]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - block/blk-mq.c
Merge tag 'meminit-v5.3-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/kees...
[mirror_ubuntu-eoan-kernel.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Block multiqueue core code
4 *
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
7 */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29
30 #include <trace/events/block.h>
31
32 #include <linux/blk-mq.h>
33 #include "blk.h"
34 #include "blk-mq.h"
35 #include "blk-mq-debugfs.h"
36 #include "blk-mq-tag.h"
37 #include "blk-pm.h"
38 #include "blk-stat.h"
39 #include "blk-mq-sched.h"
40 #include "blk-rq-qos.h"
41
42 static void blk_mq_poll_stats_start(struct request_queue *q);
43 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44
45 static int blk_mq_poll_stats_bkt(const struct request *rq)
46 {
47 int ddir, bytes, bucket;
48
49 ddir = rq_data_dir(rq);
50 bytes = blk_rq_bytes(rq);
51
52 bucket = ddir + 2*(ilog2(bytes) - 9);
53
54 if (bucket < 0)
55 return -1;
56 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
57 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
58
59 return bucket;
60 }
61
62 /*
63 * Check if any of the ctx, dispatch list or elevator
64 * have pending work in this hardware queue.
65 */
66 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
67 {
68 return !list_empty_careful(&hctx->dispatch) ||
69 sbitmap_any_bit_set(&hctx->ctx_map) ||
70 blk_mq_sched_has_work(hctx);
71 }
72
73 /*
74 * Mark this ctx as having pending work in this hardware queue
75 */
76 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
77 struct blk_mq_ctx *ctx)
78 {
79 const int bit = ctx->index_hw[hctx->type];
80
81 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
82 sbitmap_set_bit(&hctx->ctx_map, bit);
83 }
84
85 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
86 struct blk_mq_ctx *ctx)
87 {
88 const int bit = ctx->index_hw[hctx->type];
89
90 sbitmap_clear_bit(&hctx->ctx_map, bit);
91 }
92
93 struct mq_inflight {
94 struct hd_struct *part;
95 unsigned int *inflight;
96 };
97
98 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
99 struct request *rq, void *priv,
100 bool reserved)
101 {
102 struct mq_inflight *mi = priv;
103
104 /*
105 * index[0] counts the specific partition that was asked for.
106 */
107 if (rq->part == mi->part)
108 mi->inflight[0]++;
109
110 return true;
111 }
112
113 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
114 {
115 unsigned inflight[2];
116 struct mq_inflight mi = { .part = part, .inflight = inflight, };
117
118 inflight[0] = inflight[1] = 0;
119 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120
121 return inflight[0];
122 }
123
124 static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
125 struct request *rq, void *priv,
126 bool reserved)
127 {
128 struct mq_inflight *mi = priv;
129
130 if (rq->part == mi->part)
131 mi->inflight[rq_data_dir(rq)]++;
132
133 return true;
134 }
135
136 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
137 unsigned int inflight[2])
138 {
139 struct mq_inflight mi = { .part = part, .inflight = inflight, };
140
141 inflight[0] = inflight[1] = 0;
142 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
143 }
144
145 void blk_freeze_queue_start(struct request_queue *q)
146 {
147 mutex_lock(&q->mq_freeze_lock);
148 if (++q->mq_freeze_depth == 1) {
149 percpu_ref_kill(&q->q_usage_counter);
150 mutex_unlock(&q->mq_freeze_lock);
151 if (queue_is_mq(q))
152 blk_mq_run_hw_queues(q, false);
153 } else {
154 mutex_unlock(&q->mq_freeze_lock);
155 }
156 }
157 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
158
159 void blk_mq_freeze_queue_wait(struct request_queue *q)
160 {
161 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
162 }
163 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
164
165 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
166 unsigned long timeout)
167 {
168 return wait_event_timeout(q->mq_freeze_wq,
169 percpu_ref_is_zero(&q->q_usage_counter),
170 timeout);
171 }
172 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
173
174 /*
175 * Guarantee no request is in use, so we can change any data structure of
176 * the queue afterward.
177 */
178 void blk_freeze_queue(struct request_queue *q)
179 {
180 /*
181 * In the !blk_mq case we are only calling this to kill the
182 * q_usage_counter, otherwise this increases the freeze depth
183 * and waits for it to return to zero. For this reason there is
184 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
185 * exported to drivers as the only user for unfreeze is blk_mq.
186 */
187 blk_freeze_queue_start(q);
188 blk_mq_freeze_queue_wait(q);
189 }
190
191 void blk_mq_freeze_queue(struct request_queue *q)
192 {
193 /*
194 * ...just an alias to keep freeze and unfreeze actions balanced
195 * in the blk_mq_* namespace
196 */
197 blk_freeze_queue(q);
198 }
199 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
200
201 void blk_mq_unfreeze_queue(struct request_queue *q)
202 {
203 mutex_lock(&q->mq_freeze_lock);
204 q->mq_freeze_depth--;
205 WARN_ON_ONCE(q->mq_freeze_depth < 0);
206 if (!q->mq_freeze_depth) {
207 percpu_ref_resurrect(&q->q_usage_counter);
208 wake_up_all(&q->mq_freeze_wq);
209 }
210 mutex_unlock(&q->mq_freeze_lock);
211 }
212 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
213
214 /*
215 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
216 * mpt3sas driver such that this function can be removed.
217 */
218 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
219 {
220 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
221 }
222 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
223
224 /**
225 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
226 * @q: request queue.
227 *
228 * Note: this function does not prevent that the struct request end_io()
229 * callback function is invoked. Once this function is returned, we make
230 * sure no dispatch can happen until the queue is unquiesced via
231 * blk_mq_unquiesce_queue().
232 */
233 void blk_mq_quiesce_queue(struct request_queue *q)
234 {
235 struct blk_mq_hw_ctx *hctx;
236 unsigned int i;
237 bool rcu = false;
238
239 blk_mq_quiesce_queue_nowait(q);
240
241 queue_for_each_hw_ctx(q, hctx, i) {
242 if (hctx->flags & BLK_MQ_F_BLOCKING)
243 synchronize_srcu(hctx->srcu);
244 else
245 rcu = true;
246 }
247 if (rcu)
248 synchronize_rcu();
249 }
250 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
251
252 /*
253 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
254 * @q: request queue.
255 *
256 * This function recovers queue into the state before quiescing
257 * which is done by blk_mq_quiesce_queue.
258 */
259 void blk_mq_unquiesce_queue(struct request_queue *q)
260 {
261 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
262
263 /* dispatch requests which are inserted during quiescing */
264 blk_mq_run_hw_queues(q, true);
265 }
266 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
267
268 void blk_mq_wake_waiters(struct request_queue *q)
269 {
270 struct blk_mq_hw_ctx *hctx;
271 unsigned int i;
272
273 queue_for_each_hw_ctx(q, hctx, i)
274 if (blk_mq_hw_queue_mapped(hctx))
275 blk_mq_tag_wakeup_all(hctx->tags, true);
276 }
277
278 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
279 {
280 return blk_mq_has_free_tags(hctx->tags);
281 }
282 EXPORT_SYMBOL(blk_mq_can_queue);
283
284 /*
285 * Only need start/end time stamping if we have stats enabled, or using
286 * an IO scheduler.
287 */
288 static inline bool blk_mq_need_time_stamp(struct request *rq)
289 {
290 return (rq->rq_flags & RQF_IO_STAT) || rq->q->elevator;
291 }
292
293 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
294 unsigned int tag, unsigned int op)
295 {
296 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
297 struct request *rq = tags->static_rqs[tag];
298 req_flags_t rq_flags = 0;
299
300 if (data->flags & BLK_MQ_REQ_INTERNAL) {
301 rq->tag = -1;
302 rq->internal_tag = tag;
303 } else {
304 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
305 rq_flags = RQF_MQ_INFLIGHT;
306 atomic_inc(&data->hctx->nr_active);
307 }
308 rq->tag = tag;
309 rq->internal_tag = -1;
310 data->hctx->tags->rqs[rq->tag] = rq;
311 }
312
313 /* csd/requeue_work/fifo_time is initialized before use */
314 rq->q = data->q;
315 rq->mq_ctx = data->ctx;
316 rq->mq_hctx = data->hctx;
317 rq->rq_flags = rq_flags;
318 rq->cmd_flags = op;
319 if (data->flags & BLK_MQ_REQ_PREEMPT)
320 rq->rq_flags |= RQF_PREEMPT;
321 if (blk_queue_io_stat(data->q))
322 rq->rq_flags |= RQF_IO_STAT;
323 INIT_LIST_HEAD(&rq->queuelist);
324 INIT_HLIST_NODE(&rq->hash);
325 RB_CLEAR_NODE(&rq->rb_node);
326 rq->rq_disk = NULL;
327 rq->part = NULL;
328 if (blk_mq_need_time_stamp(rq))
329 rq->start_time_ns = ktime_get_ns();
330 else
331 rq->start_time_ns = 0;
332 rq->io_start_time_ns = 0;
333 rq->nr_phys_segments = 0;
334 #if defined(CONFIG_BLK_DEV_INTEGRITY)
335 rq->nr_integrity_segments = 0;
336 #endif
337 /* tag was already set */
338 rq->extra_len = 0;
339 WRITE_ONCE(rq->deadline, 0);
340
341 rq->timeout = 0;
342
343 rq->end_io = NULL;
344 rq->end_io_data = NULL;
345
346 data->ctx->rq_dispatched[op_is_sync(op)]++;
347 refcount_set(&rq->ref, 1);
348 return rq;
349 }
350
351 static struct request *blk_mq_get_request(struct request_queue *q,
352 struct bio *bio,
353 struct blk_mq_alloc_data *data)
354 {
355 struct elevator_queue *e = q->elevator;
356 struct request *rq;
357 unsigned int tag;
358 bool clear_ctx_on_error = false;
359
360 blk_queue_enter_live(q);
361 data->q = q;
362 if (likely(!data->ctx)) {
363 data->ctx = blk_mq_get_ctx(q);
364 clear_ctx_on_error = true;
365 }
366 if (likely(!data->hctx))
367 data->hctx = blk_mq_map_queue(q, data->cmd_flags,
368 data->ctx);
369 if (data->cmd_flags & REQ_NOWAIT)
370 data->flags |= BLK_MQ_REQ_NOWAIT;
371
372 if (e) {
373 data->flags |= BLK_MQ_REQ_INTERNAL;
374
375 /*
376 * Flush requests are special and go directly to the
377 * dispatch list. Don't include reserved tags in the
378 * limiting, as it isn't useful.
379 */
380 if (!op_is_flush(data->cmd_flags) &&
381 e->type->ops.limit_depth &&
382 !(data->flags & BLK_MQ_REQ_RESERVED))
383 e->type->ops.limit_depth(data->cmd_flags, data);
384 } else {
385 blk_mq_tag_busy(data->hctx);
386 }
387
388 tag = blk_mq_get_tag(data);
389 if (tag == BLK_MQ_TAG_FAIL) {
390 if (clear_ctx_on_error)
391 data->ctx = NULL;
392 blk_queue_exit(q);
393 return NULL;
394 }
395
396 rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags);
397 if (!op_is_flush(data->cmd_flags)) {
398 rq->elv.icq = NULL;
399 if (e && e->type->ops.prepare_request) {
400 if (e->type->icq_cache)
401 blk_mq_sched_assign_ioc(rq);
402
403 e->type->ops.prepare_request(rq, bio);
404 rq->rq_flags |= RQF_ELVPRIV;
405 }
406 }
407 data->hctx->queued++;
408 return rq;
409 }
410
411 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
412 blk_mq_req_flags_t flags)
413 {
414 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
415 struct request *rq;
416 int ret;
417
418 ret = blk_queue_enter(q, flags);
419 if (ret)
420 return ERR_PTR(ret);
421
422 rq = blk_mq_get_request(q, NULL, &alloc_data);
423 blk_queue_exit(q);
424
425 if (!rq)
426 return ERR_PTR(-EWOULDBLOCK);
427
428 rq->__data_len = 0;
429 rq->__sector = (sector_t) -1;
430 rq->bio = rq->biotail = NULL;
431 return rq;
432 }
433 EXPORT_SYMBOL(blk_mq_alloc_request);
434
435 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
436 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
437 {
438 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
439 struct request *rq;
440 unsigned int cpu;
441 int ret;
442
443 /*
444 * If the tag allocator sleeps we could get an allocation for a
445 * different hardware context. No need to complicate the low level
446 * allocator for this for the rare use case of a command tied to
447 * a specific queue.
448 */
449 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
450 return ERR_PTR(-EINVAL);
451
452 if (hctx_idx >= q->nr_hw_queues)
453 return ERR_PTR(-EIO);
454
455 ret = blk_queue_enter(q, flags);
456 if (ret)
457 return ERR_PTR(ret);
458
459 /*
460 * Check if the hardware context is actually mapped to anything.
461 * If not tell the caller that it should skip this queue.
462 */
463 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
464 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
465 blk_queue_exit(q);
466 return ERR_PTR(-EXDEV);
467 }
468 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
469 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
470
471 rq = blk_mq_get_request(q, NULL, &alloc_data);
472 blk_queue_exit(q);
473
474 if (!rq)
475 return ERR_PTR(-EWOULDBLOCK);
476
477 return rq;
478 }
479 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
480
481 static void __blk_mq_free_request(struct request *rq)
482 {
483 struct request_queue *q = rq->q;
484 struct blk_mq_ctx *ctx = rq->mq_ctx;
485 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
486 const int sched_tag = rq->internal_tag;
487
488 blk_pm_mark_last_busy(rq);
489 rq->mq_hctx = NULL;
490 if (rq->tag != -1)
491 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
492 if (sched_tag != -1)
493 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
494 blk_mq_sched_restart(hctx);
495 blk_queue_exit(q);
496 }
497
498 void blk_mq_free_request(struct request *rq)
499 {
500 struct request_queue *q = rq->q;
501 struct elevator_queue *e = q->elevator;
502 struct blk_mq_ctx *ctx = rq->mq_ctx;
503 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
504
505 if (rq->rq_flags & RQF_ELVPRIV) {
506 if (e && e->type->ops.finish_request)
507 e->type->ops.finish_request(rq);
508 if (rq->elv.icq) {
509 put_io_context(rq->elv.icq->ioc);
510 rq->elv.icq = NULL;
511 }
512 }
513
514 ctx->rq_completed[rq_is_sync(rq)]++;
515 if (rq->rq_flags & RQF_MQ_INFLIGHT)
516 atomic_dec(&hctx->nr_active);
517
518 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
519 laptop_io_completion(q->backing_dev_info);
520
521 rq_qos_done(q, rq);
522
523 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
524 if (refcount_dec_and_test(&rq->ref))
525 __blk_mq_free_request(rq);
526 }
527 EXPORT_SYMBOL_GPL(blk_mq_free_request);
528
529 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
530 {
531 u64 now = 0;
532
533 if (blk_mq_need_time_stamp(rq))
534 now = ktime_get_ns();
535
536 if (rq->rq_flags & RQF_STATS) {
537 blk_mq_poll_stats_start(rq->q);
538 blk_stat_add(rq, now);
539 }
540
541 if (rq->internal_tag != -1)
542 blk_mq_sched_completed_request(rq, now);
543
544 blk_account_io_done(rq, now);
545
546 if (rq->end_io) {
547 rq_qos_done(rq->q, rq);
548 rq->end_io(rq, error);
549 } else {
550 blk_mq_free_request(rq);
551 }
552 }
553 EXPORT_SYMBOL(__blk_mq_end_request);
554
555 void blk_mq_end_request(struct request *rq, blk_status_t error)
556 {
557 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
558 BUG();
559 __blk_mq_end_request(rq, error);
560 }
561 EXPORT_SYMBOL(blk_mq_end_request);
562
563 static void __blk_mq_complete_request_remote(void *data)
564 {
565 struct request *rq = data;
566 struct request_queue *q = rq->q;
567
568 q->mq_ops->complete(rq);
569 }
570
571 static void __blk_mq_complete_request(struct request *rq)
572 {
573 struct blk_mq_ctx *ctx = rq->mq_ctx;
574 struct request_queue *q = rq->q;
575 bool shared = false;
576 int cpu;
577
578 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
579 /*
580 * Most of single queue controllers, there is only one irq vector
581 * for handling IO completion, and the only irq's affinity is set
582 * as all possible CPUs. On most of ARCHs, this affinity means the
583 * irq is handled on one specific CPU.
584 *
585 * So complete IO reqeust in softirq context in case of single queue
586 * for not degrading IO performance by irqsoff latency.
587 */
588 if (q->nr_hw_queues == 1) {
589 __blk_complete_request(rq);
590 return;
591 }
592
593 /*
594 * For a polled request, always complete locallly, it's pointless
595 * to redirect the completion.
596 */
597 if ((rq->cmd_flags & REQ_HIPRI) ||
598 !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
599 q->mq_ops->complete(rq);
600 return;
601 }
602
603 cpu = get_cpu();
604 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
605 shared = cpus_share_cache(cpu, ctx->cpu);
606
607 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
608 rq->csd.func = __blk_mq_complete_request_remote;
609 rq->csd.info = rq;
610 rq->csd.flags = 0;
611 smp_call_function_single_async(ctx->cpu, &rq->csd);
612 } else {
613 q->mq_ops->complete(rq);
614 }
615 put_cpu();
616 }
617
618 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
619 __releases(hctx->srcu)
620 {
621 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
622 rcu_read_unlock();
623 else
624 srcu_read_unlock(hctx->srcu, srcu_idx);
625 }
626
627 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
628 __acquires(hctx->srcu)
629 {
630 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
631 /* shut up gcc false positive */
632 *srcu_idx = 0;
633 rcu_read_lock();
634 } else
635 *srcu_idx = srcu_read_lock(hctx->srcu);
636 }
637
638 /**
639 * blk_mq_complete_request - end I/O on a request
640 * @rq: the request being processed
641 *
642 * Description:
643 * Ends all I/O on a request. It does not handle partial completions.
644 * The actual completion happens out-of-order, through a IPI handler.
645 **/
646 bool blk_mq_complete_request(struct request *rq)
647 {
648 if (unlikely(blk_should_fake_timeout(rq->q)))
649 return false;
650 __blk_mq_complete_request(rq);
651 return true;
652 }
653 EXPORT_SYMBOL(blk_mq_complete_request);
654
655 void blk_mq_complete_request_sync(struct request *rq)
656 {
657 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
658 rq->q->mq_ops->complete(rq);
659 }
660 EXPORT_SYMBOL_GPL(blk_mq_complete_request_sync);
661
662 int blk_mq_request_started(struct request *rq)
663 {
664 return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
665 }
666 EXPORT_SYMBOL_GPL(blk_mq_request_started);
667
668 void blk_mq_start_request(struct request *rq)
669 {
670 struct request_queue *q = rq->q;
671
672 trace_block_rq_issue(q, rq);
673
674 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
675 rq->io_start_time_ns = ktime_get_ns();
676 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
677 rq->throtl_size = blk_rq_sectors(rq);
678 #endif
679 rq->rq_flags |= RQF_STATS;
680 rq_qos_issue(q, rq);
681 }
682
683 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
684
685 blk_add_timer(rq);
686 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
687
688 if (q->dma_drain_size && blk_rq_bytes(rq)) {
689 /*
690 * Make sure space for the drain appears. We know we can do
691 * this because max_hw_segments has been adjusted to be one
692 * fewer than the device can handle.
693 */
694 rq->nr_phys_segments++;
695 }
696 }
697 EXPORT_SYMBOL(blk_mq_start_request);
698
699 static void __blk_mq_requeue_request(struct request *rq)
700 {
701 struct request_queue *q = rq->q;
702
703 blk_mq_put_driver_tag(rq);
704
705 trace_block_rq_requeue(q, rq);
706 rq_qos_requeue(q, rq);
707
708 if (blk_mq_request_started(rq)) {
709 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
710 rq->rq_flags &= ~RQF_TIMED_OUT;
711 if (q->dma_drain_size && blk_rq_bytes(rq))
712 rq->nr_phys_segments--;
713 }
714 }
715
716 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
717 {
718 __blk_mq_requeue_request(rq);
719
720 /* this request will be re-inserted to io scheduler queue */
721 blk_mq_sched_requeue_request(rq);
722
723 BUG_ON(!list_empty(&rq->queuelist));
724 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
725 }
726 EXPORT_SYMBOL(blk_mq_requeue_request);
727
728 static void blk_mq_requeue_work(struct work_struct *work)
729 {
730 struct request_queue *q =
731 container_of(work, struct request_queue, requeue_work.work);
732 LIST_HEAD(rq_list);
733 struct request *rq, *next;
734
735 spin_lock_irq(&q->requeue_lock);
736 list_splice_init(&q->requeue_list, &rq_list);
737 spin_unlock_irq(&q->requeue_lock);
738
739 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
740 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
741 continue;
742
743 rq->rq_flags &= ~RQF_SOFTBARRIER;
744 list_del_init(&rq->queuelist);
745 /*
746 * If RQF_DONTPREP, rq has contained some driver specific
747 * data, so insert it to hctx dispatch list to avoid any
748 * merge.
749 */
750 if (rq->rq_flags & RQF_DONTPREP)
751 blk_mq_request_bypass_insert(rq, false);
752 else
753 blk_mq_sched_insert_request(rq, true, false, false);
754 }
755
756 while (!list_empty(&rq_list)) {
757 rq = list_entry(rq_list.next, struct request, queuelist);
758 list_del_init(&rq->queuelist);
759 blk_mq_sched_insert_request(rq, false, false, false);
760 }
761
762 blk_mq_run_hw_queues(q, false);
763 }
764
765 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
766 bool kick_requeue_list)
767 {
768 struct request_queue *q = rq->q;
769 unsigned long flags;
770
771 /*
772 * We abuse this flag that is otherwise used by the I/O scheduler to
773 * request head insertion from the workqueue.
774 */
775 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
776
777 spin_lock_irqsave(&q->requeue_lock, flags);
778 if (at_head) {
779 rq->rq_flags |= RQF_SOFTBARRIER;
780 list_add(&rq->queuelist, &q->requeue_list);
781 } else {
782 list_add_tail(&rq->queuelist, &q->requeue_list);
783 }
784 spin_unlock_irqrestore(&q->requeue_lock, flags);
785
786 if (kick_requeue_list)
787 blk_mq_kick_requeue_list(q);
788 }
789
790 void blk_mq_kick_requeue_list(struct request_queue *q)
791 {
792 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
793 }
794 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
795
796 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
797 unsigned long msecs)
798 {
799 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
800 msecs_to_jiffies(msecs));
801 }
802 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
803
804 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
805 {
806 if (tag < tags->nr_tags) {
807 prefetch(tags->rqs[tag]);
808 return tags->rqs[tag];
809 }
810
811 return NULL;
812 }
813 EXPORT_SYMBOL(blk_mq_tag_to_rq);
814
815 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
816 void *priv, bool reserved)
817 {
818 /*
819 * If we find a request that is inflight and the queue matches,
820 * we know the queue is busy. Return false to stop the iteration.
821 */
822 if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
823 bool *busy = priv;
824
825 *busy = true;
826 return false;
827 }
828
829 return true;
830 }
831
832 bool blk_mq_queue_inflight(struct request_queue *q)
833 {
834 bool busy = false;
835
836 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
837 return busy;
838 }
839 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
840
841 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
842 {
843 req->rq_flags |= RQF_TIMED_OUT;
844 if (req->q->mq_ops->timeout) {
845 enum blk_eh_timer_return ret;
846
847 ret = req->q->mq_ops->timeout(req, reserved);
848 if (ret == BLK_EH_DONE)
849 return;
850 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
851 }
852
853 blk_add_timer(req);
854 }
855
856 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
857 {
858 unsigned long deadline;
859
860 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
861 return false;
862 if (rq->rq_flags & RQF_TIMED_OUT)
863 return false;
864
865 deadline = READ_ONCE(rq->deadline);
866 if (time_after_eq(jiffies, deadline))
867 return true;
868
869 if (*next == 0)
870 *next = deadline;
871 else if (time_after(*next, deadline))
872 *next = deadline;
873 return false;
874 }
875
876 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
877 struct request *rq, void *priv, bool reserved)
878 {
879 unsigned long *next = priv;
880
881 /*
882 * Just do a quick check if it is expired before locking the request in
883 * so we're not unnecessarilly synchronizing across CPUs.
884 */
885 if (!blk_mq_req_expired(rq, next))
886 return true;
887
888 /*
889 * We have reason to believe the request may be expired. Take a
890 * reference on the request to lock this request lifetime into its
891 * currently allocated context to prevent it from being reallocated in
892 * the event the completion by-passes this timeout handler.
893 *
894 * If the reference was already released, then the driver beat the
895 * timeout handler to posting a natural completion.
896 */
897 if (!refcount_inc_not_zero(&rq->ref))
898 return true;
899
900 /*
901 * The request is now locked and cannot be reallocated underneath the
902 * timeout handler's processing. Re-verify this exact request is truly
903 * expired; if it is not expired, then the request was completed and
904 * reallocated as a new request.
905 */
906 if (blk_mq_req_expired(rq, next))
907 blk_mq_rq_timed_out(rq, reserved);
908 if (refcount_dec_and_test(&rq->ref))
909 __blk_mq_free_request(rq);
910
911 return true;
912 }
913
914 static void blk_mq_timeout_work(struct work_struct *work)
915 {
916 struct request_queue *q =
917 container_of(work, struct request_queue, timeout_work);
918 unsigned long next = 0;
919 struct blk_mq_hw_ctx *hctx;
920 int i;
921
922 /* A deadlock might occur if a request is stuck requiring a
923 * timeout at the same time a queue freeze is waiting
924 * completion, since the timeout code would not be able to
925 * acquire the queue reference here.
926 *
927 * That's why we don't use blk_queue_enter here; instead, we use
928 * percpu_ref_tryget directly, because we need to be able to
929 * obtain a reference even in the short window between the queue
930 * starting to freeze, by dropping the first reference in
931 * blk_freeze_queue_start, and the moment the last request is
932 * consumed, marked by the instant q_usage_counter reaches
933 * zero.
934 */
935 if (!percpu_ref_tryget(&q->q_usage_counter))
936 return;
937
938 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
939
940 if (next != 0) {
941 mod_timer(&q->timeout, next);
942 } else {
943 /*
944 * Request timeouts are handled as a forward rolling timer. If
945 * we end up here it means that no requests are pending and
946 * also that no request has been pending for a while. Mark
947 * each hctx as idle.
948 */
949 queue_for_each_hw_ctx(q, hctx, i) {
950 /* the hctx may be unmapped, so check it here */
951 if (blk_mq_hw_queue_mapped(hctx))
952 blk_mq_tag_idle(hctx);
953 }
954 }
955 blk_queue_exit(q);
956 }
957
958 struct flush_busy_ctx_data {
959 struct blk_mq_hw_ctx *hctx;
960 struct list_head *list;
961 };
962
963 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
964 {
965 struct flush_busy_ctx_data *flush_data = data;
966 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
967 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
968 enum hctx_type type = hctx->type;
969
970 spin_lock(&ctx->lock);
971 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
972 sbitmap_clear_bit(sb, bitnr);
973 spin_unlock(&ctx->lock);
974 return true;
975 }
976
977 /*
978 * Process software queues that have been marked busy, splicing them
979 * to the for-dispatch
980 */
981 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
982 {
983 struct flush_busy_ctx_data data = {
984 .hctx = hctx,
985 .list = list,
986 };
987
988 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
989 }
990 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
991
992 struct dispatch_rq_data {
993 struct blk_mq_hw_ctx *hctx;
994 struct request *rq;
995 };
996
997 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
998 void *data)
999 {
1000 struct dispatch_rq_data *dispatch_data = data;
1001 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1002 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1003 enum hctx_type type = hctx->type;
1004
1005 spin_lock(&ctx->lock);
1006 if (!list_empty(&ctx->rq_lists[type])) {
1007 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1008 list_del_init(&dispatch_data->rq->queuelist);
1009 if (list_empty(&ctx->rq_lists[type]))
1010 sbitmap_clear_bit(sb, bitnr);
1011 }
1012 spin_unlock(&ctx->lock);
1013
1014 return !dispatch_data->rq;
1015 }
1016
1017 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1018 struct blk_mq_ctx *start)
1019 {
1020 unsigned off = start ? start->index_hw[hctx->type] : 0;
1021 struct dispatch_rq_data data = {
1022 .hctx = hctx,
1023 .rq = NULL,
1024 };
1025
1026 __sbitmap_for_each_set(&hctx->ctx_map, off,
1027 dispatch_rq_from_ctx, &data);
1028
1029 return data.rq;
1030 }
1031
1032 static inline unsigned int queued_to_index(unsigned int queued)
1033 {
1034 if (!queued)
1035 return 0;
1036
1037 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1038 }
1039
1040 bool blk_mq_get_driver_tag(struct request *rq)
1041 {
1042 struct blk_mq_alloc_data data = {
1043 .q = rq->q,
1044 .hctx = rq->mq_hctx,
1045 .flags = BLK_MQ_REQ_NOWAIT,
1046 .cmd_flags = rq->cmd_flags,
1047 };
1048 bool shared;
1049
1050 if (rq->tag != -1)
1051 goto done;
1052
1053 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1054 data.flags |= BLK_MQ_REQ_RESERVED;
1055
1056 shared = blk_mq_tag_busy(data.hctx);
1057 rq->tag = blk_mq_get_tag(&data);
1058 if (rq->tag >= 0) {
1059 if (shared) {
1060 rq->rq_flags |= RQF_MQ_INFLIGHT;
1061 atomic_inc(&data.hctx->nr_active);
1062 }
1063 data.hctx->tags->rqs[rq->tag] = rq;
1064 }
1065
1066 done:
1067 return rq->tag != -1;
1068 }
1069
1070 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1071 int flags, void *key)
1072 {
1073 struct blk_mq_hw_ctx *hctx;
1074
1075 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1076
1077 spin_lock(&hctx->dispatch_wait_lock);
1078 if (!list_empty(&wait->entry)) {
1079 struct sbitmap_queue *sbq;
1080
1081 list_del_init(&wait->entry);
1082 sbq = &hctx->tags->bitmap_tags;
1083 atomic_dec(&sbq->ws_active);
1084 }
1085 spin_unlock(&hctx->dispatch_wait_lock);
1086
1087 blk_mq_run_hw_queue(hctx, true);
1088 return 1;
1089 }
1090
1091 /*
1092 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1093 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1094 * restart. For both cases, take care to check the condition again after
1095 * marking us as waiting.
1096 */
1097 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1098 struct request *rq)
1099 {
1100 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1101 struct wait_queue_head *wq;
1102 wait_queue_entry_t *wait;
1103 bool ret;
1104
1105 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1106 blk_mq_sched_mark_restart_hctx(hctx);
1107
1108 /*
1109 * It's possible that a tag was freed in the window between the
1110 * allocation failure and adding the hardware queue to the wait
1111 * queue.
1112 *
1113 * Don't clear RESTART here, someone else could have set it.
1114 * At most this will cost an extra queue run.
1115 */
1116 return blk_mq_get_driver_tag(rq);
1117 }
1118
1119 wait = &hctx->dispatch_wait;
1120 if (!list_empty_careful(&wait->entry))
1121 return false;
1122
1123 wq = &bt_wait_ptr(sbq, hctx)->wait;
1124
1125 spin_lock_irq(&wq->lock);
1126 spin_lock(&hctx->dispatch_wait_lock);
1127 if (!list_empty(&wait->entry)) {
1128 spin_unlock(&hctx->dispatch_wait_lock);
1129 spin_unlock_irq(&wq->lock);
1130 return false;
1131 }
1132
1133 atomic_inc(&sbq->ws_active);
1134 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1135 __add_wait_queue(wq, wait);
1136
1137 /*
1138 * It's possible that a tag was freed in the window between the
1139 * allocation failure and adding the hardware queue to the wait
1140 * queue.
1141 */
1142 ret = blk_mq_get_driver_tag(rq);
1143 if (!ret) {
1144 spin_unlock(&hctx->dispatch_wait_lock);
1145 spin_unlock_irq(&wq->lock);
1146 return false;
1147 }
1148
1149 /*
1150 * We got a tag, remove ourselves from the wait queue to ensure
1151 * someone else gets the wakeup.
1152 */
1153 list_del_init(&wait->entry);
1154 atomic_dec(&sbq->ws_active);
1155 spin_unlock(&hctx->dispatch_wait_lock);
1156 spin_unlock_irq(&wq->lock);
1157
1158 return true;
1159 }
1160
1161 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1162 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1163 /*
1164 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1165 * - EWMA is one simple way to compute running average value
1166 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1167 * - take 4 as factor for avoiding to get too small(0) result, and this
1168 * factor doesn't matter because EWMA decreases exponentially
1169 */
1170 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1171 {
1172 unsigned int ewma;
1173
1174 if (hctx->queue->elevator)
1175 return;
1176
1177 ewma = hctx->dispatch_busy;
1178
1179 if (!ewma && !busy)
1180 return;
1181
1182 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1183 if (busy)
1184 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1185 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1186
1187 hctx->dispatch_busy = ewma;
1188 }
1189
1190 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1191
1192 /*
1193 * Returns true if we did some work AND can potentially do more.
1194 */
1195 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1196 bool got_budget)
1197 {
1198 struct blk_mq_hw_ctx *hctx;
1199 struct request *rq, *nxt;
1200 bool no_tag = false;
1201 int errors, queued;
1202 blk_status_t ret = BLK_STS_OK;
1203
1204 if (list_empty(list))
1205 return false;
1206
1207 WARN_ON(!list_is_singular(list) && got_budget);
1208
1209 /*
1210 * Now process all the entries, sending them to the driver.
1211 */
1212 errors = queued = 0;
1213 do {
1214 struct blk_mq_queue_data bd;
1215
1216 rq = list_first_entry(list, struct request, queuelist);
1217
1218 hctx = rq->mq_hctx;
1219 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1220 break;
1221
1222 if (!blk_mq_get_driver_tag(rq)) {
1223 /*
1224 * The initial allocation attempt failed, so we need to
1225 * rerun the hardware queue when a tag is freed. The
1226 * waitqueue takes care of that. If the queue is run
1227 * before we add this entry back on the dispatch list,
1228 * we'll re-run it below.
1229 */
1230 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1231 blk_mq_put_dispatch_budget(hctx);
1232 /*
1233 * For non-shared tags, the RESTART check
1234 * will suffice.
1235 */
1236 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1237 no_tag = true;
1238 break;
1239 }
1240 }
1241
1242 list_del_init(&rq->queuelist);
1243
1244 bd.rq = rq;
1245
1246 /*
1247 * Flag last if we have no more requests, or if we have more
1248 * but can't assign a driver tag to it.
1249 */
1250 if (list_empty(list))
1251 bd.last = true;
1252 else {
1253 nxt = list_first_entry(list, struct request, queuelist);
1254 bd.last = !blk_mq_get_driver_tag(nxt);
1255 }
1256
1257 ret = q->mq_ops->queue_rq(hctx, &bd);
1258 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1259 /*
1260 * If an I/O scheduler has been configured and we got a
1261 * driver tag for the next request already, free it
1262 * again.
1263 */
1264 if (!list_empty(list)) {
1265 nxt = list_first_entry(list, struct request, queuelist);
1266 blk_mq_put_driver_tag(nxt);
1267 }
1268 list_add(&rq->queuelist, list);
1269 __blk_mq_requeue_request(rq);
1270 break;
1271 }
1272
1273 if (unlikely(ret != BLK_STS_OK)) {
1274 errors++;
1275 blk_mq_end_request(rq, BLK_STS_IOERR);
1276 continue;
1277 }
1278
1279 queued++;
1280 } while (!list_empty(list));
1281
1282 hctx->dispatched[queued_to_index(queued)]++;
1283
1284 /*
1285 * Any items that need requeuing? Stuff them into hctx->dispatch,
1286 * that is where we will continue on next queue run.
1287 */
1288 if (!list_empty(list)) {
1289 bool needs_restart;
1290
1291 /*
1292 * If we didn't flush the entire list, we could have told
1293 * the driver there was more coming, but that turned out to
1294 * be a lie.
1295 */
1296 if (q->mq_ops->commit_rqs)
1297 q->mq_ops->commit_rqs(hctx);
1298
1299 spin_lock(&hctx->lock);
1300 list_splice_init(list, &hctx->dispatch);
1301 spin_unlock(&hctx->lock);
1302
1303 /*
1304 * If SCHED_RESTART was set by the caller of this function and
1305 * it is no longer set that means that it was cleared by another
1306 * thread and hence that a queue rerun is needed.
1307 *
1308 * If 'no_tag' is set, that means that we failed getting
1309 * a driver tag with an I/O scheduler attached. If our dispatch
1310 * waitqueue is no longer active, ensure that we run the queue
1311 * AFTER adding our entries back to the list.
1312 *
1313 * If no I/O scheduler has been configured it is possible that
1314 * the hardware queue got stopped and restarted before requests
1315 * were pushed back onto the dispatch list. Rerun the queue to
1316 * avoid starvation. Notes:
1317 * - blk_mq_run_hw_queue() checks whether or not a queue has
1318 * been stopped before rerunning a queue.
1319 * - Some but not all block drivers stop a queue before
1320 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1321 * and dm-rq.
1322 *
1323 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1324 * bit is set, run queue after a delay to avoid IO stalls
1325 * that could otherwise occur if the queue is idle.
1326 */
1327 needs_restart = blk_mq_sched_needs_restart(hctx);
1328 if (!needs_restart ||
1329 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1330 blk_mq_run_hw_queue(hctx, true);
1331 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1332 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1333
1334 blk_mq_update_dispatch_busy(hctx, true);
1335 return false;
1336 } else
1337 blk_mq_update_dispatch_busy(hctx, false);
1338
1339 /*
1340 * If the host/device is unable to accept more work, inform the
1341 * caller of that.
1342 */
1343 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1344 return false;
1345
1346 return (queued + errors) != 0;
1347 }
1348
1349 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1350 {
1351 int srcu_idx;
1352
1353 /*
1354 * We should be running this queue from one of the CPUs that
1355 * are mapped to it.
1356 *
1357 * There are at least two related races now between setting
1358 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1359 * __blk_mq_run_hw_queue():
1360 *
1361 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1362 * but later it becomes online, then this warning is harmless
1363 * at all
1364 *
1365 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1366 * but later it becomes offline, then the warning can't be
1367 * triggered, and we depend on blk-mq timeout handler to
1368 * handle dispatched requests to this hctx
1369 */
1370 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1371 cpu_online(hctx->next_cpu)) {
1372 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1373 raw_smp_processor_id(),
1374 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1375 dump_stack();
1376 }
1377
1378 /*
1379 * We can't run the queue inline with ints disabled. Ensure that
1380 * we catch bad users of this early.
1381 */
1382 WARN_ON_ONCE(in_interrupt());
1383
1384 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1385
1386 hctx_lock(hctx, &srcu_idx);
1387 blk_mq_sched_dispatch_requests(hctx);
1388 hctx_unlock(hctx, srcu_idx);
1389 }
1390
1391 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1392 {
1393 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1394
1395 if (cpu >= nr_cpu_ids)
1396 cpu = cpumask_first(hctx->cpumask);
1397 return cpu;
1398 }
1399
1400 /*
1401 * It'd be great if the workqueue API had a way to pass
1402 * in a mask and had some smarts for more clever placement.
1403 * For now we just round-robin here, switching for every
1404 * BLK_MQ_CPU_WORK_BATCH queued items.
1405 */
1406 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1407 {
1408 bool tried = false;
1409 int next_cpu = hctx->next_cpu;
1410
1411 if (hctx->queue->nr_hw_queues == 1)
1412 return WORK_CPU_UNBOUND;
1413
1414 if (--hctx->next_cpu_batch <= 0) {
1415 select_cpu:
1416 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1417 cpu_online_mask);
1418 if (next_cpu >= nr_cpu_ids)
1419 next_cpu = blk_mq_first_mapped_cpu(hctx);
1420 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1421 }
1422
1423 /*
1424 * Do unbound schedule if we can't find a online CPU for this hctx,
1425 * and it should only happen in the path of handling CPU DEAD.
1426 */
1427 if (!cpu_online(next_cpu)) {
1428 if (!tried) {
1429 tried = true;
1430 goto select_cpu;
1431 }
1432
1433 /*
1434 * Make sure to re-select CPU next time once after CPUs
1435 * in hctx->cpumask become online again.
1436 */
1437 hctx->next_cpu = next_cpu;
1438 hctx->next_cpu_batch = 1;
1439 return WORK_CPU_UNBOUND;
1440 }
1441
1442 hctx->next_cpu = next_cpu;
1443 return next_cpu;
1444 }
1445
1446 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1447 unsigned long msecs)
1448 {
1449 if (unlikely(blk_mq_hctx_stopped(hctx)))
1450 return;
1451
1452 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1453 int cpu = get_cpu();
1454 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1455 __blk_mq_run_hw_queue(hctx);
1456 put_cpu();
1457 return;
1458 }
1459
1460 put_cpu();
1461 }
1462
1463 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1464 msecs_to_jiffies(msecs));
1465 }
1466
1467 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1468 {
1469 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1470 }
1471 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1472
1473 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1474 {
1475 int srcu_idx;
1476 bool need_run;
1477
1478 /*
1479 * When queue is quiesced, we may be switching io scheduler, or
1480 * updating nr_hw_queues, or other things, and we can't run queue
1481 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1482 *
1483 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1484 * quiesced.
1485 */
1486 hctx_lock(hctx, &srcu_idx);
1487 need_run = !blk_queue_quiesced(hctx->queue) &&
1488 blk_mq_hctx_has_pending(hctx);
1489 hctx_unlock(hctx, srcu_idx);
1490
1491 if (need_run) {
1492 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1493 return true;
1494 }
1495
1496 return false;
1497 }
1498 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1499
1500 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1501 {
1502 struct blk_mq_hw_ctx *hctx;
1503 int i;
1504
1505 queue_for_each_hw_ctx(q, hctx, i) {
1506 if (blk_mq_hctx_stopped(hctx))
1507 continue;
1508
1509 blk_mq_run_hw_queue(hctx, async);
1510 }
1511 }
1512 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1513
1514 /**
1515 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1516 * @q: request queue.
1517 *
1518 * The caller is responsible for serializing this function against
1519 * blk_mq_{start,stop}_hw_queue().
1520 */
1521 bool blk_mq_queue_stopped(struct request_queue *q)
1522 {
1523 struct blk_mq_hw_ctx *hctx;
1524 int i;
1525
1526 queue_for_each_hw_ctx(q, hctx, i)
1527 if (blk_mq_hctx_stopped(hctx))
1528 return true;
1529
1530 return false;
1531 }
1532 EXPORT_SYMBOL(blk_mq_queue_stopped);
1533
1534 /*
1535 * This function is often used for pausing .queue_rq() by driver when
1536 * there isn't enough resource or some conditions aren't satisfied, and
1537 * BLK_STS_RESOURCE is usually returned.
1538 *
1539 * We do not guarantee that dispatch can be drained or blocked
1540 * after blk_mq_stop_hw_queue() returns. Please use
1541 * blk_mq_quiesce_queue() for that requirement.
1542 */
1543 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1544 {
1545 cancel_delayed_work(&hctx->run_work);
1546
1547 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1548 }
1549 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1550
1551 /*
1552 * This function is often used for pausing .queue_rq() by driver when
1553 * there isn't enough resource or some conditions aren't satisfied, and
1554 * BLK_STS_RESOURCE is usually returned.
1555 *
1556 * We do not guarantee that dispatch can be drained or blocked
1557 * after blk_mq_stop_hw_queues() returns. Please use
1558 * blk_mq_quiesce_queue() for that requirement.
1559 */
1560 void blk_mq_stop_hw_queues(struct request_queue *q)
1561 {
1562 struct blk_mq_hw_ctx *hctx;
1563 int i;
1564
1565 queue_for_each_hw_ctx(q, hctx, i)
1566 blk_mq_stop_hw_queue(hctx);
1567 }
1568 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1569
1570 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1571 {
1572 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1573
1574 blk_mq_run_hw_queue(hctx, false);
1575 }
1576 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1577
1578 void blk_mq_start_hw_queues(struct request_queue *q)
1579 {
1580 struct blk_mq_hw_ctx *hctx;
1581 int i;
1582
1583 queue_for_each_hw_ctx(q, hctx, i)
1584 blk_mq_start_hw_queue(hctx);
1585 }
1586 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1587
1588 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1589 {
1590 if (!blk_mq_hctx_stopped(hctx))
1591 return;
1592
1593 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1594 blk_mq_run_hw_queue(hctx, async);
1595 }
1596 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1597
1598 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1599 {
1600 struct blk_mq_hw_ctx *hctx;
1601 int i;
1602
1603 queue_for_each_hw_ctx(q, hctx, i)
1604 blk_mq_start_stopped_hw_queue(hctx, async);
1605 }
1606 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1607
1608 static void blk_mq_run_work_fn(struct work_struct *work)
1609 {
1610 struct blk_mq_hw_ctx *hctx;
1611
1612 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1613
1614 /*
1615 * If we are stopped, don't run the queue.
1616 */
1617 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1618 return;
1619
1620 __blk_mq_run_hw_queue(hctx);
1621 }
1622
1623 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1624 struct request *rq,
1625 bool at_head)
1626 {
1627 struct blk_mq_ctx *ctx = rq->mq_ctx;
1628 enum hctx_type type = hctx->type;
1629
1630 lockdep_assert_held(&ctx->lock);
1631
1632 trace_block_rq_insert(hctx->queue, rq);
1633
1634 if (at_head)
1635 list_add(&rq->queuelist, &ctx->rq_lists[type]);
1636 else
1637 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1638 }
1639
1640 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1641 bool at_head)
1642 {
1643 struct blk_mq_ctx *ctx = rq->mq_ctx;
1644
1645 lockdep_assert_held(&ctx->lock);
1646
1647 __blk_mq_insert_req_list(hctx, rq, at_head);
1648 blk_mq_hctx_mark_pending(hctx, ctx);
1649 }
1650
1651 /*
1652 * Should only be used carefully, when the caller knows we want to
1653 * bypass a potential IO scheduler on the target device.
1654 */
1655 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1656 {
1657 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1658
1659 spin_lock(&hctx->lock);
1660 list_add_tail(&rq->queuelist, &hctx->dispatch);
1661 spin_unlock(&hctx->lock);
1662
1663 if (run_queue)
1664 blk_mq_run_hw_queue(hctx, false);
1665 }
1666
1667 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1668 struct list_head *list)
1669
1670 {
1671 struct request *rq;
1672 enum hctx_type type = hctx->type;
1673
1674 /*
1675 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1676 * offline now
1677 */
1678 list_for_each_entry(rq, list, queuelist) {
1679 BUG_ON(rq->mq_ctx != ctx);
1680 trace_block_rq_insert(hctx->queue, rq);
1681 }
1682
1683 spin_lock(&ctx->lock);
1684 list_splice_tail_init(list, &ctx->rq_lists[type]);
1685 blk_mq_hctx_mark_pending(hctx, ctx);
1686 spin_unlock(&ctx->lock);
1687 }
1688
1689 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1690 {
1691 struct request *rqa = container_of(a, struct request, queuelist);
1692 struct request *rqb = container_of(b, struct request, queuelist);
1693
1694 if (rqa->mq_ctx < rqb->mq_ctx)
1695 return -1;
1696 else if (rqa->mq_ctx > rqb->mq_ctx)
1697 return 1;
1698 else if (rqa->mq_hctx < rqb->mq_hctx)
1699 return -1;
1700 else if (rqa->mq_hctx > rqb->mq_hctx)
1701 return 1;
1702
1703 return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1704 }
1705
1706 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1707 {
1708 struct blk_mq_hw_ctx *this_hctx;
1709 struct blk_mq_ctx *this_ctx;
1710 struct request_queue *this_q;
1711 struct request *rq;
1712 LIST_HEAD(list);
1713 LIST_HEAD(rq_list);
1714 unsigned int depth;
1715
1716 list_splice_init(&plug->mq_list, &list);
1717
1718 if (plug->rq_count > 2 && plug->multiple_queues)
1719 list_sort(NULL, &list, plug_rq_cmp);
1720
1721 plug->rq_count = 0;
1722
1723 this_q = NULL;
1724 this_hctx = NULL;
1725 this_ctx = NULL;
1726 depth = 0;
1727
1728 while (!list_empty(&list)) {
1729 rq = list_entry_rq(list.next);
1730 list_del_init(&rq->queuelist);
1731 BUG_ON(!rq->q);
1732 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) {
1733 if (this_hctx) {
1734 trace_block_unplug(this_q, depth, !from_schedule);
1735 blk_mq_sched_insert_requests(this_hctx, this_ctx,
1736 &rq_list,
1737 from_schedule);
1738 }
1739
1740 this_q = rq->q;
1741 this_ctx = rq->mq_ctx;
1742 this_hctx = rq->mq_hctx;
1743 depth = 0;
1744 }
1745
1746 depth++;
1747 list_add_tail(&rq->queuelist, &rq_list);
1748 }
1749
1750 /*
1751 * If 'this_hctx' is set, we know we have entries to complete
1752 * on 'rq_list'. Do those.
1753 */
1754 if (this_hctx) {
1755 trace_block_unplug(this_q, depth, !from_schedule);
1756 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1757 from_schedule);
1758 }
1759 }
1760
1761 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1762 unsigned int nr_segs)
1763 {
1764 if (bio->bi_opf & REQ_RAHEAD)
1765 rq->cmd_flags |= REQ_FAILFAST_MASK;
1766
1767 rq->__sector = bio->bi_iter.bi_sector;
1768 rq->write_hint = bio->bi_write_hint;
1769 blk_rq_bio_prep(rq, bio, nr_segs);
1770
1771 blk_account_io_start(rq, true);
1772 }
1773
1774 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1775 struct request *rq,
1776 blk_qc_t *cookie, bool last)
1777 {
1778 struct request_queue *q = rq->q;
1779 struct blk_mq_queue_data bd = {
1780 .rq = rq,
1781 .last = last,
1782 };
1783 blk_qc_t new_cookie;
1784 blk_status_t ret;
1785
1786 new_cookie = request_to_qc_t(hctx, rq);
1787
1788 /*
1789 * For OK queue, we are done. For error, caller may kill it.
1790 * Any other error (busy), just add it to our list as we
1791 * previously would have done.
1792 */
1793 ret = q->mq_ops->queue_rq(hctx, &bd);
1794 switch (ret) {
1795 case BLK_STS_OK:
1796 blk_mq_update_dispatch_busy(hctx, false);
1797 *cookie = new_cookie;
1798 break;
1799 case BLK_STS_RESOURCE:
1800 case BLK_STS_DEV_RESOURCE:
1801 blk_mq_update_dispatch_busy(hctx, true);
1802 __blk_mq_requeue_request(rq);
1803 break;
1804 default:
1805 blk_mq_update_dispatch_busy(hctx, false);
1806 *cookie = BLK_QC_T_NONE;
1807 break;
1808 }
1809
1810 return ret;
1811 }
1812
1813 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1814 struct request *rq,
1815 blk_qc_t *cookie,
1816 bool bypass_insert, bool last)
1817 {
1818 struct request_queue *q = rq->q;
1819 bool run_queue = true;
1820
1821 /*
1822 * RCU or SRCU read lock is needed before checking quiesced flag.
1823 *
1824 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1825 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1826 * and avoid driver to try to dispatch again.
1827 */
1828 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1829 run_queue = false;
1830 bypass_insert = false;
1831 goto insert;
1832 }
1833
1834 if (q->elevator && !bypass_insert)
1835 goto insert;
1836
1837 if (!blk_mq_get_dispatch_budget(hctx))
1838 goto insert;
1839
1840 if (!blk_mq_get_driver_tag(rq)) {
1841 blk_mq_put_dispatch_budget(hctx);
1842 goto insert;
1843 }
1844
1845 return __blk_mq_issue_directly(hctx, rq, cookie, last);
1846 insert:
1847 if (bypass_insert)
1848 return BLK_STS_RESOURCE;
1849
1850 blk_mq_request_bypass_insert(rq, run_queue);
1851 return BLK_STS_OK;
1852 }
1853
1854 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1855 struct request *rq, blk_qc_t *cookie)
1856 {
1857 blk_status_t ret;
1858 int srcu_idx;
1859
1860 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1861
1862 hctx_lock(hctx, &srcu_idx);
1863
1864 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
1865 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1866 blk_mq_request_bypass_insert(rq, true);
1867 else if (ret != BLK_STS_OK)
1868 blk_mq_end_request(rq, ret);
1869
1870 hctx_unlock(hctx, srcu_idx);
1871 }
1872
1873 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
1874 {
1875 blk_status_t ret;
1876 int srcu_idx;
1877 blk_qc_t unused_cookie;
1878 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1879
1880 hctx_lock(hctx, &srcu_idx);
1881 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
1882 hctx_unlock(hctx, srcu_idx);
1883
1884 return ret;
1885 }
1886
1887 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1888 struct list_head *list)
1889 {
1890 while (!list_empty(list)) {
1891 blk_status_t ret;
1892 struct request *rq = list_first_entry(list, struct request,
1893 queuelist);
1894
1895 list_del_init(&rq->queuelist);
1896 ret = blk_mq_request_issue_directly(rq, list_empty(list));
1897 if (ret != BLK_STS_OK) {
1898 if (ret == BLK_STS_RESOURCE ||
1899 ret == BLK_STS_DEV_RESOURCE) {
1900 blk_mq_request_bypass_insert(rq,
1901 list_empty(list));
1902 break;
1903 }
1904 blk_mq_end_request(rq, ret);
1905 }
1906 }
1907
1908 /*
1909 * If we didn't flush the entire list, we could have told
1910 * the driver there was more coming, but that turned out to
1911 * be a lie.
1912 */
1913 if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs)
1914 hctx->queue->mq_ops->commit_rqs(hctx);
1915 }
1916
1917 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1918 {
1919 list_add_tail(&rq->queuelist, &plug->mq_list);
1920 plug->rq_count++;
1921 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
1922 struct request *tmp;
1923
1924 tmp = list_first_entry(&plug->mq_list, struct request,
1925 queuelist);
1926 if (tmp->q != rq->q)
1927 plug->multiple_queues = true;
1928 }
1929 }
1930
1931 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1932 {
1933 const int is_sync = op_is_sync(bio->bi_opf);
1934 const int is_flush_fua = op_is_flush(bio->bi_opf);
1935 struct blk_mq_alloc_data data = { .flags = 0};
1936 struct request *rq;
1937 struct blk_plug *plug;
1938 struct request *same_queue_rq = NULL;
1939 unsigned int nr_segs;
1940 blk_qc_t cookie;
1941
1942 blk_queue_bounce(q, &bio);
1943 __blk_queue_split(q, &bio, &nr_segs);
1944
1945 if (!bio_integrity_prep(bio))
1946 return BLK_QC_T_NONE;
1947
1948 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1949 blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
1950 return BLK_QC_T_NONE;
1951
1952 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
1953 return BLK_QC_T_NONE;
1954
1955 rq_qos_throttle(q, bio);
1956
1957 data.cmd_flags = bio->bi_opf;
1958 rq = blk_mq_get_request(q, bio, &data);
1959 if (unlikely(!rq)) {
1960 rq_qos_cleanup(q, bio);
1961
1962 cookie = BLK_QC_T_NONE;
1963 if (bio->bi_opf & REQ_NOWAIT_INLINE)
1964 cookie = BLK_QC_T_EAGAIN;
1965 else if (bio->bi_opf & REQ_NOWAIT)
1966 bio_wouldblock_error(bio);
1967 return cookie;
1968 }
1969
1970 trace_block_getrq(q, bio, bio->bi_opf);
1971
1972 rq_qos_track(q, rq, bio);
1973
1974 cookie = request_to_qc_t(data.hctx, rq);
1975
1976 blk_mq_bio_to_request(rq, bio, nr_segs);
1977
1978 plug = blk_mq_plug(q, bio);
1979 if (unlikely(is_flush_fua)) {
1980 /* bypass scheduler for flush rq */
1981 blk_insert_flush(rq);
1982 blk_mq_run_hw_queue(data.hctx, true);
1983 } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs)) {
1984 /*
1985 * Use plugging if we have a ->commit_rqs() hook as well, as
1986 * we know the driver uses bd->last in a smart fashion.
1987 */
1988 unsigned int request_count = plug->rq_count;
1989 struct request *last = NULL;
1990
1991 if (!request_count)
1992 trace_block_plug(q);
1993 else
1994 last = list_entry_rq(plug->mq_list.prev);
1995
1996 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1997 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1998 blk_flush_plug_list(plug, false);
1999 trace_block_plug(q);
2000 }
2001
2002 blk_add_rq_to_plug(plug, rq);
2003 } else if (plug && !blk_queue_nomerges(q)) {
2004 /*
2005 * We do limited plugging. If the bio can be merged, do that.
2006 * Otherwise the existing request in the plug list will be
2007 * issued. So the plug list will have one request at most
2008 * The plug list might get flushed before this. If that happens,
2009 * the plug list is empty, and same_queue_rq is invalid.
2010 */
2011 if (list_empty(&plug->mq_list))
2012 same_queue_rq = NULL;
2013 if (same_queue_rq) {
2014 list_del_init(&same_queue_rq->queuelist);
2015 plug->rq_count--;
2016 }
2017 blk_add_rq_to_plug(plug, rq);
2018 trace_block_plug(q);
2019
2020 if (same_queue_rq) {
2021 data.hctx = same_queue_rq->mq_hctx;
2022 trace_block_unplug(q, 1, true);
2023 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2024 &cookie);
2025 }
2026 } else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
2027 !data.hctx->dispatch_busy)) {
2028 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2029 } else {
2030 blk_mq_sched_insert_request(rq, false, true, true);
2031 }
2032
2033 return cookie;
2034 }
2035
2036 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2037 unsigned int hctx_idx)
2038 {
2039 struct page *page;
2040
2041 if (tags->rqs && set->ops->exit_request) {
2042 int i;
2043
2044 for (i = 0; i < tags->nr_tags; i++) {
2045 struct request *rq = tags->static_rqs[i];
2046
2047 if (!rq)
2048 continue;
2049 set->ops->exit_request(set, rq, hctx_idx);
2050 tags->static_rqs[i] = NULL;
2051 }
2052 }
2053
2054 while (!list_empty(&tags->page_list)) {
2055 page = list_first_entry(&tags->page_list, struct page, lru);
2056 list_del_init(&page->lru);
2057 /*
2058 * Remove kmemleak object previously allocated in
2059 * blk_mq_alloc_rqs().
2060 */
2061 kmemleak_free(page_address(page));
2062 __free_pages(page, page->private);
2063 }
2064 }
2065
2066 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2067 {
2068 kfree(tags->rqs);
2069 tags->rqs = NULL;
2070 kfree(tags->static_rqs);
2071 tags->static_rqs = NULL;
2072
2073 blk_mq_free_tags(tags);
2074 }
2075
2076 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2077 unsigned int hctx_idx,
2078 unsigned int nr_tags,
2079 unsigned int reserved_tags)
2080 {
2081 struct blk_mq_tags *tags;
2082 int node;
2083
2084 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2085 if (node == NUMA_NO_NODE)
2086 node = set->numa_node;
2087
2088 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2089 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2090 if (!tags)
2091 return NULL;
2092
2093 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2094 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2095 node);
2096 if (!tags->rqs) {
2097 blk_mq_free_tags(tags);
2098 return NULL;
2099 }
2100
2101 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2102 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2103 node);
2104 if (!tags->static_rqs) {
2105 kfree(tags->rqs);
2106 blk_mq_free_tags(tags);
2107 return NULL;
2108 }
2109
2110 return tags;
2111 }
2112
2113 static size_t order_to_size(unsigned int order)
2114 {
2115 return (size_t)PAGE_SIZE << order;
2116 }
2117
2118 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2119 unsigned int hctx_idx, int node)
2120 {
2121 int ret;
2122
2123 if (set->ops->init_request) {
2124 ret = set->ops->init_request(set, rq, hctx_idx, node);
2125 if (ret)
2126 return ret;
2127 }
2128
2129 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2130 return 0;
2131 }
2132
2133 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2134 unsigned int hctx_idx, unsigned int depth)
2135 {
2136 unsigned int i, j, entries_per_page, max_order = 4;
2137 size_t rq_size, left;
2138 int node;
2139
2140 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2141 if (node == NUMA_NO_NODE)
2142 node = set->numa_node;
2143
2144 INIT_LIST_HEAD(&tags->page_list);
2145
2146 /*
2147 * rq_size is the size of the request plus driver payload, rounded
2148 * to the cacheline size
2149 */
2150 rq_size = round_up(sizeof(struct request) + set->cmd_size,
2151 cache_line_size());
2152 left = rq_size * depth;
2153
2154 for (i = 0; i < depth; ) {
2155 int this_order = max_order;
2156 struct page *page;
2157 int to_do;
2158 void *p;
2159
2160 while (this_order && left < order_to_size(this_order - 1))
2161 this_order--;
2162
2163 do {
2164 page = alloc_pages_node(node,
2165 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2166 this_order);
2167 if (page)
2168 break;
2169 if (!this_order--)
2170 break;
2171 if (order_to_size(this_order) < rq_size)
2172 break;
2173 } while (1);
2174
2175 if (!page)
2176 goto fail;
2177
2178 page->private = this_order;
2179 list_add_tail(&page->lru, &tags->page_list);
2180
2181 p = page_address(page);
2182 /*
2183 * Allow kmemleak to scan these pages as they contain pointers
2184 * to additional allocations like via ops->init_request().
2185 */
2186 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2187 entries_per_page = order_to_size(this_order) / rq_size;
2188 to_do = min(entries_per_page, depth - i);
2189 left -= to_do * rq_size;
2190 for (j = 0; j < to_do; j++) {
2191 struct request *rq = p;
2192
2193 tags->static_rqs[i] = rq;
2194 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2195 tags->static_rqs[i] = NULL;
2196 goto fail;
2197 }
2198
2199 p += rq_size;
2200 i++;
2201 }
2202 }
2203 return 0;
2204
2205 fail:
2206 blk_mq_free_rqs(set, tags, hctx_idx);
2207 return -ENOMEM;
2208 }
2209
2210 /*
2211 * 'cpu' is going away. splice any existing rq_list entries from this
2212 * software queue to the hw queue dispatch list, and ensure that it
2213 * gets run.
2214 */
2215 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2216 {
2217 struct blk_mq_hw_ctx *hctx;
2218 struct blk_mq_ctx *ctx;
2219 LIST_HEAD(tmp);
2220 enum hctx_type type;
2221
2222 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2223 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2224 type = hctx->type;
2225
2226 spin_lock(&ctx->lock);
2227 if (!list_empty(&ctx->rq_lists[type])) {
2228 list_splice_init(&ctx->rq_lists[type], &tmp);
2229 blk_mq_hctx_clear_pending(hctx, ctx);
2230 }
2231 spin_unlock(&ctx->lock);
2232
2233 if (list_empty(&tmp))
2234 return 0;
2235
2236 spin_lock(&hctx->lock);
2237 list_splice_tail_init(&tmp, &hctx->dispatch);
2238 spin_unlock(&hctx->lock);
2239
2240 blk_mq_run_hw_queue(hctx, true);
2241 return 0;
2242 }
2243
2244 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2245 {
2246 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2247 &hctx->cpuhp_dead);
2248 }
2249
2250 /* hctx->ctxs will be freed in queue's release handler */
2251 static void blk_mq_exit_hctx(struct request_queue *q,
2252 struct blk_mq_tag_set *set,
2253 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2254 {
2255 if (blk_mq_hw_queue_mapped(hctx))
2256 blk_mq_tag_idle(hctx);
2257
2258 if (set->ops->exit_request)
2259 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2260
2261 if (set->ops->exit_hctx)
2262 set->ops->exit_hctx(hctx, hctx_idx);
2263
2264 blk_mq_remove_cpuhp(hctx);
2265
2266 spin_lock(&q->unused_hctx_lock);
2267 list_add(&hctx->hctx_list, &q->unused_hctx_list);
2268 spin_unlock(&q->unused_hctx_lock);
2269 }
2270
2271 static void blk_mq_exit_hw_queues(struct request_queue *q,
2272 struct blk_mq_tag_set *set, int nr_queue)
2273 {
2274 struct blk_mq_hw_ctx *hctx;
2275 unsigned int i;
2276
2277 queue_for_each_hw_ctx(q, hctx, i) {
2278 if (i == nr_queue)
2279 break;
2280 blk_mq_debugfs_unregister_hctx(hctx);
2281 blk_mq_exit_hctx(q, set, hctx, i);
2282 }
2283 }
2284
2285 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2286 {
2287 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2288
2289 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2290 __alignof__(struct blk_mq_hw_ctx)) !=
2291 sizeof(struct blk_mq_hw_ctx));
2292
2293 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2294 hw_ctx_size += sizeof(struct srcu_struct);
2295
2296 return hw_ctx_size;
2297 }
2298
2299 static int blk_mq_init_hctx(struct request_queue *q,
2300 struct blk_mq_tag_set *set,
2301 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2302 {
2303 hctx->queue_num = hctx_idx;
2304
2305 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2306
2307 hctx->tags = set->tags[hctx_idx];
2308
2309 if (set->ops->init_hctx &&
2310 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2311 goto unregister_cpu_notifier;
2312
2313 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2314 hctx->numa_node))
2315 goto exit_hctx;
2316 return 0;
2317
2318 exit_hctx:
2319 if (set->ops->exit_hctx)
2320 set->ops->exit_hctx(hctx, hctx_idx);
2321 unregister_cpu_notifier:
2322 blk_mq_remove_cpuhp(hctx);
2323 return -1;
2324 }
2325
2326 static struct blk_mq_hw_ctx *
2327 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2328 int node)
2329 {
2330 struct blk_mq_hw_ctx *hctx;
2331 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2332
2333 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2334 if (!hctx)
2335 goto fail_alloc_hctx;
2336
2337 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2338 goto free_hctx;
2339
2340 atomic_set(&hctx->nr_active, 0);
2341 if (node == NUMA_NO_NODE)
2342 node = set->numa_node;
2343 hctx->numa_node = node;
2344
2345 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2346 spin_lock_init(&hctx->lock);
2347 INIT_LIST_HEAD(&hctx->dispatch);
2348 hctx->queue = q;
2349 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2350
2351 INIT_LIST_HEAD(&hctx->hctx_list);
2352
2353 /*
2354 * Allocate space for all possible cpus to avoid allocation at
2355 * runtime
2356 */
2357 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2358 gfp, node);
2359 if (!hctx->ctxs)
2360 goto free_cpumask;
2361
2362 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2363 gfp, node))
2364 goto free_ctxs;
2365 hctx->nr_ctx = 0;
2366
2367 spin_lock_init(&hctx->dispatch_wait_lock);
2368 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2369 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2370
2371 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2372 gfp);
2373 if (!hctx->fq)
2374 goto free_bitmap;
2375
2376 if (hctx->flags & BLK_MQ_F_BLOCKING)
2377 init_srcu_struct(hctx->srcu);
2378 blk_mq_hctx_kobj_init(hctx);
2379
2380 return hctx;
2381
2382 free_bitmap:
2383 sbitmap_free(&hctx->ctx_map);
2384 free_ctxs:
2385 kfree(hctx->ctxs);
2386 free_cpumask:
2387 free_cpumask_var(hctx->cpumask);
2388 free_hctx:
2389 kfree(hctx);
2390 fail_alloc_hctx:
2391 return NULL;
2392 }
2393
2394 static void blk_mq_init_cpu_queues(struct request_queue *q,
2395 unsigned int nr_hw_queues)
2396 {
2397 struct blk_mq_tag_set *set = q->tag_set;
2398 unsigned int i, j;
2399
2400 for_each_possible_cpu(i) {
2401 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2402 struct blk_mq_hw_ctx *hctx;
2403 int k;
2404
2405 __ctx->cpu = i;
2406 spin_lock_init(&__ctx->lock);
2407 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2408 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2409
2410 __ctx->queue = q;
2411
2412 /*
2413 * Set local node, IFF we have more than one hw queue. If
2414 * not, we remain on the home node of the device
2415 */
2416 for (j = 0; j < set->nr_maps; j++) {
2417 hctx = blk_mq_map_queue_type(q, j, i);
2418 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2419 hctx->numa_node = local_memory_node(cpu_to_node(i));
2420 }
2421 }
2422 }
2423
2424 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2425 {
2426 int ret = 0;
2427
2428 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2429 set->queue_depth, set->reserved_tags);
2430 if (!set->tags[hctx_idx])
2431 return false;
2432
2433 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2434 set->queue_depth);
2435 if (!ret)
2436 return true;
2437
2438 blk_mq_free_rq_map(set->tags[hctx_idx]);
2439 set->tags[hctx_idx] = NULL;
2440 return false;
2441 }
2442
2443 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2444 unsigned int hctx_idx)
2445 {
2446 if (set->tags && set->tags[hctx_idx]) {
2447 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2448 blk_mq_free_rq_map(set->tags[hctx_idx]);
2449 set->tags[hctx_idx] = NULL;
2450 }
2451 }
2452
2453 static void blk_mq_map_swqueue(struct request_queue *q)
2454 {
2455 unsigned int i, j, hctx_idx;
2456 struct blk_mq_hw_ctx *hctx;
2457 struct blk_mq_ctx *ctx;
2458 struct blk_mq_tag_set *set = q->tag_set;
2459
2460 /*
2461 * Avoid others reading imcomplete hctx->cpumask through sysfs
2462 */
2463 mutex_lock(&q->sysfs_lock);
2464
2465 queue_for_each_hw_ctx(q, hctx, i) {
2466 cpumask_clear(hctx->cpumask);
2467 hctx->nr_ctx = 0;
2468 hctx->dispatch_from = NULL;
2469 }
2470
2471 /*
2472 * Map software to hardware queues.
2473 *
2474 * If the cpu isn't present, the cpu is mapped to first hctx.
2475 */
2476 for_each_possible_cpu(i) {
2477 hctx_idx = set->map[HCTX_TYPE_DEFAULT].mq_map[i];
2478 /* unmapped hw queue can be remapped after CPU topo changed */
2479 if (!set->tags[hctx_idx] &&
2480 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2481 /*
2482 * If tags initialization fail for some hctx,
2483 * that hctx won't be brought online. In this
2484 * case, remap the current ctx to hctx[0] which
2485 * is guaranteed to always have tags allocated
2486 */
2487 set->map[HCTX_TYPE_DEFAULT].mq_map[i] = 0;
2488 }
2489
2490 ctx = per_cpu_ptr(q->queue_ctx, i);
2491 for (j = 0; j < set->nr_maps; j++) {
2492 if (!set->map[j].nr_queues) {
2493 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2494 HCTX_TYPE_DEFAULT, i);
2495 continue;
2496 }
2497
2498 hctx = blk_mq_map_queue_type(q, j, i);
2499 ctx->hctxs[j] = hctx;
2500 /*
2501 * If the CPU is already set in the mask, then we've
2502 * mapped this one already. This can happen if
2503 * devices share queues across queue maps.
2504 */
2505 if (cpumask_test_cpu(i, hctx->cpumask))
2506 continue;
2507
2508 cpumask_set_cpu(i, hctx->cpumask);
2509 hctx->type = j;
2510 ctx->index_hw[hctx->type] = hctx->nr_ctx;
2511 hctx->ctxs[hctx->nr_ctx++] = ctx;
2512
2513 /*
2514 * If the nr_ctx type overflows, we have exceeded the
2515 * amount of sw queues we can support.
2516 */
2517 BUG_ON(!hctx->nr_ctx);
2518 }
2519
2520 for (; j < HCTX_MAX_TYPES; j++)
2521 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2522 HCTX_TYPE_DEFAULT, i);
2523 }
2524
2525 mutex_unlock(&q->sysfs_lock);
2526
2527 queue_for_each_hw_ctx(q, hctx, i) {
2528 /*
2529 * If no software queues are mapped to this hardware queue,
2530 * disable it and free the request entries.
2531 */
2532 if (!hctx->nr_ctx) {
2533 /* Never unmap queue 0. We need it as a
2534 * fallback in case of a new remap fails
2535 * allocation
2536 */
2537 if (i && set->tags[i])
2538 blk_mq_free_map_and_requests(set, i);
2539
2540 hctx->tags = NULL;
2541 continue;
2542 }
2543
2544 hctx->tags = set->tags[i];
2545 WARN_ON(!hctx->tags);
2546
2547 /*
2548 * Set the map size to the number of mapped software queues.
2549 * This is more accurate and more efficient than looping
2550 * over all possibly mapped software queues.
2551 */
2552 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2553
2554 /*
2555 * Initialize batch roundrobin counts
2556 */
2557 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2558 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2559 }
2560 }
2561
2562 /*
2563 * Caller needs to ensure that we're either frozen/quiesced, or that
2564 * the queue isn't live yet.
2565 */
2566 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2567 {
2568 struct blk_mq_hw_ctx *hctx;
2569 int i;
2570
2571 queue_for_each_hw_ctx(q, hctx, i) {
2572 if (shared)
2573 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2574 else
2575 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2576 }
2577 }
2578
2579 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2580 bool shared)
2581 {
2582 struct request_queue *q;
2583
2584 lockdep_assert_held(&set->tag_list_lock);
2585
2586 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2587 blk_mq_freeze_queue(q);
2588 queue_set_hctx_shared(q, shared);
2589 blk_mq_unfreeze_queue(q);
2590 }
2591 }
2592
2593 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2594 {
2595 struct blk_mq_tag_set *set = q->tag_set;
2596
2597 mutex_lock(&set->tag_list_lock);
2598 list_del_rcu(&q->tag_set_list);
2599 if (list_is_singular(&set->tag_list)) {
2600 /* just transitioned to unshared */
2601 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2602 /* update existing queue */
2603 blk_mq_update_tag_set_depth(set, false);
2604 }
2605 mutex_unlock(&set->tag_list_lock);
2606 INIT_LIST_HEAD(&q->tag_set_list);
2607 }
2608
2609 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2610 struct request_queue *q)
2611 {
2612 mutex_lock(&set->tag_list_lock);
2613
2614 /*
2615 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2616 */
2617 if (!list_empty(&set->tag_list) &&
2618 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2619 set->flags |= BLK_MQ_F_TAG_SHARED;
2620 /* update existing queue */
2621 blk_mq_update_tag_set_depth(set, true);
2622 }
2623 if (set->flags & BLK_MQ_F_TAG_SHARED)
2624 queue_set_hctx_shared(q, true);
2625 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2626
2627 mutex_unlock(&set->tag_list_lock);
2628 }
2629
2630 /* All allocations will be freed in release handler of q->mq_kobj */
2631 static int blk_mq_alloc_ctxs(struct request_queue *q)
2632 {
2633 struct blk_mq_ctxs *ctxs;
2634 int cpu;
2635
2636 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2637 if (!ctxs)
2638 return -ENOMEM;
2639
2640 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2641 if (!ctxs->queue_ctx)
2642 goto fail;
2643
2644 for_each_possible_cpu(cpu) {
2645 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2646 ctx->ctxs = ctxs;
2647 }
2648
2649 q->mq_kobj = &ctxs->kobj;
2650 q->queue_ctx = ctxs->queue_ctx;
2651
2652 return 0;
2653 fail:
2654 kfree(ctxs);
2655 return -ENOMEM;
2656 }
2657
2658 /*
2659 * It is the actual release handler for mq, but we do it from
2660 * request queue's release handler for avoiding use-after-free
2661 * and headache because q->mq_kobj shouldn't have been introduced,
2662 * but we can't group ctx/kctx kobj without it.
2663 */
2664 void blk_mq_release(struct request_queue *q)
2665 {
2666 struct blk_mq_hw_ctx *hctx, *next;
2667 int i;
2668
2669 cancel_delayed_work_sync(&q->requeue_work);
2670
2671 queue_for_each_hw_ctx(q, hctx, i)
2672 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
2673
2674 /* all hctx are in .unused_hctx_list now */
2675 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
2676 list_del_init(&hctx->hctx_list);
2677 kobject_put(&hctx->kobj);
2678 }
2679
2680 kfree(q->queue_hw_ctx);
2681
2682 /*
2683 * release .mq_kobj and sw queue's kobject now because
2684 * both share lifetime with request queue.
2685 */
2686 blk_mq_sysfs_deinit(q);
2687 }
2688
2689 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2690 {
2691 struct request_queue *uninit_q, *q;
2692
2693 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2694 if (!uninit_q)
2695 return ERR_PTR(-ENOMEM);
2696
2697 q = blk_mq_init_allocated_queue(set, uninit_q);
2698 if (IS_ERR(q))
2699 blk_cleanup_queue(uninit_q);
2700
2701 return q;
2702 }
2703 EXPORT_SYMBOL(blk_mq_init_queue);
2704
2705 /*
2706 * Helper for setting up a queue with mq ops, given queue depth, and
2707 * the passed in mq ops flags.
2708 */
2709 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2710 const struct blk_mq_ops *ops,
2711 unsigned int queue_depth,
2712 unsigned int set_flags)
2713 {
2714 struct request_queue *q;
2715 int ret;
2716
2717 memset(set, 0, sizeof(*set));
2718 set->ops = ops;
2719 set->nr_hw_queues = 1;
2720 set->nr_maps = 1;
2721 set->queue_depth = queue_depth;
2722 set->numa_node = NUMA_NO_NODE;
2723 set->flags = set_flags;
2724
2725 ret = blk_mq_alloc_tag_set(set);
2726 if (ret)
2727 return ERR_PTR(ret);
2728
2729 q = blk_mq_init_queue(set);
2730 if (IS_ERR(q)) {
2731 blk_mq_free_tag_set(set);
2732 return q;
2733 }
2734
2735 return q;
2736 }
2737 EXPORT_SYMBOL(blk_mq_init_sq_queue);
2738
2739 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2740 struct blk_mq_tag_set *set, struct request_queue *q,
2741 int hctx_idx, int node)
2742 {
2743 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
2744
2745 /* reuse dead hctx first */
2746 spin_lock(&q->unused_hctx_lock);
2747 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
2748 if (tmp->numa_node == node) {
2749 hctx = tmp;
2750 break;
2751 }
2752 }
2753 if (hctx)
2754 list_del_init(&hctx->hctx_list);
2755 spin_unlock(&q->unused_hctx_lock);
2756
2757 if (!hctx)
2758 hctx = blk_mq_alloc_hctx(q, set, node);
2759 if (!hctx)
2760 goto fail;
2761
2762 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
2763 goto free_hctx;
2764
2765 return hctx;
2766
2767 free_hctx:
2768 kobject_put(&hctx->kobj);
2769 fail:
2770 return NULL;
2771 }
2772
2773 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2774 struct request_queue *q)
2775 {
2776 int i, j, end;
2777 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2778
2779 /* protect against switching io scheduler */
2780 mutex_lock(&q->sysfs_lock);
2781 for (i = 0; i < set->nr_hw_queues; i++) {
2782 int node;
2783 struct blk_mq_hw_ctx *hctx;
2784
2785 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
2786 /*
2787 * If the hw queue has been mapped to another numa node,
2788 * we need to realloc the hctx. If allocation fails, fallback
2789 * to use the previous one.
2790 */
2791 if (hctxs[i] && (hctxs[i]->numa_node == node))
2792 continue;
2793
2794 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2795 if (hctx) {
2796 if (hctxs[i])
2797 blk_mq_exit_hctx(q, set, hctxs[i], i);
2798 hctxs[i] = hctx;
2799 } else {
2800 if (hctxs[i])
2801 pr_warn("Allocate new hctx on node %d fails,\
2802 fallback to previous one on node %d\n",
2803 node, hctxs[i]->numa_node);
2804 else
2805 break;
2806 }
2807 }
2808 /*
2809 * Increasing nr_hw_queues fails. Free the newly allocated
2810 * hctxs and keep the previous q->nr_hw_queues.
2811 */
2812 if (i != set->nr_hw_queues) {
2813 j = q->nr_hw_queues;
2814 end = i;
2815 } else {
2816 j = i;
2817 end = q->nr_hw_queues;
2818 q->nr_hw_queues = set->nr_hw_queues;
2819 }
2820
2821 for (; j < end; j++) {
2822 struct blk_mq_hw_ctx *hctx = hctxs[j];
2823
2824 if (hctx) {
2825 if (hctx->tags)
2826 blk_mq_free_map_and_requests(set, j);
2827 blk_mq_exit_hctx(q, set, hctx, j);
2828 hctxs[j] = NULL;
2829 }
2830 }
2831 mutex_unlock(&q->sysfs_lock);
2832 }
2833
2834 /*
2835 * Maximum number of hardware queues we support. For single sets, we'll never
2836 * have more than the CPUs (software queues). For multiple sets, the tag_set
2837 * user may have set ->nr_hw_queues larger.
2838 */
2839 static unsigned int nr_hw_queues(struct blk_mq_tag_set *set)
2840 {
2841 if (set->nr_maps == 1)
2842 return nr_cpu_ids;
2843
2844 return max(set->nr_hw_queues, nr_cpu_ids);
2845 }
2846
2847 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2848 struct request_queue *q)
2849 {
2850 /* mark the queue as mq asap */
2851 q->mq_ops = set->ops;
2852
2853 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2854 blk_mq_poll_stats_bkt,
2855 BLK_MQ_POLL_STATS_BKTS, q);
2856 if (!q->poll_cb)
2857 goto err_exit;
2858
2859 if (blk_mq_alloc_ctxs(q))
2860 goto err_poll;
2861
2862 /* init q->mq_kobj and sw queues' kobjects */
2863 blk_mq_sysfs_init(q);
2864
2865 q->nr_queues = nr_hw_queues(set);
2866 q->queue_hw_ctx = kcalloc_node(q->nr_queues, sizeof(*(q->queue_hw_ctx)),
2867 GFP_KERNEL, set->numa_node);
2868 if (!q->queue_hw_ctx)
2869 goto err_sys_init;
2870
2871 INIT_LIST_HEAD(&q->unused_hctx_list);
2872 spin_lock_init(&q->unused_hctx_lock);
2873
2874 blk_mq_realloc_hw_ctxs(set, q);
2875 if (!q->nr_hw_queues)
2876 goto err_hctxs;
2877
2878 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2879 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2880
2881 q->tag_set = set;
2882
2883 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2884 if (set->nr_maps > HCTX_TYPE_POLL &&
2885 set->map[HCTX_TYPE_POLL].nr_queues)
2886 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2887
2888 q->sg_reserved_size = INT_MAX;
2889
2890 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2891 INIT_LIST_HEAD(&q->requeue_list);
2892 spin_lock_init(&q->requeue_lock);
2893
2894 blk_queue_make_request(q, blk_mq_make_request);
2895
2896 /*
2897 * Do this after blk_queue_make_request() overrides it...
2898 */
2899 q->nr_requests = set->queue_depth;
2900
2901 /*
2902 * Default to classic polling
2903 */
2904 q->poll_nsec = BLK_MQ_POLL_CLASSIC;
2905
2906 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2907 blk_mq_add_queue_tag_set(set, q);
2908 blk_mq_map_swqueue(q);
2909
2910 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2911 int ret;
2912
2913 ret = elevator_init_mq(q);
2914 if (ret)
2915 return ERR_PTR(ret);
2916 }
2917
2918 return q;
2919
2920 err_hctxs:
2921 kfree(q->queue_hw_ctx);
2922 err_sys_init:
2923 blk_mq_sysfs_deinit(q);
2924 err_poll:
2925 blk_stat_free_callback(q->poll_cb);
2926 q->poll_cb = NULL;
2927 err_exit:
2928 q->mq_ops = NULL;
2929 return ERR_PTR(-ENOMEM);
2930 }
2931 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2932
2933 /* tags can _not_ be used after returning from blk_mq_exit_queue */
2934 void blk_mq_exit_queue(struct request_queue *q)
2935 {
2936 struct blk_mq_tag_set *set = q->tag_set;
2937
2938 blk_mq_del_queue_tag_set(q);
2939 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2940 }
2941
2942 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2943 {
2944 int i;
2945
2946 for (i = 0; i < set->nr_hw_queues; i++)
2947 if (!__blk_mq_alloc_rq_map(set, i))
2948 goto out_unwind;
2949
2950 return 0;
2951
2952 out_unwind:
2953 while (--i >= 0)
2954 blk_mq_free_rq_map(set->tags[i]);
2955
2956 return -ENOMEM;
2957 }
2958
2959 /*
2960 * Allocate the request maps associated with this tag_set. Note that this
2961 * may reduce the depth asked for, if memory is tight. set->queue_depth
2962 * will be updated to reflect the allocated depth.
2963 */
2964 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2965 {
2966 unsigned int depth;
2967 int err;
2968
2969 depth = set->queue_depth;
2970 do {
2971 err = __blk_mq_alloc_rq_maps(set);
2972 if (!err)
2973 break;
2974
2975 set->queue_depth >>= 1;
2976 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2977 err = -ENOMEM;
2978 break;
2979 }
2980 } while (set->queue_depth);
2981
2982 if (!set->queue_depth || err) {
2983 pr_err("blk-mq: failed to allocate request map\n");
2984 return -ENOMEM;
2985 }
2986
2987 if (depth != set->queue_depth)
2988 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2989 depth, set->queue_depth);
2990
2991 return 0;
2992 }
2993
2994 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2995 {
2996 if (set->ops->map_queues && !is_kdump_kernel()) {
2997 int i;
2998
2999 /*
3000 * transport .map_queues is usually done in the following
3001 * way:
3002 *
3003 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3004 * mask = get_cpu_mask(queue)
3005 * for_each_cpu(cpu, mask)
3006 * set->map[x].mq_map[cpu] = queue;
3007 * }
3008 *
3009 * When we need to remap, the table has to be cleared for
3010 * killing stale mapping since one CPU may not be mapped
3011 * to any hw queue.
3012 */
3013 for (i = 0; i < set->nr_maps; i++)
3014 blk_mq_clear_mq_map(&set->map[i]);
3015
3016 return set->ops->map_queues(set);
3017 } else {
3018 BUG_ON(set->nr_maps > 1);
3019 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3020 }
3021 }
3022
3023 /*
3024 * Alloc a tag set to be associated with one or more request queues.
3025 * May fail with EINVAL for various error conditions. May adjust the
3026 * requested depth down, if it's too large. In that case, the set
3027 * value will be stored in set->queue_depth.
3028 */
3029 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3030 {
3031 int i, ret;
3032
3033 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3034
3035 if (!set->nr_hw_queues)
3036 return -EINVAL;
3037 if (!set->queue_depth)
3038 return -EINVAL;
3039 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3040 return -EINVAL;
3041
3042 if (!set->ops->queue_rq)
3043 return -EINVAL;
3044
3045 if (!set->ops->get_budget ^ !set->ops->put_budget)
3046 return -EINVAL;
3047
3048 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3049 pr_info("blk-mq: reduced tag depth to %u\n",
3050 BLK_MQ_MAX_DEPTH);
3051 set->queue_depth = BLK_MQ_MAX_DEPTH;
3052 }
3053
3054 if (!set->nr_maps)
3055 set->nr_maps = 1;
3056 else if (set->nr_maps > HCTX_MAX_TYPES)
3057 return -EINVAL;
3058
3059 /*
3060 * If a crashdump is active, then we are potentially in a very
3061 * memory constrained environment. Limit us to 1 queue and
3062 * 64 tags to prevent using too much memory.
3063 */
3064 if (is_kdump_kernel()) {
3065 set->nr_hw_queues = 1;
3066 set->nr_maps = 1;
3067 set->queue_depth = min(64U, set->queue_depth);
3068 }
3069 /*
3070 * There is no use for more h/w queues than cpus if we just have
3071 * a single map
3072 */
3073 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3074 set->nr_hw_queues = nr_cpu_ids;
3075
3076 set->tags = kcalloc_node(nr_hw_queues(set), sizeof(struct blk_mq_tags *),
3077 GFP_KERNEL, set->numa_node);
3078 if (!set->tags)
3079 return -ENOMEM;
3080
3081 ret = -ENOMEM;
3082 for (i = 0; i < set->nr_maps; i++) {
3083 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3084 sizeof(set->map[i].mq_map[0]),
3085 GFP_KERNEL, set->numa_node);
3086 if (!set->map[i].mq_map)
3087 goto out_free_mq_map;
3088 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3089 }
3090
3091 ret = blk_mq_update_queue_map(set);
3092 if (ret)
3093 goto out_free_mq_map;
3094
3095 ret = blk_mq_alloc_rq_maps(set);
3096 if (ret)
3097 goto out_free_mq_map;
3098
3099 mutex_init(&set->tag_list_lock);
3100 INIT_LIST_HEAD(&set->tag_list);
3101
3102 return 0;
3103
3104 out_free_mq_map:
3105 for (i = 0; i < set->nr_maps; i++) {
3106 kfree(set->map[i].mq_map);
3107 set->map[i].mq_map = NULL;
3108 }
3109 kfree(set->tags);
3110 set->tags = NULL;
3111 return ret;
3112 }
3113 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3114
3115 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3116 {
3117 int i, j;
3118
3119 for (i = 0; i < nr_hw_queues(set); i++)
3120 blk_mq_free_map_and_requests(set, i);
3121
3122 for (j = 0; j < set->nr_maps; j++) {
3123 kfree(set->map[j].mq_map);
3124 set->map[j].mq_map = NULL;
3125 }
3126
3127 kfree(set->tags);
3128 set->tags = NULL;
3129 }
3130 EXPORT_SYMBOL(blk_mq_free_tag_set);
3131
3132 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3133 {
3134 struct blk_mq_tag_set *set = q->tag_set;
3135 struct blk_mq_hw_ctx *hctx;
3136 int i, ret;
3137
3138 if (!set)
3139 return -EINVAL;
3140
3141 if (q->nr_requests == nr)
3142 return 0;
3143
3144 blk_mq_freeze_queue(q);
3145 blk_mq_quiesce_queue(q);
3146
3147 ret = 0;
3148 queue_for_each_hw_ctx(q, hctx, i) {
3149 if (!hctx->tags)
3150 continue;
3151 /*
3152 * If we're using an MQ scheduler, just update the scheduler
3153 * queue depth. This is similar to what the old code would do.
3154 */
3155 if (!hctx->sched_tags) {
3156 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3157 false);
3158 } else {
3159 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3160 nr, true);
3161 }
3162 if (ret)
3163 break;
3164 if (q->elevator && q->elevator->type->ops.depth_updated)
3165 q->elevator->type->ops.depth_updated(hctx);
3166 }
3167
3168 if (!ret)
3169 q->nr_requests = nr;
3170
3171 blk_mq_unquiesce_queue(q);
3172 blk_mq_unfreeze_queue(q);
3173
3174 return ret;
3175 }
3176
3177 /*
3178 * request_queue and elevator_type pair.
3179 * It is just used by __blk_mq_update_nr_hw_queues to cache
3180 * the elevator_type associated with a request_queue.
3181 */
3182 struct blk_mq_qe_pair {
3183 struct list_head node;
3184 struct request_queue *q;
3185 struct elevator_type *type;
3186 };
3187
3188 /*
3189 * Cache the elevator_type in qe pair list and switch the
3190 * io scheduler to 'none'
3191 */
3192 static bool blk_mq_elv_switch_none(struct list_head *head,
3193 struct request_queue *q)
3194 {
3195 struct blk_mq_qe_pair *qe;
3196
3197 if (!q->elevator)
3198 return true;
3199
3200 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3201 if (!qe)
3202 return false;
3203
3204 INIT_LIST_HEAD(&qe->node);
3205 qe->q = q;
3206 qe->type = q->elevator->type;
3207 list_add(&qe->node, head);
3208
3209 mutex_lock(&q->sysfs_lock);
3210 /*
3211 * After elevator_switch_mq, the previous elevator_queue will be
3212 * released by elevator_release. The reference of the io scheduler
3213 * module get by elevator_get will also be put. So we need to get
3214 * a reference of the io scheduler module here to prevent it to be
3215 * removed.
3216 */
3217 __module_get(qe->type->elevator_owner);
3218 elevator_switch_mq(q, NULL);
3219 mutex_unlock(&q->sysfs_lock);
3220
3221 return true;
3222 }
3223
3224 static void blk_mq_elv_switch_back(struct list_head *head,
3225 struct request_queue *q)
3226 {
3227 struct blk_mq_qe_pair *qe;
3228 struct elevator_type *t = NULL;
3229
3230 list_for_each_entry(qe, head, node)
3231 if (qe->q == q) {
3232 t = qe->type;
3233 break;
3234 }
3235
3236 if (!t)
3237 return;
3238
3239 list_del(&qe->node);
3240 kfree(qe);
3241
3242 mutex_lock(&q->sysfs_lock);
3243 elevator_switch_mq(q, t);
3244 mutex_unlock(&q->sysfs_lock);
3245 }
3246
3247 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3248 int nr_hw_queues)
3249 {
3250 struct request_queue *q;
3251 LIST_HEAD(head);
3252 int prev_nr_hw_queues;
3253
3254 lockdep_assert_held(&set->tag_list_lock);
3255
3256 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3257 nr_hw_queues = nr_cpu_ids;
3258 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3259 return;
3260
3261 list_for_each_entry(q, &set->tag_list, tag_set_list)
3262 blk_mq_freeze_queue(q);
3263 /*
3264 * Sync with blk_mq_queue_tag_busy_iter.
3265 */
3266 synchronize_rcu();
3267 /*
3268 * Switch IO scheduler to 'none', cleaning up the data associated
3269 * with the previous scheduler. We will switch back once we are done
3270 * updating the new sw to hw queue mappings.
3271 */
3272 list_for_each_entry(q, &set->tag_list, tag_set_list)
3273 if (!blk_mq_elv_switch_none(&head, q))
3274 goto switch_back;
3275
3276 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3277 blk_mq_debugfs_unregister_hctxs(q);
3278 blk_mq_sysfs_unregister(q);
3279 }
3280
3281 prev_nr_hw_queues = set->nr_hw_queues;
3282 set->nr_hw_queues = nr_hw_queues;
3283 blk_mq_update_queue_map(set);
3284 fallback:
3285 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3286 blk_mq_realloc_hw_ctxs(set, q);
3287 if (q->nr_hw_queues != set->nr_hw_queues) {
3288 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3289 nr_hw_queues, prev_nr_hw_queues);
3290 set->nr_hw_queues = prev_nr_hw_queues;
3291 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3292 goto fallback;
3293 }
3294 blk_mq_map_swqueue(q);
3295 }
3296
3297 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3298 blk_mq_sysfs_register(q);
3299 blk_mq_debugfs_register_hctxs(q);
3300 }
3301
3302 switch_back:
3303 list_for_each_entry(q, &set->tag_list, tag_set_list)
3304 blk_mq_elv_switch_back(&head, q);
3305
3306 list_for_each_entry(q, &set->tag_list, tag_set_list)
3307 blk_mq_unfreeze_queue(q);
3308 }
3309
3310 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3311 {
3312 mutex_lock(&set->tag_list_lock);
3313 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3314 mutex_unlock(&set->tag_list_lock);
3315 }
3316 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3317
3318 /* Enable polling stats and return whether they were already enabled. */
3319 static bool blk_poll_stats_enable(struct request_queue *q)
3320 {
3321 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3322 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3323 return true;
3324 blk_stat_add_callback(q, q->poll_cb);
3325 return false;
3326 }
3327
3328 static void blk_mq_poll_stats_start(struct request_queue *q)
3329 {
3330 /*
3331 * We don't arm the callback if polling stats are not enabled or the
3332 * callback is already active.
3333 */
3334 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3335 blk_stat_is_active(q->poll_cb))
3336 return;
3337
3338 blk_stat_activate_msecs(q->poll_cb, 100);
3339 }
3340
3341 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3342 {
3343 struct request_queue *q = cb->data;
3344 int bucket;
3345
3346 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3347 if (cb->stat[bucket].nr_samples)
3348 q->poll_stat[bucket] = cb->stat[bucket];
3349 }
3350 }
3351
3352 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3353 struct blk_mq_hw_ctx *hctx,
3354 struct request *rq)
3355 {
3356 unsigned long ret = 0;
3357 int bucket;
3358
3359 /*
3360 * If stats collection isn't on, don't sleep but turn it on for
3361 * future users
3362 */
3363 if (!blk_poll_stats_enable(q))
3364 return 0;
3365
3366 /*
3367 * As an optimistic guess, use half of the mean service time
3368 * for this type of request. We can (and should) make this smarter.
3369 * For instance, if the completion latencies are tight, we can
3370 * get closer than just half the mean. This is especially
3371 * important on devices where the completion latencies are longer
3372 * than ~10 usec. We do use the stats for the relevant IO size
3373 * if available which does lead to better estimates.
3374 */
3375 bucket = blk_mq_poll_stats_bkt(rq);
3376 if (bucket < 0)
3377 return ret;
3378
3379 if (q->poll_stat[bucket].nr_samples)
3380 ret = (q->poll_stat[bucket].mean + 1) / 2;
3381
3382 return ret;
3383 }
3384
3385 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3386 struct blk_mq_hw_ctx *hctx,
3387 struct request *rq)
3388 {
3389 struct hrtimer_sleeper hs;
3390 enum hrtimer_mode mode;
3391 unsigned int nsecs;
3392 ktime_t kt;
3393
3394 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3395 return false;
3396
3397 /*
3398 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3399 *
3400 * 0: use half of prev avg
3401 * >0: use this specific value
3402 */
3403 if (q->poll_nsec > 0)
3404 nsecs = q->poll_nsec;
3405 else
3406 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3407
3408 if (!nsecs)
3409 return false;
3410
3411 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3412
3413 /*
3414 * This will be replaced with the stats tracking code, using
3415 * 'avg_completion_time / 2' as the pre-sleep target.
3416 */
3417 kt = nsecs;
3418
3419 mode = HRTIMER_MODE_REL;
3420 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3421 hrtimer_set_expires(&hs.timer, kt);
3422
3423 hrtimer_init_sleeper(&hs, current);
3424 do {
3425 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3426 break;
3427 set_current_state(TASK_UNINTERRUPTIBLE);
3428 hrtimer_start_expires(&hs.timer, mode);
3429 if (hs.task)
3430 io_schedule();
3431 hrtimer_cancel(&hs.timer);
3432 mode = HRTIMER_MODE_ABS;
3433 } while (hs.task && !signal_pending(current));
3434
3435 __set_current_state(TASK_RUNNING);
3436 destroy_hrtimer_on_stack(&hs.timer);
3437 return true;
3438 }
3439
3440 static bool blk_mq_poll_hybrid(struct request_queue *q,
3441 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3442 {
3443 struct request *rq;
3444
3445 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3446 return false;
3447
3448 if (!blk_qc_t_is_internal(cookie))
3449 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3450 else {
3451 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3452 /*
3453 * With scheduling, if the request has completed, we'll
3454 * get a NULL return here, as we clear the sched tag when
3455 * that happens. The request still remains valid, like always,
3456 * so we should be safe with just the NULL check.
3457 */
3458 if (!rq)
3459 return false;
3460 }
3461
3462 return blk_mq_poll_hybrid_sleep(q, hctx, rq);
3463 }
3464
3465 /**
3466 * blk_poll - poll for IO completions
3467 * @q: the queue
3468 * @cookie: cookie passed back at IO submission time
3469 * @spin: whether to spin for completions
3470 *
3471 * Description:
3472 * Poll for completions on the passed in queue. Returns number of
3473 * completed entries found. If @spin is true, then blk_poll will continue
3474 * looping until at least one completion is found, unless the task is
3475 * otherwise marked running (or we need to reschedule).
3476 */
3477 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3478 {
3479 struct blk_mq_hw_ctx *hctx;
3480 long state;
3481
3482 if (!blk_qc_t_valid(cookie) ||
3483 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3484 return 0;
3485
3486 if (current->plug)
3487 blk_flush_plug_list(current->plug, false);
3488
3489 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3490
3491 /*
3492 * If we sleep, have the caller restart the poll loop to reset
3493 * the state. Like for the other success return cases, the
3494 * caller is responsible for checking if the IO completed. If
3495 * the IO isn't complete, we'll get called again and will go
3496 * straight to the busy poll loop.
3497 */
3498 if (blk_mq_poll_hybrid(q, hctx, cookie))
3499 return 1;
3500
3501 hctx->poll_considered++;
3502
3503 state = current->state;
3504 do {
3505 int ret;
3506
3507 hctx->poll_invoked++;
3508
3509 ret = q->mq_ops->poll(hctx);
3510 if (ret > 0) {
3511 hctx->poll_success++;
3512 __set_current_state(TASK_RUNNING);
3513 return ret;
3514 }
3515
3516 if (signal_pending_state(state, current))
3517 __set_current_state(TASK_RUNNING);
3518
3519 if (current->state == TASK_RUNNING)
3520 return 1;
3521 if (ret < 0 || !spin)
3522 break;
3523 cpu_relax();
3524 } while (!need_resched());
3525
3526 __set_current_state(TASK_RUNNING);
3527 return 0;
3528 }
3529 EXPORT_SYMBOL_GPL(blk_poll);
3530
3531 unsigned int blk_mq_rq_cpu(struct request *rq)
3532 {
3533 return rq->mq_ctx->cpu;
3534 }
3535 EXPORT_SYMBOL(blk_mq_rq_cpu);
3536
3537 static int __init blk_mq_init(void)
3538 {
3539 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3540 blk_mq_hctx_notify_dead);
3541 return 0;
3542 }
3543 subsys_initcall(blk_mq_init);