
2806
2807 if (!hctx)
2808 hctx = blk_mq_alloc_hctx(q, set, node);
2809 if (!hctx)
2810 goto fail;
2811
2812 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
2813 goto free_hctx;
2814
2815 return hctx;
2816
2817 free_hctx:
2818 kobject_put(&hctx->kobj);
2819 fail:
2820 return NULL;
2821 }
2822
2823 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2824 struct request_queue *q)
2825 {
2826 int i, j, end;
2827 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2828
2829 if (q->nr_hw_queues < set->nr_hw_queues) {
2830 struct blk_mq_hw_ctx **new_hctxs;
2831
2832 new_hctxs = kcalloc_node(set->nr_hw_queues,
2833 sizeof(*new_hctxs), GFP_KERNEL,
2834 set->numa_node);
2835 if (!new_hctxs)
2836 return;
2837 if (hctxs)
2838 memcpy(new_hctxs, hctxs, q->nr_hw_queues *
2839 sizeof(*hctxs));
2840 q->queue_hw_ctx = new_hctxs;
2841 kfree(hctxs);
2842 hctxs = new_hctxs;
2843 }
2844
2845 /* protect against switching io scheduler */
2846 mutex_lock(&q->sysfs_lock);
2847 for (i = 0; i < set->nr_hw_queues; i++) {
2848 int node;
2849 struct blk_mq_hw_ctx *hctx;
2850
2851 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
2852 /*
2853 * If the hw queue has been mapped to another numa node,
2854 * we need to realloc the hctx. If allocation fails, fallback
2855 * to use the previous one.
2856 */
2857 if (hctxs[i] && (hctxs[i]->numa_node == node))
2858 continue;
2859
2860 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2861 if (hctx) {
2862 if (hctxs[i])
2863 blk_mq_exit_hctx(q, set, hctxs[i], i);
2864 hctxs[i] = hctx;
2865 } else {
2866 if (hctxs[i])
2867 pr_warn("Allocate new hctx on node %d fails,\
2868 fallback to previous one on node %d\n",
2869 node, hctxs[i]->numa_node);
2870 else
2871 break;
2872 }
2873 }
2874 /*
2875 * Increasing nr_hw_queues fails. Free the newly allocated
2876 * hctxs and keep the previous q->nr_hw_queues.
2877 */
2878 if (i != set->nr_hw_queues) {
2879 j = q->nr_hw_queues;
2880 end = i;
2881 } else {
2882 j = i;
2883 end = q->nr_hw_queues;
2884 q->nr_hw_queues = set->nr_hw_queues;
2885 }
2886
2887 for (; j < end; j++) {
2888 struct blk_mq_hw_ctx *hctx = hctxs[j];
2889
2890 if (hctx) {
2891 if (hctx->tags)
2892 blk_mq_free_map_and_requests(set, j);
2893 blk_mq_exit_hctx(q, set, hctx, j);
2894 hctxs[j] = NULL;
2895 }
2896 }
2897 mutex_unlock(&q->sysfs_lock);
2898 }
2899
2900 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2901 struct request_queue *q,
2902 bool elevator_init)
2903 {
2904 /* mark the queue as mq asap */
2905 q->mq_ops = set->ops;
2906
2907 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2908 blk_mq_poll_stats_bkt,
2909 BLK_MQ_POLL_STATS_BKTS, q);
2910 if (!q->poll_cb)
2911 goto err_exit;
2912
2913 if (blk_mq_alloc_ctxs(q))
2914 goto err_poll;
2915
2916 /* init q->mq_kobj and sw queues' kobjects */
2917 blk_mq_sysfs_init(q);
2918
2919 INIT_LIST_HEAD(&q->unused_hctx_list);
2920 spin_lock_init(&q->unused_hctx_lock);
2921
2922 blk_mq_realloc_hw_ctxs(set, q);
2923 if (!q->nr_hw_queues)
2924 goto err_hctxs;
2925
2926 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2927 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2928
2929 q->tag_set = set;
2930
2931 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2932 if (set->nr_maps > HCTX_TYPE_POLL &&
2933 set->map[HCTX_TYPE_POLL].nr_queues)
2934 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2935
2936 q->sg_reserved_size = INT_MAX;
2937
2938 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2939 INIT_LIST_HEAD(&q->requeue_list);
2940 spin_lock_init(&q->requeue_lock);
2941
2942 q->make_request_fn = blk_mq_make_request;
2943 q->nr_requests = set->queue_depth;
2944
2945 /*
2946 * Default to classic polling
2947 */
2948 q->poll_nsec = BLK_MQ_POLL_CLASSIC;
2949
2950 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2951 blk_mq_add_queue_tag_set(set, q);
2952 blk_mq_map_swqueue(q);
2953
2954 if (elevator_init)
2955 elevator_init_mq(q);
2956
2957 return q;
2958
2959 err_hctxs:
2960 kfree(q->queue_hw_ctx);
2961 q->nr_hw_queues = 0;
2962 blk_mq_sysfs_deinit(q);
2963 err_poll:
2964 blk_stat_free_callback(q->poll_cb);
2965 q->poll_cb = NULL;
2966 err_exit:
2967 q->mq_ops = NULL;
2968 return ERR_PTR(-ENOMEM);
2969 }
2970 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2971
2972 /* tags can _not_ be used after returning from blk_mq_exit_queue */
2973 void blk_mq_exit_queue(struct request_queue *q)
2974 {
2975 struct blk_mq_tag_set *set = q->tag_set;
2976
2977 blk_mq_del_queue_tag_set(q);
2978 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2979 }
2980
2981 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2982 {
2983 int i;
2984
2985 for (i = 0; i < set->nr_hw_queues; i++)
2986 if (!__blk_mq_alloc_rq_map(set, i))
2987 goto out_unwind;
2988
2989 return 0;
2990
2991 out_unwind:
2992 while (--i >= 0)
2993 blk_mq_free_rq_map(set->tags[i]);
2994
2995 return -ENOMEM;
2996 }
2997
2998 /*
2999 * Allocate the request maps associated with this tag_set. Note that this
3000 * may reduce the depth asked for, if memory is tight. set->queue_depth
3001 * will be updated to reflect the allocated depth.
3002 */
3003 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3004 {
3005 unsigned int depth;
3006 int err;
3007
3008 depth = set->queue_depth;
3009 do {
3010 err = __blk_mq_alloc_rq_maps(set);
3011 if (!err)
3012 break;
3013
3014 set->queue_depth >>= 1;
3015 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3016 err = -ENOMEM;
3017 break;
3018 }
3019 } while (set->queue_depth);
3020
3021 if (!set->queue_depth || err) {
3022 pr_err("blk-mq: failed to allocate request map\n");
3023 return -ENOMEM;
3024 }
3025
3026 if (depth != set->queue_depth)
3027 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3028 depth, set->queue_depth);
3029
3030 return 0;
3031 }
3032
3033 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3034 {
3035 /*
3036 * blk_mq_map_queues() and multiple .map_queues() implementations
3037 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3038 * number of hardware queues.
3039 */
3040 if (set->nr_maps == 1)
3041 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3042
3043 if (set->ops->map_queues && !is_kdump_kernel()) {
3044 int i;
3045
3046 /*
3047 * transport .map_queues is usually done in the following
3048 * way:
3049 *
3050 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3051 * mask = get_cpu_mask(queue)
3052 * for_each_cpu(cpu, mask)
3053 * set->map[x].mq_map[cpu] = queue;
3054 * }
3055 *
3056 * When we need to remap, the table has to be cleared for
3057 * killing stale mapping since one CPU may not be mapped
3058 * to any hw queue.
3059 */
3060 for (i = 0; i < set->nr_maps; i++)
3061 blk_mq_clear_mq_map(&set->map[i]);
3062
3063 return set->ops->map_queues(set);
3064 } else {
3065 BUG_ON(set->nr_maps > 1);
3066 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3067 }
3068 }
3069
3070 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3071 int cur_nr_hw_queues, int new_nr_hw_queues)
3072 {
3073 struct blk_mq_tags **new_tags;
3074
3075 if (cur_nr_hw_queues >= new_nr_hw_queues)
3076 return 0;
3077
3078 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3079 GFP_KERNEL, set->numa_node);
3080 if (!new_tags)
3081 return -ENOMEM;
3082
3083 if (set->tags)
3084 memcpy(new_tags, set->tags, cur_nr_hw_queues *
3085 sizeof(*set->tags));
3086 kfree(set->tags);
3087 set->tags = new_tags;
3088 set->nr_hw_queues = new_nr_hw_queues;
3089
3090 return 0;
3091 }
3092
3093 /*
3094 * Alloc a tag set to be associated with one or more request queues.
3095 * May fail with EINVAL for various error conditions. May adjust the
3096 * requested depth down, if it's too large. In that case, the set
3097 * value will be stored in set->queue_depth.
3098 */
3099 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3100 {
3101 int i, ret;
3102
3103 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3104
3105 if (!set->nr_hw_queues)
3106 return -EINVAL;
3107 if (!set->queue_depth)
3108 return -EINVAL;
3109 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3110 return -EINVAL;
3111
3112 if (!set->ops->queue_rq)
3113 return -EINVAL;
3114
3115 if (!set->ops->get_budget ^ !set->ops->put_budget)
3116 return -EINVAL;
3117
3118 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3119 pr_info("blk-mq: reduced tag depth to %u\n",
3120 BLK_MQ_MAX_DEPTH);
3121 set->queue_depth = BLK_MQ_MAX_DEPTH;
3122 }
3123
3124 if (!set->nr_maps)
3125 set->nr_maps = 1;
3126 else if (set->nr_maps > HCTX_MAX_TYPES)
3127 return -EINVAL;
3128
3129 /*
3130 * If a crashdump is active, then we are potentially in a very
3131 * memory constrained environment. Limit us to 1 queue and
3132 * 64 tags to prevent using too much memory.
3133 */
3134 if (is_kdump_kernel()) {
3135 set->nr_hw_queues = 1;
3136 set->nr_maps = 1;
3137 set->queue_depth = min(64U, set->queue_depth);
3138 }
3139 /*
3140 * There is no use for more h/w queues than cpus if we just have
3141 * a single map
3142 */
3143 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3144 set->nr_hw_queues = nr_cpu_ids;
3145
3146 if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0)
3147 return -ENOMEM;
3148
3149 ret = -ENOMEM;
3150 for (i = 0; i < set->nr_maps; i++) {
3151 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3152 sizeof(set->map[i].mq_map[0]),
3153 GFP_KERNEL, set->numa_node);
3154 if (!set->map[i].mq_map)
3155 goto out_free_mq_map;
3156 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3157 }
3158
3159 ret = blk_mq_update_queue_map(set);
3160 if (ret)
3161 goto out_free_mq_map;
3162
3163 ret = blk_mq_alloc_rq_maps(set);
3164 if (ret)
3165 goto out_free_mq_map;
3166
3167 mutex_init(&set->tag_list_lock);
3168 INIT_LIST_HEAD(&set->tag_list);
3169
3170 return 0;
3171
3172 out_free_mq_map:
3173 for (i = 0; i < set->nr_maps; i++) {
3174 kfree(set->map[i].mq_map);
3175 set->map[i].mq_map = NULL;
3176 }
3177 kfree(set->tags);
3178 set->tags = NULL;
3179 return ret;
3180 }
3181 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3182
3183 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3184 {
3185 int i, j;
3186
3187 for (i = 0; i < set->nr_hw_queues; i++)
3188 blk_mq_free_map_and_requests(set, i);
3189
3190 for (j = 0; j < set->nr_maps; j++) {
3191 kfree(set->map[j].mq_map);
3192 set->map[j].mq_map = NULL;
3193 }
3194
3195 kfree(set->tags);
3196 set->tags = NULL;
3197 }
3198 EXPORT_SYMBOL(blk_mq_free_tag_set);
3199
3200 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3201 {
3202 struct blk_mq_tag_set *set = q->tag_set;
3203 struct blk_mq_hw_ctx *hctx;
3204 int i, ret;
3205
3206 if (!set)
3207 return -EINVAL;
3208
3209 if (q->nr_requests == nr)
3210 return 0;
3211
3212 blk_mq_freeze_queue(q);
3213 blk_mq_quiesce_queue(q);
3214
3215 ret = 0;
3216 queue_for_each_hw_ctx(q, hctx, i) {
3217 if (!hctx->tags)
3218 continue;
3219 /*
3220 * If we're using an MQ scheduler, just update the scheduler
3221 * queue depth. This is similar to what the old code would do.
3222 */
3223 if (!hctx->sched_tags) {
3224 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3225 false);
3226 } else {
3227 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3228 nr, true);
3229 }
3230 if (ret)
3231 break;
3232 if (q->elevator && q->elevator->type->ops.depth_updated)
3233 q->elevator->type->ops.depth_updated(hctx);
3234 }
3235
3236 if (!ret)
3237 q->nr_requests = nr;
3238
3239 blk_mq_unquiesce_queue(q);
3240 blk_mq_unfreeze_queue(q);
3241
3242 return ret;
3243 }
3244
3245 /*
3246 * request_queue and elevator_type pair.
3247 * It is just used by __blk_mq_update_nr_hw_queues to cache
3248 * the elevator_type associated with a request_queue.
3249 */
3250 struct blk_mq_qe_pair {
3251 struct list_head node;
3252 struct request_queue *q;
3253 struct elevator_type *type;
3254 };
3255
3256 /*
3257 * Cache the elevator_type in qe pair list and switch the
3258 * io scheduler to 'none'
3259 */
3260 static bool blk_mq_elv_switch_none(struct list_head *head,
3261 struct request_queue *q)
3262 {
3263 struct blk_mq_qe_pair *qe;
3264
3265 if (!q->elevator)
3266 return true;
3267
3268 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3269 if (!qe)
3270 return false;
3271
3272 INIT_LIST_HEAD(&qe->node);
3273 qe->q = q;
3274 qe->type = q->elevator->type;
3275 list_add(&qe->node, head);
3276
3277 mutex_lock(&q->sysfs_lock);
3278 /*
3279 * After elevator_switch_mq, the previous elevator_queue will be
3280 * released by elevator_release. The reference of the io scheduler
3281 * module get by elevator_get will also be put. So we need to get
3282 * a reference of the io scheduler module here to prevent it to be
3283 * removed.
3284 */
3285 __module_get(qe->type->elevator_owner);
3286 elevator_switch_mq(q, NULL);
3287 mutex_unlock(&q->sysfs_lock);
3288
3289 return true;
3290 }
3291
3292 static void blk_mq_elv_switch_back(struct list_head *head,
3293 struct request_queue *q)
3294 {
3295 struct blk_mq_qe_pair *qe;
3296 struct elevator_type *t = NULL;
3297
3298 list_for_each_entry(qe, head, node)
3299 if (qe->q == q) {
3300 t = qe->type;
3301 break;
3302 }
3303
3304 if (!t)
3305 return;
3306
3307 list_del(&qe->node);
3308 kfree(qe);
3309
3310 mutex_lock(&q->sysfs_lock);
3311 elevator_switch_mq(q, t);
3312 mutex_unlock(&q->sysfs_lock);
3313 }
3314
3315 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3316 int nr_hw_queues)
3317 {
3318 struct request_queue *q;
3319 LIST_HEAD(head);
3320 int prev_nr_hw_queues;
3321
3322 lockdep_assert_held(&set->tag_list_lock);
3323
3324 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3325 nr_hw_queues = nr_cpu_ids;
3326 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3327 return;
3328
3329 list_for_each_entry(q, &set->tag_list, tag_set_list)
3330 blk_mq_freeze_queue(q);
3331 /*
3332 * Switch IO scheduler to 'none', cleaning up the data associated
3333 * with the previous scheduler. We will switch back once we are done
3334 * updating the new sw to hw queue mappings.
3335 */
3336 list_for_each_entry(q, &set->tag_list, tag_set_list)
3337 if (!blk_mq_elv_switch_none(&head, q))
3338 goto switch_back;
3339
3340 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3341 blk_mq_debugfs_unregister_hctxs(q);
3342 blk_mq_sysfs_unregister(q);
3343 }
3344
3345 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3346 0)
3347 goto reregister;
3348
3349 prev_nr_hw_queues = set->nr_hw_queues;
3350 set->nr_hw_queues = nr_hw_queues;
3351 blk_mq_update_queue_map(set);
3352 fallback:
3353 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3354 blk_mq_realloc_hw_ctxs(set, q);
3355 if (q->nr_hw_queues != set->nr_hw_queues) {
3356 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3357 nr_hw_queues, prev_nr_hw_queues);
3358 set->nr_hw_queues = prev_nr_hw_queues;
3359 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3360 goto fallback;
3361 }
3362 blk_mq_map_swqueue(q);
3363 }
3364
3365 reregister:
3366 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3367 blk_mq_sysfs_register(q);
3368 blk_mq_debugfs_register_hctxs(q);
3369 }
3370
3371 switch_back:
3372 list_for_each_entry(q, &set->tag_list, tag_set_list)
3373 blk_mq_elv_switch_back(&head, q);
3374
3375 list_for_each_entry(q, &set->tag_list, tag_set_list)
3376 blk_mq_unfreeze_queue(q);
3377 }
3378
3379 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3380 {
3381 mutex_lock(&set->tag_list_lock);
3382 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3383 mutex_unlock(&set->tag_list_lock);
3384 }
3385 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3386
3387 /* Enable polling stats and return whether they were already enabled. */
3388 static bool blk_poll_stats_enable(struct request_queue *q)
3389 {
3390 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3391 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3392 return true;
3393 blk_stat_add_callback(q, q->poll_cb);
3394 return false;
3395 }
3396
3397 static void blk_mq_poll_stats_start(struct request_queue *q)
3398 {
3399 /*
3400 * We don't arm the callback if polling stats are not enabled or the
3401 * callback is already active.
3402 */
3403 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3404 blk_stat_is_active(q->poll_cb))
3405 return;
3406
3407 blk_stat_activate_msecs(q->poll_cb, 100);
3408 }
3409
3410 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3411 {
3412 struct request_queue *q = cb->data;
3413 int bucket;
3414
3415 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3416 if (cb->stat[bucket].nr_samples)
3417 q->poll_stat[bucket] = cb->stat[bucket];
3418 }
3419 }
3420
3421 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3422 struct request *rq)
3423 {
3424 unsigned long ret = 0;
3425 int bucket;
3426
3427 /*
3428 * If stats collection isn't on, don't sleep but turn it on for
3429 * future users
3430 */
3431 if (!blk_poll_stats_enable(q))
3432 return 0;
3433
3434 /*
3435 * As an optimistic guess, use half of the mean service time
3436 * for this type of request. We can (and should) make this smarter.
3437 * For instance, if the completion latencies are tight, we can
3438 * get closer than just half the mean. This is especially
3439 * important on devices where the completion latencies are longer
3440 * than ~10 usec. We do use the stats for the relevant IO size
3441 * if available which does lead to better estimates.
3442 */
3443 bucket = blk_mq_poll_stats_bkt(rq);
3444 if (bucket < 0)
3445 return ret;
3446
3447 if (q->poll_stat[bucket].nr_samples)
3448 ret = (q->poll_stat[bucket].mean + 1) / 2;
3449
3450 return ret;
3451 }
3452
3453 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3454 struct request *rq)
3455 {
3456 struct hrtimer_sleeper hs;
3457 enum hrtimer_mode mode;
3458 unsigned int nsecs;
3459 ktime_t kt;
3460
3461 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3462 return false;
3463
3464 /*
3465 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3466 *
3467 * 0: use half of prev avg
3468 * >0: use this specific value
3469 */
3470 if (q->poll_nsec > 0)
3471 nsecs = q->poll_nsec;
3472 else
3473 nsecs = blk_mq_poll_nsecs(q, rq);
3474
3475 if (!nsecs)
3476 return false;
3477
3478 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3479
3480 /*
3481 * This will be replaced with the stats tracking code, using
3482 * 'avg_completion_time / 2' as the pre-sleep target.
3483 */
3484 kt = nsecs;
3485
3486 mode = HRTIMER_MODE_REL;
3487 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3488 hrtimer_set_expires(&hs.timer, kt);
3489
3490 do {
3491 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3492 break;
3493 set_current_state(TASK_UNINTERRUPTIBLE);
3494 hrtimer_sleeper_start_expires(&hs, mode);
3495 if (hs.task)
3496 io_schedule();
3497 hrtimer_cancel(&hs.timer);
3498 mode = HRTIMER_MODE_ABS;
3499 } while (hs.task && !signal_pending(current));
3500
3501 __set_current_state(TASK_RUNNING);
3502 destroy_hrtimer_on_stack(&hs.timer);
3503 return true;
3504 }
3505
3506 static bool blk_mq_poll_hybrid(struct request_queue *q,
3507 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3508 {
3509 struct request *rq;
3510
3511 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3512 return false;
3513
3514 if (!blk_qc_t_is_internal(cookie))
3515 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3516 else {
3517 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3518 /*
3519 * With scheduling, if the request has completed, we'll
3520 * get a NULL return here, as we clear the sched tag when
3521 * that happens. The request still remains valid, like always,
3522 * so we should be safe with just the NULL check.
3523 */
3524 if (!rq)
3525 return false;
3526 }
3527
3528 return blk_mq_poll_hybrid_sleep(q, rq);
3529 }
3530
3531 /**
3532 * blk_poll - poll for IO completions
3533 * @q: the queue
3534 * @cookie: cookie passed back at IO submission time
3535 * @spin: whether to spin for completions
3536 *
3537 * Description:
3538 * Poll for completions on the passed in queue. Returns number of
3539 * completed entries found. If @spin is true, then blk_poll will continue
3540 * looping until at least one completion is found, unless the task is
3541 * otherwise marked running (or we need to reschedule).
3542 */
3543 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3544 {
3545 struct blk_mq_hw_ctx *hctx;
3546 long state;
3547
3548 if (!blk_qc_t_valid(cookie) ||
3549 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3550 return 0;
3551
3552 if (current->plug)
3553 blk_flush_plug_list(current->plug, false);
3554
3555 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3556
3557 /*
3558 * If we sleep, have the caller restart the poll loop to reset
3559 * the state. Like for the other success return cases, the
3560 * caller is responsible for checking if the IO completed. If
3561 * the IO isn't complete, we'll get called again and will go
3562 * straight to the busy poll loop.
3563 */
3564 if (blk_mq_poll_hybrid(q, hctx, cookie))
3565 return 1;
3566
3567 hctx->poll_considered++;
3568
3569 state = current->state;
3570 do {
3571 int ret;
3572
3573 hctx->poll_invoked++;
3574
3575 ret = q->mq_ops->poll(hctx);
3576 if (ret > 0) {
3577 hctx->poll_success++;
3578 __set_current_state(TASK_RUNNING);
3579 return ret;
3580 }
3581
3582 if (signal_pending_state(state, current))
3583 __set_current_state(TASK_RUNNING);
3584
3585 if (current->state == TASK_RUNNING)
3586 return 1;
3587 if (ret < 0 || !spin)
3588 break;
3589 cpu_relax();
3590 } while (!need_resched());
3591
3592 __set_current_state(TASK_RUNNING);
3593 return 0;
3594 }
3595 EXPORT_SYMBOL_GPL(blk_poll);
3596
3597 unsigned int blk_mq_rq_cpu(struct request *rq)
3598 {
3599 return rq->mq_ctx->cpu;
3600 }
3601 EXPORT_SYMBOL(blk_mq_rq_cpu);
3602
3603 static int __init blk_mq_init(void)
3604 {
3605 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3606 blk_mq_hctx_notify_dead);
3607 return 0;
3608 }
3609 subsys_initcall(blk_mq_init);