]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-mq.c
sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[mirror_ubuntu-artful-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/delay.h>
25 #include <linux/crash_dump.h>
26 #include <linux/prefetch.h>
27
28 #include <trace/events/block.h>
29
30 #include <linux/blk-mq.h>
31 #include "blk.h"
32 #include "blk-mq.h"
33 #include "blk-mq-tag.h"
34 #include "blk-stat.h"
35 #include "blk-wbt.h"
36 #include "blk-mq-sched.h"
37
38 static DEFINE_MUTEX(all_q_mutex);
39 static LIST_HEAD(all_q_list);
40
41 /*
42 * Check if any of the ctx's have pending work in this hardware queue
43 */
44 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
45 {
46 return sbitmap_any_bit_set(&hctx->ctx_map) ||
47 !list_empty_careful(&hctx->dispatch) ||
48 blk_mq_sched_has_work(hctx);
49 }
50
51 /*
52 * Mark this ctx as having pending work in this hardware queue
53 */
54 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
55 struct blk_mq_ctx *ctx)
56 {
57 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
58 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
59 }
60
61 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
62 struct blk_mq_ctx *ctx)
63 {
64 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
65 }
66
67 void blk_mq_freeze_queue_start(struct request_queue *q)
68 {
69 int freeze_depth;
70
71 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
72 if (freeze_depth == 1) {
73 percpu_ref_kill(&q->q_usage_counter);
74 blk_mq_run_hw_queues(q, false);
75 }
76 }
77 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
78
79 static void blk_mq_freeze_queue_wait(struct request_queue *q)
80 {
81 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
82 }
83
84 /*
85 * Guarantee no request is in use, so we can change any data structure of
86 * the queue afterward.
87 */
88 void blk_freeze_queue(struct request_queue *q)
89 {
90 /*
91 * In the !blk_mq case we are only calling this to kill the
92 * q_usage_counter, otherwise this increases the freeze depth
93 * and waits for it to return to zero. For this reason there is
94 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
95 * exported to drivers as the only user for unfreeze is blk_mq.
96 */
97 blk_mq_freeze_queue_start(q);
98 blk_mq_freeze_queue_wait(q);
99 }
100
101 void blk_mq_freeze_queue(struct request_queue *q)
102 {
103 /*
104 * ...just an alias to keep freeze and unfreeze actions balanced
105 * in the blk_mq_* namespace
106 */
107 blk_freeze_queue(q);
108 }
109 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
110
111 void blk_mq_unfreeze_queue(struct request_queue *q)
112 {
113 int freeze_depth;
114
115 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
116 WARN_ON_ONCE(freeze_depth < 0);
117 if (!freeze_depth) {
118 percpu_ref_reinit(&q->q_usage_counter);
119 wake_up_all(&q->mq_freeze_wq);
120 }
121 }
122 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
123
124 /**
125 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
126 * @q: request queue.
127 *
128 * Note: this function does not prevent that the struct request end_io()
129 * callback function is invoked. Additionally, it is not prevented that
130 * new queue_rq() calls occur unless the queue has been stopped first.
131 */
132 void blk_mq_quiesce_queue(struct request_queue *q)
133 {
134 struct blk_mq_hw_ctx *hctx;
135 unsigned int i;
136 bool rcu = false;
137
138 blk_mq_stop_hw_queues(q);
139
140 queue_for_each_hw_ctx(q, hctx, i) {
141 if (hctx->flags & BLK_MQ_F_BLOCKING)
142 synchronize_srcu(&hctx->queue_rq_srcu);
143 else
144 rcu = true;
145 }
146 if (rcu)
147 synchronize_rcu();
148 }
149 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
150
151 void blk_mq_wake_waiters(struct request_queue *q)
152 {
153 struct blk_mq_hw_ctx *hctx;
154 unsigned int i;
155
156 queue_for_each_hw_ctx(q, hctx, i)
157 if (blk_mq_hw_queue_mapped(hctx))
158 blk_mq_tag_wakeup_all(hctx->tags, true);
159
160 /*
161 * If we are called because the queue has now been marked as
162 * dying, we need to ensure that processes currently waiting on
163 * the queue are notified as well.
164 */
165 wake_up_all(&q->mq_freeze_wq);
166 }
167
168 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
169 {
170 return blk_mq_has_free_tags(hctx->tags);
171 }
172 EXPORT_SYMBOL(blk_mq_can_queue);
173
174 void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
175 struct request *rq, unsigned int op)
176 {
177 INIT_LIST_HEAD(&rq->queuelist);
178 /* csd/requeue_work/fifo_time is initialized before use */
179 rq->q = q;
180 rq->mq_ctx = ctx;
181 rq->cmd_flags = op;
182 if (blk_queue_io_stat(q))
183 rq->rq_flags |= RQF_IO_STAT;
184 /* do not touch atomic flags, it needs atomic ops against the timer */
185 rq->cpu = -1;
186 INIT_HLIST_NODE(&rq->hash);
187 RB_CLEAR_NODE(&rq->rb_node);
188 rq->rq_disk = NULL;
189 rq->part = NULL;
190 rq->start_time = jiffies;
191 #ifdef CONFIG_BLK_CGROUP
192 rq->rl = NULL;
193 set_start_time_ns(rq);
194 rq->io_start_time_ns = 0;
195 #endif
196 rq->nr_phys_segments = 0;
197 #if defined(CONFIG_BLK_DEV_INTEGRITY)
198 rq->nr_integrity_segments = 0;
199 #endif
200 rq->special = NULL;
201 /* tag was already set */
202 rq->errors = 0;
203 rq->extra_len = 0;
204
205 INIT_LIST_HEAD(&rq->timeout_list);
206 rq->timeout = 0;
207
208 rq->end_io = NULL;
209 rq->end_io_data = NULL;
210 rq->next_rq = NULL;
211
212 ctx->rq_dispatched[op_is_sync(op)]++;
213 }
214 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
215
216 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
217 unsigned int op)
218 {
219 struct request *rq;
220 unsigned int tag;
221
222 tag = blk_mq_get_tag(data);
223 if (tag != BLK_MQ_TAG_FAIL) {
224 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
225
226 rq = tags->static_rqs[tag];
227
228 if (data->flags & BLK_MQ_REQ_INTERNAL) {
229 rq->tag = -1;
230 rq->internal_tag = tag;
231 } else {
232 if (blk_mq_tag_busy(data->hctx)) {
233 rq->rq_flags = RQF_MQ_INFLIGHT;
234 atomic_inc(&data->hctx->nr_active);
235 }
236 rq->tag = tag;
237 rq->internal_tag = -1;
238 }
239
240 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
241 return rq;
242 }
243
244 return NULL;
245 }
246 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
247
248 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
249 unsigned int flags)
250 {
251 struct blk_mq_alloc_data alloc_data = { .flags = flags };
252 struct request *rq;
253 int ret;
254
255 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
256 if (ret)
257 return ERR_PTR(ret);
258
259 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
260
261 blk_mq_put_ctx(alloc_data.ctx);
262 blk_queue_exit(q);
263
264 if (!rq)
265 return ERR_PTR(-EWOULDBLOCK);
266
267 rq->__data_len = 0;
268 rq->__sector = (sector_t) -1;
269 rq->bio = rq->biotail = NULL;
270 return rq;
271 }
272 EXPORT_SYMBOL(blk_mq_alloc_request);
273
274 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
275 unsigned int flags, unsigned int hctx_idx)
276 {
277 struct blk_mq_hw_ctx *hctx;
278 struct blk_mq_ctx *ctx;
279 struct request *rq;
280 struct blk_mq_alloc_data alloc_data;
281 int ret;
282
283 /*
284 * If the tag allocator sleeps we could get an allocation for a
285 * different hardware context. No need to complicate the low level
286 * allocator for this for the rare use case of a command tied to
287 * a specific queue.
288 */
289 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
290 return ERR_PTR(-EINVAL);
291
292 if (hctx_idx >= q->nr_hw_queues)
293 return ERR_PTR(-EIO);
294
295 ret = blk_queue_enter(q, true);
296 if (ret)
297 return ERR_PTR(ret);
298
299 /*
300 * Check if the hardware context is actually mapped to anything.
301 * If not tell the caller that it should skip this queue.
302 */
303 hctx = q->queue_hw_ctx[hctx_idx];
304 if (!blk_mq_hw_queue_mapped(hctx)) {
305 ret = -EXDEV;
306 goto out_queue_exit;
307 }
308 ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));
309
310 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
311 rq = __blk_mq_alloc_request(&alloc_data, rw);
312 if (!rq) {
313 ret = -EWOULDBLOCK;
314 goto out_queue_exit;
315 }
316
317 return rq;
318
319 out_queue_exit:
320 blk_queue_exit(q);
321 return ERR_PTR(ret);
322 }
323 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
324
325 void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
326 struct request *rq)
327 {
328 const int sched_tag = rq->internal_tag;
329 struct request_queue *q = rq->q;
330
331 if (rq->rq_flags & RQF_MQ_INFLIGHT)
332 atomic_dec(&hctx->nr_active);
333
334 wbt_done(q->rq_wb, &rq->issue_stat);
335 rq->rq_flags = 0;
336
337 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
338 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
339 if (rq->tag != -1)
340 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
341 if (sched_tag != -1)
342 blk_mq_sched_completed_request(hctx, rq);
343 blk_mq_sched_restart_queues(hctx);
344 blk_queue_exit(q);
345 }
346
347 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
348 struct request *rq)
349 {
350 struct blk_mq_ctx *ctx = rq->mq_ctx;
351
352 ctx->rq_completed[rq_is_sync(rq)]++;
353 __blk_mq_finish_request(hctx, ctx, rq);
354 }
355
356 void blk_mq_finish_request(struct request *rq)
357 {
358 blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
359 }
360
361 void blk_mq_free_request(struct request *rq)
362 {
363 blk_mq_sched_put_request(rq);
364 }
365 EXPORT_SYMBOL_GPL(blk_mq_free_request);
366
367 inline void __blk_mq_end_request(struct request *rq, int error)
368 {
369 blk_account_io_done(rq);
370
371 if (rq->end_io) {
372 wbt_done(rq->q->rq_wb, &rq->issue_stat);
373 rq->end_io(rq, error);
374 } else {
375 if (unlikely(blk_bidi_rq(rq)))
376 blk_mq_free_request(rq->next_rq);
377 blk_mq_free_request(rq);
378 }
379 }
380 EXPORT_SYMBOL(__blk_mq_end_request);
381
382 void blk_mq_end_request(struct request *rq, int error)
383 {
384 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
385 BUG();
386 __blk_mq_end_request(rq, error);
387 }
388 EXPORT_SYMBOL(blk_mq_end_request);
389
390 static void __blk_mq_complete_request_remote(void *data)
391 {
392 struct request *rq = data;
393
394 rq->q->softirq_done_fn(rq);
395 }
396
397 static void blk_mq_ipi_complete_request(struct request *rq)
398 {
399 struct blk_mq_ctx *ctx = rq->mq_ctx;
400 bool shared = false;
401 int cpu;
402
403 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
404 rq->q->softirq_done_fn(rq);
405 return;
406 }
407
408 cpu = get_cpu();
409 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
410 shared = cpus_share_cache(cpu, ctx->cpu);
411
412 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
413 rq->csd.func = __blk_mq_complete_request_remote;
414 rq->csd.info = rq;
415 rq->csd.flags = 0;
416 smp_call_function_single_async(ctx->cpu, &rq->csd);
417 } else {
418 rq->q->softirq_done_fn(rq);
419 }
420 put_cpu();
421 }
422
423 static void blk_mq_stat_add(struct request *rq)
424 {
425 if (rq->rq_flags & RQF_STATS) {
426 /*
427 * We could rq->mq_ctx here, but there's less of a risk
428 * of races if we have the completion event add the stats
429 * to the local software queue.
430 */
431 struct blk_mq_ctx *ctx;
432
433 ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
434 blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
435 }
436 }
437
438 static void __blk_mq_complete_request(struct request *rq)
439 {
440 struct request_queue *q = rq->q;
441
442 blk_mq_stat_add(rq);
443
444 if (!q->softirq_done_fn)
445 blk_mq_end_request(rq, rq->errors);
446 else
447 blk_mq_ipi_complete_request(rq);
448 }
449
450 /**
451 * blk_mq_complete_request - end I/O on a request
452 * @rq: the request being processed
453 *
454 * Description:
455 * Ends all I/O on a request. It does not handle partial completions.
456 * The actual completion happens out-of-order, through a IPI handler.
457 **/
458 void blk_mq_complete_request(struct request *rq, int error)
459 {
460 struct request_queue *q = rq->q;
461
462 if (unlikely(blk_should_fake_timeout(q)))
463 return;
464 if (!blk_mark_rq_complete(rq)) {
465 rq->errors = error;
466 __blk_mq_complete_request(rq);
467 }
468 }
469 EXPORT_SYMBOL(blk_mq_complete_request);
470
471 int blk_mq_request_started(struct request *rq)
472 {
473 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
474 }
475 EXPORT_SYMBOL_GPL(blk_mq_request_started);
476
477 void blk_mq_start_request(struct request *rq)
478 {
479 struct request_queue *q = rq->q;
480
481 blk_mq_sched_started_request(rq);
482
483 trace_block_rq_issue(q, rq);
484
485 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
486 blk_stat_set_issue_time(&rq->issue_stat);
487 rq->rq_flags |= RQF_STATS;
488 wbt_issue(q->rq_wb, &rq->issue_stat);
489 }
490
491 blk_add_timer(rq);
492
493 /*
494 * Ensure that ->deadline is visible before set the started
495 * flag and clear the completed flag.
496 */
497 smp_mb__before_atomic();
498
499 /*
500 * Mark us as started and clear complete. Complete might have been
501 * set if requeue raced with timeout, which then marked it as
502 * complete. So be sure to clear complete again when we start
503 * the request, otherwise we'll ignore the completion event.
504 */
505 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
506 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
507 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
508 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
509
510 if (q->dma_drain_size && blk_rq_bytes(rq)) {
511 /*
512 * Make sure space for the drain appears. We know we can do
513 * this because max_hw_segments has been adjusted to be one
514 * fewer than the device can handle.
515 */
516 rq->nr_phys_segments++;
517 }
518 }
519 EXPORT_SYMBOL(blk_mq_start_request);
520
521 static void __blk_mq_requeue_request(struct request *rq)
522 {
523 struct request_queue *q = rq->q;
524
525 trace_block_rq_requeue(q, rq);
526 wbt_requeue(q->rq_wb, &rq->issue_stat);
527 blk_mq_sched_requeue_request(rq);
528
529 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
530 if (q->dma_drain_size && blk_rq_bytes(rq))
531 rq->nr_phys_segments--;
532 }
533 }
534
535 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
536 {
537 __blk_mq_requeue_request(rq);
538
539 BUG_ON(blk_queued_rq(rq));
540 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
541 }
542 EXPORT_SYMBOL(blk_mq_requeue_request);
543
544 static void blk_mq_requeue_work(struct work_struct *work)
545 {
546 struct request_queue *q =
547 container_of(work, struct request_queue, requeue_work.work);
548 LIST_HEAD(rq_list);
549 struct request *rq, *next;
550 unsigned long flags;
551
552 spin_lock_irqsave(&q->requeue_lock, flags);
553 list_splice_init(&q->requeue_list, &rq_list);
554 spin_unlock_irqrestore(&q->requeue_lock, flags);
555
556 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
557 if (!(rq->rq_flags & RQF_SOFTBARRIER))
558 continue;
559
560 rq->rq_flags &= ~RQF_SOFTBARRIER;
561 list_del_init(&rq->queuelist);
562 blk_mq_sched_insert_request(rq, true, false, false, true);
563 }
564
565 while (!list_empty(&rq_list)) {
566 rq = list_entry(rq_list.next, struct request, queuelist);
567 list_del_init(&rq->queuelist);
568 blk_mq_sched_insert_request(rq, false, false, false, true);
569 }
570
571 blk_mq_run_hw_queues(q, false);
572 }
573
574 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
575 bool kick_requeue_list)
576 {
577 struct request_queue *q = rq->q;
578 unsigned long flags;
579
580 /*
581 * We abuse this flag that is otherwise used by the I/O scheduler to
582 * request head insertation from the workqueue.
583 */
584 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
585
586 spin_lock_irqsave(&q->requeue_lock, flags);
587 if (at_head) {
588 rq->rq_flags |= RQF_SOFTBARRIER;
589 list_add(&rq->queuelist, &q->requeue_list);
590 } else {
591 list_add_tail(&rq->queuelist, &q->requeue_list);
592 }
593 spin_unlock_irqrestore(&q->requeue_lock, flags);
594
595 if (kick_requeue_list)
596 blk_mq_kick_requeue_list(q);
597 }
598 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
599
600 void blk_mq_kick_requeue_list(struct request_queue *q)
601 {
602 kblockd_schedule_delayed_work(&q->requeue_work, 0);
603 }
604 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
605
606 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
607 unsigned long msecs)
608 {
609 kblockd_schedule_delayed_work(&q->requeue_work,
610 msecs_to_jiffies(msecs));
611 }
612 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
613
614 void blk_mq_abort_requeue_list(struct request_queue *q)
615 {
616 unsigned long flags;
617 LIST_HEAD(rq_list);
618
619 spin_lock_irqsave(&q->requeue_lock, flags);
620 list_splice_init(&q->requeue_list, &rq_list);
621 spin_unlock_irqrestore(&q->requeue_lock, flags);
622
623 while (!list_empty(&rq_list)) {
624 struct request *rq;
625
626 rq = list_first_entry(&rq_list, struct request, queuelist);
627 list_del_init(&rq->queuelist);
628 rq->errors = -EIO;
629 blk_mq_end_request(rq, rq->errors);
630 }
631 }
632 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
633
634 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
635 {
636 if (tag < tags->nr_tags) {
637 prefetch(tags->rqs[tag]);
638 return tags->rqs[tag];
639 }
640
641 return NULL;
642 }
643 EXPORT_SYMBOL(blk_mq_tag_to_rq);
644
645 struct blk_mq_timeout_data {
646 unsigned long next;
647 unsigned int next_set;
648 };
649
650 void blk_mq_rq_timed_out(struct request *req, bool reserved)
651 {
652 const struct blk_mq_ops *ops = req->q->mq_ops;
653 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
654
655 /*
656 * We know that complete is set at this point. If STARTED isn't set
657 * anymore, then the request isn't active and the "timeout" should
658 * just be ignored. This can happen due to the bitflag ordering.
659 * Timeout first checks if STARTED is set, and if it is, assumes
660 * the request is active. But if we race with completion, then
661 * we both flags will get cleared. So check here again, and ignore
662 * a timeout event with a request that isn't active.
663 */
664 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
665 return;
666
667 if (ops->timeout)
668 ret = ops->timeout(req, reserved);
669
670 switch (ret) {
671 case BLK_EH_HANDLED:
672 __blk_mq_complete_request(req);
673 break;
674 case BLK_EH_RESET_TIMER:
675 blk_add_timer(req);
676 blk_clear_rq_complete(req);
677 break;
678 case BLK_EH_NOT_HANDLED:
679 break;
680 default:
681 printk(KERN_ERR "block: bad eh return: %d\n", ret);
682 break;
683 }
684 }
685
686 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
687 struct request *rq, void *priv, bool reserved)
688 {
689 struct blk_mq_timeout_data *data = priv;
690
691 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
692 /*
693 * If a request wasn't started before the queue was
694 * marked dying, kill it here or it'll go unnoticed.
695 */
696 if (unlikely(blk_queue_dying(rq->q))) {
697 rq->errors = -EIO;
698 blk_mq_end_request(rq, rq->errors);
699 }
700 return;
701 }
702
703 if (time_after_eq(jiffies, rq->deadline)) {
704 if (!blk_mark_rq_complete(rq))
705 blk_mq_rq_timed_out(rq, reserved);
706 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
707 data->next = rq->deadline;
708 data->next_set = 1;
709 }
710 }
711
712 static void blk_mq_timeout_work(struct work_struct *work)
713 {
714 struct request_queue *q =
715 container_of(work, struct request_queue, timeout_work);
716 struct blk_mq_timeout_data data = {
717 .next = 0,
718 .next_set = 0,
719 };
720 int i;
721
722 /* A deadlock might occur if a request is stuck requiring a
723 * timeout at the same time a queue freeze is waiting
724 * completion, since the timeout code would not be able to
725 * acquire the queue reference here.
726 *
727 * That's why we don't use blk_queue_enter here; instead, we use
728 * percpu_ref_tryget directly, because we need to be able to
729 * obtain a reference even in the short window between the queue
730 * starting to freeze, by dropping the first reference in
731 * blk_mq_freeze_queue_start, and the moment the last request is
732 * consumed, marked by the instant q_usage_counter reaches
733 * zero.
734 */
735 if (!percpu_ref_tryget(&q->q_usage_counter))
736 return;
737
738 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
739
740 if (data.next_set) {
741 data.next = blk_rq_timeout(round_jiffies_up(data.next));
742 mod_timer(&q->timeout, data.next);
743 } else {
744 struct blk_mq_hw_ctx *hctx;
745
746 queue_for_each_hw_ctx(q, hctx, i) {
747 /* the hctx may be unmapped, so check it here */
748 if (blk_mq_hw_queue_mapped(hctx))
749 blk_mq_tag_idle(hctx);
750 }
751 }
752 blk_queue_exit(q);
753 }
754
755 /*
756 * Reverse check our software queue for entries that we could potentially
757 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
758 * too much time checking for merges.
759 */
760 static bool blk_mq_attempt_merge(struct request_queue *q,
761 struct blk_mq_ctx *ctx, struct bio *bio)
762 {
763 struct request *rq;
764 int checked = 8;
765
766 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
767 bool merged = false;
768
769 if (!checked--)
770 break;
771
772 if (!blk_rq_merge_ok(rq, bio))
773 continue;
774
775 switch (blk_try_merge(rq, bio)) {
776 case ELEVATOR_BACK_MERGE:
777 if (blk_mq_sched_allow_merge(q, rq, bio))
778 merged = bio_attempt_back_merge(q, rq, bio);
779 break;
780 case ELEVATOR_FRONT_MERGE:
781 if (blk_mq_sched_allow_merge(q, rq, bio))
782 merged = bio_attempt_front_merge(q, rq, bio);
783 break;
784 case ELEVATOR_DISCARD_MERGE:
785 merged = bio_attempt_discard_merge(q, rq, bio);
786 break;
787 default:
788 continue;
789 }
790
791 if (merged)
792 ctx->rq_merged++;
793 return merged;
794 }
795
796 return false;
797 }
798
799 struct flush_busy_ctx_data {
800 struct blk_mq_hw_ctx *hctx;
801 struct list_head *list;
802 };
803
804 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
805 {
806 struct flush_busy_ctx_data *flush_data = data;
807 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
808 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
809
810 sbitmap_clear_bit(sb, bitnr);
811 spin_lock(&ctx->lock);
812 list_splice_tail_init(&ctx->rq_list, flush_data->list);
813 spin_unlock(&ctx->lock);
814 return true;
815 }
816
817 /*
818 * Process software queues that have been marked busy, splicing them
819 * to the for-dispatch
820 */
821 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
822 {
823 struct flush_busy_ctx_data data = {
824 .hctx = hctx,
825 .list = list,
826 };
827
828 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
829 }
830 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
831
832 static inline unsigned int queued_to_index(unsigned int queued)
833 {
834 if (!queued)
835 return 0;
836
837 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
838 }
839
840 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
841 bool wait)
842 {
843 struct blk_mq_alloc_data data = {
844 .q = rq->q,
845 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
846 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
847 };
848
849 if (rq->tag != -1) {
850 done:
851 if (hctx)
852 *hctx = data.hctx;
853 return true;
854 }
855
856 rq->tag = blk_mq_get_tag(&data);
857 if (rq->tag >= 0) {
858 if (blk_mq_tag_busy(data.hctx)) {
859 rq->rq_flags |= RQF_MQ_INFLIGHT;
860 atomic_inc(&data.hctx->nr_active);
861 }
862 data.hctx->tags->rqs[rq->tag] = rq;
863 goto done;
864 }
865
866 return false;
867 }
868
869 static void blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
870 struct request *rq)
871 {
872 if (rq->tag == -1 || rq->internal_tag == -1)
873 return;
874
875 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
876 rq->tag = -1;
877
878 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
879 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
880 atomic_dec(&hctx->nr_active);
881 }
882 }
883
884 /*
885 * If we fail getting a driver tag because all the driver tags are already
886 * assigned and on the dispatch list, BUT the first entry does not have a
887 * tag, then we could deadlock. For that case, move entries with assigned
888 * driver tags to the front, leaving the set of tagged requests in the
889 * same order, and the untagged set in the same order.
890 */
891 static bool reorder_tags_to_front(struct list_head *list)
892 {
893 struct request *rq, *tmp, *first = NULL;
894
895 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
896 if (rq == first)
897 break;
898 if (rq->tag != -1) {
899 list_move(&rq->queuelist, list);
900 if (!first)
901 first = rq;
902 }
903 }
904
905 return first != NULL;
906 }
907
908 static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
909 void *key)
910 {
911 struct blk_mq_hw_ctx *hctx;
912
913 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
914
915 list_del(&wait->task_list);
916 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
917 blk_mq_run_hw_queue(hctx, true);
918 return 1;
919 }
920
921 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
922 {
923 struct sbq_wait_state *ws;
924
925 /*
926 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
927 * The thread which wins the race to grab this bit adds the hardware
928 * queue to the wait queue.
929 */
930 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
931 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
932 return false;
933
934 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
935 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
936
937 /*
938 * As soon as this returns, it's no longer safe to fiddle with
939 * hctx->dispatch_wait, since a completion can wake up the wait queue
940 * and unlock the bit.
941 */
942 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
943 return true;
944 }
945
946 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
947 {
948 struct request_queue *q = hctx->queue;
949 struct request *rq;
950 LIST_HEAD(driver_list);
951 struct list_head *dptr;
952 int queued, ret = BLK_MQ_RQ_QUEUE_OK;
953
954 /*
955 * Start off with dptr being NULL, so we start the first request
956 * immediately, even if we have more pending.
957 */
958 dptr = NULL;
959
960 /*
961 * Now process all the entries, sending them to the driver.
962 */
963 queued = 0;
964 while (!list_empty(list)) {
965 struct blk_mq_queue_data bd;
966
967 rq = list_first_entry(list, struct request, queuelist);
968 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
969 if (!queued && reorder_tags_to_front(list))
970 continue;
971
972 /*
973 * The initial allocation attempt failed, so we need to
974 * rerun the hardware queue when a tag is freed.
975 */
976 if (blk_mq_dispatch_wait_add(hctx)) {
977 /*
978 * It's possible that a tag was freed in the
979 * window between the allocation failure and
980 * adding the hardware queue to the wait queue.
981 */
982 if (!blk_mq_get_driver_tag(rq, &hctx, false))
983 break;
984 } else {
985 break;
986 }
987 }
988
989 list_del_init(&rq->queuelist);
990
991 bd.rq = rq;
992 bd.list = dptr;
993 bd.last = list_empty(list);
994
995 ret = q->mq_ops->queue_rq(hctx, &bd);
996 switch (ret) {
997 case BLK_MQ_RQ_QUEUE_OK:
998 queued++;
999 break;
1000 case BLK_MQ_RQ_QUEUE_BUSY:
1001 blk_mq_put_driver_tag(hctx, rq);
1002 list_add(&rq->queuelist, list);
1003 __blk_mq_requeue_request(rq);
1004 break;
1005 default:
1006 pr_err("blk-mq: bad return on queue: %d\n", ret);
1007 case BLK_MQ_RQ_QUEUE_ERROR:
1008 rq->errors = -EIO;
1009 blk_mq_end_request(rq, rq->errors);
1010 break;
1011 }
1012
1013 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
1014 break;
1015
1016 /*
1017 * We've done the first request. If we have more than 1
1018 * left in the list, set dptr to defer issue.
1019 */
1020 if (!dptr && list->next != list->prev)
1021 dptr = &driver_list;
1022 }
1023
1024 hctx->dispatched[queued_to_index(queued)]++;
1025
1026 /*
1027 * Any items that need requeuing? Stuff them into hctx->dispatch,
1028 * that is where we will continue on next queue run.
1029 */
1030 if (!list_empty(list)) {
1031 spin_lock(&hctx->lock);
1032 list_splice_init(list, &hctx->dispatch);
1033 spin_unlock(&hctx->lock);
1034
1035 /*
1036 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
1037 * it's possible the queue is stopped and restarted again
1038 * before this. Queue restart will dispatch requests. And since
1039 * requests in rq_list aren't added into hctx->dispatch yet,
1040 * the requests in rq_list might get lost.
1041 *
1042 * blk_mq_run_hw_queue() already checks the STOPPED bit
1043 *
1044 * If RESTART or TAG_WAITING is set, then let completion restart
1045 * the queue instead of potentially looping here.
1046 */
1047 if (!blk_mq_sched_needs_restart(hctx) &&
1048 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1049 blk_mq_run_hw_queue(hctx, true);
1050 }
1051
1052 return queued != 0;
1053 }
1054
1055 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1056 {
1057 int srcu_idx;
1058
1059 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1060 cpu_online(hctx->next_cpu));
1061
1062 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1063 rcu_read_lock();
1064 blk_mq_sched_dispatch_requests(hctx);
1065 rcu_read_unlock();
1066 } else {
1067 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1068 blk_mq_sched_dispatch_requests(hctx);
1069 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1070 }
1071 }
1072
1073 /*
1074 * It'd be great if the workqueue API had a way to pass
1075 * in a mask and had some smarts for more clever placement.
1076 * For now we just round-robin here, switching for every
1077 * BLK_MQ_CPU_WORK_BATCH queued items.
1078 */
1079 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1080 {
1081 if (hctx->queue->nr_hw_queues == 1)
1082 return WORK_CPU_UNBOUND;
1083
1084 if (--hctx->next_cpu_batch <= 0) {
1085 int next_cpu;
1086
1087 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1088 if (next_cpu >= nr_cpu_ids)
1089 next_cpu = cpumask_first(hctx->cpumask);
1090
1091 hctx->next_cpu = next_cpu;
1092 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1093 }
1094
1095 return hctx->next_cpu;
1096 }
1097
1098 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1099 {
1100 if (unlikely(blk_mq_hctx_stopped(hctx) ||
1101 !blk_mq_hw_queue_mapped(hctx)))
1102 return;
1103
1104 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1105 int cpu = get_cpu();
1106 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1107 __blk_mq_run_hw_queue(hctx);
1108 put_cpu();
1109 return;
1110 }
1111
1112 put_cpu();
1113 }
1114
1115 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
1116 }
1117
1118 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1119 {
1120 struct blk_mq_hw_ctx *hctx;
1121 int i;
1122
1123 queue_for_each_hw_ctx(q, hctx, i) {
1124 if (!blk_mq_hctx_has_pending(hctx) ||
1125 blk_mq_hctx_stopped(hctx))
1126 continue;
1127
1128 blk_mq_run_hw_queue(hctx, async);
1129 }
1130 }
1131 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1132
1133 /**
1134 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1135 * @q: request queue.
1136 *
1137 * The caller is responsible for serializing this function against
1138 * blk_mq_{start,stop}_hw_queue().
1139 */
1140 bool blk_mq_queue_stopped(struct request_queue *q)
1141 {
1142 struct blk_mq_hw_ctx *hctx;
1143 int i;
1144
1145 queue_for_each_hw_ctx(q, hctx, i)
1146 if (blk_mq_hctx_stopped(hctx))
1147 return true;
1148
1149 return false;
1150 }
1151 EXPORT_SYMBOL(blk_mq_queue_stopped);
1152
1153 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1154 {
1155 cancel_work(&hctx->run_work);
1156 cancel_delayed_work(&hctx->delay_work);
1157 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1158 }
1159 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1160
1161 void blk_mq_stop_hw_queues(struct request_queue *q)
1162 {
1163 struct blk_mq_hw_ctx *hctx;
1164 int i;
1165
1166 queue_for_each_hw_ctx(q, hctx, i)
1167 blk_mq_stop_hw_queue(hctx);
1168 }
1169 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1170
1171 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1172 {
1173 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1174
1175 blk_mq_run_hw_queue(hctx, false);
1176 }
1177 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1178
1179 void blk_mq_start_hw_queues(struct request_queue *q)
1180 {
1181 struct blk_mq_hw_ctx *hctx;
1182 int i;
1183
1184 queue_for_each_hw_ctx(q, hctx, i)
1185 blk_mq_start_hw_queue(hctx);
1186 }
1187 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1188
1189 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1190 {
1191 if (!blk_mq_hctx_stopped(hctx))
1192 return;
1193
1194 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1195 blk_mq_run_hw_queue(hctx, async);
1196 }
1197 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1198
1199 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1200 {
1201 struct blk_mq_hw_ctx *hctx;
1202 int i;
1203
1204 queue_for_each_hw_ctx(q, hctx, i)
1205 blk_mq_start_stopped_hw_queue(hctx, async);
1206 }
1207 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1208
1209 static void blk_mq_run_work_fn(struct work_struct *work)
1210 {
1211 struct blk_mq_hw_ctx *hctx;
1212
1213 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1214
1215 __blk_mq_run_hw_queue(hctx);
1216 }
1217
1218 static void blk_mq_delay_work_fn(struct work_struct *work)
1219 {
1220 struct blk_mq_hw_ctx *hctx;
1221
1222 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1223
1224 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1225 __blk_mq_run_hw_queue(hctx);
1226 }
1227
1228 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1229 {
1230 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1231 return;
1232
1233 blk_mq_stop_hw_queue(hctx);
1234 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1235 &hctx->delay_work, msecs_to_jiffies(msecs));
1236 }
1237 EXPORT_SYMBOL(blk_mq_delay_queue);
1238
1239 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1240 struct request *rq,
1241 bool at_head)
1242 {
1243 struct blk_mq_ctx *ctx = rq->mq_ctx;
1244
1245 trace_block_rq_insert(hctx->queue, rq);
1246
1247 if (at_head)
1248 list_add(&rq->queuelist, &ctx->rq_list);
1249 else
1250 list_add_tail(&rq->queuelist, &ctx->rq_list);
1251 }
1252
1253 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1254 bool at_head)
1255 {
1256 struct blk_mq_ctx *ctx = rq->mq_ctx;
1257
1258 __blk_mq_insert_req_list(hctx, rq, at_head);
1259 blk_mq_hctx_mark_pending(hctx, ctx);
1260 }
1261
1262 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1263 struct list_head *list)
1264
1265 {
1266 /*
1267 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1268 * offline now
1269 */
1270 spin_lock(&ctx->lock);
1271 while (!list_empty(list)) {
1272 struct request *rq;
1273
1274 rq = list_first_entry(list, struct request, queuelist);
1275 BUG_ON(rq->mq_ctx != ctx);
1276 list_del_init(&rq->queuelist);
1277 __blk_mq_insert_req_list(hctx, rq, false);
1278 }
1279 blk_mq_hctx_mark_pending(hctx, ctx);
1280 spin_unlock(&ctx->lock);
1281 }
1282
1283 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1284 {
1285 struct request *rqa = container_of(a, struct request, queuelist);
1286 struct request *rqb = container_of(b, struct request, queuelist);
1287
1288 return !(rqa->mq_ctx < rqb->mq_ctx ||
1289 (rqa->mq_ctx == rqb->mq_ctx &&
1290 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1291 }
1292
1293 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1294 {
1295 struct blk_mq_ctx *this_ctx;
1296 struct request_queue *this_q;
1297 struct request *rq;
1298 LIST_HEAD(list);
1299 LIST_HEAD(ctx_list);
1300 unsigned int depth;
1301
1302 list_splice_init(&plug->mq_list, &list);
1303
1304 list_sort(NULL, &list, plug_ctx_cmp);
1305
1306 this_q = NULL;
1307 this_ctx = NULL;
1308 depth = 0;
1309
1310 while (!list_empty(&list)) {
1311 rq = list_entry_rq(list.next);
1312 list_del_init(&rq->queuelist);
1313 BUG_ON(!rq->q);
1314 if (rq->mq_ctx != this_ctx) {
1315 if (this_ctx) {
1316 trace_block_unplug(this_q, depth, from_schedule);
1317 blk_mq_sched_insert_requests(this_q, this_ctx,
1318 &ctx_list,
1319 from_schedule);
1320 }
1321
1322 this_ctx = rq->mq_ctx;
1323 this_q = rq->q;
1324 depth = 0;
1325 }
1326
1327 depth++;
1328 list_add_tail(&rq->queuelist, &ctx_list);
1329 }
1330
1331 /*
1332 * If 'this_ctx' is set, we know we have entries to complete
1333 * on 'ctx_list'. Do those.
1334 */
1335 if (this_ctx) {
1336 trace_block_unplug(this_q, depth, from_schedule);
1337 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1338 from_schedule);
1339 }
1340 }
1341
1342 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1343 {
1344 init_request_from_bio(rq, bio);
1345
1346 blk_account_io_start(rq, true);
1347 }
1348
1349 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1350 {
1351 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1352 !blk_queue_nomerges(hctx->queue);
1353 }
1354
1355 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1356 struct blk_mq_ctx *ctx,
1357 struct request *rq, struct bio *bio)
1358 {
1359 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1360 blk_mq_bio_to_request(rq, bio);
1361 spin_lock(&ctx->lock);
1362 insert_rq:
1363 __blk_mq_insert_request(hctx, rq, false);
1364 spin_unlock(&ctx->lock);
1365 return false;
1366 } else {
1367 struct request_queue *q = hctx->queue;
1368
1369 spin_lock(&ctx->lock);
1370 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1371 blk_mq_bio_to_request(rq, bio);
1372 goto insert_rq;
1373 }
1374
1375 spin_unlock(&ctx->lock);
1376 __blk_mq_finish_request(hctx, ctx, rq);
1377 return true;
1378 }
1379 }
1380
1381 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1382 {
1383 if (rq->tag != -1)
1384 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1385
1386 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1387 }
1388
1389 static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie)
1390 {
1391 struct request_queue *q = rq->q;
1392 struct blk_mq_queue_data bd = {
1393 .rq = rq,
1394 .list = NULL,
1395 .last = 1
1396 };
1397 struct blk_mq_hw_ctx *hctx;
1398 blk_qc_t new_cookie;
1399 int ret;
1400
1401 if (q->elevator)
1402 goto insert;
1403
1404 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1405 goto insert;
1406
1407 new_cookie = request_to_qc_t(hctx, rq);
1408
1409 /*
1410 * For OK queue, we are done. For error, kill it. Any other
1411 * error (busy), just add it to our list as we previously
1412 * would have done
1413 */
1414 ret = q->mq_ops->queue_rq(hctx, &bd);
1415 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1416 *cookie = new_cookie;
1417 return;
1418 }
1419
1420 __blk_mq_requeue_request(rq);
1421
1422 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1423 *cookie = BLK_QC_T_NONE;
1424 rq->errors = -EIO;
1425 blk_mq_end_request(rq, rq->errors);
1426 return;
1427 }
1428
1429 insert:
1430 blk_mq_sched_insert_request(rq, false, true, true, false);
1431 }
1432
1433 /*
1434 * Multiple hardware queue variant. This will not use per-process plugs,
1435 * but will attempt to bypass the hctx queueing if we can go straight to
1436 * hardware for SYNC IO.
1437 */
1438 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1439 {
1440 const int is_sync = op_is_sync(bio->bi_opf);
1441 const int is_flush_fua = op_is_flush(bio->bi_opf);
1442 struct blk_mq_alloc_data data = { .flags = 0 };
1443 struct request *rq;
1444 unsigned int request_count = 0, srcu_idx;
1445 struct blk_plug *plug;
1446 struct request *same_queue_rq = NULL;
1447 blk_qc_t cookie;
1448 unsigned int wb_acct;
1449
1450 blk_queue_bounce(q, &bio);
1451
1452 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1453 bio_io_error(bio);
1454 return BLK_QC_T_NONE;
1455 }
1456
1457 blk_queue_split(q, &bio, q->bio_split);
1458
1459 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1460 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1461 return BLK_QC_T_NONE;
1462
1463 if (blk_mq_sched_bio_merge(q, bio))
1464 return BLK_QC_T_NONE;
1465
1466 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1467
1468 trace_block_getrq(q, bio, bio->bi_opf);
1469
1470 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1471 if (unlikely(!rq)) {
1472 __wbt_done(q->rq_wb, wb_acct);
1473 return BLK_QC_T_NONE;
1474 }
1475
1476 wbt_track(&rq->issue_stat, wb_acct);
1477
1478 cookie = request_to_qc_t(data.hctx, rq);
1479
1480 if (unlikely(is_flush_fua)) {
1481 if (q->elevator)
1482 goto elv_insert;
1483 blk_mq_bio_to_request(rq, bio);
1484 blk_insert_flush(rq);
1485 goto run_queue;
1486 }
1487
1488 plug = current->plug;
1489 /*
1490 * If the driver supports defer issued based on 'last', then
1491 * queue it up like normal since we can potentially save some
1492 * CPU this way.
1493 */
1494 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1495 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1496 struct request *old_rq = NULL;
1497
1498 blk_mq_bio_to_request(rq, bio);
1499
1500 /*
1501 * We do limited plugging. If the bio can be merged, do that.
1502 * Otherwise the existing request in the plug list will be
1503 * issued. So the plug list will have one request at most
1504 */
1505 if (plug) {
1506 /*
1507 * The plug list might get flushed before this. If that
1508 * happens, same_queue_rq is invalid and plug list is
1509 * empty
1510 */
1511 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1512 old_rq = same_queue_rq;
1513 list_del_init(&old_rq->queuelist);
1514 }
1515 list_add_tail(&rq->queuelist, &plug->mq_list);
1516 } else /* is_sync */
1517 old_rq = rq;
1518 blk_mq_put_ctx(data.ctx);
1519 if (!old_rq)
1520 goto done;
1521
1522 if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
1523 rcu_read_lock();
1524 blk_mq_try_issue_directly(old_rq, &cookie);
1525 rcu_read_unlock();
1526 } else {
1527 srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
1528 blk_mq_try_issue_directly(old_rq, &cookie);
1529 srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
1530 }
1531 goto done;
1532 }
1533
1534 if (q->elevator) {
1535 elv_insert:
1536 blk_mq_put_ctx(data.ctx);
1537 blk_mq_bio_to_request(rq, bio);
1538 blk_mq_sched_insert_request(rq, false, true,
1539 !is_sync || is_flush_fua, true);
1540 goto done;
1541 }
1542 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1543 /*
1544 * For a SYNC request, send it to the hardware immediately. For
1545 * an ASYNC request, just ensure that we run it later on. The
1546 * latter allows for merging opportunities and more efficient
1547 * dispatching.
1548 */
1549 run_queue:
1550 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1551 }
1552 blk_mq_put_ctx(data.ctx);
1553 done:
1554 return cookie;
1555 }
1556
1557 /*
1558 * Single hardware queue variant. This will attempt to use any per-process
1559 * plug for merging and IO deferral.
1560 */
1561 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1562 {
1563 const int is_sync = op_is_sync(bio->bi_opf);
1564 const int is_flush_fua = op_is_flush(bio->bi_opf);
1565 struct blk_plug *plug;
1566 unsigned int request_count = 0;
1567 struct blk_mq_alloc_data data = { .flags = 0 };
1568 struct request *rq;
1569 blk_qc_t cookie;
1570 unsigned int wb_acct;
1571
1572 blk_queue_bounce(q, &bio);
1573
1574 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1575 bio_io_error(bio);
1576 return BLK_QC_T_NONE;
1577 }
1578
1579 blk_queue_split(q, &bio, q->bio_split);
1580
1581 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1582 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1583 return BLK_QC_T_NONE;
1584 } else
1585 request_count = blk_plug_queued_count(q);
1586
1587 if (blk_mq_sched_bio_merge(q, bio))
1588 return BLK_QC_T_NONE;
1589
1590 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1591
1592 trace_block_getrq(q, bio, bio->bi_opf);
1593
1594 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1595 if (unlikely(!rq)) {
1596 __wbt_done(q->rq_wb, wb_acct);
1597 return BLK_QC_T_NONE;
1598 }
1599
1600 wbt_track(&rq->issue_stat, wb_acct);
1601
1602 cookie = request_to_qc_t(data.hctx, rq);
1603
1604 if (unlikely(is_flush_fua)) {
1605 if (q->elevator)
1606 goto elv_insert;
1607 blk_mq_bio_to_request(rq, bio);
1608 blk_insert_flush(rq);
1609 goto run_queue;
1610 }
1611
1612 /*
1613 * A task plug currently exists. Since this is completely lockless,
1614 * utilize that to temporarily store requests until the task is
1615 * either done or scheduled away.
1616 */
1617 plug = current->plug;
1618 if (plug) {
1619 struct request *last = NULL;
1620
1621 blk_mq_bio_to_request(rq, bio);
1622
1623 /*
1624 * @request_count may become stale because of schedule
1625 * out, so check the list again.
1626 */
1627 if (list_empty(&plug->mq_list))
1628 request_count = 0;
1629 if (!request_count)
1630 trace_block_plug(q);
1631 else
1632 last = list_entry_rq(plug->mq_list.prev);
1633
1634 blk_mq_put_ctx(data.ctx);
1635
1636 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1637 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1638 blk_flush_plug_list(plug, false);
1639 trace_block_plug(q);
1640 }
1641
1642 list_add_tail(&rq->queuelist, &plug->mq_list);
1643 return cookie;
1644 }
1645
1646 if (q->elevator) {
1647 elv_insert:
1648 blk_mq_put_ctx(data.ctx);
1649 blk_mq_bio_to_request(rq, bio);
1650 blk_mq_sched_insert_request(rq, false, true,
1651 !is_sync || is_flush_fua, true);
1652 goto done;
1653 }
1654 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1655 /*
1656 * For a SYNC request, send it to the hardware immediately. For
1657 * an ASYNC request, just ensure that we run it later on. The
1658 * latter allows for merging opportunities and more efficient
1659 * dispatching.
1660 */
1661 run_queue:
1662 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1663 }
1664
1665 blk_mq_put_ctx(data.ctx);
1666 done:
1667 return cookie;
1668 }
1669
1670 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1671 unsigned int hctx_idx)
1672 {
1673 struct page *page;
1674
1675 if (tags->rqs && set->ops->exit_request) {
1676 int i;
1677
1678 for (i = 0; i < tags->nr_tags; i++) {
1679 struct request *rq = tags->static_rqs[i];
1680
1681 if (!rq)
1682 continue;
1683 set->ops->exit_request(set->driver_data, rq,
1684 hctx_idx, i);
1685 tags->static_rqs[i] = NULL;
1686 }
1687 }
1688
1689 while (!list_empty(&tags->page_list)) {
1690 page = list_first_entry(&tags->page_list, struct page, lru);
1691 list_del_init(&page->lru);
1692 /*
1693 * Remove kmemleak object previously allocated in
1694 * blk_mq_init_rq_map().
1695 */
1696 kmemleak_free(page_address(page));
1697 __free_pages(page, page->private);
1698 }
1699 }
1700
1701 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1702 {
1703 kfree(tags->rqs);
1704 tags->rqs = NULL;
1705 kfree(tags->static_rqs);
1706 tags->static_rqs = NULL;
1707
1708 blk_mq_free_tags(tags);
1709 }
1710
1711 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1712 unsigned int hctx_idx,
1713 unsigned int nr_tags,
1714 unsigned int reserved_tags)
1715 {
1716 struct blk_mq_tags *tags;
1717
1718 tags = blk_mq_init_tags(nr_tags, reserved_tags,
1719 set->numa_node,
1720 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1721 if (!tags)
1722 return NULL;
1723
1724 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1725 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1726 set->numa_node);
1727 if (!tags->rqs) {
1728 blk_mq_free_tags(tags);
1729 return NULL;
1730 }
1731
1732 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1733 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1734 set->numa_node);
1735 if (!tags->static_rqs) {
1736 kfree(tags->rqs);
1737 blk_mq_free_tags(tags);
1738 return NULL;
1739 }
1740
1741 return tags;
1742 }
1743
1744 static size_t order_to_size(unsigned int order)
1745 {
1746 return (size_t)PAGE_SIZE << order;
1747 }
1748
1749 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1750 unsigned int hctx_idx, unsigned int depth)
1751 {
1752 unsigned int i, j, entries_per_page, max_order = 4;
1753 size_t rq_size, left;
1754
1755 INIT_LIST_HEAD(&tags->page_list);
1756
1757 /*
1758 * rq_size is the size of the request plus driver payload, rounded
1759 * to the cacheline size
1760 */
1761 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1762 cache_line_size());
1763 left = rq_size * depth;
1764
1765 for (i = 0; i < depth; ) {
1766 int this_order = max_order;
1767 struct page *page;
1768 int to_do;
1769 void *p;
1770
1771 while (this_order && left < order_to_size(this_order - 1))
1772 this_order--;
1773
1774 do {
1775 page = alloc_pages_node(set->numa_node,
1776 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1777 this_order);
1778 if (page)
1779 break;
1780 if (!this_order--)
1781 break;
1782 if (order_to_size(this_order) < rq_size)
1783 break;
1784 } while (1);
1785
1786 if (!page)
1787 goto fail;
1788
1789 page->private = this_order;
1790 list_add_tail(&page->lru, &tags->page_list);
1791
1792 p = page_address(page);
1793 /*
1794 * Allow kmemleak to scan these pages as they contain pointers
1795 * to additional allocations like via ops->init_request().
1796 */
1797 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1798 entries_per_page = order_to_size(this_order) / rq_size;
1799 to_do = min(entries_per_page, depth - i);
1800 left -= to_do * rq_size;
1801 for (j = 0; j < to_do; j++) {
1802 struct request *rq = p;
1803
1804 tags->static_rqs[i] = rq;
1805 if (set->ops->init_request) {
1806 if (set->ops->init_request(set->driver_data,
1807 rq, hctx_idx, i,
1808 set->numa_node)) {
1809 tags->static_rqs[i] = NULL;
1810 goto fail;
1811 }
1812 }
1813
1814 p += rq_size;
1815 i++;
1816 }
1817 }
1818 return 0;
1819
1820 fail:
1821 blk_mq_free_rqs(set, tags, hctx_idx);
1822 return -ENOMEM;
1823 }
1824
1825 /*
1826 * 'cpu' is going away. splice any existing rq_list entries from this
1827 * software queue to the hw queue dispatch list, and ensure that it
1828 * gets run.
1829 */
1830 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1831 {
1832 struct blk_mq_hw_ctx *hctx;
1833 struct blk_mq_ctx *ctx;
1834 LIST_HEAD(tmp);
1835
1836 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1837 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1838
1839 spin_lock(&ctx->lock);
1840 if (!list_empty(&ctx->rq_list)) {
1841 list_splice_init(&ctx->rq_list, &tmp);
1842 blk_mq_hctx_clear_pending(hctx, ctx);
1843 }
1844 spin_unlock(&ctx->lock);
1845
1846 if (list_empty(&tmp))
1847 return 0;
1848
1849 spin_lock(&hctx->lock);
1850 list_splice_tail_init(&tmp, &hctx->dispatch);
1851 spin_unlock(&hctx->lock);
1852
1853 blk_mq_run_hw_queue(hctx, true);
1854 return 0;
1855 }
1856
1857 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1858 {
1859 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1860 &hctx->cpuhp_dead);
1861 }
1862
1863 /* hctx->ctxs will be freed in queue's release handler */
1864 static void blk_mq_exit_hctx(struct request_queue *q,
1865 struct blk_mq_tag_set *set,
1866 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1867 {
1868 unsigned flush_start_tag = set->queue_depth;
1869
1870 blk_mq_tag_idle(hctx);
1871
1872 if (set->ops->exit_request)
1873 set->ops->exit_request(set->driver_data,
1874 hctx->fq->flush_rq, hctx_idx,
1875 flush_start_tag + hctx_idx);
1876
1877 if (set->ops->exit_hctx)
1878 set->ops->exit_hctx(hctx, hctx_idx);
1879
1880 if (hctx->flags & BLK_MQ_F_BLOCKING)
1881 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1882
1883 blk_mq_remove_cpuhp(hctx);
1884 blk_free_flush_queue(hctx->fq);
1885 sbitmap_free(&hctx->ctx_map);
1886 }
1887
1888 static void blk_mq_exit_hw_queues(struct request_queue *q,
1889 struct blk_mq_tag_set *set, int nr_queue)
1890 {
1891 struct blk_mq_hw_ctx *hctx;
1892 unsigned int i;
1893
1894 queue_for_each_hw_ctx(q, hctx, i) {
1895 if (i == nr_queue)
1896 break;
1897 blk_mq_exit_hctx(q, set, hctx, i);
1898 }
1899 }
1900
1901 static void blk_mq_free_hw_queues(struct request_queue *q,
1902 struct blk_mq_tag_set *set)
1903 {
1904 struct blk_mq_hw_ctx *hctx;
1905 unsigned int i;
1906
1907 queue_for_each_hw_ctx(q, hctx, i)
1908 free_cpumask_var(hctx->cpumask);
1909 }
1910
1911 static int blk_mq_init_hctx(struct request_queue *q,
1912 struct blk_mq_tag_set *set,
1913 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1914 {
1915 int node;
1916 unsigned flush_start_tag = set->queue_depth;
1917
1918 node = hctx->numa_node;
1919 if (node == NUMA_NO_NODE)
1920 node = hctx->numa_node = set->numa_node;
1921
1922 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1923 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1924 spin_lock_init(&hctx->lock);
1925 INIT_LIST_HEAD(&hctx->dispatch);
1926 hctx->queue = q;
1927 hctx->queue_num = hctx_idx;
1928 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1929
1930 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1931
1932 hctx->tags = set->tags[hctx_idx];
1933
1934 /*
1935 * Allocate space for all possible cpus to avoid allocation at
1936 * runtime
1937 */
1938 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1939 GFP_KERNEL, node);
1940 if (!hctx->ctxs)
1941 goto unregister_cpu_notifier;
1942
1943 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1944 node))
1945 goto free_ctxs;
1946
1947 hctx->nr_ctx = 0;
1948
1949 if (set->ops->init_hctx &&
1950 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1951 goto free_bitmap;
1952
1953 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1954 if (!hctx->fq)
1955 goto exit_hctx;
1956
1957 if (set->ops->init_request &&
1958 set->ops->init_request(set->driver_data,
1959 hctx->fq->flush_rq, hctx_idx,
1960 flush_start_tag + hctx_idx, node))
1961 goto free_fq;
1962
1963 if (hctx->flags & BLK_MQ_F_BLOCKING)
1964 init_srcu_struct(&hctx->queue_rq_srcu);
1965
1966 return 0;
1967
1968 free_fq:
1969 kfree(hctx->fq);
1970 exit_hctx:
1971 if (set->ops->exit_hctx)
1972 set->ops->exit_hctx(hctx, hctx_idx);
1973 free_bitmap:
1974 sbitmap_free(&hctx->ctx_map);
1975 free_ctxs:
1976 kfree(hctx->ctxs);
1977 unregister_cpu_notifier:
1978 blk_mq_remove_cpuhp(hctx);
1979 return -1;
1980 }
1981
1982 static void blk_mq_init_cpu_queues(struct request_queue *q,
1983 unsigned int nr_hw_queues)
1984 {
1985 unsigned int i;
1986
1987 for_each_possible_cpu(i) {
1988 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1989 struct blk_mq_hw_ctx *hctx;
1990
1991 memset(__ctx, 0, sizeof(*__ctx));
1992 __ctx->cpu = i;
1993 spin_lock_init(&__ctx->lock);
1994 INIT_LIST_HEAD(&__ctx->rq_list);
1995 __ctx->queue = q;
1996 blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
1997 blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
1998
1999 /* If the cpu isn't online, the cpu is mapped to first hctx */
2000 if (!cpu_online(i))
2001 continue;
2002
2003 hctx = blk_mq_map_queue(q, i);
2004
2005 /*
2006 * Set local node, IFF we have more than one hw queue. If
2007 * not, we remain on the home node of the device
2008 */
2009 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2010 hctx->numa_node = local_memory_node(cpu_to_node(i));
2011 }
2012 }
2013
2014 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2015 {
2016 int ret = 0;
2017
2018 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2019 set->queue_depth, set->reserved_tags);
2020 if (!set->tags[hctx_idx])
2021 return false;
2022
2023 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2024 set->queue_depth);
2025 if (!ret)
2026 return true;
2027
2028 blk_mq_free_rq_map(set->tags[hctx_idx]);
2029 set->tags[hctx_idx] = NULL;
2030 return false;
2031 }
2032
2033 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2034 unsigned int hctx_idx)
2035 {
2036 if (set->tags[hctx_idx]) {
2037 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2038 blk_mq_free_rq_map(set->tags[hctx_idx]);
2039 set->tags[hctx_idx] = NULL;
2040 }
2041 }
2042
2043 static void blk_mq_map_swqueue(struct request_queue *q,
2044 const struct cpumask *online_mask)
2045 {
2046 unsigned int i, hctx_idx;
2047 struct blk_mq_hw_ctx *hctx;
2048 struct blk_mq_ctx *ctx;
2049 struct blk_mq_tag_set *set = q->tag_set;
2050
2051 /*
2052 * Avoid others reading imcomplete hctx->cpumask through sysfs
2053 */
2054 mutex_lock(&q->sysfs_lock);
2055
2056 queue_for_each_hw_ctx(q, hctx, i) {
2057 cpumask_clear(hctx->cpumask);
2058 hctx->nr_ctx = 0;
2059 }
2060
2061 /*
2062 * Map software to hardware queues
2063 */
2064 for_each_possible_cpu(i) {
2065 /* If the cpu isn't online, the cpu is mapped to first hctx */
2066 if (!cpumask_test_cpu(i, online_mask))
2067 continue;
2068
2069 hctx_idx = q->mq_map[i];
2070 /* unmapped hw queue can be remapped after CPU topo changed */
2071 if (!set->tags[hctx_idx] &&
2072 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2073 /*
2074 * If tags initialization fail for some hctx,
2075 * that hctx won't be brought online. In this
2076 * case, remap the current ctx to hctx[0] which
2077 * is guaranteed to always have tags allocated
2078 */
2079 q->mq_map[i] = 0;
2080 }
2081
2082 ctx = per_cpu_ptr(q->queue_ctx, i);
2083 hctx = blk_mq_map_queue(q, i);
2084
2085 cpumask_set_cpu(i, hctx->cpumask);
2086 ctx->index_hw = hctx->nr_ctx;
2087 hctx->ctxs[hctx->nr_ctx++] = ctx;
2088 }
2089
2090 mutex_unlock(&q->sysfs_lock);
2091
2092 queue_for_each_hw_ctx(q, hctx, i) {
2093 /*
2094 * If no software queues are mapped to this hardware queue,
2095 * disable it and free the request entries.
2096 */
2097 if (!hctx->nr_ctx) {
2098 /* Never unmap queue 0. We need it as a
2099 * fallback in case of a new remap fails
2100 * allocation
2101 */
2102 if (i && set->tags[i])
2103 blk_mq_free_map_and_requests(set, i);
2104
2105 hctx->tags = NULL;
2106 continue;
2107 }
2108
2109 hctx->tags = set->tags[i];
2110 WARN_ON(!hctx->tags);
2111
2112 /*
2113 * Set the map size to the number of mapped software queues.
2114 * This is more accurate and more efficient than looping
2115 * over all possibly mapped software queues.
2116 */
2117 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2118
2119 /*
2120 * Initialize batch roundrobin counts
2121 */
2122 hctx->next_cpu = cpumask_first(hctx->cpumask);
2123 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2124 }
2125 }
2126
2127 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2128 {
2129 struct blk_mq_hw_ctx *hctx;
2130 int i;
2131
2132 queue_for_each_hw_ctx(q, hctx, i) {
2133 if (shared)
2134 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2135 else
2136 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2137 }
2138 }
2139
2140 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2141 {
2142 struct request_queue *q;
2143
2144 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2145 blk_mq_freeze_queue(q);
2146 queue_set_hctx_shared(q, shared);
2147 blk_mq_unfreeze_queue(q);
2148 }
2149 }
2150
2151 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2152 {
2153 struct blk_mq_tag_set *set = q->tag_set;
2154
2155 mutex_lock(&set->tag_list_lock);
2156 list_del_init(&q->tag_set_list);
2157 if (list_is_singular(&set->tag_list)) {
2158 /* just transitioned to unshared */
2159 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2160 /* update existing queue */
2161 blk_mq_update_tag_set_depth(set, false);
2162 }
2163 mutex_unlock(&set->tag_list_lock);
2164 }
2165
2166 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2167 struct request_queue *q)
2168 {
2169 q->tag_set = set;
2170
2171 mutex_lock(&set->tag_list_lock);
2172
2173 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2174 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2175 set->flags |= BLK_MQ_F_TAG_SHARED;
2176 /* update existing queue */
2177 blk_mq_update_tag_set_depth(set, true);
2178 }
2179 if (set->flags & BLK_MQ_F_TAG_SHARED)
2180 queue_set_hctx_shared(q, true);
2181 list_add_tail(&q->tag_set_list, &set->tag_list);
2182
2183 mutex_unlock(&set->tag_list_lock);
2184 }
2185
2186 /*
2187 * It is the actual release handler for mq, but we do it from
2188 * request queue's release handler for avoiding use-after-free
2189 * and headache because q->mq_kobj shouldn't have been introduced,
2190 * but we can't group ctx/kctx kobj without it.
2191 */
2192 void blk_mq_release(struct request_queue *q)
2193 {
2194 struct blk_mq_hw_ctx *hctx;
2195 unsigned int i;
2196
2197 blk_mq_sched_teardown(q);
2198
2199 /* hctx kobj stays in hctx */
2200 queue_for_each_hw_ctx(q, hctx, i) {
2201 if (!hctx)
2202 continue;
2203 kfree(hctx->ctxs);
2204 kfree(hctx);
2205 }
2206
2207 q->mq_map = NULL;
2208
2209 kfree(q->queue_hw_ctx);
2210
2211 /* ctx kobj stays in queue_ctx */
2212 free_percpu(q->queue_ctx);
2213 }
2214
2215 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2216 {
2217 struct request_queue *uninit_q, *q;
2218
2219 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2220 if (!uninit_q)
2221 return ERR_PTR(-ENOMEM);
2222
2223 q = blk_mq_init_allocated_queue(set, uninit_q);
2224 if (IS_ERR(q))
2225 blk_cleanup_queue(uninit_q);
2226
2227 return q;
2228 }
2229 EXPORT_SYMBOL(blk_mq_init_queue);
2230
2231 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2232 struct request_queue *q)
2233 {
2234 int i, j;
2235 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2236
2237 blk_mq_sysfs_unregister(q);
2238 for (i = 0; i < set->nr_hw_queues; i++) {
2239 int node;
2240
2241 if (hctxs[i])
2242 continue;
2243
2244 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2245 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2246 GFP_KERNEL, node);
2247 if (!hctxs[i])
2248 break;
2249
2250 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2251 node)) {
2252 kfree(hctxs[i]);
2253 hctxs[i] = NULL;
2254 break;
2255 }
2256
2257 atomic_set(&hctxs[i]->nr_active, 0);
2258 hctxs[i]->numa_node = node;
2259 hctxs[i]->queue_num = i;
2260
2261 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2262 free_cpumask_var(hctxs[i]->cpumask);
2263 kfree(hctxs[i]);
2264 hctxs[i] = NULL;
2265 break;
2266 }
2267 blk_mq_hctx_kobj_init(hctxs[i]);
2268 }
2269 for (j = i; j < q->nr_hw_queues; j++) {
2270 struct blk_mq_hw_ctx *hctx = hctxs[j];
2271
2272 if (hctx) {
2273 if (hctx->tags)
2274 blk_mq_free_map_and_requests(set, j);
2275 blk_mq_exit_hctx(q, set, hctx, j);
2276 free_cpumask_var(hctx->cpumask);
2277 kobject_put(&hctx->kobj);
2278 kfree(hctx->ctxs);
2279 kfree(hctx);
2280 hctxs[j] = NULL;
2281
2282 }
2283 }
2284 q->nr_hw_queues = i;
2285 blk_mq_sysfs_register(q);
2286 }
2287
2288 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2289 struct request_queue *q)
2290 {
2291 /* mark the queue as mq asap */
2292 q->mq_ops = set->ops;
2293
2294 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2295 if (!q->queue_ctx)
2296 goto err_exit;
2297
2298 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2299 GFP_KERNEL, set->numa_node);
2300 if (!q->queue_hw_ctx)
2301 goto err_percpu;
2302
2303 q->mq_map = set->mq_map;
2304
2305 blk_mq_realloc_hw_ctxs(set, q);
2306 if (!q->nr_hw_queues)
2307 goto err_hctxs;
2308
2309 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2310 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2311
2312 q->nr_queues = nr_cpu_ids;
2313
2314 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2315
2316 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2317 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2318
2319 q->sg_reserved_size = INT_MAX;
2320
2321 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2322 INIT_LIST_HEAD(&q->requeue_list);
2323 spin_lock_init(&q->requeue_lock);
2324
2325 if (q->nr_hw_queues > 1)
2326 blk_queue_make_request(q, blk_mq_make_request);
2327 else
2328 blk_queue_make_request(q, blk_sq_make_request);
2329
2330 /*
2331 * Do this after blk_queue_make_request() overrides it...
2332 */
2333 q->nr_requests = set->queue_depth;
2334
2335 /*
2336 * Default to classic polling
2337 */
2338 q->poll_nsec = -1;
2339
2340 if (set->ops->complete)
2341 blk_queue_softirq_done(q, set->ops->complete);
2342
2343 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2344
2345 get_online_cpus();
2346 mutex_lock(&all_q_mutex);
2347
2348 list_add_tail(&q->all_q_node, &all_q_list);
2349 blk_mq_add_queue_tag_set(set, q);
2350 blk_mq_map_swqueue(q, cpu_online_mask);
2351
2352 mutex_unlock(&all_q_mutex);
2353 put_online_cpus();
2354
2355 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2356 int ret;
2357
2358 ret = blk_mq_sched_init(q);
2359 if (ret)
2360 return ERR_PTR(ret);
2361 }
2362
2363 return q;
2364
2365 err_hctxs:
2366 kfree(q->queue_hw_ctx);
2367 err_percpu:
2368 free_percpu(q->queue_ctx);
2369 err_exit:
2370 q->mq_ops = NULL;
2371 return ERR_PTR(-ENOMEM);
2372 }
2373 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2374
2375 void blk_mq_free_queue(struct request_queue *q)
2376 {
2377 struct blk_mq_tag_set *set = q->tag_set;
2378
2379 mutex_lock(&all_q_mutex);
2380 list_del_init(&q->all_q_node);
2381 mutex_unlock(&all_q_mutex);
2382
2383 wbt_exit(q);
2384
2385 blk_mq_del_queue_tag_set(q);
2386
2387 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2388 blk_mq_free_hw_queues(q, set);
2389 }
2390
2391 /* Basically redo blk_mq_init_queue with queue frozen */
2392 static void blk_mq_queue_reinit(struct request_queue *q,
2393 const struct cpumask *online_mask)
2394 {
2395 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2396
2397 blk_mq_sysfs_unregister(q);
2398
2399 /*
2400 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2401 * we should change hctx numa_node according to new topology (this
2402 * involves free and re-allocate memory, worthy doing?)
2403 */
2404
2405 blk_mq_map_swqueue(q, online_mask);
2406
2407 blk_mq_sysfs_register(q);
2408 }
2409
2410 /*
2411 * New online cpumask which is going to be set in this hotplug event.
2412 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2413 * one-by-one and dynamically allocating this could result in a failure.
2414 */
2415 static struct cpumask cpuhp_online_new;
2416
2417 static void blk_mq_queue_reinit_work(void)
2418 {
2419 struct request_queue *q;
2420
2421 mutex_lock(&all_q_mutex);
2422 /*
2423 * We need to freeze and reinit all existing queues. Freezing
2424 * involves synchronous wait for an RCU grace period and doing it
2425 * one by one may take a long time. Start freezing all queues in
2426 * one swoop and then wait for the completions so that freezing can
2427 * take place in parallel.
2428 */
2429 list_for_each_entry(q, &all_q_list, all_q_node)
2430 blk_mq_freeze_queue_start(q);
2431 list_for_each_entry(q, &all_q_list, all_q_node)
2432 blk_mq_freeze_queue_wait(q);
2433
2434 list_for_each_entry(q, &all_q_list, all_q_node)
2435 blk_mq_queue_reinit(q, &cpuhp_online_new);
2436
2437 list_for_each_entry(q, &all_q_list, all_q_node)
2438 blk_mq_unfreeze_queue(q);
2439
2440 mutex_unlock(&all_q_mutex);
2441 }
2442
2443 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2444 {
2445 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2446 blk_mq_queue_reinit_work();
2447 return 0;
2448 }
2449
2450 /*
2451 * Before hotadded cpu starts handling requests, new mappings must be
2452 * established. Otherwise, these requests in hw queue might never be
2453 * dispatched.
2454 *
2455 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2456 * for CPU0, and ctx1 for CPU1).
2457 *
2458 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2459 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2460 *
2461 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2462 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2463 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2464 * ignored.
2465 */
2466 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2467 {
2468 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2469 cpumask_set_cpu(cpu, &cpuhp_online_new);
2470 blk_mq_queue_reinit_work();
2471 return 0;
2472 }
2473
2474 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2475 {
2476 int i;
2477
2478 for (i = 0; i < set->nr_hw_queues; i++)
2479 if (!__blk_mq_alloc_rq_map(set, i))
2480 goto out_unwind;
2481
2482 return 0;
2483
2484 out_unwind:
2485 while (--i >= 0)
2486 blk_mq_free_rq_map(set->tags[i]);
2487
2488 return -ENOMEM;
2489 }
2490
2491 /*
2492 * Allocate the request maps associated with this tag_set. Note that this
2493 * may reduce the depth asked for, if memory is tight. set->queue_depth
2494 * will be updated to reflect the allocated depth.
2495 */
2496 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2497 {
2498 unsigned int depth;
2499 int err;
2500
2501 depth = set->queue_depth;
2502 do {
2503 err = __blk_mq_alloc_rq_maps(set);
2504 if (!err)
2505 break;
2506
2507 set->queue_depth >>= 1;
2508 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2509 err = -ENOMEM;
2510 break;
2511 }
2512 } while (set->queue_depth);
2513
2514 if (!set->queue_depth || err) {
2515 pr_err("blk-mq: failed to allocate request map\n");
2516 return -ENOMEM;
2517 }
2518
2519 if (depth != set->queue_depth)
2520 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2521 depth, set->queue_depth);
2522
2523 return 0;
2524 }
2525
2526 /*
2527 * Alloc a tag set to be associated with one or more request queues.
2528 * May fail with EINVAL for various error conditions. May adjust the
2529 * requested depth down, if if it too large. In that case, the set
2530 * value will be stored in set->queue_depth.
2531 */
2532 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2533 {
2534 int ret;
2535
2536 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2537
2538 if (!set->nr_hw_queues)
2539 return -EINVAL;
2540 if (!set->queue_depth)
2541 return -EINVAL;
2542 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2543 return -EINVAL;
2544
2545 if (!set->ops->queue_rq)
2546 return -EINVAL;
2547
2548 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2549 pr_info("blk-mq: reduced tag depth to %u\n",
2550 BLK_MQ_MAX_DEPTH);
2551 set->queue_depth = BLK_MQ_MAX_DEPTH;
2552 }
2553
2554 /*
2555 * If a crashdump is active, then we are potentially in a very
2556 * memory constrained environment. Limit us to 1 queue and
2557 * 64 tags to prevent using too much memory.
2558 */
2559 if (is_kdump_kernel()) {
2560 set->nr_hw_queues = 1;
2561 set->queue_depth = min(64U, set->queue_depth);
2562 }
2563 /*
2564 * There is no use for more h/w queues than cpus.
2565 */
2566 if (set->nr_hw_queues > nr_cpu_ids)
2567 set->nr_hw_queues = nr_cpu_ids;
2568
2569 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2570 GFP_KERNEL, set->numa_node);
2571 if (!set->tags)
2572 return -ENOMEM;
2573
2574 ret = -ENOMEM;
2575 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2576 GFP_KERNEL, set->numa_node);
2577 if (!set->mq_map)
2578 goto out_free_tags;
2579
2580 if (set->ops->map_queues)
2581 ret = set->ops->map_queues(set);
2582 else
2583 ret = blk_mq_map_queues(set);
2584 if (ret)
2585 goto out_free_mq_map;
2586
2587 ret = blk_mq_alloc_rq_maps(set);
2588 if (ret)
2589 goto out_free_mq_map;
2590
2591 mutex_init(&set->tag_list_lock);
2592 INIT_LIST_HEAD(&set->tag_list);
2593
2594 return 0;
2595
2596 out_free_mq_map:
2597 kfree(set->mq_map);
2598 set->mq_map = NULL;
2599 out_free_tags:
2600 kfree(set->tags);
2601 set->tags = NULL;
2602 return ret;
2603 }
2604 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2605
2606 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2607 {
2608 int i;
2609
2610 for (i = 0; i < nr_cpu_ids; i++)
2611 blk_mq_free_map_and_requests(set, i);
2612
2613 kfree(set->mq_map);
2614 set->mq_map = NULL;
2615
2616 kfree(set->tags);
2617 set->tags = NULL;
2618 }
2619 EXPORT_SYMBOL(blk_mq_free_tag_set);
2620
2621 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2622 {
2623 struct blk_mq_tag_set *set = q->tag_set;
2624 struct blk_mq_hw_ctx *hctx;
2625 int i, ret;
2626
2627 if (!set)
2628 return -EINVAL;
2629
2630 blk_mq_freeze_queue(q);
2631 blk_mq_quiesce_queue(q);
2632
2633 ret = 0;
2634 queue_for_each_hw_ctx(q, hctx, i) {
2635 if (!hctx->tags)
2636 continue;
2637 /*
2638 * If we're using an MQ scheduler, just update the scheduler
2639 * queue depth. This is similar to what the old code would do.
2640 */
2641 if (!hctx->sched_tags) {
2642 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2643 min(nr, set->queue_depth),
2644 false);
2645 } else {
2646 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2647 nr, true);
2648 }
2649 if (ret)
2650 break;
2651 }
2652
2653 if (!ret)
2654 q->nr_requests = nr;
2655
2656 blk_mq_unfreeze_queue(q);
2657 blk_mq_start_stopped_hw_queues(q, true);
2658
2659 return ret;
2660 }
2661
2662 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2663 {
2664 struct request_queue *q;
2665
2666 if (nr_hw_queues > nr_cpu_ids)
2667 nr_hw_queues = nr_cpu_ids;
2668 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2669 return;
2670
2671 list_for_each_entry(q, &set->tag_list, tag_set_list)
2672 blk_mq_freeze_queue(q);
2673
2674 set->nr_hw_queues = nr_hw_queues;
2675 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2676 blk_mq_realloc_hw_ctxs(set, q);
2677
2678 /*
2679 * Manually set the make_request_fn as blk_queue_make_request
2680 * resets a lot of the queue settings.
2681 */
2682 if (q->nr_hw_queues > 1)
2683 q->make_request_fn = blk_mq_make_request;
2684 else
2685 q->make_request_fn = blk_sq_make_request;
2686
2687 blk_mq_queue_reinit(q, cpu_online_mask);
2688 }
2689
2690 list_for_each_entry(q, &set->tag_list, tag_set_list)
2691 blk_mq_unfreeze_queue(q);
2692 }
2693 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2694
2695 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2696 struct blk_mq_hw_ctx *hctx,
2697 struct request *rq)
2698 {
2699 struct blk_rq_stat stat[2];
2700 unsigned long ret = 0;
2701
2702 /*
2703 * If stats collection isn't on, don't sleep but turn it on for
2704 * future users
2705 */
2706 if (!blk_stat_enable(q))
2707 return 0;
2708
2709 /*
2710 * We don't have to do this once per IO, should optimize this
2711 * to just use the current window of stats until it changes
2712 */
2713 memset(&stat, 0, sizeof(stat));
2714 blk_hctx_stat_get(hctx, stat);
2715
2716 /*
2717 * As an optimistic guess, use half of the mean service time
2718 * for this type of request. We can (and should) make this smarter.
2719 * For instance, if the completion latencies are tight, we can
2720 * get closer than just half the mean. This is especially
2721 * important on devices where the completion latencies are longer
2722 * than ~10 usec.
2723 */
2724 if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
2725 ret = (stat[BLK_STAT_READ].mean + 1) / 2;
2726 else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
2727 ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;
2728
2729 return ret;
2730 }
2731
2732 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2733 struct blk_mq_hw_ctx *hctx,
2734 struct request *rq)
2735 {
2736 struct hrtimer_sleeper hs;
2737 enum hrtimer_mode mode;
2738 unsigned int nsecs;
2739 ktime_t kt;
2740
2741 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2742 return false;
2743
2744 /*
2745 * poll_nsec can be:
2746 *
2747 * -1: don't ever hybrid sleep
2748 * 0: use half of prev avg
2749 * >0: use this specific value
2750 */
2751 if (q->poll_nsec == -1)
2752 return false;
2753 else if (q->poll_nsec > 0)
2754 nsecs = q->poll_nsec;
2755 else
2756 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2757
2758 if (!nsecs)
2759 return false;
2760
2761 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2762
2763 /*
2764 * This will be replaced with the stats tracking code, using
2765 * 'avg_completion_time / 2' as the pre-sleep target.
2766 */
2767 kt = nsecs;
2768
2769 mode = HRTIMER_MODE_REL;
2770 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2771 hrtimer_set_expires(&hs.timer, kt);
2772
2773 hrtimer_init_sleeper(&hs, current);
2774 do {
2775 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2776 break;
2777 set_current_state(TASK_UNINTERRUPTIBLE);
2778 hrtimer_start_expires(&hs.timer, mode);
2779 if (hs.task)
2780 io_schedule();
2781 hrtimer_cancel(&hs.timer);
2782 mode = HRTIMER_MODE_ABS;
2783 } while (hs.task && !signal_pending(current));
2784
2785 __set_current_state(TASK_RUNNING);
2786 destroy_hrtimer_on_stack(&hs.timer);
2787 return true;
2788 }
2789
2790 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2791 {
2792 struct request_queue *q = hctx->queue;
2793 long state;
2794
2795 /*
2796 * If we sleep, have the caller restart the poll loop to reset
2797 * the state. Like for the other success return cases, the
2798 * caller is responsible for checking if the IO completed. If
2799 * the IO isn't complete, we'll get called again and will go
2800 * straight to the busy poll loop.
2801 */
2802 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2803 return true;
2804
2805 hctx->poll_considered++;
2806
2807 state = current->state;
2808 while (!need_resched()) {
2809 int ret;
2810
2811 hctx->poll_invoked++;
2812
2813 ret = q->mq_ops->poll(hctx, rq->tag);
2814 if (ret > 0) {
2815 hctx->poll_success++;
2816 set_current_state(TASK_RUNNING);
2817 return true;
2818 }
2819
2820 if (signal_pending_state(state, current))
2821 set_current_state(TASK_RUNNING);
2822
2823 if (current->state == TASK_RUNNING)
2824 return true;
2825 if (ret < 0)
2826 break;
2827 cpu_relax();
2828 }
2829
2830 return false;
2831 }
2832
2833 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2834 {
2835 struct blk_mq_hw_ctx *hctx;
2836 struct blk_plug *plug;
2837 struct request *rq;
2838
2839 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2840 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2841 return false;
2842
2843 plug = current->plug;
2844 if (plug)
2845 blk_flush_plug_list(plug, false);
2846
2847 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2848 if (!blk_qc_t_is_internal(cookie))
2849 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2850 else
2851 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2852
2853 return __blk_mq_poll(hctx, rq);
2854 }
2855 EXPORT_SYMBOL_GPL(blk_mq_poll);
2856
2857 void blk_mq_disable_hotplug(void)
2858 {
2859 mutex_lock(&all_q_mutex);
2860 }
2861
2862 void blk_mq_enable_hotplug(void)
2863 {
2864 mutex_unlock(&all_q_mutex);
2865 }
2866
2867 static int __init blk_mq_init(void)
2868 {
2869 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2870 blk_mq_hctx_notify_dead);
2871
2872 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2873 blk_mq_queue_reinit_prepare,
2874 blk_mq_queue_reinit_dead);
2875 return 0;
2876 }
2877 subsys_initcall(blk_mq_init);