]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-mq.c
blk-mq: export blk_mq_free_request()
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23 #include <linux/crash_dump.h>
24
25 #include <trace/events/block.h>
26
27 #include <linux/blk-mq.h>
28 #include "blk.h"
29 #include "blk-mq.h"
30 #include "blk-mq-tag.h"
31
32 static DEFINE_MUTEX(all_q_mutex);
33 static LIST_HEAD(all_q_list);
34
35 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
36
37 /*
38 * Check if any of the ctx's have pending work in this hardware queue
39 */
40 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
41 {
42 unsigned int i;
43
44 for (i = 0; i < hctx->ctx_map.map_size; i++)
45 if (hctx->ctx_map.map[i].word)
46 return true;
47
48 return false;
49 }
50
51 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
52 struct blk_mq_ctx *ctx)
53 {
54 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
55 }
56
57 #define CTX_TO_BIT(hctx, ctx) \
58 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
59
60 /*
61 * Mark this ctx as having pending work in this hardware queue
62 */
63 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
64 struct blk_mq_ctx *ctx)
65 {
66 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
67
68 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
69 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
70 }
71
72 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
73 struct blk_mq_ctx *ctx)
74 {
75 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
76
77 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
78 }
79
80 static int blk_mq_queue_enter(struct request_queue *q)
81 {
82 while (true) {
83 int ret;
84
85 if (percpu_ref_tryget_live(&q->mq_usage_counter))
86 return 0;
87
88 ret = wait_event_interruptible(q->mq_freeze_wq,
89 !q->mq_freeze_depth || blk_queue_dying(q));
90 if (blk_queue_dying(q))
91 return -ENODEV;
92 if (ret)
93 return ret;
94 }
95 }
96
97 static void blk_mq_queue_exit(struct request_queue *q)
98 {
99 percpu_ref_put(&q->mq_usage_counter);
100 }
101
102 static void blk_mq_usage_counter_release(struct percpu_ref *ref)
103 {
104 struct request_queue *q =
105 container_of(ref, struct request_queue, mq_usage_counter);
106
107 wake_up_all(&q->mq_freeze_wq);
108 }
109
110 /*
111 * Guarantee no request is in use, so we can change any data structure of
112 * the queue afterward.
113 */
114 void blk_mq_freeze_queue(struct request_queue *q)
115 {
116 bool freeze;
117
118 spin_lock_irq(q->queue_lock);
119 freeze = !q->mq_freeze_depth++;
120 spin_unlock_irq(q->queue_lock);
121
122 if (freeze) {
123 percpu_ref_kill(&q->mq_usage_counter);
124 blk_mq_run_queues(q, false);
125 }
126 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
127 }
128
129 static void blk_mq_unfreeze_queue(struct request_queue *q)
130 {
131 bool wake;
132
133 spin_lock_irq(q->queue_lock);
134 wake = !--q->mq_freeze_depth;
135 WARN_ON_ONCE(q->mq_freeze_depth < 0);
136 spin_unlock_irq(q->queue_lock);
137 if (wake) {
138 percpu_ref_reinit(&q->mq_usage_counter);
139 wake_up_all(&q->mq_freeze_wq);
140 }
141 }
142
143 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
144 {
145 return blk_mq_has_free_tags(hctx->tags);
146 }
147 EXPORT_SYMBOL(blk_mq_can_queue);
148
149 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
150 struct request *rq, unsigned int rw_flags)
151 {
152 if (blk_queue_io_stat(q))
153 rw_flags |= REQ_IO_STAT;
154
155 INIT_LIST_HEAD(&rq->queuelist);
156 /* csd/requeue_work/fifo_time is initialized before use */
157 rq->q = q;
158 rq->mq_ctx = ctx;
159 rq->cmd_flags |= rw_flags;
160 /* do not touch atomic flags, it needs atomic ops against the timer */
161 rq->cpu = -1;
162 INIT_HLIST_NODE(&rq->hash);
163 RB_CLEAR_NODE(&rq->rb_node);
164 rq->rq_disk = NULL;
165 rq->part = NULL;
166 rq->start_time = jiffies;
167 #ifdef CONFIG_BLK_CGROUP
168 rq->rl = NULL;
169 set_start_time_ns(rq);
170 rq->io_start_time_ns = 0;
171 #endif
172 rq->nr_phys_segments = 0;
173 #if defined(CONFIG_BLK_DEV_INTEGRITY)
174 rq->nr_integrity_segments = 0;
175 #endif
176 rq->special = NULL;
177 /* tag was already set */
178 rq->errors = 0;
179
180 rq->cmd = rq->__cmd;
181
182 rq->extra_len = 0;
183 rq->sense_len = 0;
184 rq->resid_len = 0;
185 rq->sense = NULL;
186
187 INIT_LIST_HEAD(&rq->timeout_list);
188 rq->timeout = 0;
189
190 rq->end_io = NULL;
191 rq->end_io_data = NULL;
192 rq->next_rq = NULL;
193
194 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
195 }
196
197 static struct request *
198 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
199 {
200 struct request *rq;
201 unsigned int tag;
202
203 tag = blk_mq_get_tag(data);
204 if (tag != BLK_MQ_TAG_FAIL) {
205 rq = data->hctx->tags->rqs[tag];
206
207 if (blk_mq_tag_busy(data->hctx)) {
208 rq->cmd_flags = REQ_MQ_INFLIGHT;
209 atomic_inc(&data->hctx->nr_active);
210 }
211
212 rq->tag = tag;
213 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
214 return rq;
215 }
216
217 return NULL;
218 }
219
220 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
221 bool reserved)
222 {
223 struct blk_mq_ctx *ctx;
224 struct blk_mq_hw_ctx *hctx;
225 struct request *rq;
226 struct blk_mq_alloc_data alloc_data;
227 int ret;
228
229 ret = blk_mq_queue_enter(q);
230 if (ret)
231 return ERR_PTR(ret);
232
233 ctx = blk_mq_get_ctx(q);
234 hctx = q->mq_ops->map_queue(q, ctx->cpu);
235 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
236 reserved, ctx, hctx);
237
238 rq = __blk_mq_alloc_request(&alloc_data, rw);
239 if (!rq && (gfp & __GFP_WAIT)) {
240 __blk_mq_run_hw_queue(hctx);
241 blk_mq_put_ctx(ctx);
242
243 ctx = blk_mq_get_ctx(q);
244 hctx = q->mq_ops->map_queue(q, ctx->cpu);
245 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
246 hctx);
247 rq = __blk_mq_alloc_request(&alloc_data, rw);
248 ctx = alloc_data.ctx;
249 }
250 blk_mq_put_ctx(ctx);
251 if (!rq)
252 return ERR_PTR(-EWOULDBLOCK);
253 return rq;
254 }
255 EXPORT_SYMBOL(blk_mq_alloc_request);
256
257 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
258 struct blk_mq_ctx *ctx, struct request *rq)
259 {
260 const int tag = rq->tag;
261 struct request_queue *q = rq->q;
262
263 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
264 atomic_dec(&hctx->nr_active);
265 rq->cmd_flags = 0;
266
267 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
268 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
269 blk_mq_queue_exit(q);
270 }
271
272 void blk_mq_free_request(struct request *rq)
273 {
274 struct blk_mq_ctx *ctx = rq->mq_ctx;
275 struct blk_mq_hw_ctx *hctx;
276 struct request_queue *q = rq->q;
277
278 ctx->rq_completed[rq_is_sync(rq)]++;
279
280 hctx = q->mq_ops->map_queue(q, ctx->cpu);
281 __blk_mq_free_request(hctx, ctx, rq);
282 }
283 EXPORT_SYMBOL_GPL(blk_mq_free_request);
284
285 inline void __blk_mq_end_request(struct request *rq, int error)
286 {
287 blk_account_io_done(rq);
288
289 if (rq->end_io) {
290 rq->end_io(rq, error);
291 } else {
292 if (unlikely(blk_bidi_rq(rq)))
293 blk_mq_free_request(rq->next_rq);
294 blk_mq_free_request(rq);
295 }
296 }
297 EXPORT_SYMBOL(__blk_mq_end_request);
298
299 void blk_mq_end_request(struct request *rq, int error)
300 {
301 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
302 BUG();
303 __blk_mq_end_request(rq, error);
304 }
305 EXPORT_SYMBOL(blk_mq_end_request);
306
307 static void __blk_mq_complete_request_remote(void *data)
308 {
309 struct request *rq = data;
310
311 rq->q->softirq_done_fn(rq);
312 }
313
314 static void blk_mq_ipi_complete_request(struct request *rq)
315 {
316 struct blk_mq_ctx *ctx = rq->mq_ctx;
317 bool shared = false;
318 int cpu;
319
320 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
321 rq->q->softirq_done_fn(rq);
322 return;
323 }
324
325 cpu = get_cpu();
326 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
327 shared = cpus_share_cache(cpu, ctx->cpu);
328
329 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
330 rq->csd.func = __blk_mq_complete_request_remote;
331 rq->csd.info = rq;
332 rq->csd.flags = 0;
333 smp_call_function_single_async(ctx->cpu, &rq->csd);
334 } else {
335 rq->q->softirq_done_fn(rq);
336 }
337 put_cpu();
338 }
339
340 void __blk_mq_complete_request(struct request *rq)
341 {
342 struct request_queue *q = rq->q;
343
344 if (!q->softirq_done_fn)
345 blk_mq_end_request(rq, rq->errors);
346 else
347 blk_mq_ipi_complete_request(rq);
348 }
349
350 /**
351 * blk_mq_complete_request - end I/O on a request
352 * @rq: the request being processed
353 *
354 * Description:
355 * Ends all I/O on a request. It does not handle partial completions.
356 * The actual completion happens out-of-order, through a IPI handler.
357 **/
358 void blk_mq_complete_request(struct request *rq)
359 {
360 struct request_queue *q = rq->q;
361
362 if (unlikely(blk_should_fake_timeout(q)))
363 return;
364 if (!blk_mark_rq_complete(rq))
365 __blk_mq_complete_request(rq);
366 }
367 EXPORT_SYMBOL(blk_mq_complete_request);
368
369 void blk_mq_start_request(struct request *rq)
370 {
371 struct request_queue *q = rq->q;
372
373 trace_block_rq_issue(q, rq);
374
375 rq->resid_len = blk_rq_bytes(rq);
376 if (unlikely(blk_bidi_rq(rq)))
377 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
378
379 blk_add_timer(rq);
380
381 /*
382 * Ensure that ->deadline is visible before set the started
383 * flag and clear the completed flag.
384 */
385 smp_mb__before_atomic();
386
387 /*
388 * Mark us as started and clear complete. Complete might have been
389 * set if requeue raced with timeout, which then marked it as
390 * complete. So be sure to clear complete again when we start
391 * the request, otherwise we'll ignore the completion event.
392 */
393 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
394 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
395 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
396 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
397
398 if (q->dma_drain_size && blk_rq_bytes(rq)) {
399 /*
400 * Make sure space for the drain appears. We know we can do
401 * this because max_hw_segments has been adjusted to be one
402 * fewer than the device can handle.
403 */
404 rq->nr_phys_segments++;
405 }
406 }
407 EXPORT_SYMBOL(blk_mq_start_request);
408
409 static void __blk_mq_requeue_request(struct request *rq)
410 {
411 struct request_queue *q = rq->q;
412
413 trace_block_rq_requeue(q, rq);
414
415 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
416 if (q->dma_drain_size && blk_rq_bytes(rq))
417 rq->nr_phys_segments--;
418 }
419 }
420
421 void blk_mq_requeue_request(struct request *rq)
422 {
423 __blk_mq_requeue_request(rq);
424
425 BUG_ON(blk_queued_rq(rq));
426 blk_mq_add_to_requeue_list(rq, true);
427 }
428 EXPORT_SYMBOL(blk_mq_requeue_request);
429
430 static void blk_mq_requeue_work(struct work_struct *work)
431 {
432 struct request_queue *q =
433 container_of(work, struct request_queue, requeue_work);
434 LIST_HEAD(rq_list);
435 struct request *rq, *next;
436 unsigned long flags;
437
438 spin_lock_irqsave(&q->requeue_lock, flags);
439 list_splice_init(&q->requeue_list, &rq_list);
440 spin_unlock_irqrestore(&q->requeue_lock, flags);
441
442 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
443 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
444 continue;
445
446 rq->cmd_flags &= ~REQ_SOFTBARRIER;
447 list_del_init(&rq->queuelist);
448 blk_mq_insert_request(rq, true, false, false);
449 }
450
451 while (!list_empty(&rq_list)) {
452 rq = list_entry(rq_list.next, struct request, queuelist);
453 list_del_init(&rq->queuelist);
454 blk_mq_insert_request(rq, false, false, false);
455 }
456
457 /*
458 * Use the start variant of queue running here, so that running
459 * the requeue work will kick stopped queues.
460 */
461 blk_mq_start_hw_queues(q);
462 }
463
464 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
465 {
466 struct request_queue *q = rq->q;
467 unsigned long flags;
468
469 /*
470 * We abuse this flag that is otherwise used by the I/O scheduler to
471 * request head insertation from the workqueue.
472 */
473 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
474
475 spin_lock_irqsave(&q->requeue_lock, flags);
476 if (at_head) {
477 rq->cmd_flags |= REQ_SOFTBARRIER;
478 list_add(&rq->queuelist, &q->requeue_list);
479 } else {
480 list_add_tail(&rq->queuelist, &q->requeue_list);
481 }
482 spin_unlock_irqrestore(&q->requeue_lock, flags);
483 }
484 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
485
486 void blk_mq_kick_requeue_list(struct request_queue *q)
487 {
488 kblockd_schedule_work(&q->requeue_work);
489 }
490 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
491
492 static inline bool is_flush_request(struct request *rq,
493 struct blk_flush_queue *fq, unsigned int tag)
494 {
495 return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
496 fq->flush_rq->tag == tag);
497 }
498
499 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
500 {
501 struct request *rq = tags->rqs[tag];
502 /* mq_ctx of flush rq is always cloned from the corresponding req */
503 struct blk_flush_queue *fq = blk_get_flush_queue(rq->q, rq->mq_ctx);
504
505 if (!is_flush_request(rq, fq, tag))
506 return rq;
507
508 return fq->flush_rq;
509 }
510 EXPORT_SYMBOL(blk_mq_tag_to_rq);
511
512 struct blk_mq_timeout_data {
513 unsigned long next;
514 unsigned int next_set;
515 };
516
517 void blk_mq_rq_timed_out(struct request *req, bool reserved)
518 {
519 struct blk_mq_ops *ops = req->q->mq_ops;
520 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
521
522 /*
523 * We know that complete is set at this point. If STARTED isn't set
524 * anymore, then the request isn't active and the "timeout" should
525 * just be ignored. This can happen due to the bitflag ordering.
526 * Timeout first checks if STARTED is set, and if it is, assumes
527 * the request is active. But if we race with completion, then
528 * we both flags will get cleared. So check here again, and ignore
529 * a timeout event with a request that isn't active.
530 */
531 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
532 return;
533
534 if (ops->timeout)
535 ret = ops->timeout(req, reserved);
536
537 switch (ret) {
538 case BLK_EH_HANDLED:
539 __blk_mq_complete_request(req);
540 break;
541 case BLK_EH_RESET_TIMER:
542 blk_add_timer(req);
543 blk_clear_rq_complete(req);
544 break;
545 case BLK_EH_NOT_HANDLED:
546 break;
547 default:
548 printk(KERN_ERR "block: bad eh return: %d\n", ret);
549 break;
550 }
551 }
552
553 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
554 struct request *rq, void *priv, bool reserved)
555 {
556 struct blk_mq_timeout_data *data = priv;
557
558 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
559 return;
560
561 if (time_after_eq(jiffies, rq->deadline)) {
562 if (!blk_mark_rq_complete(rq))
563 blk_mq_rq_timed_out(rq, reserved);
564 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
565 data->next = rq->deadline;
566 data->next_set = 1;
567 }
568 }
569
570 static void blk_mq_rq_timer(unsigned long priv)
571 {
572 struct request_queue *q = (struct request_queue *)priv;
573 struct blk_mq_timeout_data data = {
574 .next = 0,
575 .next_set = 0,
576 };
577 struct blk_mq_hw_ctx *hctx;
578 int i;
579
580 queue_for_each_hw_ctx(q, hctx, i) {
581 /*
582 * If not software queues are currently mapped to this
583 * hardware queue, there's nothing to check
584 */
585 if (!hctx->nr_ctx || !hctx->tags)
586 continue;
587
588 blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data);
589 }
590
591 if (data.next_set) {
592 data.next = blk_rq_timeout(round_jiffies_up(data.next));
593 mod_timer(&q->timeout, data.next);
594 } else {
595 queue_for_each_hw_ctx(q, hctx, i)
596 blk_mq_tag_idle(hctx);
597 }
598 }
599
600 /*
601 * Reverse check our software queue for entries that we could potentially
602 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
603 * too much time checking for merges.
604 */
605 static bool blk_mq_attempt_merge(struct request_queue *q,
606 struct blk_mq_ctx *ctx, struct bio *bio)
607 {
608 struct request *rq;
609 int checked = 8;
610
611 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
612 int el_ret;
613
614 if (!checked--)
615 break;
616
617 if (!blk_rq_merge_ok(rq, bio))
618 continue;
619
620 el_ret = blk_try_merge(rq, bio);
621 if (el_ret == ELEVATOR_BACK_MERGE) {
622 if (bio_attempt_back_merge(q, rq, bio)) {
623 ctx->rq_merged++;
624 return true;
625 }
626 break;
627 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
628 if (bio_attempt_front_merge(q, rq, bio)) {
629 ctx->rq_merged++;
630 return true;
631 }
632 break;
633 }
634 }
635
636 return false;
637 }
638
639 /*
640 * Process software queues that have been marked busy, splicing them
641 * to the for-dispatch
642 */
643 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
644 {
645 struct blk_mq_ctx *ctx;
646 int i;
647
648 for (i = 0; i < hctx->ctx_map.map_size; i++) {
649 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
650 unsigned int off, bit;
651
652 if (!bm->word)
653 continue;
654
655 bit = 0;
656 off = i * hctx->ctx_map.bits_per_word;
657 do {
658 bit = find_next_bit(&bm->word, bm->depth, bit);
659 if (bit >= bm->depth)
660 break;
661
662 ctx = hctx->ctxs[bit + off];
663 clear_bit(bit, &bm->word);
664 spin_lock(&ctx->lock);
665 list_splice_tail_init(&ctx->rq_list, list);
666 spin_unlock(&ctx->lock);
667
668 bit++;
669 } while (1);
670 }
671 }
672
673 /*
674 * Run this hardware queue, pulling any software queues mapped to it in.
675 * Note that this function currently has various problems around ordering
676 * of IO. In particular, we'd like FIFO behaviour on handling existing
677 * items on the hctx->dispatch list. Ignore that for now.
678 */
679 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
680 {
681 struct request_queue *q = hctx->queue;
682 struct request *rq;
683 LIST_HEAD(rq_list);
684 LIST_HEAD(driver_list);
685 struct list_head *dptr;
686 int queued;
687
688 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
689
690 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
691 return;
692
693 hctx->run++;
694
695 /*
696 * Touch any software queue that has pending entries.
697 */
698 flush_busy_ctxs(hctx, &rq_list);
699
700 /*
701 * If we have previous entries on our dispatch list, grab them
702 * and stuff them at the front for more fair dispatch.
703 */
704 if (!list_empty_careful(&hctx->dispatch)) {
705 spin_lock(&hctx->lock);
706 if (!list_empty(&hctx->dispatch))
707 list_splice_init(&hctx->dispatch, &rq_list);
708 spin_unlock(&hctx->lock);
709 }
710
711 /*
712 * Start off with dptr being NULL, so we start the first request
713 * immediately, even if we have more pending.
714 */
715 dptr = NULL;
716
717 /*
718 * Now process all the entries, sending them to the driver.
719 */
720 queued = 0;
721 while (!list_empty(&rq_list)) {
722 struct blk_mq_queue_data bd;
723 int ret;
724
725 rq = list_first_entry(&rq_list, struct request, queuelist);
726 list_del_init(&rq->queuelist);
727
728 bd.rq = rq;
729 bd.list = dptr;
730 bd.last = list_empty(&rq_list);
731
732 ret = q->mq_ops->queue_rq(hctx, &bd);
733 switch (ret) {
734 case BLK_MQ_RQ_QUEUE_OK:
735 queued++;
736 continue;
737 case BLK_MQ_RQ_QUEUE_BUSY:
738 list_add(&rq->queuelist, &rq_list);
739 __blk_mq_requeue_request(rq);
740 break;
741 default:
742 pr_err("blk-mq: bad return on queue: %d\n", ret);
743 case BLK_MQ_RQ_QUEUE_ERROR:
744 rq->errors = -EIO;
745 blk_mq_end_request(rq, rq->errors);
746 break;
747 }
748
749 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
750 break;
751
752 /*
753 * We've done the first request. If we have more than 1
754 * left in the list, set dptr to defer issue.
755 */
756 if (!dptr && rq_list.next != rq_list.prev)
757 dptr = &driver_list;
758 }
759
760 if (!queued)
761 hctx->dispatched[0]++;
762 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
763 hctx->dispatched[ilog2(queued) + 1]++;
764
765 /*
766 * Any items that need requeuing? Stuff them into hctx->dispatch,
767 * that is where we will continue on next queue run.
768 */
769 if (!list_empty(&rq_list)) {
770 spin_lock(&hctx->lock);
771 list_splice(&rq_list, &hctx->dispatch);
772 spin_unlock(&hctx->lock);
773 }
774 }
775
776 /*
777 * It'd be great if the workqueue API had a way to pass
778 * in a mask and had some smarts for more clever placement.
779 * For now we just round-robin here, switching for every
780 * BLK_MQ_CPU_WORK_BATCH queued items.
781 */
782 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
783 {
784 int cpu = hctx->next_cpu;
785
786 if (--hctx->next_cpu_batch <= 0) {
787 int next_cpu;
788
789 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
790 if (next_cpu >= nr_cpu_ids)
791 next_cpu = cpumask_first(hctx->cpumask);
792
793 hctx->next_cpu = next_cpu;
794 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
795 }
796
797 return cpu;
798 }
799
800 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
801 {
802 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
803 return;
804
805 if (!async) {
806 int cpu = get_cpu();
807 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
808 __blk_mq_run_hw_queue(hctx);
809 put_cpu();
810 return;
811 }
812
813 put_cpu();
814 }
815
816 if (hctx->queue->nr_hw_queues == 1)
817 kblockd_schedule_delayed_work(&hctx->run_work, 0);
818 else {
819 unsigned int cpu;
820
821 cpu = blk_mq_hctx_next_cpu(hctx);
822 kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
823 }
824 }
825
826 void blk_mq_run_queues(struct request_queue *q, bool async)
827 {
828 struct blk_mq_hw_ctx *hctx;
829 int i;
830
831 queue_for_each_hw_ctx(q, hctx, i) {
832 if ((!blk_mq_hctx_has_pending(hctx) &&
833 list_empty_careful(&hctx->dispatch)) ||
834 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
835 continue;
836
837 blk_mq_run_hw_queue(hctx, async);
838 }
839 }
840 EXPORT_SYMBOL(blk_mq_run_queues);
841
842 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
843 {
844 cancel_delayed_work(&hctx->run_work);
845 cancel_delayed_work(&hctx->delay_work);
846 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
847 }
848 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
849
850 void blk_mq_stop_hw_queues(struct request_queue *q)
851 {
852 struct blk_mq_hw_ctx *hctx;
853 int i;
854
855 queue_for_each_hw_ctx(q, hctx, i)
856 blk_mq_stop_hw_queue(hctx);
857 }
858 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
859
860 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
861 {
862 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
863
864 blk_mq_run_hw_queue(hctx, false);
865 }
866 EXPORT_SYMBOL(blk_mq_start_hw_queue);
867
868 void blk_mq_start_hw_queues(struct request_queue *q)
869 {
870 struct blk_mq_hw_ctx *hctx;
871 int i;
872
873 queue_for_each_hw_ctx(q, hctx, i)
874 blk_mq_start_hw_queue(hctx);
875 }
876 EXPORT_SYMBOL(blk_mq_start_hw_queues);
877
878
879 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
880 {
881 struct blk_mq_hw_ctx *hctx;
882 int i;
883
884 queue_for_each_hw_ctx(q, hctx, i) {
885 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
886 continue;
887
888 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
889 blk_mq_run_hw_queue(hctx, async);
890 }
891 }
892 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
893
894 static void blk_mq_run_work_fn(struct work_struct *work)
895 {
896 struct blk_mq_hw_ctx *hctx;
897
898 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
899
900 __blk_mq_run_hw_queue(hctx);
901 }
902
903 static void blk_mq_delay_work_fn(struct work_struct *work)
904 {
905 struct blk_mq_hw_ctx *hctx;
906
907 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
908
909 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
910 __blk_mq_run_hw_queue(hctx);
911 }
912
913 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
914 {
915 unsigned long tmo = msecs_to_jiffies(msecs);
916
917 if (hctx->queue->nr_hw_queues == 1)
918 kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
919 else {
920 unsigned int cpu;
921
922 cpu = blk_mq_hctx_next_cpu(hctx);
923 kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
924 }
925 }
926 EXPORT_SYMBOL(blk_mq_delay_queue);
927
928 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
929 struct request *rq, bool at_head)
930 {
931 struct blk_mq_ctx *ctx = rq->mq_ctx;
932
933 trace_block_rq_insert(hctx->queue, rq);
934
935 if (at_head)
936 list_add(&rq->queuelist, &ctx->rq_list);
937 else
938 list_add_tail(&rq->queuelist, &ctx->rq_list);
939
940 blk_mq_hctx_mark_pending(hctx, ctx);
941 }
942
943 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
944 bool async)
945 {
946 struct request_queue *q = rq->q;
947 struct blk_mq_hw_ctx *hctx;
948 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
949
950 current_ctx = blk_mq_get_ctx(q);
951 if (!cpu_online(ctx->cpu))
952 rq->mq_ctx = ctx = current_ctx;
953
954 hctx = q->mq_ops->map_queue(q, ctx->cpu);
955
956 spin_lock(&ctx->lock);
957 __blk_mq_insert_request(hctx, rq, at_head);
958 spin_unlock(&ctx->lock);
959
960 if (run_queue)
961 blk_mq_run_hw_queue(hctx, async);
962
963 blk_mq_put_ctx(current_ctx);
964 }
965
966 static void blk_mq_insert_requests(struct request_queue *q,
967 struct blk_mq_ctx *ctx,
968 struct list_head *list,
969 int depth,
970 bool from_schedule)
971
972 {
973 struct blk_mq_hw_ctx *hctx;
974 struct blk_mq_ctx *current_ctx;
975
976 trace_block_unplug(q, depth, !from_schedule);
977
978 current_ctx = blk_mq_get_ctx(q);
979
980 if (!cpu_online(ctx->cpu))
981 ctx = current_ctx;
982 hctx = q->mq_ops->map_queue(q, ctx->cpu);
983
984 /*
985 * preemption doesn't flush plug list, so it's possible ctx->cpu is
986 * offline now
987 */
988 spin_lock(&ctx->lock);
989 while (!list_empty(list)) {
990 struct request *rq;
991
992 rq = list_first_entry(list, struct request, queuelist);
993 list_del_init(&rq->queuelist);
994 rq->mq_ctx = ctx;
995 __blk_mq_insert_request(hctx, rq, false);
996 }
997 spin_unlock(&ctx->lock);
998
999 blk_mq_run_hw_queue(hctx, from_schedule);
1000 blk_mq_put_ctx(current_ctx);
1001 }
1002
1003 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1004 {
1005 struct request *rqa = container_of(a, struct request, queuelist);
1006 struct request *rqb = container_of(b, struct request, queuelist);
1007
1008 return !(rqa->mq_ctx < rqb->mq_ctx ||
1009 (rqa->mq_ctx == rqb->mq_ctx &&
1010 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1011 }
1012
1013 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1014 {
1015 struct blk_mq_ctx *this_ctx;
1016 struct request_queue *this_q;
1017 struct request *rq;
1018 LIST_HEAD(list);
1019 LIST_HEAD(ctx_list);
1020 unsigned int depth;
1021
1022 list_splice_init(&plug->mq_list, &list);
1023
1024 list_sort(NULL, &list, plug_ctx_cmp);
1025
1026 this_q = NULL;
1027 this_ctx = NULL;
1028 depth = 0;
1029
1030 while (!list_empty(&list)) {
1031 rq = list_entry_rq(list.next);
1032 list_del_init(&rq->queuelist);
1033 BUG_ON(!rq->q);
1034 if (rq->mq_ctx != this_ctx) {
1035 if (this_ctx) {
1036 blk_mq_insert_requests(this_q, this_ctx,
1037 &ctx_list, depth,
1038 from_schedule);
1039 }
1040
1041 this_ctx = rq->mq_ctx;
1042 this_q = rq->q;
1043 depth = 0;
1044 }
1045
1046 depth++;
1047 list_add_tail(&rq->queuelist, &ctx_list);
1048 }
1049
1050 /*
1051 * If 'this_ctx' is set, we know we have entries to complete
1052 * on 'ctx_list'. Do those.
1053 */
1054 if (this_ctx) {
1055 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1056 from_schedule);
1057 }
1058 }
1059
1060 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1061 {
1062 init_request_from_bio(rq, bio);
1063
1064 if (blk_do_io_stat(rq))
1065 blk_account_io_start(rq, 1);
1066 }
1067
1068 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1069 {
1070 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1071 !blk_queue_nomerges(hctx->queue);
1072 }
1073
1074 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1075 struct blk_mq_ctx *ctx,
1076 struct request *rq, struct bio *bio)
1077 {
1078 if (!hctx_allow_merges(hctx)) {
1079 blk_mq_bio_to_request(rq, bio);
1080 spin_lock(&ctx->lock);
1081 insert_rq:
1082 __blk_mq_insert_request(hctx, rq, false);
1083 spin_unlock(&ctx->lock);
1084 return false;
1085 } else {
1086 struct request_queue *q = hctx->queue;
1087
1088 spin_lock(&ctx->lock);
1089 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1090 blk_mq_bio_to_request(rq, bio);
1091 goto insert_rq;
1092 }
1093
1094 spin_unlock(&ctx->lock);
1095 __blk_mq_free_request(hctx, ctx, rq);
1096 return true;
1097 }
1098 }
1099
1100 struct blk_map_ctx {
1101 struct blk_mq_hw_ctx *hctx;
1102 struct blk_mq_ctx *ctx;
1103 };
1104
1105 static struct request *blk_mq_map_request(struct request_queue *q,
1106 struct bio *bio,
1107 struct blk_map_ctx *data)
1108 {
1109 struct blk_mq_hw_ctx *hctx;
1110 struct blk_mq_ctx *ctx;
1111 struct request *rq;
1112 int rw = bio_data_dir(bio);
1113 struct blk_mq_alloc_data alloc_data;
1114
1115 if (unlikely(blk_mq_queue_enter(q))) {
1116 bio_endio(bio, -EIO);
1117 return NULL;
1118 }
1119
1120 ctx = blk_mq_get_ctx(q);
1121 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1122
1123 if (rw_is_sync(bio->bi_rw))
1124 rw |= REQ_SYNC;
1125
1126 trace_block_getrq(q, bio, rw);
1127 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1128 hctx);
1129 rq = __blk_mq_alloc_request(&alloc_data, rw);
1130 if (unlikely(!rq)) {
1131 __blk_mq_run_hw_queue(hctx);
1132 blk_mq_put_ctx(ctx);
1133 trace_block_sleeprq(q, bio, rw);
1134
1135 ctx = blk_mq_get_ctx(q);
1136 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1137 blk_mq_set_alloc_data(&alloc_data, q,
1138 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1139 rq = __blk_mq_alloc_request(&alloc_data, rw);
1140 ctx = alloc_data.ctx;
1141 hctx = alloc_data.hctx;
1142 }
1143
1144 hctx->queued++;
1145 data->hctx = hctx;
1146 data->ctx = ctx;
1147 return rq;
1148 }
1149
1150 /*
1151 * Multiple hardware queue variant. This will not use per-process plugs,
1152 * but will attempt to bypass the hctx queueing if we can go straight to
1153 * hardware for SYNC IO.
1154 */
1155 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1156 {
1157 const int is_sync = rw_is_sync(bio->bi_rw);
1158 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1159 struct blk_map_ctx data;
1160 struct request *rq;
1161
1162 blk_queue_bounce(q, &bio);
1163
1164 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1165 bio_endio(bio, -EIO);
1166 return;
1167 }
1168
1169 rq = blk_mq_map_request(q, bio, &data);
1170 if (unlikely(!rq))
1171 return;
1172
1173 if (unlikely(is_flush_fua)) {
1174 blk_mq_bio_to_request(rq, bio);
1175 blk_insert_flush(rq);
1176 goto run_queue;
1177 }
1178
1179 /*
1180 * If the driver supports defer issued based on 'last', then
1181 * queue it up like normal since we can potentially save some
1182 * CPU this way.
1183 */
1184 if (is_sync && !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1185 struct blk_mq_queue_data bd = {
1186 .rq = rq,
1187 .list = NULL,
1188 .last = 1
1189 };
1190 int ret;
1191
1192 blk_mq_bio_to_request(rq, bio);
1193
1194 /*
1195 * For OK queue, we are done. For error, kill it. Any other
1196 * error (busy), just add it to our list as we previously
1197 * would have done
1198 */
1199 ret = q->mq_ops->queue_rq(data.hctx, &bd);
1200 if (ret == BLK_MQ_RQ_QUEUE_OK)
1201 goto done;
1202 else {
1203 __blk_mq_requeue_request(rq);
1204
1205 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1206 rq->errors = -EIO;
1207 blk_mq_end_request(rq, rq->errors);
1208 goto done;
1209 }
1210 }
1211 }
1212
1213 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1214 /*
1215 * For a SYNC request, send it to the hardware immediately. For
1216 * an ASYNC request, just ensure that we run it later on. The
1217 * latter allows for merging opportunities and more efficient
1218 * dispatching.
1219 */
1220 run_queue:
1221 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1222 }
1223 done:
1224 blk_mq_put_ctx(data.ctx);
1225 }
1226
1227 /*
1228 * Single hardware queue variant. This will attempt to use any per-process
1229 * plug for merging and IO deferral.
1230 */
1231 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1232 {
1233 const int is_sync = rw_is_sync(bio->bi_rw);
1234 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1235 unsigned int use_plug, request_count = 0;
1236 struct blk_map_ctx data;
1237 struct request *rq;
1238
1239 /*
1240 * If we have multiple hardware queues, just go directly to
1241 * one of those for sync IO.
1242 */
1243 use_plug = !is_flush_fua && !is_sync;
1244
1245 blk_queue_bounce(q, &bio);
1246
1247 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1248 bio_endio(bio, -EIO);
1249 return;
1250 }
1251
1252 if (use_plug && !blk_queue_nomerges(q) &&
1253 blk_attempt_plug_merge(q, bio, &request_count))
1254 return;
1255
1256 rq = blk_mq_map_request(q, bio, &data);
1257 if (unlikely(!rq))
1258 return;
1259
1260 if (unlikely(is_flush_fua)) {
1261 blk_mq_bio_to_request(rq, bio);
1262 blk_insert_flush(rq);
1263 goto run_queue;
1264 }
1265
1266 /*
1267 * A task plug currently exists. Since this is completely lockless,
1268 * utilize that to temporarily store requests until the task is
1269 * either done or scheduled away.
1270 */
1271 if (use_plug) {
1272 struct blk_plug *plug = current->plug;
1273
1274 if (plug) {
1275 blk_mq_bio_to_request(rq, bio);
1276 if (list_empty(&plug->mq_list))
1277 trace_block_plug(q);
1278 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1279 blk_flush_plug_list(plug, false);
1280 trace_block_plug(q);
1281 }
1282 list_add_tail(&rq->queuelist, &plug->mq_list);
1283 blk_mq_put_ctx(data.ctx);
1284 return;
1285 }
1286 }
1287
1288 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1289 /*
1290 * For a SYNC request, send it to the hardware immediately. For
1291 * an ASYNC request, just ensure that we run it later on. The
1292 * latter allows for merging opportunities and more efficient
1293 * dispatching.
1294 */
1295 run_queue:
1296 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1297 }
1298
1299 blk_mq_put_ctx(data.ctx);
1300 }
1301
1302 /*
1303 * Default mapping to a software queue, since we use one per CPU.
1304 */
1305 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1306 {
1307 return q->queue_hw_ctx[q->mq_map[cpu]];
1308 }
1309 EXPORT_SYMBOL(blk_mq_map_queue);
1310
1311 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1312 struct blk_mq_tags *tags, unsigned int hctx_idx)
1313 {
1314 struct page *page;
1315
1316 if (tags->rqs && set->ops->exit_request) {
1317 int i;
1318
1319 for (i = 0; i < tags->nr_tags; i++) {
1320 if (!tags->rqs[i])
1321 continue;
1322 set->ops->exit_request(set->driver_data, tags->rqs[i],
1323 hctx_idx, i);
1324 tags->rqs[i] = NULL;
1325 }
1326 }
1327
1328 while (!list_empty(&tags->page_list)) {
1329 page = list_first_entry(&tags->page_list, struct page, lru);
1330 list_del_init(&page->lru);
1331 __free_pages(page, page->private);
1332 }
1333
1334 kfree(tags->rqs);
1335
1336 blk_mq_free_tags(tags);
1337 }
1338
1339 static size_t order_to_size(unsigned int order)
1340 {
1341 return (size_t)PAGE_SIZE << order;
1342 }
1343
1344 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1345 unsigned int hctx_idx)
1346 {
1347 struct blk_mq_tags *tags;
1348 unsigned int i, j, entries_per_page, max_order = 4;
1349 size_t rq_size, left;
1350
1351 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1352 set->numa_node);
1353 if (!tags)
1354 return NULL;
1355
1356 INIT_LIST_HEAD(&tags->page_list);
1357
1358 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1359 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1360 set->numa_node);
1361 if (!tags->rqs) {
1362 blk_mq_free_tags(tags);
1363 return NULL;
1364 }
1365
1366 /*
1367 * rq_size is the size of the request plus driver payload, rounded
1368 * to the cacheline size
1369 */
1370 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1371 cache_line_size());
1372 left = rq_size * set->queue_depth;
1373
1374 for (i = 0; i < set->queue_depth; ) {
1375 int this_order = max_order;
1376 struct page *page;
1377 int to_do;
1378 void *p;
1379
1380 while (left < order_to_size(this_order - 1) && this_order)
1381 this_order--;
1382
1383 do {
1384 page = alloc_pages_node(set->numa_node,
1385 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1386 this_order);
1387 if (page)
1388 break;
1389 if (!this_order--)
1390 break;
1391 if (order_to_size(this_order) < rq_size)
1392 break;
1393 } while (1);
1394
1395 if (!page)
1396 goto fail;
1397
1398 page->private = this_order;
1399 list_add_tail(&page->lru, &tags->page_list);
1400
1401 p = page_address(page);
1402 entries_per_page = order_to_size(this_order) / rq_size;
1403 to_do = min(entries_per_page, set->queue_depth - i);
1404 left -= to_do * rq_size;
1405 for (j = 0; j < to_do; j++) {
1406 tags->rqs[i] = p;
1407 tags->rqs[i]->atomic_flags = 0;
1408 tags->rqs[i]->cmd_flags = 0;
1409 if (set->ops->init_request) {
1410 if (set->ops->init_request(set->driver_data,
1411 tags->rqs[i], hctx_idx, i,
1412 set->numa_node)) {
1413 tags->rqs[i] = NULL;
1414 goto fail;
1415 }
1416 }
1417
1418 p += rq_size;
1419 i++;
1420 }
1421 }
1422
1423 return tags;
1424
1425 fail:
1426 blk_mq_free_rq_map(set, tags, hctx_idx);
1427 return NULL;
1428 }
1429
1430 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1431 {
1432 kfree(bitmap->map);
1433 }
1434
1435 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1436 {
1437 unsigned int bpw = 8, total, num_maps, i;
1438
1439 bitmap->bits_per_word = bpw;
1440
1441 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1442 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1443 GFP_KERNEL, node);
1444 if (!bitmap->map)
1445 return -ENOMEM;
1446
1447 bitmap->map_size = num_maps;
1448
1449 total = nr_cpu_ids;
1450 for (i = 0; i < num_maps; i++) {
1451 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1452 total -= bitmap->map[i].depth;
1453 }
1454
1455 return 0;
1456 }
1457
1458 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1459 {
1460 struct request_queue *q = hctx->queue;
1461 struct blk_mq_ctx *ctx;
1462 LIST_HEAD(tmp);
1463
1464 /*
1465 * Move ctx entries to new CPU, if this one is going away.
1466 */
1467 ctx = __blk_mq_get_ctx(q, cpu);
1468
1469 spin_lock(&ctx->lock);
1470 if (!list_empty(&ctx->rq_list)) {
1471 list_splice_init(&ctx->rq_list, &tmp);
1472 blk_mq_hctx_clear_pending(hctx, ctx);
1473 }
1474 spin_unlock(&ctx->lock);
1475
1476 if (list_empty(&tmp))
1477 return NOTIFY_OK;
1478
1479 ctx = blk_mq_get_ctx(q);
1480 spin_lock(&ctx->lock);
1481
1482 while (!list_empty(&tmp)) {
1483 struct request *rq;
1484
1485 rq = list_first_entry(&tmp, struct request, queuelist);
1486 rq->mq_ctx = ctx;
1487 list_move_tail(&rq->queuelist, &ctx->rq_list);
1488 }
1489
1490 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1491 blk_mq_hctx_mark_pending(hctx, ctx);
1492
1493 spin_unlock(&ctx->lock);
1494
1495 blk_mq_run_hw_queue(hctx, true);
1496 blk_mq_put_ctx(ctx);
1497 return NOTIFY_OK;
1498 }
1499
1500 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1501 {
1502 struct request_queue *q = hctx->queue;
1503 struct blk_mq_tag_set *set = q->tag_set;
1504
1505 if (set->tags[hctx->queue_num])
1506 return NOTIFY_OK;
1507
1508 set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1509 if (!set->tags[hctx->queue_num])
1510 return NOTIFY_STOP;
1511
1512 hctx->tags = set->tags[hctx->queue_num];
1513 return NOTIFY_OK;
1514 }
1515
1516 static int blk_mq_hctx_notify(void *data, unsigned long action,
1517 unsigned int cpu)
1518 {
1519 struct blk_mq_hw_ctx *hctx = data;
1520
1521 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1522 return blk_mq_hctx_cpu_offline(hctx, cpu);
1523 else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1524 return blk_mq_hctx_cpu_online(hctx, cpu);
1525
1526 return NOTIFY_OK;
1527 }
1528
1529 static void blk_mq_exit_hctx(struct request_queue *q,
1530 struct blk_mq_tag_set *set,
1531 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1532 {
1533 unsigned flush_start_tag = set->queue_depth;
1534
1535 blk_mq_tag_idle(hctx);
1536
1537 if (set->ops->exit_request)
1538 set->ops->exit_request(set->driver_data,
1539 hctx->fq->flush_rq, hctx_idx,
1540 flush_start_tag + hctx_idx);
1541
1542 if (set->ops->exit_hctx)
1543 set->ops->exit_hctx(hctx, hctx_idx);
1544
1545 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1546 blk_free_flush_queue(hctx->fq);
1547 kfree(hctx->ctxs);
1548 blk_mq_free_bitmap(&hctx->ctx_map);
1549 }
1550
1551 static void blk_mq_exit_hw_queues(struct request_queue *q,
1552 struct blk_mq_tag_set *set, int nr_queue)
1553 {
1554 struct blk_mq_hw_ctx *hctx;
1555 unsigned int i;
1556
1557 queue_for_each_hw_ctx(q, hctx, i) {
1558 if (i == nr_queue)
1559 break;
1560 blk_mq_exit_hctx(q, set, hctx, i);
1561 }
1562 }
1563
1564 static void blk_mq_free_hw_queues(struct request_queue *q,
1565 struct blk_mq_tag_set *set)
1566 {
1567 struct blk_mq_hw_ctx *hctx;
1568 unsigned int i;
1569
1570 queue_for_each_hw_ctx(q, hctx, i) {
1571 free_cpumask_var(hctx->cpumask);
1572 kfree(hctx);
1573 }
1574 }
1575
1576 static int blk_mq_init_hctx(struct request_queue *q,
1577 struct blk_mq_tag_set *set,
1578 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1579 {
1580 int node;
1581 unsigned flush_start_tag = set->queue_depth;
1582
1583 node = hctx->numa_node;
1584 if (node == NUMA_NO_NODE)
1585 node = hctx->numa_node = set->numa_node;
1586
1587 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1588 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1589 spin_lock_init(&hctx->lock);
1590 INIT_LIST_HEAD(&hctx->dispatch);
1591 hctx->queue = q;
1592 hctx->queue_num = hctx_idx;
1593 hctx->flags = set->flags;
1594 hctx->cmd_size = set->cmd_size;
1595
1596 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1597 blk_mq_hctx_notify, hctx);
1598 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1599
1600 hctx->tags = set->tags[hctx_idx];
1601
1602 /*
1603 * Allocate space for all possible cpus to avoid allocation at
1604 * runtime
1605 */
1606 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1607 GFP_KERNEL, node);
1608 if (!hctx->ctxs)
1609 goto unregister_cpu_notifier;
1610
1611 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1612 goto free_ctxs;
1613
1614 hctx->nr_ctx = 0;
1615
1616 if (set->ops->init_hctx &&
1617 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1618 goto free_bitmap;
1619
1620 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1621 if (!hctx->fq)
1622 goto exit_hctx;
1623
1624 if (set->ops->init_request &&
1625 set->ops->init_request(set->driver_data,
1626 hctx->fq->flush_rq, hctx_idx,
1627 flush_start_tag + hctx_idx, node))
1628 goto free_fq;
1629
1630 return 0;
1631
1632 free_fq:
1633 kfree(hctx->fq);
1634 exit_hctx:
1635 if (set->ops->exit_hctx)
1636 set->ops->exit_hctx(hctx, hctx_idx);
1637 free_bitmap:
1638 blk_mq_free_bitmap(&hctx->ctx_map);
1639 free_ctxs:
1640 kfree(hctx->ctxs);
1641 unregister_cpu_notifier:
1642 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1643
1644 return -1;
1645 }
1646
1647 static int blk_mq_init_hw_queues(struct request_queue *q,
1648 struct blk_mq_tag_set *set)
1649 {
1650 struct blk_mq_hw_ctx *hctx;
1651 unsigned int i;
1652
1653 /*
1654 * Initialize hardware queues
1655 */
1656 queue_for_each_hw_ctx(q, hctx, i) {
1657 if (blk_mq_init_hctx(q, set, hctx, i))
1658 break;
1659 }
1660
1661 if (i == q->nr_hw_queues)
1662 return 0;
1663
1664 /*
1665 * Init failed
1666 */
1667 blk_mq_exit_hw_queues(q, set, i);
1668
1669 return 1;
1670 }
1671
1672 static void blk_mq_init_cpu_queues(struct request_queue *q,
1673 unsigned int nr_hw_queues)
1674 {
1675 unsigned int i;
1676
1677 for_each_possible_cpu(i) {
1678 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1679 struct blk_mq_hw_ctx *hctx;
1680
1681 memset(__ctx, 0, sizeof(*__ctx));
1682 __ctx->cpu = i;
1683 spin_lock_init(&__ctx->lock);
1684 INIT_LIST_HEAD(&__ctx->rq_list);
1685 __ctx->queue = q;
1686
1687 /* If the cpu isn't online, the cpu is mapped to first hctx */
1688 if (!cpu_online(i))
1689 continue;
1690
1691 hctx = q->mq_ops->map_queue(q, i);
1692 cpumask_set_cpu(i, hctx->cpumask);
1693 hctx->nr_ctx++;
1694
1695 /*
1696 * Set local node, IFF we have more than one hw queue. If
1697 * not, we remain on the home node of the device
1698 */
1699 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1700 hctx->numa_node = cpu_to_node(i);
1701 }
1702 }
1703
1704 static void blk_mq_map_swqueue(struct request_queue *q)
1705 {
1706 unsigned int i;
1707 struct blk_mq_hw_ctx *hctx;
1708 struct blk_mq_ctx *ctx;
1709
1710 queue_for_each_hw_ctx(q, hctx, i) {
1711 cpumask_clear(hctx->cpumask);
1712 hctx->nr_ctx = 0;
1713 }
1714
1715 /*
1716 * Map software to hardware queues
1717 */
1718 queue_for_each_ctx(q, ctx, i) {
1719 /* If the cpu isn't online, the cpu is mapped to first hctx */
1720 if (!cpu_online(i))
1721 continue;
1722
1723 hctx = q->mq_ops->map_queue(q, i);
1724 cpumask_set_cpu(i, hctx->cpumask);
1725 ctx->index_hw = hctx->nr_ctx;
1726 hctx->ctxs[hctx->nr_ctx++] = ctx;
1727 }
1728
1729 queue_for_each_hw_ctx(q, hctx, i) {
1730 /*
1731 * If no software queues are mapped to this hardware queue,
1732 * disable it and free the request entries.
1733 */
1734 if (!hctx->nr_ctx) {
1735 struct blk_mq_tag_set *set = q->tag_set;
1736
1737 if (set->tags[i]) {
1738 blk_mq_free_rq_map(set, set->tags[i], i);
1739 set->tags[i] = NULL;
1740 hctx->tags = NULL;
1741 }
1742 continue;
1743 }
1744
1745 /*
1746 * Initialize batch roundrobin counts
1747 */
1748 hctx->next_cpu = cpumask_first(hctx->cpumask);
1749 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1750 }
1751 }
1752
1753 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1754 {
1755 struct blk_mq_hw_ctx *hctx;
1756 struct request_queue *q;
1757 bool shared;
1758 int i;
1759
1760 if (set->tag_list.next == set->tag_list.prev)
1761 shared = false;
1762 else
1763 shared = true;
1764
1765 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1766 blk_mq_freeze_queue(q);
1767
1768 queue_for_each_hw_ctx(q, hctx, i) {
1769 if (shared)
1770 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1771 else
1772 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1773 }
1774 blk_mq_unfreeze_queue(q);
1775 }
1776 }
1777
1778 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1779 {
1780 struct blk_mq_tag_set *set = q->tag_set;
1781
1782 mutex_lock(&set->tag_list_lock);
1783 list_del_init(&q->tag_set_list);
1784 blk_mq_update_tag_set_depth(set);
1785 mutex_unlock(&set->tag_list_lock);
1786 }
1787
1788 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1789 struct request_queue *q)
1790 {
1791 q->tag_set = set;
1792
1793 mutex_lock(&set->tag_list_lock);
1794 list_add_tail(&q->tag_set_list, &set->tag_list);
1795 blk_mq_update_tag_set_depth(set);
1796 mutex_unlock(&set->tag_list_lock);
1797 }
1798
1799 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1800 {
1801 struct blk_mq_hw_ctx **hctxs;
1802 struct blk_mq_ctx __percpu *ctx;
1803 struct request_queue *q;
1804 unsigned int *map;
1805 int i;
1806
1807 ctx = alloc_percpu(struct blk_mq_ctx);
1808 if (!ctx)
1809 return ERR_PTR(-ENOMEM);
1810
1811 /*
1812 * If a crashdump is active, then we are potentially in a very
1813 * memory constrained environment. Limit us to 1 queue and
1814 * 64 tags to prevent using too much memory.
1815 */
1816 if (is_kdump_kernel()) {
1817 set->nr_hw_queues = 1;
1818 set->queue_depth = min(64U, set->queue_depth);
1819 }
1820
1821 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1822 set->numa_node);
1823
1824 if (!hctxs)
1825 goto err_percpu;
1826
1827 map = blk_mq_make_queue_map(set);
1828 if (!map)
1829 goto err_map;
1830
1831 for (i = 0; i < set->nr_hw_queues; i++) {
1832 int node = blk_mq_hw_queue_to_node(map, i);
1833
1834 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1835 GFP_KERNEL, node);
1836 if (!hctxs[i])
1837 goto err_hctxs;
1838
1839 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1840 node))
1841 goto err_hctxs;
1842
1843 atomic_set(&hctxs[i]->nr_active, 0);
1844 hctxs[i]->numa_node = node;
1845 hctxs[i]->queue_num = i;
1846 }
1847
1848 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1849 if (!q)
1850 goto err_hctxs;
1851
1852 /*
1853 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1854 * See blk_register_queue() for details.
1855 */
1856 if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release,
1857 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1858 goto err_map;
1859
1860 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1861 blk_queue_rq_timeout(q, 30000);
1862
1863 q->nr_queues = nr_cpu_ids;
1864 q->nr_hw_queues = set->nr_hw_queues;
1865 q->mq_map = map;
1866
1867 q->queue_ctx = ctx;
1868 q->queue_hw_ctx = hctxs;
1869
1870 q->mq_ops = set->ops;
1871 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1872
1873 if (!(set->flags & BLK_MQ_F_SG_MERGE))
1874 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1875
1876 q->sg_reserved_size = INT_MAX;
1877
1878 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1879 INIT_LIST_HEAD(&q->requeue_list);
1880 spin_lock_init(&q->requeue_lock);
1881
1882 if (q->nr_hw_queues > 1)
1883 blk_queue_make_request(q, blk_mq_make_request);
1884 else
1885 blk_queue_make_request(q, blk_sq_make_request);
1886
1887 if (set->timeout)
1888 blk_queue_rq_timeout(q, set->timeout);
1889
1890 /*
1891 * Do this after blk_queue_make_request() overrides it...
1892 */
1893 q->nr_requests = set->queue_depth;
1894
1895 if (set->ops->complete)
1896 blk_queue_softirq_done(q, set->ops->complete);
1897
1898 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1899
1900 if (blk_mq_init_hw_queues(q, set))
1901 goto err_hw;
1902
1903 mutex_lock(&all_q_mutex);
1904 list_add_tail(&q->all_q_node, &all_q_list);
1905 mutex_unlock(&all_q_mutex);
1906
1907 blk_mq_add_queue_tag_set(set, q);
1908
1909 blk_mq_map_swqueue(q);
1910
1911 return q;
1912
1913 err_hw:
1914 blk_cleanup_queue(q);
1915 err_hctxs:
1916 kfree(map);
1917 for (i = 0; i < set->nr_hw_queues; i++) {
1918 if (!hctxs[i])
1919 break;
1920 free_cpumask_var(hctxs[i]->cpumask);
1921 kfree(hctxs[i]);
1922 }
1923 err_map:
1924 kfree(hctxs);
1925 err_percpu:
1926 free_percpu(ctx);
1927 return ERR_PTR(-ENOMEM);
1928 }
1929 EXPORT_SYMBOL(blk_mq_init_queue);
1930
1931 void blk_mq_free_queue(struct request_queue *q)
1932 {
1933 struct blk_mq_tag_set *set = q->tag_set;
1934
1935 blk_mq_del_queue_tag_set(q);
1936
1937 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
1938 blk_mq_free_hw_queues(q, set);
1939
1940 percpu_ref_exit(&q->mq_usage_counter);
1941
1942 free_percpu(q->queue_ctx);
1943 kfree(q->queue_hw_ctx);
1944 kfree(q->mq_map);
1945
1946 q->queue_ctx = NULL;
1947 q->queue_hw_ctx = NULL;
1948 q->mq_map = NULL;
1949
1950 mutex_lock(&all_q_mutex);
1951 list_del_init(&q->all_q_node);
1952 mutex_unlock(&all_q_mutex);
1953 }
1954
1955 /* Basically redo blk_mq_init_queue with queue frozen */
1956 static void blk_mq_queue_reinit(struct request_queue *q)
1957 {
1958 blk_mq_freeze_queue(q);
1959
1960 blk_mq_sysfs_unregister(q);
1961
1962 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1963
1964 /*
1965 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1966 * we should change hctx numa_node according to new topology (this
1967 * involves free and re-allocate memory, worthy doing?)
1968 */
1969
1970 blk_mq_map_swqueue(q);
1971
1972 blk_mq_sysfs_register(q);
1973
1974 blk_mq_unfreeze_queue(q);
1975 }
1976
1977 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1978 unsigned long action, void *hcpu)
1979 {
1980 struct request_queue *q;
1981
1982 /*
1983 * Before new mappings are established, hotadded cpu might already
1984 * start handling requests. This doesn't break anything as we map
1985 * offline CPUs to first hardware queue. We will re-init the queue
1986 * below to get optimal settings.
1987 */
1988 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1989 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1990 return NOTIFY_OK;
1991
1992 mutex_lock(&all_q_mutex);
1993 list_for_each_entry(q, &all_q_list, all_q_node)
1994 blk_mq_queue_reinit(q);
1995 mutex_unlock(&all_q_mutex);
1996 return NOTIFY_OK;
1997 }
1998
1999 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2000 {
2001 int i;
2002
2003 for (i = 0; i < set->nr_hw_queues; i++) {
2004 set->tags[i] = blk_mq_init_rq_map(set, i);
2005 if (!set->tags[i])
2006 goto out_unwind;
2007 }
2008
2009 return 0;
2010
2011 out_unwind:
2012 while (--i >= 0)
2013 blk_mq_free_rq_map(set, set->tags[i], i);
2014
2015 return -ENOMEM;
2016 }
2017
2018 /*
2019 * Allocate the request maps associated with this tag_set. Note that this
2020 * may reduce the depth asked for, if memory is tight. set->queue_depth
2021 * will be updated to reflect the allocated depth.
2022 */
2023 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2024 {
2025 unsigned int depth;
2026 int err;
2027
2028 depth = set->queue_depth;
2029 do {
2030 err = __blk_mq_alloc_rq_maps(set);
2031 if (!err)
2032 break;
2033
2034 set->queue_depth >>= 1;
2035 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2036 err = -ENOMEM;
2037 break;
2038 }
2039 } while (set->queue_depth);
2040
2041 if (!set->queue_depth || err) {
2042 pr_err("blk-mq: failed to allocate request map\n");
2043 return -ENOMEM;
2044 }
2045
2046 if (depth != set->queue_depth)
2047 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2048 depth, set->queue_depth);
2049
2050 return 0;
2051 }
2052
2053 /*
2054 * Alloc a tag set to be associated with one or more request queues.
2055 * May fail with EINVAL for various error conditions. May adjust the
2056 * requested depth down, if if it too large. In that case, the set
2057 * value will be stored in set->queue_depth.
2058 */
2059 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2060 {
2061 if (!set->nr_hw_queues)
2062 return -EINVAL;
2063 if (!set->queue_depth)
2064 return -EINVAL;
2065 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2066 return -EINVAL;
2067
2068 if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
2069 return -EINVAL;
2070
2071 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2072 pr_info("blk-mq: reduced tag depth to %u\n",
2073 BLK_MQ_MAX_DEPTH);
2074 set->queue_depth = BLK_MQ_MAX_DEPTH;
2075 }
2076
2077 set->tags = kmalloc_node(set->nr_hw_queues *
2078 sizeof(struct blk_mq_tags *),
2079 GFP_KERNEL, set->numa_node);
2080 if (!set->tags)
2081 return -ENOMEM;
2082
2083 if (blk_mq_alloc_rq_maps(set))
2084 goto enomem;
2085
2086 mutex_init(&set->tag_list_lock);
2087 INIT_LIST_HEAD(&set->tag_list);
2088
2089 return 0;
2090 enomem:
2091 kfree(set->tags);
2092 set->tags = NULL;
2093 return -ENOMEM;
2094 }
2095 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2096
2097 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2098 {
2099 int i;
2100
2101 for (i = 0; i < set->nr_hw_queues; i++) {
2102 if (set->tags[i])
2103 blk_mq_free_rq_map(set, set->tags[i], i);
2104 }
2105
2106 kfree(set->tags);
2107 set->tags = NULL;
2108 }
2109 EXPORT_SYMBOL(blk_mq_free_tag_set);
2110
2111 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2112 {
2113 struct blk_mq_tag_set *set = q->tag_set;
2114 struct blk_mq_hw_ctx *hctx;
2115 int i, ret;
2116
2117 if (!set || nr > set->queue_depth)
2118 return -EINVAL;
2119
2120 ret = 0;
2121 queue_for_each_hw_ctx(q, hctx, i) {
2122 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2123 if (ret)
2124 break;
2125 }
2126
2127 if (!ret)
2128 q->nr_requests = nr;
2129
2130 return ret;
2131 }
2132
2133 void blk_mq_disable_hotplug(void)
2134 {
2135 mutex_lock(&all_q_mutex);
2136 }
2137
2138 void blk_mq_enable_hotplug(void)
2139 {
2140 mutex_unlock(&all_q_mutex);
2141 }
2142
2143 static int __init blk_mq_init(void)
2144 {
2145 blk_mq_cpu_init();
2146
2147 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2148
2149 return 0;
2150 }
2151 subsys_initcall(blk_mq_init);