]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - block/blk-mq.c
Merge tag 'irq-urgent-2021-05-15' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-jammy-kernel.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Block multiqueue core code
4 *
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
7 */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30
31 #include <trace/events/block.h>
32
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43
44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
45
46 static void blk_mq_poll_stats_start(struct request_queue *q);
47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48
49 static int blk_mq_poll_stats_bkt(const struct request *rq)
50 {
51 int ddir, sectors, bucket;
52
53 ddir = rq_data_dir(rq);
54 sectors = blk_rq_stats_sectors(rq);
55
56 bucket = ddir + 2 * ilog2(sectors);
57
58 if (bucket < 0)
59 return -1;
60 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62
63 return bucket;
64 }
65
66 /*
67 * Check if any of the ctx, dispatch list or elevator
68 * have pending work in this hardware queue.
69 */
70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
71 {
72 return !list_empty_careful(&hctx->dispatch) ||
73 sbitmap_any_bit_set(&hctx->ctx_map) ||
74 blk_mq_sched_has_work(hctx);
75 }
76
77 /*
78 * Mark this ctx as having pending work in this hardware queue
79 */
80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81 struct blk_mq_ctx *ctx)
82 {
83 const int bit = ctx->index_hw[hctx->type];
84
85 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86 sbitmap_set_bit(&hctx->ctx_map, bit);
87 }
88
89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90 struct blk_mq_ctx *ctx)
91 {
92 const int bit = ctx->index_hw[hctx->type];
93
94 sbitmap_clear_bit(&hctx->ctx_map, bit);
95 }
96
97 struct mq_inflight {
98 struct block_device *part;
99 unsigned int inflight[2];
100 };
101
102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103 struct request *rq, void *priv,
104 bool reserved)
105 {
106 struct mq_inflight *mi = priv;
107
108 if ((!mi->part->bd_partno || rq->part == mi->part) &&
109 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
110 mi->inflight[rq_data_dir(rq)]++;
111
112 return true;
113 }
114
115 unsigned int blk_mq_in_flight(struct request_queue *q,
116 struct block_device *part)
117 {
118 struct mq_inflight mi = { .part = part };
119
120 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
121
122 return mi.inflight[0] + mi.inflight[1];
123 }
124
125 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
126 unsigned int inflight[2])
127 {
128 struct mq_inflight mi = { .part = part };
129
130 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
131 inflight[0] = mi.inflight[0];
132 inflight[1] = mi.inflight[1];
133 }
134
135 void blk_freeze_queue_start(struct request_queue *q)
136 {
137 mutex_lock(&q->mq_freeze_lock);
138 if (++q->mq_freeze_depth == 1) {
139 percpu_ref_kill(&q->q_usage_counter);
140 mutex_unlock(&q->mq_freeze_lock);
141 if (queue_is_mq(q))
142 blk_mq_run_hw_queues(q, false);
143 } else {
144 mutex_unlock(&q->mq_freeze_lock);
145 }
146 }
147 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
148
149 void blk_mq_freeze_queue_wait(struct request_queue *q)
150 {
151 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
152 }
153 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
154
155 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
156 unsigned long timeout)
157 {
158 return wait_event_timeout(q->mq_freeze_wq,
159 percpu_ref_is_zero(&q->q_usage_counter),
160 timeout);
161 }
162 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
163
164 /*
165 * Guarantee no request is in use, so we can change any data structure of
166 * the queue afterward.
167 */
168 void blk_freeze_queue(struct request_queue *q)
169 {
170 /*
171 * In the !blk_mq case we are only calling this to kill the
172 * q_usage_counter, otherwise this increases the freeze depth
173 * and waits for it to return to zero. For this reason there is
174 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
175 * exported to drivers as the only user for unfreeze is blk_mq.
176 */
177 blk_freeze_queue_start(q);
178 blk_mq_freeze_queue_wait(q);
179 }
180
181 void blk_mq_freeze_queue(struct request_queue *q)
182 {
183 /*
184 * ...just an alias to keep freeze and unfreeze actions balanced
185 * in the blk_mq_* namespace
186 */
187 blk_freeze_queue(q);
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
190
191 void blk_mq_unfreeze_queue(struct request_queue *q)
192 {
193 mutex_lock(&q->mq_freeze_lock);
194 q->mq_freeze_depth--;
195 WARN_ON_ONCE(q->mq_freeze_depth < 0);
196 if (!q->mq_freeze_depth) {
197 percpu_ref_resurrect(&q->q_usage_counter);
198 wake_up_all(&q->mq_freeze_wq);
199 }
200 mutex_unlock(&q->mq_freeze_lock);
201 }
202 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
203
204 /*
205 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
206 * mpt3sas driver such that this function can be removed.
207 */
208 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
209 {
210 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
211 }
212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
213
214 /**
215 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
216 * @q: request queue.
217 *
218 * Note: this function does not prevent that the struct request end_io()
219 * callback function is invoked. Once this function is returned, we make
220 * sure no dispatch can happen until the queue is unquiesced via
221 * blk_mq_unquiesce_queue().
222 */
223 void blk_mq_quiesce_queue(struct request_queue *q)
224 {
225 struct blk_mq_hw_ctx *hctx;
226 unsigned int i;
227 bool rcu = false;
228
229 blk_mq_quiesce_queue_nowait(q);
230
231 queue_for_each_hw_ctx(q, hctx, i) {
232 if (hctx->flags & BLK_MQ_F_BLOCKING)
233 synchronize_srcu(hctx->srcu);
234 else
235 rcu = true;
236 }
237 if (rcu)
238 synchronize_rcu();
239 }
240 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
241
242 /*
243 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
244 * @q: request queue.
245 *
246 * This function recovers queue into the state before quiescing
247 * which is done by blk_mq_quiesce_queue.
248 */
249 void blk_mq_unquiesce_queue(struct request_queue *q)
250 {
251 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
252
253 /* dispatch requests which are inserted during quiescing */
254 blk_mq_run_hw_queues(q, true);
255 }
256 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
257
258 void blk_mq_wake_waiters(struct request_queue *q)
259 {
260 struct blk_mq_hw_ctx *hctx;
261 unsigned int i;
262
263 queue_for_each_hw_ctx(q, hctx, i)
264 if (blk_mq_hw_queue_mapped(hctx))
265 blk_mq_tag_wakeup_all(hctx->tags, true);
266 }
267
268 /*
269 * Only need start/end time stamping if we have iostat or
270 * blk stats enabled, or using an IO scheduler.
271 */
272 static inline bool blk_mq_need_time_stamp(struct request *rq)
273 {
274 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
275 }
276
277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
278 unsigned int tag, u64 alloc_time_ns)
279 {
280 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
281 struct request *rq = tags->static_rqs[tag];
282
283 if (data->q->elevator) {
284 rq->tag = BLK_MQ_NO_TAG;
285 rq->internal_tag = tag;
286 } else {
287 rq->tag = tag;
288 rq->internal_tag = BLK_MQ_NO_TAG;
289 }
290
291 /* csd/requeue_work/fifo_time is initialized before use */
292 rq->q = data->q;
293 rq->mq_ctx = data->ctx;
294 rq->mq_hctx = data->hctx;
295 rq->rq_flags = 0;
296 rq->cmd_flags = data->cmd_flags;
297 if (data->flags & BLK_MQ_REQ_PM)
298 rq->rq_flags |= RQF_PM;
299 if (blk_queue_io_stat(data->q))
300 rq->rq_flags |= RQF_IO_STAT;
301 INIT_LIST_HEAD(&rq->queuelist);
302 INIT_HLIST_NODE(&rq->hash);
303 RB_CLEAR_NODE(&rq->rb_node);
304 rq->rq_disk = NULL;
305 rq->part = NULL;
306 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
307 rq->alloc_time_ns = alloc_time_ns;
308 #endif
309 if (blk_mq_need_time_stamp(rq))
310 rq->start_time_ns = ktime_get_ns();
311 else
312 rq->start_time_ns = 0;
313 rq->io_start_time_ns = 0;
314 rq->stats_sectors = 0;
315 rq->nr_phys_segments = 0;
316 #if defined(CONFIG_BLK_DEV_INTEGRITY)
317 rq->nr_integrity_segments = 0;
318 #endif
319 blk_crypto_rq_set_defaults(rq);
320 /* tag was already set */
321 WRITE_ONCE(rq->deadline, 0);
322
323 rq->timeout = 0;
324
325 rq->end_io = NULL;
326 rq->end_io_data = NULL;
327
328 data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
329 refcount_set(&rq->ref, 1);
330
331 if (!op_is_flush(data->cmd_flags)) {
332 struct elevator_queue *e = data->q->elevator;
333
334 rq->elv.icq = NULL;
335 if (e && e->type->ops.prepare_request) {
336 if (e->type->icq_cache)
337 blk_mq_sched_assign_ioc(rq);
338
339 e->type->ops.prepare_request(rq);
340 rq->rq_flags |= RQF_ELVPRIV;
341 }
342 }
343
344 data->hctx->queued++;
345 return rq;
346 }
347
348 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
349 {
350 struct request_queue *q = data->q;
351 struct elevator_queue *e = q->elevator;
352 u64 alloc_time_ns = 0;
353 unsigned int tag;
354
355 /* alloc_time includes depth and tag waits */
356 if (blk_queue_rq_alloc_time(q))
357 alloc_time_ns = ktime_get_ns();
358
359 if (data->cmd_flags & REQ_NOWAIT)
360 data->flags |= BLK_MQ_REQ_NOWAIT;
361
362 if (e) {
363 /*
364 * Flush/passthrough requests are special and go directly to the
365 * dispatch list. Don't include reserved tags in the
366 * limiting, as it isn't useful.
367 */
368 if (!op_is_flush(data->cmd_flags) &&
369 !blk_op_is_passthrough(data->cmd_flags) &&
370 e->type->ops.limit_depth &&
371 !(data->flags & BLK_MQ_REQ_RESERVED))
372 e->type->ops.limit_depth(data->cmd_flags, data);
373 }
374
375 retry:
376 data->ctx = blk_mq_get_ctx(q);
377 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
378 if (!e)
379 blk_mq_tag_busy(data->hctx);
380
381 /*
382 * Waiting allocations only fail because of an inactive hctx. In that
383 * case just retry the hctx assignment and tag allocation as CPU hotplug
384 * should have migrated us to an online CPU by now.
385 */
386 tag = blk_mq_get_tag(data);
387 if (tag == BLK_MQ_NO_TAG) {
388 if (data->flags & BLK_MQ_REQ_NOWAIT)
389 return NULL;
390
391 /*
392 * Give up the CPU and sleep for a random short time to ensure
393 * that thread using a realtime scheduling class are migrated
394 * off the CPU, and thus off the hctx that is going away.
395 */
396 msleep(3);
397 goto retry;
398 }
399 return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
400 }
401
402 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
403 blk_mq_req_flags_t flags)
404 {
405 struct blk_mq_alloc_data data = {
406 .q = q,
407 .flags = flags,
408 .cmd_flags = op,
409 };
410 struct request *rq;
411 int ret;
412
413 ret = blk_queue_enter(q, flags);
414 if (ret)
415 return ERR_PTR(ret);
416
417 rq = __blk_mq_alloc_request(&data);
418 if (!rq)
419 goto out_queue_exit;
420 rq->__data_len = 0;
421 rq->__sector = (sector_t) -1;
422 rq->bio = rq->biotail = NULL;
423 return rq;
424 out_queue_exit:
425 blk_queue_exit(q);
426 return ERR_PTR(-EWOULDBLOCK);
427 }
428 EXPORT_SYMBOL(blk_mq_alloc_request);
429
430 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
431 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
432 {
433 struct blk_mq_alloc_data data = {
434 .q = q,
435 .flags = flags,
436 .cmd_flags = op,
437 };
438 u64 alloc_time_ns = 0;
439 unsigned int cpu;
440 unsigned int tag;
441 int ret;
442
443 /* alloc_time includes depth and tag waits */
444 if (blk_queue_rq_alloc_time(q))
445 alloc_time_ns = ktime_get_ns();
446
447 /*
448 * If the tag allocator sleeps we could get an allocation for a
449 * different hardware context. No need to complicate the low level
450 * allocator for this for the rare use case of a command tied to
451 * a specific queue.
452 */
453 if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
454 return ERR_PTR(-EINVAL);
455
456 if (hctx_idx >= q->nr_hw_queues)
457 return ERR_PTR(-EIO);
458
459 ret = blk_queue_enter(q, flags);
460 if (ret)
461 return ERR_PTR(ret);
462
463 /*
464 * Check if the hardware context is actually mapped to anything.
465 * If not tell the caller that it should skip this queue.
466 */
467 ret = -EXDEV;
468 data.hctx = q->queue_hw_ctx[hctx_idx];
469 if (!blk_mq_hw_queue_mapped(data.hctx))
470 goto out_queue_exit;
471 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
472 data.ctx = __blk_mq_get_ctx(q, cpu);
473
474 if (!q->elevator)
475 blk_mq_tag_busy(data.hctx);
476
477 ret = -EWOULDBLOCK;
478 tag = blk_mq_get_tag(&data);
479 if (tag == BLK_MQ_NO_TAG)
480 goto out_queue_exit;
481 return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
482
483 out_queue_exit:
484 blk_queue_exit(q);
485 return ERR_PTR(ret);
486 }
487 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
488
489 static void __blk_mq_free_request(struct request *rq)
490 {
491 struct request_queue *q = rq->q;
492 struct blk_mq_ctx *ctx = rq->mq_ctx;
493 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
494 const int sched_tag = rq->internal_tag;
495
496 blk_crypto_free_request(rq);
497 blk_pm_mark_last_busy(rq);
498 rq->mq_hctx = NULL;
499 if (rq->tag != BLK_MQ_NO_TAG)
500 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
501 if (sched_tag != BLK_MQ_NO_TAG)
502 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
503 blk_mq_sched_restart(hctx);
504 blk_queue_exit(q);
505 }
506
507 void blk_mq_free_request(struct request *rq)
508 {
509 struct request_queue *q = rq->q;
510 struct elevator_queue *e = q->elevator;
511 struct blk_mq_ctx *ctx = rq->mq_ctx;
512 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
513
514 if (rq->rq_flags & RQF_ELVPRIV) {
515 if (e && e->type->ops.finish_request)
516 e->type->ops.finish_request(rq);
517 if (rq->elv.icq) {
518 put_io_context(rq->elv.icq->ioc);
519 rq->elv.icq = NULL;
520 }
521 }
522
523 ctx->rq_completed[rq_is_sync(rq)]++;
524 if (rq->rq_flags & RQF_MQ_INFLIGHT)
525 __blk_mq_dec_active_requests(hctx);
526
527 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
528 laptop_io_completion(q->backing_dev_info);
529
530 rq_qos_done(q, rq);
531
532 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
533 if (refcount_dec_and_test(&rq->ref))
534 __blk_mq_free_request(rq);
535 }
536 EXPORT_SYMBOL_GPL(blk_mq_free_request);
537
538 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
539 {
540 u64 now = 0;
541
542 if (blk_mq_need_time_stamp(rq))
543 now = ktime_get_ns();
544
545 if (rq->rq_flags & RQF_STATS) {
546 blk_mq_poll_stats_start(rq->q);
547 blk_stat_add(rq, now);
548 }
549
550 blk_mq_sched_completed_request(rq, now);
551
552 blk_account_io_done(rq, now);
553
554 if (rq->end_io) {
555 rq_qos_done(rq->q, rq);
556 rq->end_io(rq, error);
557 } else {
558 blk_mq_free_request(rq);
559 }
560 }
561 EXPORT_SYMBOL(__blk_mq_end_request);
562
563 void blk_mq_end_request(struct request *rq, blk_status_t error)
564 {
565 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
566 BUG();
567 __blk_mq_end_request(rq, error);
568 }
569 EXPORT_SYMBOL(blk_mq_end_request);
570
571 static void blk_complete_reqs(struct llist_head *list)
572 {
573 struct llist_node *entry = llist_reverse_order(llist_del_all(list));
574 struct request *rq, *next;
575
576 llist_for_each_entry_safe(rq, next, entry, ipi_list)
577 rq->q->mq_ops->complete(rq);
578 }
579
580 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
581 {
582 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
583 }
584
585 static int blk_softirq_cpu_dead(unsigned int cpu)
586 {
587 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
588 return 0;
589 }
590
591 static void __blk_mq_complete_request_remote(void *data)
592 {
593 __raise_softirq_irqoff(BLOCK_SOFTIRQ);
594 }
595
596 static inline bool blk_mq_complete_need_ipi(struct request *rq)
597 {
598 int cpu = raw_smp_processor_id();
599
600 if (!IS_ENABLED(CONFIG_SMP) ||
601 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
602 return false;
603 /*
604 * With force threaded interrupts enabled, raising softirq from an SMP
605 * function call will always result in waking the ksoftirqd thread.
606 * This is probably worse than completing the request on a different
607 * cache domain.
608 */
609 if (force_irqthreads)
610 return false;
611
612 /* same CPU or cache domain? Complete locally */
613 if (cpu == rq->mq_ctx->cpu ||
614 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
615 cpus_share_cache(cpu, rq->mq_ctx->cpu)))
616 return false;
617
618 /* don't try to IPI to an offline CPU */
619 return cpu_online(rq->mq_ctx->cpu);
620 }
621
622 static void blk_mq_complete_send_ipi(struct request *rq)
623 {
624 struct llist_head *list;
625 unsigned int cpu;
626
627 cpu = rq->mq_ctx->cpu;
628 list = &per_cpu(blk_cpu_done, cpu);
629 if (llist_add(&rq->ipi_list, list)) {
630 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
631 smp_call_function_single_async(cpu, &rq->csd);
632 }
633 }
634
635 static void blk_mq_raise_softirq(struct request *rq)
636 {
637 struct llist_head *list;
638
639 preempt_disable();
640 list = this_cpu_ptr(&blk_cpu_done);
641 if (llist_add(&rq->ipi_list, list))
642 raise_softirq(BLOCK_SOFTIRQ);
643 preempt_enable();
644 }
645
646 bool blk_mq_complete_request_remote(struct request *rq)
647 {
648 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
649
650 /*
651 * For a polled request, always complete locallly, it's pointless
652 * to redirect the completion.
653 */
654 if (rq->cmd_flags & REQ_HIPRI)
655 return false;
656
657 if (blk_mq_complete_need_ipi(rq)) {
658 blk_mq_complete_send_ipi(rq);
659 return true;
660 }
661
662 if (rq->q->nr_hw_queues == 1) {
663 blk_mq_raise_softirq(rq);
664 return true;
665 }
666 return false;
667 }
668 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
669
670 /**
671 * blk_mq_complete_request - end I/O on a request
672 * @rq: the request being processed
673 *
674 * Description:
675 * Complete a request by scheduling the ->complete_rq operation.
676 **/
677 void blk_mq_complete_request(struct request *rq)
678 {
679 if (!blk_mq_complete_request_remote(rq))
680 rq->q->mq_ops->complete(rq);
681 }
682 EXPORT_SYMBOL(blk_mq_complete_request);
683
684 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
685 __releases(hctx->srcu)
686 {
687 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
688 rcu_read_unlock();
689 else
690 srcu_read_unlock(hctx->srcu, srcu_idx);
691 }
692
693 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
694 __acquires(hctx->srcu)
695 {
696 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
697 /* shut up gcc false positive */
698 *srcu_idx = 0;
699 rcu_read_lock();
700 } else
701 *srcu_idx = srcu_read_lock(hctx->srcu);
702 }
703
704 /**
705 * blk_mq_start_request - Start processing a request
706 * @rq: Pointer to request to be started
707 *
708 * Function used by device drivers to notify the block layer that a request
709 * is going to be processed now, so blk layer can do proper initializations
710 * such as starting the timeout timer.
711 */
712 void blk_mq_start_request(struct request *rq)
713 {
714 struct request_queue *q = rq->q;
715
716 trace_block_rq_issue(rq);
717
718 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
719 rq->io_start_time_ns = ktime_get_ns();
720 rq->stats_sectors = blk_rq_sectors(rq);
721 rq->rq_flags |= RQF_STATS;
722 rq_qos_issue(q, rq);
723 }
724
725 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
726
727 blk_add_timer(rq);
728 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
729
730 #ifdef CONFIG_BLK_DEV_INTEGRITY
731 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
732 q->integrity.profile->prepare_fn(rq);
733 #endif
734 }
735 EXPORT_SYMBOL(blk_mq_start_request);
736
737 static void __blk_mq_requeue_request(struct request *rq)
738 {
739 struct request_queue *q = rq->q;
740
741 blk_mq_put_driver_tag(rq);
742
743 trace_block_rq_requeue(rq);
744 rq_qos_requeue(q, rq);
745
746 if (blk_mq_request_started(rq)) {
747 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
748 rq->rq_flags &= ~RQF_TIMED_OUT;
749 }
750 }
751
752 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
753 {
754 __blk_mq_requeue_request(rq);
755
756 /* this request will be re-inserted to io scheduler queue */
757 blk_mq_sched_requeue_request(rq);
758
759 BUG_ON(!list_empty(&rq->queuelist));
760 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
761 }
762 EXPORT_SYMBOL(blk_mq_requeue_request);
763
764 static void blk_mq_requeue_work(struct work_struct *work)
765 {
766 struct request_queue *q =
767 container_of(work, struct request_queue, requeue_work.work);
768 LIST_HEAD(rq_list);
769 struct request *rq, *next;
770
771 spin_lock_irq(&q->requeue_lock);
772 list_splice_init(&q->requeue_list, &rq_list);
773 spin_unlock_irq(&q->requeue_lock);
774
775 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
776 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
777 continue;
778
779 rq->rq_flags &= ~RQF_SOFTBARRIER;
780 list_del_init(&rq->queuelist);
781 /*
782 * If RQF_DONTPREP, rq has contained some driver specific
783 * data, so insert it to hctx dispatch list to avoid any
784 * merge.
785 */
786 if (rq->rq_flags & RQF_DONTPREP)
787 blk_mq_request_bypass_insert(rq, false, false);
788 else
789 blk_mq_sched_insert_request(rq, true, false, false);
790 }
791
792 while (!list_empty(&rq_list)) {
793 rq = list_entry(rq_list.next, struct request, queuelist);
794 list_del_init(&rq->queuelist);
795 blk_mq_sched_insert_request(rq, false, false, false);
796 }
797
798 blk_mq_run_hw_queues(q, false);
799 }
800
801 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
802 bool kick_requeue_list)
803 {
804 struct request_queue *q = rq->q;
805 unsigned long flags;
806
807 /*
808 * We abuse this flag that is otherwise used by the I/O scheduler to
809 * request head insertion from the workqueue.
810 */
811 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
812
813 spin_lock_irqsave(&q->requeue_lock, flags);
814 if (at_head) {
815 rq->rq_flags |= RQF_SOFTBARRIER;
816 list_add(&rq->queuelist, &q->requeue_list);
817 } else {
818 list_add_tail(&rq->queuelist, &q->requeue_list);
819 }
820 spin_unlock_irqrestore(&q->requeue_lock, flags);
821
822 if (kick_requeue_list)
823 blk_mq_kick_requeue_list(q);
824 }
825
826 void blk_mq_kick_requeue_list(struct request_queue *q)
827 {
828 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
829 }
830 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
831
832 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
833 unsigned long msecs)
834 {
835 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
836 msecs_to_jiffies(msecs));
837 }
838 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
839
840 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
841 {
842 if (tag < tags->nr_tags) {
843 prefetch(tags->rqs[tag]);
844 return tags->rqs[tag];
845 }
846
847 return NULL;
848 }
849 EXPORT_SYMBOL(blk_mq_tag_to_rq);
850
851 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
852 void *priv, bool reserved)
853 {
854 /*
855 * If we find a request that isn't idle and the queue matches,
856 * we know the queue is busy. Return false to stop the iteration.
857 */
858 if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
859 bool *busy = priv;
860
861 *busy = true;
862 return false;
863 }
864
865 return true;
866 }
867
868 bool blk_mq_queue_inflight(struct request_queue *q)
869 {
870 bool busy = false;
871
872 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
873 return busy;
874 }
875 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
876
877 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
878 {
879 req->rq_flags |= RQF_TIMED_OUT;
880 if (req->q->mq_ops->timeout) {
881 enum blk_eh_timer_return ret;
882
883 ret = req->q->mq_ops->timeout(req, reserved);
884 if (ret == BLK_EH_DONE)
885 return;
886 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
887 }
888
889 blk_add_timer(req);
890 }
891
892 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
893 {
894 unsigned long deadline;
895
896 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
897 return false;
898 if (rq->rq_flags & RQF_TIMED_OUT)
899 return false;
900
901 deadline = READ_ONCE(rq->deadline);
902 if (time_after_eq(jiffies, deadline))
903 return true;
904
905 if (*next == 0)
906 *next = deadline;
907 else if (time_after(*next, deadline))
908 *next = deadline;
909 return false;
910 }
911
912 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
913 struct request *rq, void *priv, bool reserved)
914 {
915 unsigned long *next = priv;
916
917 /*
918 * Just do a quick check if it is expired before locking the request in
919 * so we're not unnecessarilly synchronizing across CPUs.
920 */
921 if (!blk_mq_req_expired(rq, next))
922 return true;
923
924 /*
925 * We have reason to believe the request may be expired. Take a
926 * reference on the request to lock this request lifetime into its
927 * currently allocated context to prevent it from being reallocated in
928 * the event the completion by-passes this timeout handler.
929 *
930 * If the reference was already released, then the driver beat the
931 * timeout handler to posting a natural completion.
932 */
933 if (!refcount_inc_not_zero(&rq->ref))
934 return true;
935
936 /*
937 * The request is now locked and cannot be reallocated underneath the
938 * timeout handler's processing. Re-verify this exact request is truly
939 * expired; if it is not expired, then the request was completed and
940 * reallocated as a new request.
941 */
942 if (blk_mq_req_expired(rq, next))
943 blk_mq_rq_timed_out(rq, reserved);
944
945 if (is_flush_rq(rq, hctx))
946 rq->end_io(rq, 0);
947 else if (refcount_dec_and_test(&rq->ref))
948 __blk_mq_free_request(rq);
949
950 return true;
951 }
952
953 static void blk_mq_timeout_work(struct work_struct *work)
954 {
955 struct request_queue *q =
956 container_of(work, struct request_queue, timeout_work);
957 unsigned long next = 0;
958 struct blk_mq_hw_ctx *hctx;
959 int i;
960
961 /* A deadlock might occur if a request is stuck requiring a
962 * timeout at the same time a queue freeze is waiting
963 * completion, since the timeout code would not be able to
964 * acquire the queue reference here.
965 *
966 * That's why we don't use blk_queue_enter here; instead, we use
967 * percpu_ref_tryget directly, because we need to be able to
968 * obtain a reference even in the short window between the queue
969 * starting to freeze, by dropping the first reference in
970 * blk_freeze_queue_start, and the moment the last request is
971 * consumed, marked by the instant q_usage_counter reaches
972 * zero.
973 */
974 if (!percpu_ref_tryget(&q->q_usage_counter))
975 return;
976
977 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
978
979 if (next != 0) {
980 mod_timer(&q->timeout, next);
981 } else {
982 /*
983 * Request timeouts are handled as a forward rolling timer. If
984 * we end up here it means that no requests are pending and
985 * also that no request has been pending for a while. Mark
986 * each hctx as idle.
987 */
988 queue_for_each_hw_ctx(q, hctx, i) {
989 /* the hctx may be unmapped, so check it here */
990 if (blk_mq_hw_queue_mapped(hctx))
991 blk_mq_tag_idle(hctx);
992 }
993 }
994 blk_queue_exit(q);
995 }
996
997 struct flush_busy_ctx_data {
998 struct blk_mq_hw_ctx *hctx;
999 struct list_head *list;
1000 };
1001
1002 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1003 {
1004 struct flush_busy_ctx_data *flush_data = data;
1005 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1006 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1007 enum hctx_type type = hctx->type;
1008
1009 spin_lock(&ctx->lock);
1010 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1011 sbitmap_clear_bit(sb, bitnr);
1012 spin_unlock(&ctx->lock);
1013 return true;
1014 }
1015
1016 /*
1017 * Process software queues that have been marked busy, splicing them
1018 * to the for-dispatch
1019 */
1020 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1021 {
1022 struct flush_busy_ctx_data data = {
1023 .hctx = hctx,
1024 .list = list,
1025 };
1026
1027 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1028 }
1029 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1030
1031 struct dispatch_rq_data {
1032 struct blk_mq_hw_ctx *hctx;
1033 struct request *rq;
1034 };
1035
1036 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1037 void *data)
1038 {
1039 struct dispatch_rq_data *dispatch_data = data;
1040 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1041 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1042 enum hctx_type type = hctx->type;
1043
1044 spin_lock(&ctx->lock);
1045 if (!list_empty(&ctx->rq_lists[type])) {
1046 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1047 list_del_init(&dispatch_data->rq->queuelist);
1048 if (list_empty(&ctx->rq_lists[type]))
1049 sbitmap_clear_bit(sb, bitnr);
1050 }
1051 spin_unlock(&ctx->lock);
1052
1053 return !dispatch_data->rq;
1054 }
1055
1056 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1057 struct blk_mq_ctx *start)
1058 {
1059 unsigned off = start ? start->index_hw[hctx->type] : 0;
1060 struct dispatch_rq_data data = {
1061 .hctx = hctx,
1062 .rq = NULL,
1063 };
1064
1065 __sbitmap_for_each_set(&hctx->ctx_map, off,
1066 dispatch_rq_from_ctx, &data);
1067
1068 return data.rq;
1069 }
1070
1071 static inline unsigned int queued_to_index(unsigned int queued)
1072 {
1073 if (!queued)
1074 return 0;
1075
1076 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1077 }
1078
1079 static bool __blk_mq_get_driver_tag(struct request *rq)
1080 {
1081 struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1082 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1083 int tag;
1084
1085 blk_mq_tag_busy(rq->mq_hctx);
1086
1087 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1088 bt = rq->mq_hctx->tags->breserved_tags;
1089 tag_offset = 0;
1090 } else {
1091 if (!hctx_may_queue(rq->mq_hctx, bt))
1092 return false;
1093 }
1094
1095 tag = __sbitmap_queue_get(bt);
1096 if (tag == BLK_MQ_NO_TAG)
1097 return false;
1098
1099 rq->tag = tag + tag_offset;
1100 return true;
1101 }
1102
1103 static bool blk_mq_get_driver_tag(struct request *rq)
1104 {
1105 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1106
1107 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1108 return false;
1109
1110 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1111 !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1112 rq->rq_flags |= RQF_MQ_INFLIGHT;
1113 __blk_mq_inc_active_requests(hctx);
1114 }
1115 hctx->tags->rqs[rq->tag] = rq;
1116 return true;
1117 }
1118
1119 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1120 int flags, void *key)
1121 {
1122 struct blk_mq_hw_ctx *hctx;
1123
1124 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1125
1126 spin_lock(&hctx->dispatch_wait_lock);
1127 if (!list_empty(&wait->entry)) {
1128 struct sbitmap_queue *sbq;
1129
1130 list_del_init(&wait->entry);
1131 sbq = hctx->tags->bitmap_tags;
1132 atomic_dec(&sbq->ws_active);
1133 }
1134 spin_unlock(&hctx->dispatch_wait_lock);
1135
1136 blk_mq_run_hw_queue(hctx, true);
1137 return 1;
1138 }
1139
1140 /*
1141 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1142 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1143 * restart. For both cases, take care to check the condition again after
1144 * marking us as waiting.
1145 */
1146 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1147 struct request *rq)
1148 {
1149 struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1150 struct wait_queue_head *wq;
1151 wait_queue_entry_t *wait;
1152 bool ret;
1153
1154 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1155 blk_mq_sched_mark_restart_hctx(hctx);
1156
1157 /*
1158 * It's possible that a tag was freed in the window between the
1159 * allocation failure and adding the hardware queue to the wait
1160 * queue.
1161 *
1162 * Don't clear RESTART here, someone else could have set it.
1163 * At most this will cost an extra queue run.
1164 */
1165 return blk_mq_get_driver_tag(rq);
1166 }
1167
1168 wait = &hctx->dispatch_wait;
1169 if (!list_empty_careful(&wait->entry))
1170 return false;
1171
1172 wq = &bt_wait_ptr(sbq, hctx)->wait;
1173
1174 spin_lock_irq(&wq->lock);
1175 spin_lock(&hctx->dispatch_wait_lock);
1176 if (!list_empty(&wait->entry)) {
1177 spin_unlock(&hctx->dispatch_wait_lock);
1178 spin_unlock_irq(&wq->lock);
1179 return false;
1180 }
1181
1182 atomic_inc(&sbq->ws_active);
1183 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1184 __add_wait_queue(wq, wait);
1185
1186 /*
1187 * It's possible that a tag was freed in the window between the
1188 * allocation failure and adding the hardware queue to the wait
1189 * queue.
1190 */
1191 ret = blk_mq_get_driver_tag(rq);
1192 if (!ret) {
1193 spin_unlock(&hctx->dispatch_wait_lock);
1194 spin_unlock_irq(&wq->lock);
1195 return false;
1196 }
1197
1198 /*
1199 * We got a tag, remove ourselves from the wait queue to ensure
1200 * someone else gets the wakeup.
1201 */
1202 list_del_init(&wait->entry);
1203 atomic_dec(&sbq->ws_active);
1204 spin_unlock(&hctx->dispatch_wait_lock);
1205 spin_unlock_irq(&wq->lock);
1206
1207 return true;
1208 }
1209
1210 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1211 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1212 /*
1213 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1214 * - EWMA is one simple way to compute running average value
1215 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1216 * - take 4 as factor for avoiding to get too small(0) result, and this
1217 * factor doesn't matter because EWMA decreases exponentially
1218 */
1219 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1220 {
1221 unsigned int ewma;
1222
1223 if (hctx->queue->elevator)
1224 return;
1225
1226 ewma = hctx->dispatch_busy;
1227
1228 if (!ewma && !busy)
1229 return;
1230
1231 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1232 if (busy)
1233 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1234 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1235
1236 hctx->dispatch_busy = ewma;
1237 }
1238
1239 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1240
1241 static void blk_mq_handle_dev_resource(struct request *rq,
1242 struct list_head *list)
1243 {
1244 struct request *next =
1245 list_first_entry_or_null(list, struct request, queuelist);
1246
1247 /*
1248 * If an I/O scheduler has been configured and we got a driver tag for
1249 * the next request already, free it.
1250 */
1251 if (next)
1252 blk_mq_put_driver_tag(next);
1253
1254 list_add(&rq->queuelist, list);
1255 __blk_mq_requeue_request(rq);
1256 }
1257
1258 static void blk_mq_handle_zone_resource(struct request *rq,
1259 struct list_head *zone_list)
1260 {
1261 /*
1262 * If we end up here it is because we cannot dispatch a request to a
1263 * specific zone due to LLD level zone-write locking or other zone
1264 * related resource not being available. In this case, set the request
1265 * aside in zone_list for retrying it later.
1266 */
1267 list_add(&rq->queuelist, zone_list);
1268 __blk_mq_requeue_request(rq);
1269 }
1270
1271 enum prep_dispatch {
1272 PREP_DISPATCH_OK,
1273 PREP_DISPATCH_NO_TAG,
1274 PREP_DISPATCH_NO_BUDGET,
1275 };
1276
1277 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1278 bool need_budget)
1279 {
1280 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1281 int budget_token = -1;
1282
1283 if (need_budget) {
1284 budget_token = blk_mq_get_dispatch_budget(rq->q);
1285 if (budget_token < 0) {
1286 blk_mq_put_driver_tag(rq);
1287 return PREP_DISPATCH_NO_BUDGET;
1288 }
1289 blk_mq_set_rq_budget_token(rq, budget_token);
1290 }
1291
1292 if (!blk_mq_get_driver_tag(rq)) {
1293 /*
1294 * The initial allocation attempt failed, so we need to
1295 * rerun the hardware queue when a tag is freed. The
1296 * waitqueue takes care of that. If the queue is run
1297 * before we add this entry back on the dispatch list,
1298 * we'll re-run it below.
1299 */
1300 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1301 /*
1302 * All budgets not got from this function will be put
1303 * together during handling partial dispatch
1304 */
1305 if (need_budget)
1306 blk_mq_put_dispatch_budget(rq->q, budget_token);
1307 return PREP_DISPATCH_NO_TAG;
1308 }
1309 }
1310
1311 return PREP_DISPATCH_OK;
1312 }
1313
1314 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1315 static void blk_mq_release_budgets(struct request_queue *q,
1316 struct list_head *list)
1317 {
1318 struct request *rq;
1319
1320 list_for_each_entry(rq, list, queuelist) {
1321 int budget_token = blk_mq_get_rq_budget_token(rq);
1322
1323 if (budget_token >= 0)
1324 blk_mq_put_dispatch_budget(q, budget_token);
1325 }
1326 }
1327
1328 /*
1329 * Returns true if we did some work AND can potentially do more.
1330 */
1331 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1332 unsigned int nr_budgets)
1333 {
1334 enum prep_dispatch prep;
1335 struct request_queue *q = hctx->queue;
1336 struct request *rq, *nxt;
1337 int errors, queued;
1338 blk_status_t ret = BLK_STS_OK;
1339 LIST_HEAD(zone_list);
1340
1341 if (list_empty(list))
1342 return false;
1343
1344 /*
1345 * Now process all the entries, sending them to the driver.
1346 */
1347 errors = queued = 0;
1348 do {
1349 struct blk_mq_queue_data bd;
1350
1351 rq = list_first_entry(list, struct request, queuelist);
1352
1353 WARN_ON_ONCE(hctx != rq->mq_hctx);
1354 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1355 if (prep != PREP_DISPATCH_OK)
1356 break;
1357
1358 list_del_init(&rq->queuelist);
1359
1360 bd.rq = rq;
1361
1362 /*
1363 * Flag last if we have no more requests, or if we have more
1364 * but can't assign a driver tag to it.
1365 */
1366 if (list_empty(list))
1367 bd.last = true;
1368 else {
1369 nxt = list_first_entry(list, struct request, queuelist);
1370 bd.last = !blk_mq_get_driver_tag(nxt);
1371 }
1372
1373 /*
1374 * once the request is queued to lld, no need to cover the
1375 * budget any more
1376 */
1377 if (nr_budgets)
1378 nr_budgets--;
1379 ret = q->mq_ops->queue_rq(hctx, &bd);
1380 switch (ret) {
1381 case BLK_STS_OK:
1382 queued++;
1383 break;
1384 case BLK_STS_RESOURCE:
1385 case BLK_STS_DEV_RESOURCE:
1386 blk_mq_handle_dev_resource(rq, list);
1387 goto out;
1388 case BLK_STS_ZONE_RESOURCE:
1389 /*
1390 * Move the request to zone_list and keep going through
1391 * the dispatch list to find more requests the drive can
1392 * accept.
1393 */
1394 blk_mq_handle_zone_resource(rq, &zone_list);
1395 break;
1396 default:
1397 errors++;
1398 blk_mq_end_request(rq, ret);
1399 }
1400 } while (!list_empty(list));
1401 out:
1402 if (!list_empty(&zone_list))
1403 list_splice_tail_init(&zone_list, list);
1404
1405 hctx->dispatched[queued_to_index(queued)]++;
1406
1407 /* If we didn't flush the entire list, we could have told the driver
1408 * there was more coming, but that turned out to be a lie.
1409 */
1410 if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1411 q->mq_ops->commit_rqs(hctx);
1412 /*
1413 * Any items that need requeuing? Stuff them into hctx->dispatch,
1414 * that is where we will continue on next queue run.
1415 */
1416 if (!list_empty(list)) {
1417 bool needs_restart;
1418 /* For non-shared tags, the RESTART check will suffice */
1419 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1420 (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1421 bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET;
1422
1423 if (nr_budgets)
1424 blk_mq_release_budgets(q, list);
1425
1426 spin_lock(&hctx->lock);
1427 list_splice_tail_init(list, &hctx->dispatch);
1428 spin_unlock(&hctx->lock);
1429
1430 /*
1431 * Order adding requests to hctx->dispatch and checking
1432 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1433 * in blk_mq_sched_restart(). Avoid restart code path to
1434 * miss the new added requests to hctx->dispatch, meantime
1435 * SCHED_RESTART is observed here.
1436 */
1437 smp_mb();
1438
1439 /*
1440 * If SCHED_RESTART was set by the caller of this function and
1441 * it is no longer set that means that it was cleared by another
1442 * thread and hence that a queue rerun is needed.
1443 *
1444 * If 'no_tag' is set, that means that we failed getting
1445 * a driver tag with an I/O scheduler attached. If our dispatch
1446 * waitqueue is no longer active, ensure that we run the queue
1447 * AFTER adding our entries back to the list.
1448 *
1449 * If no I/O scheduler has been configured it is possible that
1450 * the hardware queue got stopped and restarted before requests
1451 * were pushed back onto the dispatch list. Rerun the queue to
1452 * avoid starvation. Notes:
1453 * - blk_mq_run_hw_queue() checks whether or not a queue has
1454 * been stopped before rerunning a queue.
1455 * - Some but not all block drivers stop a queue before
1456 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1457 * and dm-rq.
1458 *
1459 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1460 * bit is set, run queue after a delay to avoid IO stalls
1461 * that could otherwise occur if the queue is idle. We'll do
1462 * similar if we couldn't get budget and SCHED_RESTART is set.
1463 */
1464 needs_restart = blk_mq_sched_needs_restart(hctx);
1465 if (!needs_restart ||
1466 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1467 blk_mq_run_hw_queue(hctx, true);
1468 else if (needs_restart && (ret == BLK_STS_RESOURCE ||
1469 no_budget_avail))
1470 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1471
1472 blk_mq_update_dispatch_busy(hctx, true);
1473 return false;
1474 } else
1475 blk_mq_update_dispatch_busy(hctx, false);
1476
1477 return (queued + errors) != 0;
1478 }
1479
1480 /**
1481 * __blk_mq_run_hw_queue - Run a hardware queue.
1482 * @hctx: Pointer to the hardware queue to run.
1483 *
1484 * Send pending requests to the hardware.
1485 */
1486 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1487 {
1488 int srcu_idx;
1489
1490 /*
1491 * We can't run the queue inline with ints disabled. Ensure that
1492 * we catch bad users of this early.
1493 */
1494 WARN_ON_ONCE(in_interrupt());
1495
1496 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1497
1498 hctx_lock(hctx, &srcu_idx);
1499 blk_mq_sched_dispatch_requests(hctx);
1500 hctx_unlock(hctx, srcu_idx);
1501 }
1502
1503 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1504 {
1505 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1506
1507 if (cpu >= nr_cpu_ids)
1508 cpu = cpumask_first(hctx->cpumask);
1509 return cpu;
1510 }
1511
1512 /*
1513 * It'd be great if the workqueue API had a way to pass
1514 * in a mask and had some smarts for more clever placement.
1515 * For now we just round-robin here, switching for every
1516 * BLK_MQ_CPU_WORK_BATCH queued items.
1517 */
1518 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1519 {
1520 bool tried = false;
1521 int next_cpu = hctx->next_cpu;
1522
1523 if (hctx->queue->nr_hw_queues == 1)
1524 return WORK_CPU_UNBOUND;
1525
1526 if (--hctx->next_cpu_batch <= 0) {
1527 select_cpu:
1528 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1529 cpu_online_mask);
1530 if (next_cpu >= nr_cpu_ids)
1531 next_cpu = blk_mq_first_mapped_cpu(hctx);
1532 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1533 }
1534
1535 /*
1536 * Do unbound schedule if we can't find a online CPU for this hctx,
1537 * and it should only happen in the path of handling CPU DEAD.
1538 */
1539 if (!cpu_online(next_cpu)) {
1540 if (!tried) {
1541 tried = true;
1542 goto select_cpu;
1543 }
1544
1545 /*
1546 * Make sure to re-select CPU next time once after CPUs
1547 * in hctx->cpumask become online again.
1548 */
1549 hctx->next_cpu = next_cpu;
1550 hctx->next_cpu_batch = 1;
1551 return WORK_CPU_UNBOUND;
1552 }
1553
1554 hctx->next_cpu = next_cpu;
1555 return next_cpu;
1556 }
1557
1558 /**
1559 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1560 * @hctx: Pointer to the hardware queue to run.
1561 * @async: If we want to run the queue asynchronously.
1562 * @msecs: Milliseconds of delay to wait before running the queue.
1563 *
1564 * If !@async, try to run the queue now. Else, run the queue asynchronously and
1565 * with a delay of @msecs.
1566 */
1567 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1568 unsigned long msecs)
1569 {
1570 if (unlikely(blk_mq_hctx_stopped(hctx)))
1571 return;
1572
1573 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1574 int cpu = get_cpu();
1575 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1576 __blk_mq_run_hw_queue(hctx);
1577 put_cpu();
1578 return;
1579 }
1580
1581 put_cpu();
1582 }
1583
1584 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1585 msecs_to_jiffies(msecs));
1586 }
1587
1588 /**
1589 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1590 * @hctx: Pointer to the hardware queue to run.
1591 * @msecs: Milliseconds of delay to wait before running the queue.
1592 *
1593 * Run a hardware queue asynchronously with a delay of @msecs.
1594 */
1595 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1596 {
1597 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1598 }
1599 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1600
1601 /**
1602 * blk_mq_run_hw_queue - Start to run a hardware queue.
1603 * @hctx: Pointer to the hardware queue to run.
1604 * @async: If we want to run the queue asynchronously.
1605 *
1606 * Check if the request queue is not in a quiesced state and if there are
1607 * pending requests to be sent. If this is true, run the queue to send requests
1608 * to hardware.
1609 */
1610 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1611 {
1612 int srcu_idx;
1613 bool need_run;
1614
1615 /*
1616 * When queue is quiesced, we may be switching io scheduler, or
1617 * updating nr_hw_queues, or other things, and we can't run queue
1618 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1619 *
1620 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1621 * quiesced.
1622 */
1623 hctx_lock(hctx, &srcu_idx);
1624 need_run = !blk_queue_quiesced(hctx->queue) &&
1625 blk_mq_hctx_has_pending(hctx);
1626 hctx_unlock(hctx, srcu_idx);
1627
1628 if (need_run)
1629 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1630 }
1631 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1632
1633 /*
1634 * Is the request queue handled by an IO scheduler that does not respect
1635 * hardware queues when dispatching?
1636 */
1637 static bool blk_mq_has_sqsched(struct request_queue *q)
1638 {
1639 struct elevator_queue *e = q->elevator;
1640
1641 if (e && e->type->ops.dispatch_request &&
1642 !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
1643 return true;
1644 return false;
1645 }
1646
1647 /*
1648 * Return prefered queue to dispatch from (if any) for non-mq aware IO
1649 * scheduler.
1650 */
1651 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
1652 {
1653 struct blk_mq_hw_ctx *hctx;
1654
1655 /*
1656 * If the IO scheduler does not respect hardware queues when
1657 * dispatching, we just don't bother with multiple HW queues and
1658 * dispatch from hctx for the current CPU since running multiple queues
1659 * just causes lock contention inside the scheduler and pointless cache
1660 * bouncing.
1661 */
1662 hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
1663 raw_smp_processor_id());
1664 if (!blk_mq_hctx_stopped(hctx))
1665 return hctx;
1666 return NULL;
1667 }
1668
1669 /**
1670 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1671 * @q: Pointer to the request queue to run.
1672 * @async: If we want to run the queue asynchronously.
1673 */
1674 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1675 {
1676 struct blk_mq_hw_ctx *hctx, *sq_hctx;
1677 int i;
1678
1679 sq_hctx = NULL;
1680 if (blk_mq_has_sqsched(q))
1681 sq_hctx = blk_mq_get_sq_hctx(q);
1682 queue_for_each_hw_ctx(q, hctx, i) {
1683 if (blk_mq_hctx_stopped(hctx))
1684 continue;
1685 /*
1686 * Dispatch from this hctx either if there's no hctx preferred
1687 * by IO scheduler or if it has requests that bypass the
1688 * scheduler.
1689 */
1690 if (!sq_hctx || sq_hctx == hctx ||
1691 !list_empty_careful(&hctx->dispatch))
1692 blk_mq_run_hw_queue(hctx, async);
1693 }
1694 }
1695 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1696
1697 /**
1698 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1699 * @q: Pointer to the request queue to run.
1700 * @msecs: Milliseconds of delay to wait before running the queues.
1701 */
1702 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1703 {
1704 struct blk_mq_hw_ctx *hctx, *sq_hctx;
1705 int i;
1706
1707 sq_hctx = NULL;
1708 if (blk_mq_has_sqsched(q))
1709 sq_hctx = blk_mq_get_sq_hctx(q);
1710 queue_for_each_hw_ctx(q, hctx, i) {
1711 if (blk_mq_hctx_stopped(hctx))
1712 continue;
1713 /*
1714 * Dispatch from this hctx either if there's no hctx preferred
1715 * by IO scheduler or if it has requests that bypass the
1716 * scheduler.
1717 */
1718 if (!sq_hctx || sq_hctx == hctx ||
1719 !list_empty_careful(&hctx->dispatch))
1720 blk_mq_delay_run_hw_queue(hctx, msecs);
1721 }
1722 }
1723 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1724
1725 /**
1726 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1727 * @q: request queue.
1728 *
1729 * The caller is responsible for serializing this function against
1730 * blk_mq_{start,stop}_hw_queue().
1731 */
1732 bool blk_mq_queue_stopped(struct request_queue *q)
1733 {
1734 struct blk_mq_hw_ctx *hctx;
1735 int i;
1736
1737 queue_for_each_hw_ctx(q, hctx, i)
1738 if (blk_mq_hctx_stopped(hctx))
1739 return true;
1740
1741 return false;
1742 }
1743 EXPORT_SYMBOL(blk_mq_queue_stopped);
1744
1745 /*
1746 * This function is often used for pausing .queue_rq() by driver when
1747 * there isn't enough resource or some conditions aren't satisfied, and
1748 * BLK_STS_RESOURCE is usually returned.
1749 *
1750 * We do not guarantee that dispatch can be drained or blocked
1751 * after blk_mq_stop_hw_queue() returns. Please use
1752 * blk_mq_quiesce_queue() for that requirement.
1753 */
1754 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1755 {
1756 cancel_delayed_work(&hctx->run_work);
1757
1758 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1759 }
1760 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1761
1762 /*
1763 * This function is often used for pausing .queue_rq() by driver when
1764 * there isn't enough resource or some conditions aren't satisfied, and
1765 * BLK_STS_RESOURCE is usually returned.
1766 *
1767 * We do not guarantee that dispatch can be drained or blocked
1768 * after blk_mq_stop_hw_queues() returns. Please use
1769 * blk_mq_quiesce_queue() for that requirement.
1770 */
1771 void blk_mq_stop_hw_queues(struct request_queue *q)
1772 {
1773 struct blk_mq_hw_ctx *hctx;
1774 int i;
1775
1776 queue_for_each_hw_ctx(q, hctx, i)
1777 blk_mq_stop_hw_queue(hctx);
1778 }
1779 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1780
1781 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1782 {
1783 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1784
1785 blk_mq_run_hw_queue(hctx, false);
1786 }
1787 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1788
1789 void blk_mq_start_hw_queues(struct request_queue *q)
1790 {
1791 struct blk_mq_hw_ctx *hctx;
1792 int i;
1793
1794 queue_for_each_hw_ctx(q, hctx, i)
1795 blk_mq_start_hw_queue(hctx);
1796 }
1797 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1798
1799 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1800 {
1801 if (!blk_mq_hctx_stopped(hctx))
1802 return;
1803
1804 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1805 blk_mq_run_hw_queue(hctx, async);
1806 }
1807 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1808
1809 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1810 {
1811 struct blk_mq_hw_ctx *hctx;
1812 int i;
1813
1814 queue_for_each_hw_ctx(q, hctx, i)
1815 blk_mq_start_stopped_hw_queue(hctx, async);
1816 }
1817 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1818
1819 static void blk_mq_run_work_fn(struct work_struct *work)
1820 {
1821 struct blk_mq_hw_ctx *hctx;
1822
1823 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1824
1825 /*
1826 * If we are stopped, don't run the queue.
1827 */
1828 if (blk_mq_hctx_stopped(hctx))
1829 return;
1830
1831 __blk_mq_run_hw_queue(hctx);
1832 }
1833
1834 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1835 struct request *rq,
1836 bool at_head)
1837 {
1838 struct blk_mq_ctx *ctx = rq->mq_ctx;
1839 enum hctx_type type = hctx->type;
1840
1841 lockdep_assert_held(&ctx->lock);
1842
1843 trace_block_rq_insert(rq);
1844
1845 if (at_head)
1846 list_add(&rq->queuelist, &ctx->rq_lists[type]);
1847 else
1848 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1849 }
1850
1851 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1852 bool at_head)
1853 {
1854 struct blk_mq_ctx *ctx = rq->mq_ctx;
1855
1856 lockdep_assert_held(&ctx->lock);
1857
1858 __blk_mq_insert_req_list(hctx, rq, at_head);
1859 blk_mq_hctx_mark_pending(hctx, ctx);
1860 }
1861
1862 /**
1863 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1864 * @rq: Pointer to request to be inserted.
1865 * @at_head: true if the request should be inserted at the head of the list.
1866 * @run_queue: If we should run the hardware queue after inserting the request.
1867 *
1868 * Should only be used carefully, when the caller knows we want to
1869 * bypass a potential IO scheduler on the target device.
1870 */
1871 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1872 bool run_queue)
1873 {
1874 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1875
1876 spin_lock(&hctx->lock);
1877 if (at_head)
1878 list_add(&rq->queuelist, &hctx->dispatch);
1879 else
1880 list_add_tail(&rq->queuelist, &hctx->dispatch);
1881 spin_unlock(&hctx->lock);
1882
1883 if (run_queue)
1884 blk_mq_run_hw_queue(hctx, false);
1885 }
1886
1887 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1888 struct list_head *list)
1889
1890 {
1891 struct request *rq;
1892 enum hctx_type type = hctx->type;
1893
1894 /*
1895 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1896 * offline now
1897 */
1898 list_for_each_entry(rq, list, queuelist) {
1899 BUG_ON(rq->mq_ctx != ctx);
1900 trace_block_rq_insert(rq);
1901 }
1902
1903 spin_lock(&ctx->lock);
1904 list_splice_tail_init(list, &ctx->rq_lists[type]);
1905 blk_mq_hctx_mark_pending(hctx, ctx);
1906 spin_unlock(&ctx->lock);
1907 }
1908
1909 static int plug_rq_cmp(void *priv, const struct list_head *a,
1910 const struct list_head *b)
1911 {
1912 struct request *rqa = container_of(a, struct request, queuelist);
1913 struct request *rqb = container_of(b, struct request, queuelist);
1914
1915 if (rqa->mq_ctx != rqb->mq_ctx)
1916 return rqa->mq_ctx > rqb->mq_ctx;
1917 if (rqa->mq_hctx != rqb->mq_hctx)
1918 return rqa->mq_hctx > rqb->mq_hctx;
1919
1920 return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1921 }
1922
1923 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1924 {
1925 LIST_HEAD(list);
1926
1927 if (list_empty(&plug->mq_list))
1928 return;
1929 list_splice_init(&plug->mq_list, &list);
1930
1931 if (plug->rq_count > 2 && plug->multiple_queues)
1932 list_sort(NULL, &list, plug_rq_cmp);
1933
1934 plug->rq_count = 0;
1935
1936 do {
1937 struct list_head rq_list;
1938 struct request *rq, *head_rq = list_entry_rq(list.next);
1939 struct list_head *pos = &head_rq->queuelist; /* skip first */
1940 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1941 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1942 unsigned int depth = 1;
1943
1944 list_for_each_continue(pos, &list) {
1945 rq = list_entry_rq(pos);
1946 BUG_ON(!rq->q);
1947 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1948 break;
1949 depth++;
1950 }
1951
1952 list_cut_before(&rq_list, &list, pos);
1953 trace_block_unplug(head_rq->q, depth, !from_schedule);
1954 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1955 from_schedule);
1956 } while(!list_empty(&list));
1957 }
1958
1959 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1960 unsigned int nr_segs)
1961 {
1962 int err;
1963
1964 if (bio->bi_opf & REQ_RAHEAD)
1965 rq->cmd_flags |= REQ_FAILFAST_MASK;
1966
1967 rq->__sector = bio->bi_iter.bi_sector;
1968 rq->write_hint = bio->bi_write_hint;
1969 blk_rq_bio_prep(rq, bio, nr_segs);
1970
1971 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
1972 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1973 WARN_ON_ONCE(err);
1974
1975 blk_account_io_start(rq);
1976 }
1977
1978 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1979 struct request *rq,
1980 blk_qc_t *cookie, bool last)
1981 {
1982 struct request_queue *q = rq->q;
1983 struct blk_mq_queue_data bd = {
1984 .rq = rq,
1985 .last = last,
1986 };
1987 blk_qc_t new_cookie;
1988 blk_status_t ret;
1989
1990 new_cookie = request_to_qc_t(hctx, rq);
1991
1992 /*
1993 * For OK queue, we are done. For error, caller may kill it.
1994 * Any other error (busy), just add it to our list as we
1995 * previously would have done.
1996 */
1997 ret = q->mq_ops->queue_rq(hctx, &bd);
1998 switch (ret) {
1999 case BLK_STS_OK:
2000 blk_mq_update_dispatch_busy(hctx, false);
2001 *cookie = new_cookie;
2002 break;
2003 case BLK_STS_RESOURCE:
2004 case BLK_STS_DEV_RESOURCE:
2005 blk_mq_update_dispatch_busy(hctx, true);
2006 __blk_mq_requeue_request(rq);
2007 break;
2008 default:
2009 blk_mq_update_dispatch_busy(hctx, false);
2010 *cookie = BLK_QC_T_NONE;
2011 break;
2012 }
2013
2014 return ret;
2015 }
2016
2017 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2018 struct request *rq,
2019 blk_qc_t *cookie,
2020 bool bypass_insert, bool last)
2021 {
2022 struct request_queue *q = rq->q;
2023 bool run_queue = true;
2024 int budget_token;
2025
2026 /*
2027 * RCU or SRCU read lock is needed before checking quiesced flag.
2028 *
2029 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2030 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2031 * and avoid driver to try to dispatch again.
2032 */
2033 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2034 run_queue = false;
2035 bypass_insert = false;
2036 goto insert;
2037 }
2038
2039 if (q->elevator && !bypass_insert)
2040 goto insert;
2041
2042 budget_token = blk_mq_get_dispatch_budget(q);
2043 if (budget_token < 0)
2044 goto insert;
2045
2046 blk_mq_set_rq_budget_token(rq, budget_token);
2047
2048 if (!blk_mq_get_driver_tag(rq)) {
2049 blk_mq_put_dispatch_budget(q, budget_token);
2050 goto insert;
2051 }
2052
2053 return __blk_mq_issue_directly(hctx, rq, cookie, last);
2054 insert:
2055 if (bypass_insert)
2056 return BLK_STS_RESOURCE;
2057
2058 blk_mq_sched_insert_request(rq, false, run_queue, false);
2059
2060 return BLK_STS_OK;
2061 }
2062
2063 /**
2064 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2065 * @hctx: Pointer of the associated hardware queue.
2066 * @rq: Pointer to request to be sent.
2067 * @cookie: Request queue cookie.
2068 *
2069 * If the device has enough resources to accept a new request now, send the
2070 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2071 * we can try send it another time in the future. Requests inserted at this
2072 * queue have higher priority.
2073 */
2074 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2075 struct request *rq, blk_qc_t *cookie)
2076 {
2077 blk_status_t ret;
2078 int srcu_idx;
2079
2080 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2081
2082 hctx_lock(hctx, &srcu_idx);
2083
2084 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2085 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2086 blk_mq_request_bypass_insert(rq, false, true);
2087 else if (ret != BLK_STS_OK)
2088 blk_mq_end_request(rq, ret);
2089
2090 hctx_unlock(hctx, srcu_idx);
2091 }
2092
2093 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2094 {
2095 blk_status_t ret;
2096 int srcu_idx;
2097 blk_qc_t unused_cookie;
2098 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2099
2100 hctx_lock(hctx, &srcu_idx);
2101 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2102 hctx_unlock(hctx, srcu_idx);
2103
2104 return ret;
2105 }
2106
2107 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2108 struct list_head *list)
2109 {
2110 int queued = 0;
2111 int errors = 0;
2112
2113 while (!list_empty(list)) {
2114 blk_status_t ret;
2115 struct request *rq = list_first_entry(list, struct request,
2116 queuelist);
2117
2118 list_del_init(&rq->queuelist);
2119 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2120 if (ret != BLK_STS_OK) {
2121 if (ret == BLK_STS_RESOURCE ||
2122 ret == BLK_STS_DEV_RESOURCE) {
2123 blk_mq_request_bypass_insert(rq, false,
2124 list_empty(list));
2125 break;
2126 }
2127 blk_mq_end_request(rq, ret);
2128 errors++;
2129 } else
2130 queued++;
2131 }
2132
2133 /*
2134 * If we didn't flush the entire list, we could have told
2135 * the driver there was more coming, but that turned out to
2136 * be a lie.
2137 */
2138 if ((!list_empty(list) || errors) &&
2139 hctx->queue->mq_ops->commit_rqs && queued)
2140 hctx->queue->mq_ops->commit_rqs(hctx);
2141 }
2142
2143 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2144 {
2145 list_add_tail(&rq->queuelist, &plug->mq_list);
2146 plug->rq_count++;
2147 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2148 struct request *tmp;
2149
2150 tmp = list_first_entry(&plug->mq_list, struct request,
2151 queuelist);
2152 if (tmp->q != rq->q)
2153 plug->multiple_queues = true;
2154 }
2155 }
2156
2157 /**
2158 * blk_mq_submit_bio - Create and send a request to block device.
2159 * @bio: Bio pointer.
2160 *
2161 * Builds up a request structure from @q and @bio and send to the device. The
2162 * request may not be queued directly to hardware if:
2163 * * This request can be merged with another one
2164 * * We want to place request at plug queue for possible future merging
2165 * * There is an IO scheduler active at this queue
2166 *
2167 * It will not queue the request if there is an error with the bio, or at the
2168 * request creation.
2169 *
2170 * Returns: Request queue cookie.
2171 */
2172 blk_qc_t blk_mq_submit_bio(struct bio *bio)
2173 {
2174 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
2175 const int is_sync = op_is_sync(bio->bi_opf);
2176 const int is_flush_fua = op_is_flush(bio->bi_opf);
2177 struct blk_mq_alloc_data data = {
2178 .q = q,
2179 };
2180 struct request *rq;
2181 struct blk_plug *plug;
2182 struct request *same_queue_rq = NULL;
2183 unsigned int nr_segs;
2184 blk_qc_t cookie;
2185 blk_status_t ret;
2186 bool hipri;
2187
2188 blk_queue_bounce(q, &bio);
2189 __blk_queue_split(&bio, &nr_segs);
2190
2191 if (!bio_integrity_prep(bio))
2192 goto queue_exit;
2193
2194 if (!is_flush_fua && !blk_queue_nomerges(q) &&
2195 blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2196 goto queue_exit;
2197
2198 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2199 goto queue_exit;
2200
2201 rq_qos_throttle(q, bio);
2202
2203 hipri = bio->bi_opf & REQ_HIPRI;
2204
2205 data.cmd_flags = bio->bi_opf;
2206 rq = __blk_mq_alloc_request(&data);
2207 if (unlikely(!rq)) {
2208 rq_qos_cleanup(q, bio);
2209 if (bio->bi_opf & REQ_NOWAIT)
2210 bio_wouldblock_error(bio);
2211 goto queue_exit;
2212 }
2213
2214 trace_block_getrq(bio);
2215
2216 rq_qos_track(q, rq, bio);
2217
2218 cookie = request_to_qc_t(data.hctx, rq);
2219
2220 blk_mq_bio_to_request(rq, bio, nr_segs);
2221
2222 ret = blk_crypto_init_request(rq);
2223 if (ret != BLK_STS_OK) {
2224 bio->bi_status = ret;
2225 bio_endio(bio);
2226 blk_mq_free_request(rq);
2227 return BLK_QC_T_NONE;
2228 }
2229
2230 plug = blk_mq_plug(q, bio);
2231 if (unlikely(is_flush_fua)) {
2232 /* Bypass scheduler for flush requests */
2233 blk_insert_flush(rq);
2234 blk_mq_run_hw_queue(data.hctx, true);
2235 } else if (plug && (q->nr_hw_queues == 1 ||
2236 blk_mq_is_sbitmap_shared(rq->mq_hctx->flags) ||
2237 q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) {
2238 /*
2239 * Use plugging if we have a ->commit_rqs() hook as well, as
2240 * we know the driver uses bd->last in a smart fashion.
2241 *
2242 * Use normal plugging if this disk is slow HDD, as sequential
2243 * IO may benefit a lot from plug merging.
2244 */
2245 unsigned int request_count = plug->rq_count;
2246 struct request *last = NULL;
2247
2248 if (!request_count)
2249 trace_block_plug(q);
2250 else
2251 last = list_entry_rq(plug->mq_list.prev);
2252
2253 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2254 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2255 blk_flush_plug_list(plug, false);
2256 trace_block_plug(q);
2257 }
2258
2259 blk_add_rq_to_plug(plug, rq);
2260 } else if (q->elevator) {
2261 /* Insert the request at the IO scheduler queue */
2262 blk_mq_sched_insert_request(rq, false, true, true);
2263 } else if (plug && !blk_queue_nomerges(q)) {
2264 /*
2265 * We do limited plugging. If the bio can be merged, do that.
2266 * Otherwise the existing request in the plug list will be
2267 * issued. So the plug list will have one request at most
2268 * The plug list might get flushed before this. If that happens,
2269 * the plug list is empty, and same_queue_rq is invalid.
2270 */
2271 if (list_empty(&plug->mq_list))
2272 same_queue_rq = NULL;
2273 if (same_queue_rq) {
2274 list_del_init(&same_queue_rq->queuelist);
2275 plug->rq_count--;
2276 }
2277 blk_add_rq_to_plug(plug, rq);
2278 trace_block_plug(q);
2279
2280 if (same_queue_rq) {
2281 data.hctx = same_queue_rq->mq_hctx;
2282 trace_block_unplug(q, 1, true);
2283 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2284 &cookie);
2285 }
2286 } else if ((q->nr_hw_queues > 1 && is_sync) ||
2287 !data.hctx->dispatch_busy) {
2288 /*
2289 * There is no scheduler and we can try to send directly
2290 * to the hardware.
2291 */
2292 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2293 } else {
2294 /* Default case. */
2295 blk_mq_sched_insert_request(rq, false, true, true);
2296 }
2297
2298 if (!hipri)
2299 return BLK_QC_T_NONE;
2300 return cookie;
2301 queue_exit:
2302 blk_queue_exit(q);
2303 return BLK_QC_T_NONE;
2304 }
2305
2306 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2307 unsigned int hctx_idx)
2308 {
2309 struct page *page;
2310
2311 if (tags->rqs && set->ops->exit_request) {
2312 int i;
2313
2314 for (i = 0; i < tags->nr_tags; i++) {
2315 struct request *rq = tags->static_rqs[i];
2316
2317 if (!rq)
2318 continue;
2319 set->ops->exit_request(set, rq, hctx_idx);
2320 tags->static_rqs[i] = NULL;
2321 }
2322 }
2323
2324 while (!list_empty(&tags->page_list)) {
2325 page = list_first_entry(&tags->page_list, struct page, lru);
2326 list_del_init(&page->lru);
2327 /*
2328 * Remove kmemleak object previously allocated in
2329 * blk_mq_alloc_rqs().
2330 */
2331 kmemleak_free(page_address(page));
2332 __free_pages(page, page->private);
2333 }
2334 }
2335
2336 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2337 {
2338 kfree(tags->rqs);
2339 tags->rqs = NULL;
2340 kfree(tags->static_rqs);
2341 tags->static_rqs = NULL;
2342
2343 blk_mq_free_tags(tags, flags);
2344 }
2345
2346 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2347 unsigned int hctx_idx,
2348 unsigned int nr_tags,
2349 unsigned int reserved_tags,
2350 unsigned int flags)
2351 {
2352 struct blk_mq_tags *tags;
2353 int node;
2354
2355 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2356 if (node == NUMA_NO_NODE)
2357 node = set->numa_node;
2358
2359 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2360 if (!tags)
2361 return NULL;
2362
2363 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2364 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2365 node);
2366 if (!tags->rqs) {
2367 blk_mq_free_tags(tags, flags);
2368 return NULL;
2369 }
2370
2371 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2372 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2373 node);
2374 if (!tags->static_rqs) {
2375 kfree(tags->rqs);
2376 blk_mq_free_tags(tags, flags);
2377 return NULL;
2378 }
2379
2380 return tags;
2381 }
2382
2383 static size_t order_to_size(unsigned int order)
2384 {
2385 return (size_t)PAGE_SIZE << order;
2386 }
2387
2388 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2389 unsigned int hctx_idx, int node)
2390 {
2391 int ret;
2392
2393 if (set->ops->init_request) {
2394 ret = set->ops->init_request(set, rq, hctx_idx, node);
2395 if (ret)
2396 return ret;
2397 }
2398
2399 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2400 return 0;
2401 }
2402
2403 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2404 unsigned int hctx_idx, unsigned int depth)
2405 {
2406 unsigned int i, j, entries_per_page, max_order = 4;
2407 size_t rq_size, left;
2408 int node;
2409
2410 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2411 if (node == NUMA_NO_NODE)
2412 node = set->numa_node;
2413
2414 INIT_LIST_HEAD(&tags->page_list);
2415
2416 /*
2417 * rq_size is the size of the request plus driver payload, rounded
2418 * to the cacheline size
2419 */
2420 rq_size = round_up(sizeof(struct request) + set->cmd_size,
2421 cache_line_size());
2422 left = rq_size * depth;
2423
2424 for (i = 0; i < depth; ) {
2425 int this_order = max_order;
2426 struct page *page;
2427 int to_do;
2428 void *p;
2429
2430 while (this_order && left < order_to_size(this_order - 1))
2431 this_order--;
2432
2433 do {
2434 page = alloc_pages_node(node,
2435 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2436 this_order);
2437 if (page)
2438 break;
2439 if (!this_order--)
2440 break;
2441 if (order_to_size(this_order) < rq_size)
2442 break;
2443 } while (1);
2444
2445 if (!page)
2446 goto fail;
2447
2448 page->private = this_order;
2449 list_add_tail(&page->lru, &tags->page_list);
2450
2451 p = page_address(page);
2452 /*
2453 * Allow kmemleak to scan these pages as they contain pointers
2454 * to additional allocations like via ops->init_request().
2455 */
2456 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2457 entries_per_page = order_to_size(this_order) / rq_size;
2458 to_do = min(entries_per_page, depth - i);
2459 left -= to_do * rq_size;
2460 for (j = 0; j < to_do; j++) {
2461 struct request *rq = p;
2462
2463 tags->static_rqs[i] = rq;
2464 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2465 tags->static_rqs[i] = NULL;
2466 goto fail;
2467 }
2468
2469 p += rq_size;
2470 i++;
2471 }
2472 }
2473 return 0;
2474
2475 fail:
2476 blk_mq_free_rqs(set, tags, hctx_idx);
2477 return -ENOMEM;
2478 }
2479
2480 struct rq_iter_data {
2481 struct blk_mq_hw_ctx *hctx;
2482 bool has_rq;
2483 };
2484
2485 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2486 {
2487 struct rq_iter_data *iter_data = data;
2488
2489 if (rq->mq_hctx != iter_data->hctx)
2490 return true;
2491 iter_data->has_rq = true;
2492 return false;
2493 }
2494
2495 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2496 {
2497 struct blk_mq_tags *tags = hctx->sched_tags ?
2498 hctx->sched_tags : hctx->tags;
2499 struct rq_iter_data data = {
2500 .hctx = hctx,
2501 };
2502
2503 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2504 return data.has_rq;
2505 }
2506
2507 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2508 struct blk_mq_hw_ctx *hctx)
2509 {
2510 if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2511 return false;
2512 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2513 return false;
2514 return true;
2515 }
2516
2517 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2518 {
2519 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2520 struct blk_mq_hw_ctx, cpuhp_online);
2521
2522 if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2523 !blk_mq_last_cpu_in_hctx(cpu, hctx))
2524 return 0;
2525
2526 /*
2527 * Prevent new request from being allocated on the current hctx.
2528 *
2529 * The smp_mb__after_atomic() Pairs with the implied barrier in
2530 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is
2531 * seen once we return from the tag allocator.
2532 */
2533 set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2534 smp_mb__after_atomic();
2535
2536 /*
2537 * Try to grab a reference to the queue and wait for any outstanding
2538 * requests. If we could not grab a reference the queue has been
2539 * frozen and there are no requests.
2540 */
2541 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2542 while (blk_mq_hctx_has_requests(hctx))
2543 msleep(5);
2544 percpu_ref_put(&hctx->queue->q_usage_counter);
2545 }
2546
2547 return 0;
2548 }
2549
2550 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2551 {
2552 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2553 struct blk_mq_hw_ctx, cpuhp_online);
2554
2555 if (cpumask_test_cpu(cpu, hctx->cpumask))
2556 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2557 return 0;
2558 }
2559
2560 /*
2561 * 'cpu' is going away. splice any existing rq_list entries from this
2562 * software queue to the hw queue dispatch list, and ensure that it
2563 * gets run.
2564 */
2565 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2566 {
2567 struct blk_mq_hw_ctx *hctx;
2568 struct blk_mq_ctx *ctx;
2569 LIST_HEAD(tmp);
2570 enum hctx_type type;
2571
2572 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2573 if (!cpumask_test_cpu(cpu, hctx->cpumask))
2574 return 0;
2575
2576 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2577 type = hctx->type;
2578
2579 spin_lock(&ctx->lock);
2580 if (!list_empty(&ctx->rq_lists[type])) {
2581 list_splice_init(&ctx->rq_lists[type], &tmp);
2582 blk_mq_hctx_clear_pending(hctx, ctx);
2583 }
2584 spin_unlock(&ctx->lock);
2585
2586 if (list_empty(&tmp))
2587 return 0;
2588
2589 spin_lock(&hctx->lock);
2590 list_splice_tail_init(&tmp, &hctx->dispatch);
2591 spin_unlock(&hctx->lock);
2592
2593 blk_mq_run_hw_queue(hctx, true);
2594 return 0;
2595 }
2596
2597 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2598 {
2599 if (!(hctx->flags & BLK_MQ_F_STACKING))
2600 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2601 &hctx->cpuhp_online);
2602 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2603 &hctx->cpuhp_dead);
2604 }
2605
2606 /* hctx->ctxs will be freed in queue's release handler */
2607 static void blk_mq_exit_hctx(struct request_queue *q,
2608 struct blk_mq_tag_set *set,
2609 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2610 {
2611 if (blk_mq_hw_queue_mapped(hctx))
2612 blk_mq_tag_idle(hctx);
2613
2614 if (set->ops->exit_request)
2615 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2616
2617 if (set->ops->exit_hctx)
2618 set->ops->exit_hctx(hctx, hctx_idx);
2619
2620 blk_mq_remove_cpuhp(hctx);
2621
2622 spin_lock(&q->unused_hctx_lock);
2623 list_add(&hctx->hctx_list, &q->unused_hctx_list);
2624 spin_unlock(&q->unused_hctx_lock);
2625 }
2626
2627 static void blk_mq_exit_hw_queues(struct request_queue *q,
2628 struct blk_mq_tag_set *set, int nr_queue)
2629 {
2630 struct blk_mq_hw_ctx *hctx;
2631 unsigned int i;
2632
2633 queue_for_each_hw_ctx(q, hctx, i) {
2634 if (i == nr_queue)
2635 break;
2636 blk_mq_debugfs_unregister_hctx(hctx);
2637 blk_mq_exit_hctx(q, set, hctx, i);
2638 }
2639 }
2640
2641 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2642 {
2643 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2644
2645 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2646 __alignof__(struct blk_mq_hw_ctx)) !=
2647 sizeof(struct blk_mq_hw_ctx));
2648
2649 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2650 hw_ctx_size += sizeof(struct srcu_struct);
2651
2652 return hw_ctx_size;
2653 }
2654
2655 static int blk_mq_init_hctx(struct request_queue *q,
2656 struct blk_mq_tag_set *set,
2657 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2658 {
2659 hctx->queue_num = hctx_idx;
2660
2661 if (!(hctx->flags & BLK_MQ_F_STACKING))
2662 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2663 &hctx->cpuhp_online);
2664 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2665
2666 hctx->tags = set->tags[hctx_idx];
2667
2668 if (set->ops->init_hctx &&
2669 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2670 goto unregister_cpu_notifier;
2671
2672 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2673 hctx->numa_node))
2674 goto exit_hctx;
2675 return 0;
2676
2677 exit_hctx:
2678 if (set->ops->exit_hctx)
2679 set->ops->exit_hctx(hctx, hctx_idx);
2680 unregister_cpu_notifier:
2681 blk_mq_remove_cpuhp(hctx);
2682 return -1;
2683 }
2684
2685 static struct blk_mq_hw_ctx *
2686 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2687 int node)
2688 {
2689 struct blk_mq_hw_ctx *hctx;
2690 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2691
2692 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2693 if (!hctx)
2694 goto fail_alloc_hctx;
2695
2696 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2697 goto free_hctx;
2698
2699 atomic_set(&hctx->nr_active, 0);
2700 if (node == NUMA_NO_NODE)
2701 node = set->numa_node;
2702 hctx->numa_node = node;
2703
2704 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2705 spin_lock_init(&hctx->lock);
2706 INIT_LIST_HEAD(&hctx->dispatch);
2707 hctx->queue = q;
2708 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2709
2710 INIT_LIST_HEAD(&hctx->hctx_list);
2711
2712 /*
2713 * Allocate space for all possible cpus to avoid allocation at
2714 * runtime
2715 */
2716 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2717 gfp, node);
2718 if (!hctx->ctxs)
2719 goto free_cpumask;
2720
2721 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2722 gfp, node, false, false))
2723 goto free_ctxs;
2724 hctx->nr_ctx = 0;
2725
2726 spin_lock_init(&hctx->dispatch_wait_lock);
2727 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2728 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2729
2730 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2731 if (!hctx->fq)
2732 goto free_bitmap;
2733
2734 if (hctx->flags & BLK_MQ_F_BLOCKING)
2735 init_srcu_struct(hctx->srcu);
2736 blk_mq_hctx_kobj_init(hctx);
2737
2738 return hctx;
2739
2740 free_bitmap:
2741 sbitmap_free(&hctx->ctx_map);
2742 free_ctxs:
2743 kfree(hctx->ctxs);
2744 free_cpumask:
2745 free_cpumask_var(hctx->cpumask);
2746 free_hctx:
2747 kfree(hctx);
2748 fail_alloc_hctx:
2749 return NULL;
2750 }
2751
2752 static void blk_mq_init_cpu_queues(struct request_queue *q,
2753 unsigned int nr_hw_queues)
2754 {
2755 struct blk_mq_tag_set *set = q->tag_set;
2756 unsigned int i, j;
2757
2758 for_each_possible_cpu(i) {
2759 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2760 struct blk_mq_hw_ctx *hctx;
2761 int k;
2762
2763 __ctx->cpu = i;
2764 spin_lock_init(&__ctx->lock);
2765 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2766 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2767
2768 __ctx->queue = q;
2769
2770 /*
2771 * Set local node, IFF we have more than one hw queue. If
2772 * not, we remain on the home node of the device
2773 */
2774 for (j = 0; j < set->nr_maps; j++) {
2775 hctx = blk_mq_map_queue_type(q, j, i);
2776 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2777 hctx->numa_node = cpu_to_node(i);
2778 }
2779 }
2780 }
2781
2782 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2783 int hctx_idx)
2784 {
2785 unsigned int flags = set->flags;
2786 int ret = 0;
2787
2788 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2789 set->queue_depth, set->reserved_tags, flags);
2790 if (!set->tags[hctx_idx])
2791 return false;
2792
2793 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2794 set->queue_depth);
2795 if (!ret)
2796 return true;
2797
2798 blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2799 set->tags[hctx_idx] = NULL;
2800 return false;
2801 }
2802
2803 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2804 unsigned int hctx_idx)
2805 {
2806 unsigned int flags = set->flags;
2807
2808 if (set->tags && set->tags[hctx_idx]) {
2809 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2810 blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2811 set->tags[hctx_idx] = NULL;
2812 }
2813 }
2814
2815 static void blk_mq_map_swqueue(struct request_queue *q)
2816 {
2817 unsigned int i, j, hctx_idx;
2818 struct blk_mq_hw_ctx *hctx;
2819 struct blk_mq_ctx *ctx;
2820 struct blk_mq_tag_set *set = q->tag_set;
2821
2822 queue_for_each_hw_ctx(q, hctx, i) {
2823 cpumask_clear(hctx->cpumask);
2824 hctx->nr_ctx = 0;
2825 hctx->dispatch_from = NULL;
2826 }
2827
2828 /*
2829 * Map software to hardware queues.
2830 *
2831 * If the cpu isn't present, the cpu is mapped to first hctx.
2832 */
2833 for_each_possible_cpu(i) {
2834
2835 ctx = per_cpu_ptr(q->queue_ctx, i);
2836 for (j = 0; j < set->nr_maps; j++) {
2837 if (!set->map[j].nr_queues) {
2838 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2839 HCTX_TYPE_DEFAULT, i);
2840 continue;
2841 }
2842 hctx_idx = set->map[j].mq_map[i];
2843 /* unmapped hw queue can be remapped after CPU topo changed */
2844 if (!set->tags[hctx_idx] &&
2845 !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2846 /*
2847 * If tags initialization fail for some hctx,
2848 * that hctx won't be brought online. In this
2849 * case, remap the current ctx to hctx[0] which
2850 * is guaranteed to always have tags allocated
2851 */
2852 set->map[j].mq_map[i] = 0;
2853 }
2854
2855 hctx = blk_mq_map_queue_type(q, j, i);
2856 ctx->hctxs[j] = hctx;
2857 /*
2858 * If the CPU is already set in the mask, then we've
2859 * mapped this one already. This can happen if
2860 * devices share queues across queue maps.
2861 */
2862 if (cpumask_test_cpu(i, hctx->cpumask))
2863 continue;
2864
2865 cpumask_set_cpu(i, hctx->cpumask);
2866 hctx->type = j;
2867 ctx->index_hw[hctx->type] = hctx->nr_ctx;
2868 hctx->ctxs[hctx->nr_ctx++] = ctx;
2869
2870 /*
2871 * If the nr_ctx type overflows, we have exceeded the
2872 * amount of sw queues we can support.
2873 */
2874 BUG_ON(!hctx->nr_ctx);
2875 }
2876
2877 for (; j < HCTX_MAX_TYPES; j++)
2878 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2879 HCTX_TYPE_DEFAULT, i);
2880 }
2881
2882 queue_for_each_hw_ctx(q, hctx, i) {
2883 /*
2884 * If no software queues are mapped to this hardware queue,
2885 * disable it and free the request entries.
2886 */
2887 if (!hctx->nr_ctx) {
2888 /* Never unmap queue 0. We need it as a
2889 * fallback in case of a new remap fails
2890 * allocation
2891 */
2892 if (i && set->tags[i])
2893 blk_mq_free_map_and_requests(set, i);
2894
2895 hctx->tags = NULL;
2896 continue;
2897 }
2898
2899 hctx->tags = set->tags[i];
2900 WARN_ON(!hctx->tags);
2901
2902 /*
2903 * Set the map size to the number of mapped software queues.
2904 * This is more accurate and more efficient than looping
2905 * over all possibly mapped software queues.
2906 */
2907 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2908
2909 /*
2910 * Initialize batch roundrobin counts
2911 */
2912 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2913 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2914 }
2915 }
2916
2917 /*
2918 * Caller needs to ensure that we're either frozen/quiesced, or that
2919 * the queue isn't live yet.
2920 */
2921 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2922 {
2923 struct blk_mq_hw_ctx *hctx;
2924 int i;
2925
2926 queue_for_each_hw_ctx(q, hctx, i) {
2927 if (shared)
2928 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2929 else
2930 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2931 }
2932 }
2933
2934 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
2935 bool shared)
2936 {
2937 struct request_queue *q;
2938
2939 lockdep_assert_held(&set->tag_list_lock);
2940
2941 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2942 blk_mq_freeze_queue(q);
2943 queue_set_hctx_shared(q, shared);
2944 blk_mq_unfreeze_queue(q);
2945 }
2946 }
2947
2948 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2949 {
2950 struct blk_mq_tag_set *set = q->tag_set;
2951
2952 mutex_lock(&set->tag_list_lock);
2953 list_del(&q->tag_set_list);
2954 if (list_is_singular(&set->tag_list)) {
2955 /* just transitioned to unshared */
2956 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2957 /* update existing queue */
2958 blk_mq_update_tag_set_shared(set, false);
2959 }
2960 mutex_unlock(&set->tag_list_lock);
2961 INIT_LIST_HEAD(&q->tag_set_list);
2962 }
2963
2964 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2965 struct request_queue *q)
2966 {
2967 mutex_lock(&set->tag_list_lock);
2968
2969 /*
2970 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2971 */
2972 if (!list_empty(&set->tag_list) &&
2973 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2974 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2975 /* update existing queue */
2976 blk_mq_update_tag_set_shared(set, true);
2977 }
2978 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
2979 queue_set_hctx_shared(q, true);
2980 list_add_tail(&q->tag_set_list, &set->tag_list);
2981
2982 mutex_unlock(&set->tag_list_lock);
2983 }
2984
2985 /* All allocations will be freed in release handler of q->mq_kobj */
2986 static int blk_mq_alloc_ctxs(struct request_queue *q)
2987 {
2988 struct blk_mq_ctxs *ctxs;
2989 int cpu;
2990
2991 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2992 if (!ctxs)
2993 return -ENOMEM;
2994
2995 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2996 if (!ctxs->queue_ctx)
2997 goto fail;
2998
2999 for_each_possible_cpu(cpu) {
3000 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3001 ctx->ctxs = ctxs;
3002 }
3003
3004 q->mq_kobj = &ctxs->kobj;
3005 q->queue_ctx = ctxs->queue_ctx;
3006
3007 return 0;
3008 fail:
3009 kfree(ctxs);
3010 return -ENOMEM;
3011 }
3012
3013 /*
3014 * It is the actual release handler for mq, but we do it from
3015 * request queue's release handler for avoiding use-after-free
3016 * and headache because q->mq_kobj shouldn't have been introduced,
3017 * but we can't group ctx/kctx kobj without it.
3018 */
3019 void blk_mq_release(struct request_queue *q)
3020 {
3021 struct blk_mq_hw_ctx *hctx, *next;
3022 int i;
3023
3024 queue_for_each_hw_ctx(q, hctx, i)
3025 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3026
3027 /* all hctx are in .unused_hctx_list now */
3028 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3029 list_del_init(&hctx->hctx_list);
3030 kobject_put(&hctx->kobj);
3031 }
3032
3033 kfree(q->queue_hw_ctx);
3034
3035 /*
3036 * release .mq_kobj and sw queue's kobject now because
3037 * both share lifetime with request queue.
3038 */
3039 blk_mq_sysfs_deinit(q);
3040 }
3041
3042 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3043 void *queuedata)
3044 {
3045 struct request_queue *uninit_q, *q;
3046
3047 uninit_q = blk_alloc_queue(set->numa_node);
3048 if (!uninit_q)
3049 return ERR_PTR(-ENOMEM);
3050 uninit_q->queuedata = queuedata;
3051
3052 /*
3053 * Initialize the queue without an elevator. device_add_disk() will do
3054 * the initialization.
3055 */
3056 q = blk_mq_init_allocated_queue(set, uninit_q, false);
3057 if (IS_ERR(q))
3058 blk_cleanup_queue(uninit_q);
3059
3060 return q;
3061 }
3062 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
3063
3064 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3065 {
3066 return blk_mq_init_queue_data(set, NULL);
3067 }
3068 EXPORT_SYMBOL(blk_mq_init_queue);
3069
3070 /*
3071 * Helper for setting up a queue with mq ops, given queue depth, and
3072 * the passed in mq ops flags.
3073 */
3074 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
3075 const struct blk_mq_ops *ops,
3076 unsigned int queue_depth,
3077 unsigned int set_flags)
3078 {
3079 struct request_queue *q;
3080 int ret;
3081
3082 memset(set, 0, sizeof(*set));
3083 set->ops = ops;
3084 set->nr_hw_queues = 1;
3085 set->nr_maps = 1;
3086 set->queue_depth = queue_depth;
3087 set->numa_node = NUMA_NO_NODE;
3088 set->flags = set_flags;
3089
3090 ret = blk_mq_alloc_tag_set(set);
3091 if (ret)
3092 return ERR_PTR(ret);
3093
3094 q = blk_mq_init_queue(set);
3095 if (IS_ERR(q)) {
3096 blk_mq_free_tag_set(set);
3097 return q;
3098 }
3099
3100 return q;
3101 }
3102 EXPORT_SYMBOL(blk_mq_init_sq_queue);
3103
3104 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3105 struct blk_mq_tag_set *set, struct request_queue *q,
3106 int hctx_idx, int node)
3107 {
3108 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3109
3110 /* reuse dead hctx first */
3111 spin_lock(&q->unused_hctx_lock);
3112 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3113 if (tmp->numa_node == node) {
3114 hctx = tmp;
3115 break;
3116 }
3117 }
3118 if (hctx)
3119 list_del_init(&hctx->hctx_list);
3120 spin_unlock(&q->unused_hctx_lock);
3121
3122 if (!hctx)
3123 hctx = blk_mq_alloc_hctx(q, set, node);
3124 if (!hctx)
3125 goto fail;
3126
3127 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3128 goto free_hctx;
3129
3130 return hctx;
3131
3132 free_hctx:
3133 kobject_put(&hctx->kobj);
3134 fail:
3135 return NULL;
3136 }
3137
3138 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3139 struct request_queue *q)
3140 {
3141 int i, j, end;
3142 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3143
3144 if (q->nr_hw_queues < set->nr_hw_queues) {
3145 struct blk_mq_hw_ctx **new_hctxs;
3146
3147 new_hctxs = kcalloc_node(set->nr_hw_queues,
3148 sizeof(*new_hctxs), GFP_KERNEL,
3149 set->numa_node);
3150 if (!new_hctxs)
3151 return;
3152 if (hctxs)
3153 memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3154 sizeof(*hctxs));
3155 q->queue_hw_ctx = new_hctxs;
3156 kfree(hctxs);
3157 hctxs = new_hctxs;
3158 }
3159
3160 /* protect against switching io scheduler */
3161 mutex_lock(&q->sysfs_lock);
3162 for (i = 0; i < set->nr_hw_queues; i++) {
3163 int node;
3164 struct blk_mq_hw_ctx *hctx;
3165
3166 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3167 /*
3168 * If the hw queue has been mapped to another numa node,
3169 * we need to realloc the hctx. If allocation fails, fallback
3170 * to use the previous one.
3171 */
3172 if (hctxs[i] && (hctxs[i]->numa_node == node))
3173 continue;
3174
3175 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3176 if (hctx) {
3177 if (hctxs[i])
3178 blk_mq_exit_hctx(q, set, hctxs[i], i);
3179 hctxs[i] = hctx;
3180 } else {
3181 if (hctxs[i])
3182 pr_warn("Allocate new hctx on node %d fails,\
3183 fallback to previous one on node %d\n",
3184 node, hctxs[i]->numa_node);
3185 else
3186 break;
3187 }
3188 }
3189 /*
3190 * Increasing nr_hw_queues fails. Free the newly allocated
3191 * hctxs and keep the previous q->nr_hw_queues.
3192 */
3193 if (i != set->nr_hw_queues) {
3194 j = q->nr_hw_queues;
3195 end = i;
3196 } else {
3197 j = i;
3198 end = q->nr_hw_queues;
3199 q->nr_hw_queues = set->nr_hw_queues;
3200 }
3201
3202 for (; j < end; j++) {
3203 struct blk_mq_hw_ctx *hctx = hctxs[j];
3204
3205 if (hctx) {
3206 if (hctx->tags)
3207 blk_mq_free_map_and_requests(set, j);
3208 blk_mq_exit_hctx(q, set, hctx, j);
3209 hctxs[j] = NULL;
3210 }
3211 }
3212 mutex_unlock(&q->sysfs_lock);
3213 }
3214
3215 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3216 struct request_queue *q,
3217 bool elevator_init)
3218 {
3219 /* mark the queue as mq asap */
3220 q->mq_ops = set->ops;
3221
3222 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3223 blk_mq_poll_stats_bkt,
3224 BLK_MQ_POLL_STATS_BKTS, q);
3225 if (!q->poll_cb)
3226 goto err_exit;
3227
3228 if (blk_mq_alloc_ctxs(q))
3229 goto err_poll;
3230
3231 /* init q->mq_kobj and sw queues' kobjects */
3232 blk_mq_sysfs_init(q);
3233
3234 INIT_LIST_HEAD(&q->unused_hctx_list);
3235 spin_lock_init(&q->unused_hctx_lock);
3236
3237 blk_mq_realloc_hw_ctxs(set, q);
3238 if (!q->nr_hw_queues)
3239 goto err_hctxs;
3240
3241 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3242 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3243
3244 q->tag_set = set;
3245
3246 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3247 if (set->nr_maps > HCTX_TYPE_POLL &&
3248 set->map[HCTX_TYPE_POLL].nr_queues)
3249 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3250
3251 q->sg_reserved_size = INT_MAX;
3252
3253 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3254 INIT_LIST_HEAD(&q->requeue_list);
3255 spin_lock_init(&q->requeue_lock);
3256
3257 q->nr_requests = set->queue_depth;
3258
3259 /*
3260 * Default to classic polling
3261 */
3262 q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3263
3264 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3265 blk_mq_add_queue_tag_set(set, q);
3266 blk_mq_map_swqueue(q);
3267
3268 if (elevator_init)
3269 elevator_init_mq(q);
3270
3271 return q;
3272
3273 err_hctxs:
3274 kfree(q->queue_hw_ctx);
3275 q->nr_hw_queues = 0;
3276 blk_mq_sysfs_deinit(q);
3277 err_poll:
3278 blk_stat_free_callback(q->poll_cb);
3279 q->poll_cb = NULL;
3280 err_exit:
3281 q->mq_ops = NULL;
3282 return ERR_PTR(-ENOMEM);
3283 }
3284 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3285
3286 /* tags can _not_ be used after returning from blk_mq_exit_queue */
3287 void blk_mq_exit_queue(struct request_queue *q)
3288 {
3289 struct blk_mq_tag_set *set = q->tag_set;
3290
3291 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
3292 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3293 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
3294 blk_mq_del_queue_tag_set(q);
3295 }
3296
3297 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3298 {
3299 int i;
3300
3301 for (i = 0; i < set->nr_hw_queues; i++) {
3302 if (!__blk_mq_alloc_map_and_request(set, i))
3303 goto out_unwind;
3304 cond_resched();
3305 }
3306
3307 return 0;
3308
3309 out_unwind:
3310 while (--i >= 0)
3311 blk_mq_free_map_and_requests(set, i);
3312
3313 return -ENOMEM;
3314 }
3315
3316 /*
3317 * Allocate the request maps associated with this tag_set. Note that this
3318 * may reduce the depth asked for, if memory is tight. set->queue_depth
3319 * will be updated to reflect the allocated depth.
3320 */
3321 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3322 {
3323 unsigned int depth;
3324 int err;
3325
3326 depth = set->queue_depth;
3327 do {
3328 err = __blk_mq_alloc_rq_maps(set);
3329 if (!err)
3330 break;
3331
3332 set->queue_depth >>= 1;
3333 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3334 err = -ENOMEM;
3335 break;
3336 }
3337 } while (set->queue_depth);
3338
3339 if (!set->queue_depth || err) {
3340 pr_err("blk-mq: failed to allocate request map\n");
3341 return -ENOMEM;
3342 }
3343
3344 if (depth != set->queue_depth)
3345 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3346 depth, set->queue_depth);
3347
3348 return 0;
3349 }
3350
3351 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3352 {
3353 /*
3354 * blk_mq_map_queues() and multiple .map_queues() implementations
3355 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3356 * number of hardware queues.
3357 */
3358 if (set->nr_maps == 1)
3359 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3360
3361 if (set->ops->map_queues && !is_kdump_kernel()) {
3362 int i;
3363
3364 /*
3365 * transport .map_queues is usually done in the following
3366 * way:
3367 *
3368 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3369 * mask = get_cpu_mask(queue)
3370 * for_each_cpu(cpu, mask)
3371 * set->map[x].mq_map[cpu] = queue;
3372 * }
3373 *
3374 * When we need to remap, the table has to be cleared for
3375 * killing stale mapping since one CPU may not be mapped
3376 * to any hw queue.
3377 */
3378 for (i = 0; i < set->nr_maps; i++)
3379 blk_mq_clear_mq_map(&set->map[i]);
3380
3381 return set->ops->map_queues(set);
3382 } else {
3383 BUG_ON(set->nr_maps > 1);
3384 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3385 }
3386 }
3387
3388 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3389 int cur_nr_hw_queues, int new_nr_hw_queues)
3390 {
3391 struct blk_mq_tags **new_tags;
3392
3393 if (cur_nr_hw_queues >= new_nr_hw_queues)
3394 return 0;
3395
3396 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3397 GFP_KERNEL, set->numa_node);
3398 if (!new_tags)
3399 return -ENOMEM;
3400
3401 if (set->tags)
3402 memcpy(new_tags, set->tags, cur_nr_hw_queues *
3403 sizeof(*set->tags));
3404 kfree(set->tags);
3405 set->tags = new_tags;
3406 set->nr_hw_queues = new_nr_hw_queues;
3407
3408 return 0;
3409 }
3410
3411 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
3412 int new_nr_hw_queues)
3413 {
3414 return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
3415 }
3416
3417 /*
3418 * Alloc a tag set to be associated with one or more request queues.
3419 * May fail with EINVAL for various error conditions. May adjust the
3420 * requested depth down, if it's too large. In that case, the set
3421 * value will be stored in set->queue_depth.
3422 */
3423 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3424 {
3425 int i, ret;
3426
3427 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3428
3429 if (!set->nr_hw_queues)
3430 return -EINVAL;
3431 if (!set->queue_depth)
3432 return -EINVAL;
3433 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3434 return -EINVAL;
3435
3436 if (!set->ops->queue_rq)
3437 return -EINVAL;
3438
3439 if (!set->ops->get_budget ^ !set->ops->put_budget)
3440 return -EINVAL;
3441
3442 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3443 pr_info("blk-mq: reduced tag depth to %u\n",
3444 BLK_MQ_MAX_DEPTH);
3445 set->queue_depth = BLK_MQ_MAX_DEPTH;
3446 }
3447
3448 if (!set->nr_maps)
3449 set->nr_maps = 1;
3450 else if (set->nr_maps > HCTX_MAX_TYPES)
3451 return -EINVAL;
3452
3453 /*
3454 * If a crashdump is active, then we are potentially in a very
3455 * memory constrained environment. Limit us to 1 queue and
3456 * 64 tags to prevent using too much memory.
3457 */
3458 if (is_kdump_kernel()) {
3459 set->nr_hw_queues = 1;
3460 set->nr_maps = 1;
3461 set->queue_depth = min(64U, set->queue_depth);
3462 }
3463 /*
3464 * There is no use for more h/w queues than cpus if we just have
3465 * a single map
3466 */
3467 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3468 set->nr_hw_queues = nr_cpu_ids;
3469
3470 if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
3471 return -ENOMEM;
3472
3473 ret = -ENOMEM;
3474 for (i = 0; i < set->nr_maps; i++) {
3475 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3476 sizeof(set->map[i].mq_map[0]),
3477 GFP_KERNEL, set->numa_node);
3478 if (!set->map[i].mq_map)
3479 goto out_free_mq_map;
3480 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3481 }
3482
3483 ret = blk_mq_update_queue_map(set);
3484 if (ret)
3485 goto out_free_mq_map;
3486
3487 ret = blk_mq_alloc_map_and_requests(set);
3488 if (ret)
3489 goto out_free_mq_map;
3490
3491 if (blk_mq_is_sbitmap_shared(set->flags)) {
3492 atomic_set(&set->active_queues_shared_sbitmap, 0);
3493
3494 if (blk_mq_init_shared_sbitmap(set, set->flags)) {
3495 ret = -ENOMEM;
3496 goto out_free_mq_rq_maps;
3497 }
3498 }
3499
3500 mutex_init(&set->tag_list_lock);
3501 INIT_LIST_HEAD(&set->tag_list);
3502
3503 return 0;
3504
3505 out_free_mq_rq_maps:
3506 for (i = 0; i < set->nr_hw_queues; i++)
3507 blk_mq_free_map_and_requests(set, i);
3508 out_free_mq_map:
3509 for (i = 0; i < set->nr_maps; i++) {
3510 kfree(set->map[i].mq_map);
3511 set->map[i].mq_map = NULL;
3512 }
3513 kfree(set->tags);
3514 set->tags = NULL;
3515 return ret;
3516 }
3517 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3518
3519 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3520 {
3521 int i, j;
3522
3523 for (i = 0; i < set->nr_hw_queues; i++)
3524 blk_mq_free_map_and_requests(set, i);
3525
3526 if (blk_mq_is_sbitmap_shared(set->flags))
3527 blk_mq_exit_shared_sbitmap(set);
3528
3529 for (j = 0; j < set->nr_maps; j++) {
3530 kfree(set->map[j].mq_map);
3531 set->map[j].mq_map = NULL;
3532 }
3533
3534 kfree(set->tags);
3535 set->tags = NULL;
3536 }
3537 EXPORT_SYMBOL(blk_mq_free_tag_set);
3538
3539 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3540 {
3541 struct blk_mq_tag_set *set = q->tag_set;
3542 struct blk_mq_hw_ctx *hctx;
3543 int i, ret;
3544
3545 if (!set)
3546 return -EINVAL;
3547
3548 if (q->nr_requests == nr)
3549 return 0;
3550
3551 blk_mq_freeze_queue(q);
3552 blk_mq_quiesce_queue(q);
3553
3554 ret = 0;
3555 queue_for_each_hw_ctx(q, hctx, i) {
3556 if (!hctx->tags)
3557 continue;
3558 /*
3559 * If we're using an MQ scheduler, just update the scheduler
3560 * queue depth. This is similar to what the old code would do.
3561 */
3562 if (!hctx->sched_tags) {
3563 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3564 false);
3565 if (!ret && blk_mq_is_sbitmap_shared(set->flags))
3566 blk_mq_tag_resize_shared_sbitmap(set, nr);
3567 } else {
3568 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3569 nr, true);
3570 }
3571 if (ret)
3572 break;
3573 if (q->elevator && q->elevator->type->ops.depth_updated)
3574 q->elevator->type->ops.depth_updated(hctx);
3575 }
3576
3577 if (!ret)
3578 q->nr_requests = nr;
3579
3580 blk_mq_unquiesce_queue(q);
3581 blk_mq_unfreeze_queue(q);
3582
3583 return ret;
3584 }
3585
3586 /*
3587 * request_queue and elevator_type pair.
3588 * It is just used by __blk_mq_update_nr_hw_queues to cache
3589 * the elevator_type associated with a request_queue.
3590 */
3591 struct blk_mq_qe_pair {
3592 struct list_head node;
3593 struct request_queue *q;
3594 struct elevator_type *type;
3595 };
3596
3597 /*
3598 * Cache the elevator_type in qe pair list and switch the
3599 * io scheduler to 'none'
3600 */
3601 static bool blk_mq_elv_switch_none(struct list_head *head,
3602 struct request_queue *q)
3603 {
3604 struct blk_mq_qe_pair *qe;
3605
3606 if (!q->elevator)
3607 return true;
3608
3609 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3610 if (!qe)
3611 return false;
3612
3613 INIT_LIST_HEAD(&qe->node);
3614 qe->q = q;
3615 qe->type = q->elevator->type;
3616 list_add(&qe->node, head);
3617
3618 mutex_lock(&q->sysfs_lock);
3619 /*
3620 * After elevator_switch_mq, the previous elevator_queue will be
3621 * released by elevator_release. The reference of the io scheduler
3622 * module get by elevator_get will also be put. So we need to get
3623 * a reference of the io scheduler module here to prevent it to be
3624 * removed.
3625 */
3626 __module_get(qe->type->elevator_owner);
3627 elevator_switch_mq(q, NULL);
3628 mutex_unlock(&q->sysfs_lock);
3629
3630 return true;
3631 }
3632
3633 static void blk_mq_elv_switch_back(struct list_head *head,
3634 struct request_queue *q)
3635 {
3636 struct blk_mq_qe_pair *qe;
3637 struct elevator_type *t = NULL;
3638
3639 list_for_each_entry(qe, head, node)
3640 if (qe->q == q) {
3641 t = qe->type;
3642 break;
3643 }
3644
3645 if (!t)
3646 return;
3647
3648 list_del(&qe->node);
3649 kfree(qe);
3650
3651 mutex_lock(&q->sysfs_lock);
3652 elevator_switch_mq(q, t);
3653 mutex_unlock(&q->sysfs_lock);
3654 }
3655
3656 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3657 int nr_hw_queues)
3658 {
3659 struct request_queue *q;
3660 LIST_HEAD(head);
3661 int prev_nr_hw_queues;
3662
3663 lockdep_assert_held(&set->tag_list_lock);
3664
3665 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3666 nr_hw_queues = nr_cpu_ids;
3667 if (nr_hw_queues < 1)
3668 return;
3669 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3670 return;
3671
3672 list_for_each_entry(q, &set->tag_list, tag_set_list)
3673 blk_mq_freeze_queue(q);
3674 /*
3675 * Switch IO scheduler to 'none', cleaning up the data associated
3676 * with the previous scheduler. We will switch back once we are done
3677 * updating the new sw to hw queue mappings.
3678 */
3679 list_for_each_entry(q, &set->tag_list, tag_set_list)
3680 if (!blk_mq_elv_switch_none(&head, q))
3681 goto switch_back;
3682
3683 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3684 blk_mq_debugfs_unregister_hctxs(q);
3685 blk_mq_sysfs_unregister(q);
3686 }
3687
3688 prev_nr_hw_queues = set->nr_hw_queues;
3689 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3690 0)
3691 goto reregister;
3692
3693 set->nr_hw_queues = nr_hw_queues;
3694 fallback:
3695 blk_mq_update_queue_map(set);
3696 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3697 blk_mq_realloc_hw_ctxs(set, q);
3698 if (q->nr_hw_queues != set->nr_hw_queues) {
3699 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3700 nr_hw_queues, prev_nr_hw_queues);
3701 set->nr_hw_queues = prev_nr_hw_queues;
3702 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3703 goto fallback;
3704 }
3705 blk_mq_map_swqueue(q);
3706 }
3707
3708 reregister:
3709 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3710 blk_mq_sysfs_register(q);
3711 blk_mq_debugfs_register_hctxs(q);
3712 }
3713
3714 switch_back:
3715 list_for_each_entry(q, &set->tag_list, tag_set_list)
3716 blk_mq_elv_switch_back(&head, q);
3717
3718 list_for_each_entry(q, &set->tag_list, tag_set_list)
3719 blk_mq_unfreeze_queue(q);
3720 }
3721
3722 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3723 {
3724 mutex_lock(&set->tag_list_lock);
3725 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3726 mutex_unlock(&set->tag_list_lock);
3727 }
3728 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3729
3730 /* Enable polling stats and return whether they were already enabled. */
3731 static bool blk_poll_stats_enable(struct request_queue *q)
3732 {
3733 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3734 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3735 return true;
3736 blk_stat_add_callback(q, q->poll_cb);
3737 return false;
3738 }
3739
3740 static void blk_mq_poll_stats_start(struct request_queue *q)
3741 {
3742 /*
3743 * We don't arm the callback if polling stats are not enabled or the
3744 * callback is already active.
3745 */
3746 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3747 blk_stat_is_active(q->poll_cb))
3748 return;
3749
3750 blk_stat_activate_msecs(q->poll_cb, 100);
3751 }
3752
3753 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3754 {
3755 struct request_queue *q = cb->data;
3756 int bucket;
3757
3758 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3759 if (cb->stat[bucket].nr_samples)
3760 q->poll_stat[bucket] = cb->stat[bucket];
3761 }
3762 }
3763
3764 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3765 struct request *rq)
3766 {
3767 unsigned long ret = 0;
3768 int bucket;
3769
3770 /*
3771 * If stats collection isn't on, don't sleep but turn it on for
3772 * future users
3773 */
3774 if (!blk_poll_stats_enable(q))
3775 return 0;
3776
3777 /*
3778 * As an optimistic guess, use half of the mean service time
3779 * for this type of request. We can (and should) make this smarter.
3780 * For instance, if the completion latencies are tight, we can
3781 * get closer than just half the mean. This is especially
3782 * important on devices where the completion latencies are longer
3783 * than ~10 usec. We do use the stats for the relevant IO size
3784 * if available which does lead to better estimates.
3785 */
3786 bucket = blk_mq_poll_stats_bkt(rq);
3787 if (bucket < 0)
3788 return ret;
3789
3790 if (q->poll_stat[bucket].nr_samples)
3791 ret = (q->poll_stat[bucket].mean + 1) / 2;
3792
3793 return ret;
3794 }
3795
3796 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3797 struct request *rq)
3798 {
3799 struct hrtimer_sleeper hs;
3800 enum hrtimer_mode mode;
3801 unsigned int nsecs;
3802 ktime_t kt;
3803
3804 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3805 return false;
3806
3807 /*
3808 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3809 *
3810 * 0: use half of prev avg
3811 * >0: use this specific value
3812 */
3813 if (q->poll_nsec > 0)
3814 nsecs = q->poll_nsec;
3815 else
3816 nsecs = blk_mq_poll_nsecs(q, rq);
3817
3818 if (!nsecs)
3819 return false;
3820
3821 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3822
3823 /*
3824 * This will be replaced with the stats tracking code, using
3825 * 'avg_completion_time / 2' as the pre-sleep target.
3826 */
3827 kt = nsecs;
3828
3829 mode = HRTIMER_MODE_REL;
3830 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3831 hrtimer_set_expires(&hs.timer, kt);
3832
3833 do {
3834 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3835 break;
3836 set_current_state(TASK_UNINTERRUPTIBLE);
3837 hrtimer_sleeper_start_expires(&hs, mode);
3838 if (hs.task)
3839 io_schedule();
3840 hrtimer_cancel(&hs.timer);
3841 mode = HRTIMER_MODE_ABS;
3842 } while (hs.task && !signal_pending(current));
3843
3844 __set_current_state(TASK_RUNNING);
3845 destroy_hrtimer_on_stack(&hs.timer);
3846 return true;
3847 }
3848
3849 static bool blk_mq_poll_hybrid(struct request_queue *q,
3850 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3851 {
3852 struct request *rq;
3853
3854 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3855 return false;
3856
3857 if (!blk_qc_t_is_internal(cookie))
3858 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3859 else {
3860 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3861 /*
3862 * With scheduling, if the request has completed, we'll
3863 * get a NULL return here, as we clear the sched tag when
3864 * that happens. The request still remains valid, like always,
3865 * so we should be safe with just the NULL check.
3866 */
3867 if (!rq)
3868 return false;
3869 }
3870
3871 return blk_mq_poll_hybrid_sleep(q, rq);
3872 }
3873
3874 /**
3875 * blk_poll - poll for IO completions
3876 * @q: the queue
3877 * @cookie: cookie passed back at IO submission time
3878 * @spin: whether to spin for completions
3879 *
3880 * Description:
3881 * Poll for completions on the passed in queue. Returns number of
3882 * completed entries found. If @spin is true, then blk_poll will continue
3883 * looping until at least one completion is found, unless the task is
3884 * otherwise marked running (or we need to reschedule).
3885 */
3886 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3887 {
3888 struct blk_mq_hw_ctx *hctx;
3889 long state;
3890
3891 if (!blk_qc_t_valid(cookie) ||
3892 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3893 return 0;
3894
3895 if (current->plug)
3896 blk_flush_plug_list(current->plug, false);
3897
3898 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3899
3900 /*
3901 * If we sleep, have the caller restart the poll loop to reset
3902 * the state. Like for the other success return cases, the
3903 * caller is responsible for checking if the IO completed. If
3904 * the IO isn't complete, we'll get called again and will go
3905 * straight to the busy poll loop. If specified not to spin,
3906 * we also should not sleep.
3907 */
3908 if (spin && blk_mq_poll_hybrid(q, hctx, cookie))
3909 return 1;
3910
3911 hctx->poll_considered++;
3912
3913 state = current->state;
3914 do {
3915 int ret;
3916
3917 hctx->poll_invoked++;
3918
3919 ret = q->mq_ops->poll(hctx);
3920 if (ret > 0) {
3921 hctx->poll_success++;
3922 __set_current_state(TASK_RUNNING);
3923 return ret;
3924 }
3925
3926 if (signal_pending_state(state, current))
3927 __set_current_state(TASK_RUNNING);
3928
3929 if (current->state == TASK_RUNNING)
3930 return 1;
3931 if (ret < 0 || !spin)
3932 break;
3933 cpu_relax();
3934 } while (!need_resched());
3935
3936 __set_current_state(TASK_RUNNING);
3937 return 0;
3938 }
3939 EXPORT_SYMBOL_GPL(blk_poll);
3940
3941 unsigned int blk_mq_rq_cpu(struct request *rq)
3942 {
3943 return rq->mq_ctx->cpu;
3944 }
3945 EXPORT_SYMBOL(blk_mq_rq_cpu);
3946
3947 static int __init blk_mq_init(void)
3948 {
3949 int i;
3950
3951 for_each_possible_cpu(i)
3952 init_llist_head(&per_cpu(blk_cpu_done, i));
3953 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
3954
3955 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
3956 "block/softirq:dead", NULL,
3957 blk_softirq_cpu_dead);
3958 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3959 blk_mq_hctx_notify_dead);
3960 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
3961 blk_mq_hctx_notify_online,
3962 blk_mq_hctx_notify_offline);
3963 return 0;
3964 }
3965 subsys_initcall(blk_mq_init);