]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-mq.c
block: rename blk_mq_freeze_queue_start()
[mirror_ubuntu-artful-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-tag.h"
35 #include "blk-stat.h"
36 #include "blk-wbt.h"
37 #include "blk-mq-sched.h"
38
39 static DEFINE_MUTEX(all_q_mutex);
40 static LIST_HEAD(all_q_list);
41
42 static void blk_mq_poll_stats_start(struct request_queue *q);
43 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44
45 /*
46 * Check if any of the ctx's have pending work in this hardware queue
47 */
48 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
49 {
50 return sbitmap_any_bit_set(&hctx->ctx_map) ||
51 !list_empty_careful(&hctx->dispatch) ||
52 blk_mq_sched_has_work(hctx);
53 }
54
55 /*
56 * Mark this ctx as having pending work in this hardware queue
57 */
58 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
59 struct blk_mq_ctx *ctx)
60 {
61 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
62 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
63 }
64
65 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
66 struct blk_mq_ctx *ctx)
67 {
68 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
69 }
70
71 void blk_freeze_queue_start(struct request_queue *q)
72 {
73 int freeze_depth;
74
75 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
76 if (freeze_depth == 1) {
77 percpu_ref_kill(&q->q_usage_counter);
78 blk_mq_run_hw_queues(q, false);
79 }
80 }
81 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
82
83 void blk_mq_freeze_queue_wait(struct request_queue *q)
84 {
85 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
86 }
87 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
88
89 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
90 unsigned long timeout)
91 {
92 return wait_event_timeout(q->mq_freeze_wq,
93 percpu_ref_is_zero(&q->q_usage_counter),
94 timeout);
95 }
96 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
97
98 /*
99 * Guarantee no request is in use, so we can change any data structure of
100 * the queue afterward.
101 */
102 void blk_freeze_queue(struct request_queue *q)
103 {
104 /*
105 * In the !blk_mq case we are only calling this to kill the
106 * q_usage_counter, otherwise this increases the freeze depth
107 * and waits for it to return to zero. For this reason there is
108 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
109 * exported to drivers as the only user for unfreeze is blk_mq.
110 */
111 blk_freeze_queue_start(q);
112 blk_mq_freeze_queue_wait(q);
113 }
114
115 void blk_mq_freeze_queue(struct request_queue *q)
116 {
117 /*
118 * ...just an alias to keep freeze and unfreeze actions balanced
119 * in the blk_mq_* namespace
120 */
121 blk_freeze_queue(q);
122 }
123 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
124
125 void blk_mq_unfreeze_queue(struct request_queue *q)
126 {
127 int freeze_depth;
128
129 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
130 WARN_ON_ONCE(freeze_depth < 0);
131 if (!freeze_depth) {
132 percpu_ref_reinit(&q->q_usage_counter);
133 wake_up_all(&q->mq_freeze_wq);
134 }
135 }
136 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
137
138 /**
139 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
140 * @q: request queue.
141 *
142 * Note: this function does not prevent that the struct request end_io()
143 * callback function is invoked. Additionally, it is not prevented that
144 * new queue_rq() calls occur unless the queue has been stopped first.
145 */
146 void blk_mq_quiesce_queue(struct request_queue *q)
147 {
148 struct blk_mq_hw_ctx *hctx;
149 unsigned int i;
150 bool rcu = false;
151
152 blk_mq_stop_hw_queues(q);
153
154 queue_for_each_hw_ctx(q, hctx, i) {
155 if (hctx->flags & BLK_MQ_F_BLOCKING)
156 synchronize_srcu(&hctx->queue_rq_srcu);
157 else
158 rcu = true;
159 }
160 if (rcu)
161 synchronize_rcu();
162 }
163 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
164
165 void blk_mq_wake_waiters(struct request_queue *q)
166 {
167 struct blk_mq_hw_ctx *hctx;
168 unsigned int i;
169
170 queue_for_each_hw_ctx(q, hctx, i)
171 if (blk_mq_hw_queue_mapped(hctx))
172 blk_mq_tag_wakeup_all(hctx->tags, true);
173
174 /*
175 * If we are called because the queue has now been marked as
176 * dying, we need to ensure that processes currently waiting on
177 * the queue are notified as well.
178 */
179 wake_up_all(&q->mq_freeze_wq);
180 }
181
182 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
183 {
184 return blk_mq_has_free_tags(hctx->tags);
185 }
186 EXPORT_SYMBOL(blk_mq_can_queue);
187
188 void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
189 struct request *rq, unsigned int op)
190 {
191 INIT_LIST_HEAD(&rq->queuelist);
192 /* csd/requeue_work/fifo_time is initialized before use */
193 rq->q = q;
194 rq->mq_ctx = ctx;
195 rq->cmd_flags = op;
196 if (blk_queue_io_stat(q))
197 rq->rq_flags |= RQF_IO_STAT;
198 /* do not touch atomic flags, it needs atomic ops against the timer */
199 rq->cpu = -1;
200 INIT_HLIST_NODE(&rq->hash);
201 RB_CLEAR_NODE(&rq->rb_node);
202 rq->rq_disk = NULL;
203 rq->part = NULL;
204 rq->start_time = jiffies;
205 #ifdef CONFIG_BLK_CGROUP
206 rq->rl = NULL;
207 set_start_time_ns(rq);
208 rq->io_start_time_ns = 0;
209 #endif
210 rq->nr_phys_segments = 0;
211 #if defined(CONFIG_BLK_DEV_INTEGRITY)
212 rq->nr_integrity_segments = 0;
213 #endif
214 rq->special = NULL;
215 /* tag was already set */
216 rq->errors = 0;
217 rq->extra_len = 0;
218
219 INIT_LIST_HEAD(&rq->timeout_list);
220 rq->timeout = 0;
221
222 rq->end_io = NULL;
223 rq->end_io_data = NULL;
224 rq->next_rq = NULL;
225
226 ctx->rq_dispatched[op_is_sync(op)]++;
227 }
228 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
229
230 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
231 unsigned int op)
232 {
233 struct request *rq;
234 unsigned int tag;
235
236 tag = blk_mq_get_tag(data);
237 if (tag != BLK_MQ_TAG_FAIL) {
238 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
239
240 rq = tags->static_rqs[tag];
241
242 if (data->flags & BLK_MQ_REQ_INTERNAL) {
243 rq->tag = -1;
244 rq->internal_tag = tag;
245 } else {
246 if (blk_mq_tag_busy(data->hctx)) {
247 rq->rq_flags = RQF_MQ_INFLIGHT;
248 atomic_inc(&data->hctx->nr_active);
249 }
250 rq->tag = tag;
251 rq->internal_tag = -1;
252 data->hctx->tags->rqs[rq->tag] = rq;
253 }
254
255 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
256 return rq;
257 }
258
259 return NULL;
260 }
261 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
262
263 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
264 unsigned int flags)
265 {
266 struct blk_mq_alloc_data alloc_data = { .flags = flags };
267 struct request *rq;
268 int ret;
269
270 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
271 if (ret)
272 return ERR_PTR(ret);
273
274 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
275
276 blk_mq_put_ctx(alloc_data.ctx);
277 blk_queue_exit(q);
278
279 if (!rq)
280 return ERR_PTR(-EWOULDBLOCK);
281
282 rq->__data_len = 0;
283 rq->__sector = (sector_t) -1;
284 rq->bio = rq->biotail = NULL;
285 return rq;
286 }
287 EXPORT_SYMBOL(blk_mq_alloc_request);
288
289 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
290 unsigned int flags, unsigned int hctx_idx)
291 {
292 struct blk_mq_alloc_data alloc_data = { .flags = flags };
293 struct request *rq;
294 unsigned int cpu;
295 int ret;
296
297 /*
298 * If the tag allocator sleeps we could get an allocation for a
299 * different hardware context. No need to complicate the low level
300 * allocator for this for the rare use case of a command tied to
301 * a specific queue.
302 */
303 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
304 return ERR_PTR(-EINVAL);
305
306 if (hctx_idx >= q->nr_hw_queues)
307 return ERR_PTR(-EIO);
308
309 ret = blk_queue_enter(q, true);
310 if (ret)
311 return ERR_PTR(ret);
312
313 /*
314 * Check if the hardware context is actually mapped to anything.
315 * If not tell the caller that it should skip this queue.
316 */
317 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
318 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
319 blk_queue_exit(q);
320 return ERR_PTR(-EXDEV);
321 }
322 cpu = cpumask_first(alloc_data.hctx->cpumask);
323 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
324
325 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
326
327 blk_mq_put_ctx(alloc_data.ctx);
328 blk_queue_exit(q);
329
330 if (!rq)
331 return ERR_PTR(-EWOULDBLOCK);
332
333 return rq;
334 }
335 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
336
337 void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
338 struct request *rq)
339 {
340 const int sched_tag = rq->internal_tag;
341 struct request_queue *q = rq->q;
342
343 if (rq->rq_flags & RQF_MQ_INFLIGHT)
344 atomic_dec(&hctx->nr_active);
345
346 wbt_done(q->rq_wb, &rq->issue_stat);
347 rq->rq_flags = 0;
348
349 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
350 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
351 if (rq->tag != -1)
352 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
353 if (sched_tag != -1)
354 blk_mq_sched_completed_request(hctx, rq);
355 blk_mq_sched_restart_queues(hctx);
356 blk_queue_exit(q);
357 }
358
359 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
360 struct request *rq)
361 {
362 struct blk_mq_ctx *ctx = rq->mq_ctx;
363
364 ctx->rq_completed[rq_is_sync(rq)]++;
365 __blk_mq_finish_request(hctx, ctx, rq);
366 }
367
368 void blk_mq_finish_request(struct request *rq)
369 {
370 blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
371 }
372
373 void blk_mq_free_request(struct request *rq)
374 {
375 blk_mq_sched_put_request(rq);
376 }
377 EXPORT_SYMBOL_GPL(blk_mq_free_request);
378
379 inline void __blk_mq_end_request(struct request *rq, int error)
380 {
381 blk_account_io_done(rq);
382
383 if (rq->end_io) {
384 wbt_done(rq->q->rq_wb, &rq->issue_stat);
385 rq->end_io(rq, error);
386 } else {
387 if (unlikely(blk_bidi_rq(rq)))
388 blk_mq_free_request(rq->next_rq);
389 blk_mq_free_request(rq);
390 }
391 }
392 EXPORT_SYMBOL(__blk_mq_end_request);
393
394 void blk_mq_end_request(struct request *rq, int error)
395 {
396 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
397 BUG();
398 __blk_mq_end_request(rq, error);
399 }
400 EXPORT_SYMBOL(blk_mq_end_request);
401
402 static void __blk_mq_complete_request_remote(void *data)
403 {
404 struct request *rq = data;
405
406 rq->q->softirq_done_fn(rq);
407 }
408
409 static void blk_mq_ipi_complete_request(struct request *rq)
410 {
411 struct blk_mq_ctx *ctx = rq->mq_ctx;
412 bool shared = false;
413 int cpu;
414
415 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
416 rq->q->softirq_done_fn(rq);
417 return;
418 }
419
420 cpu = get_cpu();
421 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
422 shared = cpus_share_cache(cpu, ctx->cpu);
423
424 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
425 rq->csd.func = __blk_mq_complete_request_remote;
426 rq->csd.info = rq;
427 rq->csd.flags = 0;
428 smp_call_function_single_async(ctx->cpu, &rq->csd);
429 } else {
430 rq->q->softirq_done_fn(rq);
431 }
432 put_cpu();
433 }
434
435 static void blk_mq_stat_add(struct request *rq)
436 {
437 if (rq->rq_flags & RQF_STATS) {
438 blk_mq_poll_stats_start(rq->q);
439 blk_stat_add(rq);
440 }
441 }
442
443 static void __blk_mq_complete_request(struct request *rq)
444 {
445 struct request_queue *q = rq->q;
446
447 blk_mq_stat_add(rq);
448
449 if (!q->softirq_done_fn)
450 blk_mq_end_request(rq, rq->errors);
451 else
452 blk_mq_ipi_complete_request(rq);
453 }
454
455 /**
456 * blk_mq_complete_request - end I/O on a request
457 * @rq: the request being processed
458 *
459 * Description:
460 * Ends all I/O on a request. It does not handle partial completions.
461 * The actual completion happens out-of-order, through a IPI handler.
462 **/
463 void blk_mq_complete_request(struct request *rq, int error)
464 {
465 struct request_queue *q = rq->q;
466
467 if (unlikely(blk_should_fake_timeout(q)))
468 return;
469 if (!blk_mark_rq_complete(rq)) {
470 rq->errors = error;
471 __blk_mq_complete_request(rq);
472 }
473 }
474 EXPORT_SYMBOL(blk_mq_complete_request);
475
476 int blk_mq_request_started(struct request *rq)
477 {
478 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
479 }
480 EXPORT_SYMBOL_GPL(blk_mq_request_started);
481
482 void blk_mq_start_request(struct request *rq)
483 {
484 struct request_queue *q = rq->q;
485
486 blk_mq_sched_started_request(rq);
487
488 trace_block_rq_issue(q, rq);
489
490 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
491 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
492 rq->rq_flags |= RQF_STATS;
493 wbt_issue(q->rq_wb, &rq->issue_stat);
494 }
495
496 blk_add_timer(rq);
497
498 /*
499 * Ensure that ->deadline is visible before set the started
500 * flag and clear the completed flag.
501 */
502 smp_mb__before_atomic();
503
504 /*
505 * Mark us as started and clear complete. Complete might have been
506 * set if requeue raced with timeout, which then marked it as
507 * complete. So be sure to clear complete again when we start
508 * the request, otherwise we'll ignore the completion event.
509 */
510 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
511 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
512 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
513 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
514
515 if (q->dma_drain_size && blk_rq_bytes(rq)) {
516 /*
517 * Make sure space for the drain appears. We know we can do
518 * this because max_hw_segments has been adjusted to be one
519 * fewer than the device can handle.
520 */
521 rq->nr_phys_segments++;
522 }
523 }
524 EXPORT_SYMBOL(blk_mq_start_request);
525
526 /*
527 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
528 * flag isn't set yet, so there may be race with timeout hanlder,
529 * but given rq->deadline is just set in .queue_rq() under
530 * this situation, the race won't be possible in reality because
531 * rq->timeout should be set as big enough to cover the window
532 * between blk_mq_start_request() called from .queue_rq() and
533 * clearing REQ_ATOM_STARTED here.
534 */
535 static void __blk_mq_requeue_request(struct request *rq)
536 {
537 struct request_queue *q = rq->q;
538
539 trace_block_rq_requeue(q, rq);
540 wbt_requeue(q->rq_wb, &rq->issue_stat);
541 blk_mq_sched_requeue_request(rq);
542
543 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
544 if (q->dma_drain_size && blk_rq_bytes(rq))
545 rq->nr_phys_segments--;
546 }
547 }
548
549 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
550 {
551 __blk_mq_requeue_request(rq);
552
553 BUG_ON(blk_queued_rq(rq));
554 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
555 }
556 EXPORT_SYMBOL(blk_mq_requeue_request);
557
558 static void blk_mq_requeue_work(struct work_struct *work)
559 {
560 struct request_queue *q =
561 container_of(work, struct request_queue, requeue_work.work);
562 LIST_HEAD(rq_list);
563 struct request *rq, *next;
564 unsigned long flags;
565
566 spin_lock_irqsave(&q->requeue_lock, flags);
567 list_splice_init(&q->requeue_list, &rq_list);
568 spin_unlock_irqrestore(&q->requeue_lock, flags);
569
570 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
571 if (!(rq->rq_flags & RQF_SOFTBARRIER))
572 continue;
573
574 rq->rq_flags &= ~RQF_SOFTBARRIER;
575 list_del_init(&rq->queuelist);
576 blk_mq_sched_insert_request(rq, true, false, false, true);
577 }
578
579 while (!list_empty(&rq_list)) {
580 rq = list_entry(rq_list.next, struct request, queuelist);
581 list_del_init(&rq->queuelist);
582 blk_mq_sched_insert_request(rq, false, false, false, true);
583 }
584
585 blk_mq_run_hw_queues(q, false);
586 }
587
588 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
589 bool kick_requeue_list)
590 {
591 struct request_queue *q = rq->q;
592 unsigned long flags;
593
594 /*
595 * We abuse this flag that is otherwise used by the I/O scheduler to
596 * request head insertation from the workqueue.
597 */
598 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
599
600 spin_lock_irqsave(&q->requeue_lock, flags);
601 if (at_head) {
602 rq->rq_flags |= RQF_SOFTBARRIER;
603 list_add(&rq->queuelist, &q->requeue_list);
604 } else {
605 list_add_tail(&rq->queuelist, &q->requeue_list);
606 }
607 spin_unlock_irqrestore(&q->requeue_lock, flags);
608
609 if (kick_requeue_list)
610 blk_mq_kick_requeue_list(q);
611 }
612 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
613
614 void blk_mq_kick_requeue_list(struct request_queue *q)
615 {
616 kblockd_schedule_delayed_work(&q->requeue_work, 0);
617 }
618 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
619
620 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
621 unsigned long msecs)
622 {
623 kblockd_schedule_delayed_work(&q->requeue_work,
624 msecs_to_jiffies(msecs));
625 }
626 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
627
628 void blk_mq_abort_requeue_list(struct request_queue *q)
629 {
630 unsigned long flags;
631 LIST_HEAD(rq_list);
632
633 spin_lock_irqsave(&q->requeue_lock, flags);
634 list_splice_init(&q->requeue_list, &rq_list);
635 spin_unlock_irqrestore(&q->requeue_lock, flags);
636
637 while (!list_empty(&rq_list)) {
638 struct request *rq;
639
640 rq = list_first_entry(&rq_list, struct request, queuelist);
641 list_del_init(&rq->queuelist);
642 rq->errors = -EIO;
643 blk_mq_end_request(rq, rq->errors);
644 }
645 }
646 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
647
648 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
649 {
650 if (tag < tags->nr_tags) {
651 prefetch(tags->rqs[tag]);
652 return tags->rqs[tag];
653 }
654
655 return NULL;
656 }
657 EXPORT_SYMBOL(blk_mq_tag_to_rq);
658
659 struct blk_mq_timeout_data {
660 unsigned long next;
661 unsigned int next_set;
662 };
663
664 void blk_mq_rq_timed_out(struct request *req, bool reserved)
665 {
666 const struct blk_mq_ops *ops = req->q->mq_ops;
667 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
668
669 /*
670 * We know that complete is set at this point. If STARTED isn't set
671 * anymore, then the request isn't active and the "timeout" should
672 * just be ignored. This can happen due to the bitflag ordering.
673 * Timeout first checks if STARTED is set, and if it is, assumes
674 * the request is active. But if we race with completion, then
675 * we both flags will get cleared. So check here again, and ignore
676 * a timeout event with a request that isn't active.
677 */
678 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
679 return;
680
681 if (ops->timeout)
682 ret = ops->timeout(req, reserved);
683
684 switch (ret) {
685 case BLK_EH_HANDLED:
686 __blk_mq_complete_request(req);
687 break;
688 case BLK_EH_RESET_TIMER:
689 blk_add_timer(req);
690 blk_clear_rq_complete(req);
691 break;
692 case BLK_EH_NOT_HANDLED:
693 break;
694 default:
695 printk(KERN_ERR "block: bad eh return: %d\n", ret);
696 break;
697 }
698 }
699
700 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
701 struct request *rq, void *priv, bool reserved)
702 {
703 struct blk_mq_timeout_data *data = priv;
704
705 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
706 return;
707
708 /*
709 * The rq being checked may have been freed and reallocated
710 * out already here, we avoid this race by checking rq->deadline
711 * and REQ_ATOM_COMPLETE flag together:
712 *
713 * - if rq->deadline is observed as new value because of
714 * reusing, the rq won't be timed out because of timing.
715 * - if rq->deadline is observed as previous value,
716 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
717 * because we put a barrier between setting rq->deadline
718 * and clearing the flag in blk_mq_start_request(), so
719 * this rq won't be timed out too.
720 */
721 if (time_after_eq(jiffies, rq->deadline)) {
722 if (!blk_mark_rq_complete(rq))
723 blk_mq_rq_timed_out(rq, reserved);
724 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
725 data->next = rq->deadline;
726 data->next_set = 1;
727 }
728 }
729
730 static void blk_mq_timeout_work(struct work_struct *work)
731 {
732 struct request_queue *q =
733 container_of(work, struct request_queue, timeout_work);
734 struct blk_mq_timeout_data data = {
735 .next = 0,
736 .next_set = 0,
737 };
738 int i;
739
740 /* A deadlock might occur if a request is stuck requiring a
741 * timeout at the same time a queue freeze is waiting
742 * completion, since the timeout code would not be able to
743 * acquire the queue reference here.
744 *
745 * That's why we don't use blk_queue_enter here; instead, we use
746 * percpu_ref_tryget directly, because we need to be able to
747 * obtain a reference even in the short window between the queue
748 * starting to freeze, by dropping the first reference in
749 * blk_freeze_queue_start, and the moment the last request is
750 * consumed, marked by the instant q_usage_counter reaches
751 * zero.
752 */
753 if (!percpu_ref_tryget(&q->q_usage_counter))
754 return;
755
756 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
757
758 if (data.next_set) {
759 data.next = blk_rq_timeout(round_jiffies_up(data.next));
760 mod_timer(&q->timeout, data.next);
761 } else {
762 struct blk_mq_hw_ctx *hctx;
763
764 queue_for_each_hw_ctx(q, hctx, i) {
765 /* the hctx may be unmapped, so check it here */
766 if (blk_mq_hw_queue_mapped(hctx))
767 blk_mq_tag_idle(hctx);
768 }
769 }
770 blk_queue_exit(q);
771 }
772
773 /*
774 * Reverse check our software queue for entries that we could potentially
775 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
776 * too much time checking for merges.
777 */
778 static bool blk_mq_attempt_merge(struct request_queue *q,
779 struct blk_mq_ctx *ctx, struct bio *bio)
780 {
781 struct request *rq;
782 int checked = 8;
783
784 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
785 bool merged = false;
786
787 if (!checked--)
788 break;
789
790 if (!blk_rq_merge_ok(rq, bio))
791 continue;
792
793 switch (blk_try_merge(rq, bio)) {
794 case ELEVATOR_BACK_MERGE:
795 if (blk_mq_sched_allow_merge(q, rq, bio))
796 merged = bio_attempt_back_merge(q, rq, bio);
797 break;
798 case ELEVATOR_FRONT_MERGE:
799 if (blk_mq_sched_allow_merge(q, rq, bio))
800 merged = bio_attempt_front_merge(q, rq, bio);
801 break;
802 case ELEVATOR_DISCARD_MERGE:
803 merged = bio_attempt_discard_merge(q, rq, bio);
804 break;
805 default:
806 continue;
807 }
808
809 if (merged)
810 ctx->rq_merged++;
811 return merged;
812 }
813
814 return false;
815 }
816
817 struct flush_busy_ctx_data {
818 struct blk_mq_hw_ctx *hctx;
819 struct list_head *list;
820 };
821
822 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
823 {
824 struct flush_busy_ctx_data *flush_data = data;
825 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
826 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
827
828 sbitmap_clear_bit(sb, bitnr);
829 spin_lock(&ctx->lock);
830 list_splice_tail_init(&ctx->rq_list, flush_data->list);
831 spin_unlock(&ctx->lock);
832 return true;
833 }
834
835 /*
836 * Process software queues that have been marked busy, splicing them
837 * to the for-dispatch
838 */
839 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
840 {
841 struct flush_busy_ctx_data data = {
842 .hctx = hctx,
843 .list = list,
844 };
845
846 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
847 }
848 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
849
850 static inline unsigned int queued_to_index(unsigned int queued)
851 {
852 if (!queued)
853 return 0;
854
855 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
856 }
857
858 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
859 bool wait)
860 {
861 struct blk_mq_alloc_data data = {
862 .q = rq->q,
863 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
864 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
865 };
866
867 if (rq->tag != -1) {
868 done:
869 if (hctx)
870 *hctx = data.hctx;
871 return true;
872 }
873
874 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
875 data.flags |= BLK_MQ_REQ_RESERVED;
876
877 rq->tag = blk_mq_get_tag(&data);
878 if (rq->tag >= 0) {
879 if (blk_mq_tag_busy(data.hctx)) {
880 rq->rq_flags |= RQF_MQ_INFLIGHT;
881 atomic_inc(&data.hctx->nr_active);
882 }
883 data.hctx->tags->rqs[rq->tag] = rq;
884 goto done;
885 }
886
887 return false;
888 }
889
890 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
891 struct request *rq)
892 {
893 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
894 rq->tag = -1;
895
896 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
897 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
898 atomic_dec(&hctx->nr_active);
899 }
900 }
901
902 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
903 struct request *rq)
904 {
905 if (rq->tag == -1 || rq->internal_tag == -1)
906 return;
907
908 __blk_mq_put_driver_tag(hctx, rq);
909 }
910
911 static void blk_mq_put_driver_tag(struct request *rq)
912 {
913 struct blk_mq_hw_ctx *hctx;
914
915 if (rq->tag == -1 || rq->internal_tag == -1)
916 return;
917
918 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
919 __blk_mq_put_driver_tag(hctx, rq);
920 }
921
922 /*
923 * If we fail getting a driver tag because all the driver tags are already
924 * assigned and on the dispatch list, BUT the first entry does not have a
925 * tag, then we could deadlock. For that case, move entries with assigned
926 * driver tags to the front, leaving the set of tagged requests in the
927 * same order, and the untagged set in the same order.
928 */
929 static bool reorder_tags_to_front(struct list_head *list)
930 {
931 struct request *rq, *tmp, *first = NULL;
932
933 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
934 if (rq == first)
935 break;
936 if (rq->tag != -1) {
937 list_move(&rq->queuelist, list);
938 if (!first)
939 first = rq;
940 }
941 }
942
943 return first != NULL;
944 }
945
946 static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
947 void *key)
948 {
949 struct blk_mq_hw_ctx *hctx;
950
951 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
952
953 list_del(&wait->task_list);
954 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
955 blk_mq_run_hw_queue(hctx, true);
956 return 1;
957 }
958
959 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
960 {
961 struct sbq_wait_state *ws;
962
963 /*
964 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
965 * The thread which wins the race to grab this bit adds the hardware
966 * queue to the wait queue.
967 */
968 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
969 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
970 return false;
971
972 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
973 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
974
975 /*
976 * As soon as this returns, it's no longer safe to fiddle with
977 * hctx->dispatch_wait, since a completion can wake up the wait queue
978 * and unlock the bit.
979 */
980 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
981 return true;
982 }
983
984 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
985 {
986 struct request_queue *q = hctx->queue;
987 struct request *rq;
988 LIST_HEAD(driver_list);
989 struct list_head *dptr;
990 int queued, ret = BLK_MQ_RQ_QUEUE_OK;
991
992 /*
993 * Start off with dptr being NULL, so we start the first request
994 * immediately, even if we have more pending.
995 */
996 dptr = NULL;
997
998 /*
999 * Now process all the entries, sending them to the driver.
1000 */
1001 queued = 0;
1002 while (!list_empty(list)) {
1003 struct blk_mq_queue_data bd;
1004
1005 rq = list_first_entry(list, struct request, queuelist);
1006 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1007 if (!queued && reorder_tags_to_front(list))
1008 continue;
1009
1010 /*
1011 * The initial allocation attempt failed, so we need to
1012 * rerun the hardware queue when a tag is freed.
1013 */
1014 if (blk_mq_dispatch_wait_add(hctx)) {
1015 /*
1016 * It's possible that a tag was freed in the
1017 * window between the allocation failure and
1018 * adding the hardware queue to the wait queue.
1019 */
1020 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1021 break;
1022 } else {
1023 break;
1024 }
1025 }
1026
1027 list_del_init(&rq->queuelist);
1028
1029 bd.rq = rq;
1030 bd.list = dptr;
1031
1032 /*
1033 * Flag last if we have no more requests, or if we have more
1034 * but can't assign a driver tag to it.
1035 */
1036 if (list_empty(list))
1037 bd.last = true;
1038 else {
1039 struct request *nxt;
1040
1041 nxt = list_first_entry(list, struct request, queuelist);
1042 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1043 }
1044
1045 ret = q->mq_ops->queue_rq(hctx, &bd);
1046 switch (ret) {
1047 case BLK_MQ_RQ_QUEUE_OK:
1048 queued++;
1049 break;
1050 case BLK_MQ_RQ_QUEUE_BUSY:
1051 blk_mq_put_driver_tag_hctx(hctx, rq);
1052 list_add(&rq->queuelist, list);
1053 __blk_mq_requeue_request(rq);
1054 break;
1055 default:
1056 pr_err("blk-mq: bad return on queue: %d\n", ret);
1057 case BLK_MQ_RQ_QUEUE_ERROR:
1058 rq->errors = -EIO;
1059 blk_mq_end_request(rq, rq->errors);
1060 break;
1061 }
1062
1063 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
1064 break;
1065
1066 /*
1067 * We've done the first request. If we have more than 1
1068 * left in the list, set dptr to defer issue.
1069 */
1070 if (!dptr && list->next != list->prev)
1071 dptr = &driver_list;
1072 }
1073
1074 hctx->dispatched[queued_to_index(queued)]++;
1075
1076 /*
1077 * Any items that need requeuing? Stuff them into hctx->dispatch,
1078 * that is where we will continue on next queue run.
1079 */
1080 if (!list_empty(list)) {
1081 /*
1082 * If we got a driver tag for the next request already,
1083 * free it again.
1084 */
1085 rq = list_first_entry(list, struct request, queuelist);
1086 blk_mq_put_driver_tag(rq);
1087
1088 spin_lock(&hctx->lock);
1089 list_splice_init(list, &hctx->dispatch);
1090 spin_unlock(&hctx->lock);
1091
1092 /*
1093 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
1094 * it's possible the queue is stopped and restarted again
1095 * before this. Queue restart will dispatch requests. And since
1096 * requests in rq_list aren't added into hctx->dispatch yet,
1097 * the requests in rq_list might get lost.
1098 *
1099 * blk_mq_run_hw_queue() already checks the STOPPED bit
1100 *
1101 * If RESTART or TAG_WAITING is set, then let completion restart
1102 * the queue instead of potentially looping here.
1103 */
1104 if (!blk_mq_sched_needs_restart(hctx) &&
1105 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1106 blk_mq_run_hw_queue(hctx, true);
1107 }
1108
1109 return queued != 0;
1110 }
1111
1112 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1113 {
1114 int srcu_idx;
1115
1116 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1117 cpu_online(hctx->next_cpu));
1118
1119 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1120 rcu_read_lock();
1121 blk_mq_sched_dispatch_requests(hctx);
1122 rcu_read_unlock();
1123 } else {
1124 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1125 blk_mq_sched_dispatch_requests(hctx);
1126 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1127 }
1128 }
1129
1130 /*
1131 * It'd be great if the workqueue API had a way to pass
1132 * in a mask and had some smarts for more clever placement.
1133 * For now we just round-robin here, switching for every
1134 * BLK_MQ_CPU_WORK_BATCH queued items.
1135 */
1136 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1137 {
1138 if (hctx->queue->nr_hw_queues == 1)
1139 return WORK_CPU_UNBOUND;
1140
1141 if (--hctx->next_cpu_batch <= 0) {
1142 int next_cpu;
1143
1144 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1145 if (next_cpu >= nr_cpu_ids)
1146 next_cpu = cpumask_first(hctx->cpumask);
1147
1148 hctx->next_cpu = next_cpu;
1149 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1150 }
1151
1152 return hctx->next_cpu;
1153 }
1154
1155 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1156 {
1157 if (unlikely(blk_mq_hctx_stopped(hctx) ||
1158 !blk_mq_hw_queue_mapped(hctx)))
1159 return;
1160
1161 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1162 int cpu = get_cpu();
1163 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1164 __blk_mq_run_hw_queue(hctx);
1165 put_cpu();
1166 return;
1167 }
1168
1169 put_cpu();
1170 }
1171
1172 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
1173 }
1174
1175 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1176 {
1177 struct blk_mq_hw_ctx *hctx;
1178 int i;
1179
1180 queue_for_each_hw_ctx(q, hctx, i) {
1181 if (!blk_mq_hctx_has_pending(hctx) ||
1182 blk_mq_hctx_stopped(hctx))
1183 continue;
1184
1185 blk_mq_run_hw_queue(hctx, async);
1186 }
1187 }
1188 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1189
1190 /**
1191 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1192 * @q: request queue.
1193 *
1194 * The caller is responsible for serializing this function against
1195 * blk_mq_{start,stop}_hw_queue().
1196 */
1197 bool blk_mq_queue_stopped(struct request_queue *q)
1198 {
1199 struct blk_mq_hw_ctx *hctx;
1200 int i;
1201
1202 queue_for_each_hw_ctx(q, hctx, i)
1203 if (blk_mq_hctx_stopped(hctx))
1204 return true;
1205
1206 return false;
1207 }
1208 EXPORT_SYMBOL(blk_mq_queue_stopped);
1209
1210 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1211 {
1212 cancel_work(&hctx->run_work);
1213 cancel_delayed_work(&hctx->delay_work);
1214 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1215 }
1216 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1217
1218 void blk_mq_stop_hw_queues(struct request_queue *q)
1219 {
1220 struct blk_mq_hw_ctx *hctx;
1221 int i;
1222
1223 queue_for_each_hw_ctx(q, hctx, i)
1224 blk_mq_stop_hw_queue(hctx);
1225 }
1226 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1227
1228 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1229 {
1230 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1231
1232 blk_mq_run_hw_queue(hctx, false);
1233 }
1234 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1235
1236 void blk_mq_start_hw_queues(struct request_queue *q)
1237 {
1238 struct blk_mq_hw_ctx *hctx;
1239 int i;
1240
1241 queue_for_each_hw_ctx(q, hctx, i)
1242 blk_mq_start_hw_queue(hctx);
1243 }
1244 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1245
1246 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1247 {
1248 if (!blk_mq_hctx_stopped(hctx))
1249 return;
1250
1251 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1252 blk_mq_run_hw_queue(hctx, async);
1253 }
1254 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1255
1256 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1257 {
1258 struct blk_mq_hw_ctx *hctx;
1259 int i;
1260
1261 queue_for_each_hw_ctx(q, hctx, i)
1262 blk_mq_start_stopped_hw_queue(hctx, async);
1263 }
1264 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1265
1266 static void blk_mq_run_work_fn(struct work_struct *work)
1267 {
1268 struct blk_mq_hw_ctx *hctx;
1269
1270 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1271
1272 __blk_mq_run_hw_queue(hctx);
1273 }
1274
1275 static void blk_mq_delay_work_fn(struct work_struct *work)
1276 {
1277 struct blk_mq_hw_ctx *hctx;
1278
1279 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1280
1281 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1282 __blk_mq_run_hw_queue(hctx);
1283 }
1284
1285 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1286 {
1287 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1288 return;
1289
1290 blk_mq_stop_hw_queue(hctx);
1291 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1292 &hctx->delay_work, msecs_to_jiffies(msecs));
1293 }
1294 EXPORT_SYMBOL(blk_mq_delay_queue);
1295
1296 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1297 struct request *rq,
1298 bool at_head)
1299 {
1300 struct blk_mq_ctx *ctx = rq->mq_ctx;
1301
1302 trace_block_rq_insert(hctx->queue, rq);
1303
1304 if (at_head)
1305 list_add(&rq->queuelist, &ctx->rq_list);
1306 else
1307 list_add_tail(&rq->queuelist, &ctx->rq_list);
1308 }
1309
1310 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1311 bool at_head)
1312 {
1313 struct blk_mq_ctx *ctx = rq->mq_ctx;
1314
1315 __blk_mq_insert_req_list(hctx, rq, at_head);
1316 blk_mq_hctx_mark_pending(hctx, ctx);
1317 }
1318
1319 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1320 struct list_head *list)
1321
1322 {
1323 /*
1324 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1325 * offline now
1326 */
1327 spin_lock(&ctx->lock);
1328 while (!list_empty(list)) {
1329 struct request *rq;
1330
1331 rq = list_first_entry(list, struct request, queuelist);
1332 BUG_ON(rq->mq_ctx != ctx);
1333 list_del_init(&rq->queuelist);
1334 __blk_mq_insert_req_list(hctx, rq, false);
1335 }
1336 blk_mq_hctx_mark_pending(hctx, ctx);
1337 spin_unlock(&ctx->lock);
1338 }
1339
1340 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1341 {
1342 struct request *rqa = container_of(a, struct request, queuelist);
1343 struct request *rqb = container_of(b, struct request, queuelist);
1344
1345 return !(rqa->mq_ctx < rqb->mq_ctx ||
1346 (rqa->mq_ctx == rqb->mq_ctx &&
1347 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1348 }
1349
1350 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1351 {
1352 struct blk_mq_ctx *this_ctx;
1353 struct request_queue *this_q;
1354 struct request *rq;
1355 LIST_HEAD(list);
1356 LIST_HEAD(ctx_list);
1357 unsigned int depth;
1358
1359 list_splice_init(&plug->mq_list, &list);
1360
1361 list_sort(NULL, &list, plug_ctx_cmp);
1362
1363 this_q = NULL;
1364 this_ctx = NULL;
1365 depth = 0;
1366
1367 while (!list_empty(&list)) {
1368 rq = list_entry_rq(list.next);
1369 list_del_init(&rq->queuelist);
1370 BUG_ON(!rq->q);
1371 if (rq->mq_ctx != this_ctx) {
1372 if (this_ctx) {
1373 trace_block_unplug(this_q, depth, from_schedule);
1374 blk_mq_sched_insert_requests(this_q, this_ctx,
1375 &ctx_list,
1376 from_schedule);
1377 }
1378
1379 this_ctx = rq->mq_ctx;
1380 this_q = rq->q;
1381 depth = 0;
1382 }
1383
1384 depth++;
1385 list_add_tail(&rq->queuelist, &ctx_list);
1386 }
1387
1388 /*
1389 * If 'this_ctx' is set, we know we have entries to complete
1390 * on 'ctx_list'. Do those.
1391 */
1392 if (this_ctx) {
1393 trace_block_unplug(this_q, depth, from_schedule);
1394 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1395 from_schedule);
1396 }
1397 }
1398
1399 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1400 {
1401 init_request_from_bio(rq, bio);
1402
1403 blk_account_io_start(rq, true);
1404 }
1405
1406 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1407 {
1408 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1409 !blk_queue_nomerges(hctx->queue);
1410 }
1411
1412 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1413 struct blk_mq_ctx *ctx,
1414 struct request *rq, struct bio *bio)
1415 {
1416 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1417 blk_mq_bio_to_request(rq, bio);
1418 spin_lock(&ctx->lock);
1419 insert_rq:
1420 __blk_mq_insert_request(hctx, rq, false);
1421 spin_unlock(&ctx->lock);
1422 return false;
1423 } else {
1424 struct request_queue *q = hctx->queue;
1425
1426 spin_lock(&ctx->lock);
1427 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1428 blk_mq_bio_to_request(rq, bio);
1429 goto insert_rq;
1430 }
1431
1432 spin_unlock(&ctx->lock);
1433 __blk_mq_finish_request(hctx, ctx, rq);
1434 return true;
1435 }
1436 }
1437
1438 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1439 {
1440 if (rq->tag != -1)
1441 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1442
1443 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1444 }
1445
1446 static void __blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
1447 bool may_sleep)
1448 {
1449 struct request_queue *q = rq->q;
1450 struct blk_mq_queue_data bd = {
1451 .rq = rq,
1452 .list = NULL,
1453 .last = 1
1454 };
1455 struct blk_mq_hw_ctx *hctx;
1456 blk_qc_t new_cookie;
1457 int ret;
1458
1459 if (q->elevator)
1460 goto insert;
1461
1462 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1463 goto insert;
1464
1465 new_cookie = request_to_qc_t(hctx, rq);
1466
1467 /*
1468 * For OK queue, we are done. For error, kill it. Any other
1469 * error (busy), just add it to our list as we previously
1470 * would have done
1471 */
1472 ret = q->mq_ops->queue_rq(hctx, &bd);
1473 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1474 *cookie = new_cookie;
1475 return;
1476 }
1477
1478 __blk_mq_requeue_request(rq);
1479
1480 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1481 *cookie = BLK_QC_T_NONE;
1482 rq->errors = -EIO;
1483 blk_mq_end_request(rq, rq->errors);
1484 return;
1485 }
1486
1487 insert:
1488 blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
1489 }
1490
1491 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1492 struct request *rq, blk_qc_t *cookie)
1493 {
1494 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1495 rcu_read_lock();
1496 __blk_mq_try_issue_directly(rq, cookie, false);
1497 rcu_read_unlock();
1498 } else {
1499 unsigned int srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1500 __blk_mq_try_issue_directly(rq, cookie, true);
1501 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1502 }
1503 }
1504
1505 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1506 {
1507 const int is_sync = op_is_sync(bio->bi_opf);
1508 const int is_flush_fua = op_is_flush(bio->bi_opf);
1509 struct blk_mq_alloc_data data = { .flags = 0 };
1510 struct request *rq;
1511 unsigned int request_count = 0;
1512 struct blk_plug *plug;
1513 struct request *same_queue_rq = NULL;
1514 blk_qc_t cookie;
1515 unsigned int wb_acct;
1516
1517 blk_queue_bounce(q, &bio);
1518
1519 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1520 bio_io_error(bio);
1521 return BLK_QC_T_NONE;
1522 }
1523
1524 blk_queue_split(q, &bio, q->bio_split);
1525
1526 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1527 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1528 return BLK_QC_T_NONE;
1529
1530 if (blk_mq_sched_bio_merge(q, bio))
1531 return BLK_QC_T_NONE;
1532
1533 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1534
1535 trace_block_getrq(q, bio, bio->bi_opf);
1536
1537 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1538 if (unlikely(!rq)) {
1539 __wbt_done(q->rq_wb, wb_acct);
1540 return BLK_QC_T_NONE;
1541 }
1542
1543 wbt_track(&rq->issue_stat, wb_acct);
1544
1545 cookie = request_to_qc_t(data.hctx, rq);
1546
1547 plug = current->plug;
1548 if (unlikely(is_flush_fua)) {
1549 blk_mq_bio_to_request(rq, bio);
1550 if (q->elevator) {
1551 blk_mq_sched_insert_request(rq, false, true, true,
1552 true);
1553 } else {
1554 blk_insert_flush(rq);
1555 blk_mq_run_hw_queue(data.hctx, true);
1556 }
1557 } else if (plug && q->nr_hw_queues == 1) {
1558 struct request *last = NULL;
1559
1560 blk_mq_bio_to_request(rq, bio);
1561
1562 /*
1563 * @request_count may become stale because of schedule
1564 * out, so check the list again.
1565 */
1566 if (list_empty(&plug->mq_list))
1567 request_count = 0;
1568 else if (blk_queue_nomerges(q))
1569 request_count = blk_plug_queued_count(q);
1570
1571 if (!request_count)
1572 trace_block_plug(q);
1573 else
1574 last = list_entry_rq(plug->mq_list.prev);
1575
1576 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1577 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1578 blk_flush_plug_list(plug, false);
1579 trace_block_plug(q);
1580 }
1581
1582 list_add_tail(&rq->queuelist, &plug->mq_list);
1583 } else if (plug && !blk_queue_nomerges(q)) {
1584 blk_mq_bio_to_request(rq, bio);
1585
1586 /*
1587 * We do limited plugging. If the bio can be merged, do that.
1588 * Otherwise the existing request in the plug list will be
1589 * issued. So the plug list will have one request at most
1590 * The plug list might get flushed before this. If that happens,
1591 * the plug list is empty, and same_queue_rq is invalid.
1592 */
1593 if (list_empty(&plug->mq_list))
1594 same_queue_rq = NULL;
1595 if (same_queue_rq)
1596 list_del_init(&same_queue_rq->queuelist);
1597 list_add_tail(&rq->queuelist, &plug->mq_list);
1598
1599 if (same_queue_rq)
1600 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1601 &cookie);
1602 } else if (q->nr_hw_queues > 1 && is_sync) {
1603 blk_mq_bio_to_request(rq, bio);
1604 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1605 } else if (q->elevator) {
1606 blk_mq_bio_to_request(rq, bio);
1607 blk_mq_sched_insert_request(rq, false, true, true, true);
1608 } else if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1609 blk_mq_run_hw_queue(data.hctx, true);
1610 }
1611
1612 blk_mq_put_ctx(data.ctx);
1613 return cookie;
1614 }
1615
1616 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1617 unsigned int hctx_idx)
1618 {
1619 struct page *page;
1620
1621 if (tags->rqs && set->ops->exit_request) {
1622 int i;
1623
1624 for (i = 0; i < tags->nr_tags; i++) {
1625 struct request *rq = tags->static_rqs[i];
1626
1627 if (!rq)
1628 continue;
1629 set->ops->exit_request(set->driver_data, rq,
1630 hctx_idx, i);
1631 tags->static_rqs[i] = NULL;
1632 }
1633 }
1634
1635 while (!list_empty(&tags->page_list)) {
1636 page = list_first_entry(&tags->page_list, struct page, lru);
1637 list_del_init(&page->lru);
1638 /*
1639 * Remove kmemleak object previously allocated in
1640 * blk_mq_init_rq_map().
1641 */
1642 kmemleak_free(page_address(page));
1643 __free_pages(page, page->private);
1644 }
1645 }
1646
1647 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1648 {
1649 kfree(tags->rqs);
1650 tags->rqs = NULL;
1651 kfree(tags->static_rqs);
1652 tags->static_rqs = NULL;
1653
1654 blk_mq_free_tags(tags);
1655 }
1656
1657 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1658 unsigned int hctx_idx,
1659 unsigned int nr_tags,
1660 unsigned int reserved_tags)
1661 {
1662 struct blk_mq_tags *tags;
1663 int node;
1664
1665 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1666 if (node == NUMA_NO_NODE)
1667 node = set->numa_node;
1668
1669 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1670 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1671 if (!tags)
1672 return NULL;
1673
1674 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1675 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1676 node);
1677 if (!tags->rqs) {
1678 blk_mq_free_tags(tags);
1679 return NULL;
1680 }
1681
1682 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1683 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1684 node);
1685 if (!tags->static_rqs) {
1686 kfree(tags->rqs);
1687 blk_mq_free_tags(tags);
1688 return NULL;
1689 }
1690
1691 return tags;
1692 }
1693
1694 static size_t order_to_size(unsigned int order)
1695 {
1696 return (size_t)PAGE_SIZE << order;
1697 }
1698
1699 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1700 unsigned int hctx_idx, unsigned int depth)
1701 {
1702 unsigned int i, j, entries_per_page, max_order = 4;
1703 size_t rq_size, left;
1704 int node;
1705
1706 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1707 if (node == NUMA_NO_NODE)
1708 node = set->numa_node;
1709
1710 INIT_LIST_HEAD(&tags->page_list);
1711
1712 /*
1713 * rq_size is the size of the request plus driver payload, rounded
1714 * to the cacheline size
1715 */
1716 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1717 cache_line_size());
1718 left = rq_size * depth;
1719
1720 for (i = 0; i < depth; ) {
1721 int this_order = max_order;
1722 struct page *page;
1723 int to_do;
1724 void *p;
1725
1726 while (this_order && left < order_to_size(this_order - 1))
1727 this_order--;
1728
1729 do {
1730 page = alloc_pages_node(node,
1731 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1732 this_order);
1733 if (page)
1734 break;
1735 if (!this_order--)
1736 break;
1737 if (order_to_size(this_order) < rq_size)
1738 break;
1739 } while (1);
1740
1741 if (!page)
1742 goto fail;
1743
1744 page->private = this_order;
1745 list_add_tail(&page->lru, &tags->page_list);
1746
1747 p = page_address(page);
1748 /*
1749 * Allow kmemleak to scan these pages as they contain pointers
1750 * to additional allocations like via ops->init_request().
1751 */
1752 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1753 entries_per_page = order_to_size(this_order) / rq_size;
1754 to_do = min(entries_per_page, depth - i);
1755 left -= to_do * rq_size;
1756 for (j = 0; j < to_do; j++) {
1757 struct request *rq = p;
1758
1759 tags->static_rqs[i] = rq;
1760 if (set->ops->init_request) {
1761 if (set->ops->init_request(set->driver_data,
1762 rq, hctx_idx, i,
1763 node)) {
1764 tags->static_rqs[i] = NULL;
1765 goto fail;
1766 }
1767 }
1768
1769 p += rq_size;
1770 i++;
1771 }
1772 }
1773 return 0;
1774
1775 fail:
1776 blk_mq_free_rqs(set, tags, hctx_idx);
1777 return -ENOMEM;
1778 }
1779
1780 /*
1781 * 'cpu' is going away. splice any existing rq_list entries from this
1782 * software queue to the hw queue dispatch list, and ensure that it
1783 * gets run.
1784 */
1785 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1786 {
1787 struct blk_mq_hw_ctx *hctx;
1788 struct blk_mq_ctx *ctx;
1789 LIST_HEAD(tmp);
1790
1791 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1792 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1793
1794 spin_lock(&ctx->lock);
1795 if (!list_empty(&ctx->rq_list)) {
1796 list_splice_init(&ctx->rq_list, &tmp);
1797 blk_mq_hctx_clear_pending(hctx, ctx);
1798 }
1799 spin_unlock(&ctx->lock);
1800
1801 if (list_empty(&tmp))
1802 return 0;
1803
1804 spin_lock(&hctx->lock);
1805 list_splice_tail_init(&tmp, &hctx->dispatch);
1806 spin_unlock(&hctx->lock);
1807
1808 blk_mq_run_hw_queue(hctx, true);
1809 return 0;
1810 }
1811
1812 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1813 {
1814 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1815 &hctx->cpuhp_dead);
1816 }
1817
1818 /* hctx->ctxs will be freed in queue's release handler */
1819 static void blk_mq_exit_hctx(struct request_queue *q,
1820 struct blk_mq_tag_set *set,
1821 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1822 {
1823 unsigned flush_start_tag = set->queue_depth;
1824
1825 blk_mq_tag_idle(hctx);
1826
1827 if (set->ops->exit_request)
1828 set->ops->exit_request(set->driver_data,
1829 hctx->fq->flush_rq, hctx_idx,
1830 flush_start_tag + hctx_idx);
1831
1832 if (set->ops->exit_hctx)
1833 set->ops->exit_hctx(hctx, hctx_idx);
1834
1835 if (hctx->flags & BLK_MQ_F_BLOCKING)
1836 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1837
1838 blk_mq_remove_cpuhp(hctx);
1839 blk_free_flush_queue(hctx->fq);
1840 sbitmap_free(&hctx->ctx_map);
1841 }
1842
1843 static void blk_mq_exit_hw_queues(struct request_queue *q,
1844 struct blk_mq_tag_set *set, int nr_queue)
1845 {
1846 struct blk_mq_hw_ctx *hctx;
1847 unsigned int i;
1848
1849 queue_for_each_hw_ctx(q, hctx, i) {
1850 if (i == nr_queue)
1851 break;
1852 blk_mq_exit_hctx(q, set, hctx, i);
1853 }
1854 }
1855
1856 static int blk_mq_init_hctx(struct request_queue *q,
1857 struct blk_mq_tag_set *set,
1858 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1859 {
1860 int node;
1861 unsigned flush_start_tag = set->queue_depth;
1862
1863 node = hctx->numa_node;
1864 if (node == NUMA_NO_NODE)
1865 node = hctx->numa_node = set->numa_node;
1866
1867 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1868 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1869 spin_lock_init(&hctx->lock);
1870 INIT_LIST_HEAD(&hctx->dispatch);
1871 hctx->queue = q;
1872 hctx->queue_num = hctx_idx;
1873 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1874
1875 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1876
1877 hctx->tags = set->tags[hctx_idx];
1878
1879 /*
1880 * Allocate space for all possible cpus to avoid allocation at
1881 * runtime
1882 */
1883 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1884 GFP_KERNEL, node);
1885 if (!hctx->ctxs)
1886 goto unregister_cpu_notifier;
1887
1888 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1889 node))
1890 goto free_ctxs;
1891
1892 hctx->nr_ctx = 0;
1893
1894 if (set->ops->init_hctx &&
1895 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1896 goto free_bitmap;
1897
1898 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1899 if (!hctx->fq)
1900 goto exit_hctx;
1901
1902 if (set->ops->init_request &&
1903 set->ops->init_request(set->driver_data,
1904 hctx->fq->flush_rq, hctx_idx,
1905 flush_start_tag + hctx_idx, node))
1906 goto free_fq;
1907
1908 if (hctx->flags & BLK_MQ_F_BLOCKING)
1909 init_srcu_struct(&hctx->queue_rq_srcu);
1910
1911 return 0;
1912
1913 free_fq:
1914 kfree(hctx->fq);
1915 exit_hctx:
1916 if (set->ops->exit_hctx)
1917 set->ops->exit_hctx(hctx, hctx_idx);
1918 free_bitmap:
1919 sbitmap_free(&hctx->ctx_map);
1920 free_ctxs:
1921 kfree(hctx->ctxs);
1922 unregister_cpu_notifier:
1923 blk_mq_remove_cpuhp(hctx);
1924 return -1;
1925 }
1926
1927 static void blk_mq_init_cpu_queues(struct request_queue *q,
1928 unsigned int nr_hw_queues)
1929 {
1930 unsigned int i;
1931
1932 for_each_possible_cpu(i) {
1933 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1934 struct blk_mq_hw_ctx *hctx;
1935
1936 __ctx->cpu = i;
1937 spin_lock_init(&__ctx->lock);
1938 INIT_LIST_HEAD(&__ctx->rq_list);
1939 __ctx->queue = q;
1940
1941 /* If the cpu isn't online, the cpu is mapped to first hctx */
1942 if (!cpu_online(i))
1943 continue;
1944
1945 hctx = blk_mq_map_queue(q, i);
1946
1947 /*
1948 * Set local node, IFF we have more than one hw queue. If
1949 * not, we remain on the home node of the device
1950 */
1951 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1952 hctx->numa_node = local_memory_node(cpu_to_node(i));
1953 }
1954 }
1955
1956 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1957 {
1958 int ret = 0;
1959
1960 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1961 set->queue_depth, set->reserved_tags);
1962 if (!set->tags[hctx_idx])
1963 return false;
1964
1965 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
1966 set->queue_depth);
1967 if (!ret)
1968 return true;
1969
1970 blk_mq_free_rq_map(set->tags[hctx_idx]);
1971 set->tags[hctx_idx] = NULL;
1972 return false;
1973 }
1974
1975 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
1976 unsigned int hctx_idx)
1977 {
1978 if (set->tags[hctx_idx]) {
1979 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
1980 blk_mq_free_rq_map(set->tags[hctx_idx]);
1981 set->tags[hctx_idx] = NULL;
1982 }
1983 }
1984
1985 static void blk_mq_map_swqueue(struct request_queue *q,
1986 const struct cpumask *online_mask)
1987 {
1988 unsigned int i, hctx_idx;
1989 struct blk_mq_hw_ctx *hctx;
1990 struct blk_mq_ctx *ctx;
1991 struct blk_mq_tag_set *set = q->tag_set;
1992
1993 /*
1994 * Avoid others reading imcomplete hctx->cpumask through sysfs
1995 */
1996 mutex_lock(&q->sysfs_lock);
1997
1998 queue_for_each_hw_ctx(q, hctx, i) {
1999 cpumask_clear(hctx->cpumask);
2000 hctx->nr_ctx = 0;
2001 }
2002
2003 /*
2004 * Map software to hardware queues
2005 */
2006 for_each_possible_cpu(i) {
2007 /* If the cpu isn't online, the cpu is mapped to first hctx */
2008 if (!cpumask_test_cpu(i, online_mask))
2009 continue;
2010
2011 hctx_idx = q->mq_map[i];
2012 /* unmapped hw queue can be remapped after CPU topo changed */
2013 if (!set->tags[hctx_idx] &&
2014 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2015 /*
2016 * If tags initialization fail for some hctx,
2017 * that hctx won't be brought online. In this
2018 * case, remap the current ctx to hctx[0] which
2019 * is guaranteed to always have tags allocated
2020 */
2021 q->mq_map[i] = 0;
2022 }
2023
2024 ctx = per_cpu_ptr(q->queue_ctx, i);
2025 hctx = blk_mq_map_queue(q, i);
2026
2027 cpumask_set_cpu(i, hctx->cpumask);
2028 ctx->index_hw = hctx->nr_ctx;
2029 hctx->ctxs[hctx->nr_ctx++] = ctx;
2030 }
2031
2032 mutex_unlock(&q->sysfs_lock);
2033
2034 queue_for_each_hw_ctx(q, hctx, i) {
2035 /*
2036 * If no software queues are mapped to this hardware queue,
2037 * disable it and free the request entries.
2038 */
2039 if (!hctx->nr_ctx) {
2040 /* Never unmap queue 0. We need it as a
2041 * fallback in case of a new remap fails
2042 * allocation
2043 */
2044 if (i && set->tags[i])
2045 blk_mq_free_map_and_requests(set, i);
2046
2047 hctx->tags = NULL;
2048 continue;
2049 }
2050
2051 hctx->tags = set->tags[i];
2052 WARN_ON(!hctx->tags);
2053
2054 /*
2055 * Set the map size to the number of mapped software queues.
2056 * This is more accurate and more efficient than looping
2057 * over all possibly mapped software queues.
2058 */
2059 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2060
2061 /*
2062 * Initialize batch roundrobin counts
2063 */
2064 hctx->next_cpu = cpumask_first(hctx->cpumask);
2065 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2066 }
2067 }
2068
2069 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2070 {
2071 struct blk_mq_hw_ctx *hctx;
2072 int i;
2073
2074 queue_for_each_hw_ctx(q, hctx, i) {
2075 if (shared)
2076 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2077 else
2078 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2079 }
2080 }
2081
2082 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2083 {
2084 struct request_queue *q;
2085
2086 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2087 blk_mq_freeze_queue(q);
2088 queue_set_hctx_shared(q, shared);
2089 blk_mq_unfreeze_queue(q);
2090 }
2091 }
2092
2093 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2094 {
2095 struct blk_mq_tag_set *set = q->tag_set;
2096
2097 mutex_lock(&set->tag_list_lock);
2098 list_del_init(&q->tag_set_list);
2099 if (list_is_singular(&set->tag_list)) {
2100 /* just transitioned to unshared */
2101 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2102 /* update existing queue */
2103 blk_mq_update_tag_set_depth(set, false);
2104 }
2105 mutex_unlock(&set->tag_list_lock);
2106 }
2107
2108 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2109 struct request_queue *q)
2110 {
2111 q->tag_set = set;
2112
2113 mutex_lock(&set->tag_list_lock);
2114
2115 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2116 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2117 set->flags |= BLK_MQ_F_TAG_SHARED;
2118 /* update existing queue */
2119 blk_mq_update_tag_set_depth(set, true);
2120 }
2121 if (set->flags & BLK_MQ_F_TAG_SHARED)
2122 queue_set_hctx_shared(q, true);
2123 list_add_tail(&q->tag_set_list, &set->tag_list);
2124
2125 mutex_unlock(&set->tag_list_lock);
2126 }
2127
2128 /*
2129 * It is the actual release handler for mq, but we do it from
2130 * request queue's release handler for avoiding use-after-free
2131 * and headache because q->mq_kobj shouldn't have been introduced,
2132 * but we can't group ctx/kctx kobj without it.
2133 */
2134 void blk_mq_release(struct request_queue *q)
2135 {
2136 struct blk_mq_hw_ctx *hctx;
2137 unsigned int i;
2138
2139 blk_mq_sched_teardown(q);
2140
2141 /* hctx kobj stays in hctx */
2142 queue_for_each_hw_ctx(q, hctx, i) {
2143 if (!hctx)
2144 continue;
2145 kobject_put(&hctx->kobj);
2146 }
2147
2148 q->mq_map = NULL;
2149
2150 kfree(q->queue_hw_ctx);
2151
2152 /*
2153 * release .mq_kobj and sw queue's kobject now because
2154 * both share lifetime with request queue.
2155 */
2156 blk_mq_sysfs_deinit(q);
2157
2158 free_percpu(q->queue_ctx);
2159 }
2160
2161 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2162 {
2163 struct request_queue *uninit_q, *q;
2164
2165 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2166 if (!uninit_q)
2167 return ERR_PTR(-ENOMEM);
2168
2169 q = blk_mq_init_allocated_queue(set, uninit_q);
2170 if (IS_ERR(q))
2171 blk_cleanup_queue(uninit_q);
2172
2173 return q;
2174 }
2175 EXPORT_SYMBOL(blk_mq_init_queue);
2176
2177 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2178 struct request_queue *q)
2179 {
2180 int i, j;
2181 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2182
2183 blk_mq_sysfs_unregister(q);
2184 for (i = 0; i < set->nr_hw_queues; i++) {
2185 int node;
2186
2187 if (hctxs[i])
2188 continue;
2189
2190 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2191 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2192 GFP_KERNEL, node);
2193 if (!hctxs[i])
2194 break;
2195
2196 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2197 node)) {
2198 kfree(hctxs[i]);
2199 hctxs[i] = NULL;
2200 break;
2201 }
2202
2203 atomic_set(&hctxs[i]->nr_active, 0);
2204 hctxs[i]->numa_node = node;
2205 hctxs[i]->queue_num = i;
2206
2207 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2208 free_cpumask_var(hctxs[i]->cpumask);
2209 kfree(hctxs[i]);
2210 hctxs[i] = NULL;
2211 break;
2212 }
2213 blk_mq_hctx_kobj_init(hctxs[i]);
2214 }
2215 for (j = i; j < q->nr_hw_queues; j++) {
2216 struct blk_mq_hw_ctx *hctx = hctxs[j];
2217
2218 if (hctx) {
2219 if (hctx->tags)
2220 blk_mq_free_map_and_requests(set, j);
2221 blk_mq_exit_hctx(q, set, hctx, j);
2222 kobject_put(&hctx->kobj);
2223 hctxs[j] = NULL;
2224
2225 }
2226 }
2227 q->nr_hw_queues = i;
2228 blk_mq_sysfs_register(q);
2229 }
2230
2231 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2232 struct request_queue *q)
2233 {
2234 /* mark the queue as mq asap */
2235 q->mq_ops = set->ops;
2236
2237 q->stats = blk_alloc_queue_stats();
2238 if (!q->stats)
2239 goto err_exit;
2240
2241 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2242 blk_stat_rq_ddir, 2, q);
2243 if (!q->poll_cb)
2244 goto err_exit;
2245
2246 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2247 if (!q->queue_ctx)
2248 goto err_exit;
2249
2250 /* init q->mq_kobj and sw queues' kobjects */
2251 blk_mq_sysfs_init(q);
2252
2253 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2254 GFP_KERNEL, set->numa_node);
2255 if (!q->queue_hw_ctx)
2256 goto err_percpu;
2257
2258 q->mq_map = set->mq_map;
2259
2260 blk_mq_realloc_hw_ctxs(set, q);
2261 if (!q->nr_hw_queues)
2262 goto err_hctxs;
2263
2264 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2265 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2266
2267 q->nr_queues = nr_cpu_ids;
2268
2269 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2270
2271 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2272 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2273
2274 q->sg_reserved_size = INT_MAX;
2275
2276 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2277 INIT_LIST_HEAD(&q->requeue_list);
2278 spin_lock_init(&q->requeue_lock);
2279
2280 blk_queue_make_request(q, blk_mq_make_request);
2281
2282 /*
2283 * Do this after blk_queue_make_request() overrides it...
2284 */
2285 q->nr_requests = set->queue_depth;
2286
2287 /*
2288 * Default to classic polling
2289 */
2290 q->poll_nsec = -1;
2291
2292 if (set->ops->complete)
2293 blk_queue_softirq_done(q, set->ops->complete);
2294
2295 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2296
2297 get_online_cpus();
2298 mutex_lock(&all_q_mutex);
2299
2300 list_add_tail(&q->all_q_node, &all_q_list);
2301 blk_mq_add_queue_tag_set(set, q);
2302 blk_mq_map_swqueue(q, cpu_online_mask);
2303
2304 mutex_unlock(&all_q_mutex);
2305 put_online_cpus();
2306
2307 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2308 int ret;
2309
2310 ret = blk_mq_sched_init(q);
2311 if (ret)
2312 return ERR_PTR(ret);
2313 }
2314
2315 return q;
2316
2317 err_hctxs:
2318 kfree(q->queue_hw_ctx);
2319 err_percpu:
2320 free_percpu(q->queue_ctx);
2321 err_exit:
2322 q->mq_ops = NULL;
2323 return ERR_PTR(-ENOMEM);
2324 }
2325 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2326
2327 void blk_mq_free_queue(struct request_queue *q)
2328 {
2329 struct blk_mq_tag_set *set = q->tag_set;
2330
2331 mutex_lock(&all_q_mutex);
2332 list_del_init(&q->all_q_node);
2333 mutex_unlock(&all_q_mutex);
2334
2335 blk_mq_del_queue_tag_set(q);
2336
2337 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2338 }
2339
2340 /* Basically redo blk_mq_init_queue with queue frozen */
2341 static void blk_mq_queue_reinit(struct request_queue *q,
2342 const struct cpumask *online_mask)
2343 {
2344 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2345
2346 blk_mq_sysfs_unregister(q);
2347
2348 /*
2349 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2350 * we should change hctx numa_node according to new topology (this
2351 * involves free and re-allocate memory, worthy doing?)
2352 */
2353
2354 blk_mq_map_swqueue(q, online_mask);
2355
2356 blk_mq_sysfs_register(q);
2357 }
2358
2359 /*
2360 * New online cpumask which is going to be set in this hotplug event.
2361 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2362 * one-by-one and dynamically allocating this could result in a failure.
2363 */
2364 static struct cpumask cpuhp_online_new;
2365
2366 static void blk_mq_queue_reinit_work(void)
2367 {
2368 struct request_queue *q;
2369
2370 mutex_lock(&all_q_mutex);
2371 /*
2372 * We need to freeze and reinit all existing queues. Freezing
2373 * involves synchronous wait for an RCU grace period and doing it
2374 * one by one may take a long time. Start freezing all queues in
2375 * one swoop and then wait for the completions so that freezing can
2376 * take place in parallel.
2377 */
2378 list_for_each_entry(q, &all_q_list, all_q_node)
2379 blk_freeze_queue_start(q);
2380 list_for_each_entry(q, &all_q_list, all_q_node)
2381 blk_mq_freeze_queue_wait(q);
2382
2383 list_for_each_entry(q, &all_q_list, all_q_node)
2384 blk_mq_queue_reinit(q, &cpuhp_online_new);
2385
2386 list_for_each_entry(q, &all_q_list, all_q_node)
2387 blk_mq_unfreeze_queue(q);
2388
2389 mutex_unlock(&all_q_mutex);
2390 }
2391
2392 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2393 {
2394 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2395 blk_mq_queue_reinit_work();
2396 return 0;
2397 }
2398
2399 /*
2400 * Before hotadded cpu starts handling requests, new mappings must be
2401 * established. Otherwise, these requests in hw queue might never be
2402 * dispatched.
2403 *
2404 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2405 * for CPU0, and ctx1 for CPU1).
2406 *
2407 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2408 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2409 *
2410 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2411 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2412 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2413 * ignored.
2414 */
2415 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2416 {
2417 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2418 cpumask_set_cpu(cpu, &cpuhp_online_new);
2419 blk_mq_queue_reinit_work();
2420 return 0;
2421 }
2422
2423 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2424 {
2425 int i;
2426
2427 for (i = 0; i < set->nr_hw_queues; i++)
2428 if (!__blk_mq_alloc_rq_map(set, i))
2429 goto out_unwind;
2430
2431 return 0;
2432
2433 out_unwind:
2434 while (--i >= 0)
2435 blk_mq_free_rq_map(set->tags[i]);
2436
2437 return -ENOMEM;
2438 }
2439
2440 /*
2441 * Allocate the request maps associated with this tag_set. Note that this
2442 * may reduce the depth asked for, if memory is tight. set->queue_depth
2443 * will be updated to reflect the allocated depth.
2444 */
2445 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2446 {
2447 unsigned int depth;
2448 int err;
2449
2450 depth = set->queue_depth;
2451 do {
2452 err = __blk_mq_alloc_rq_maps(set);
2453 if (!err)
2454 break;
2455
2456 set->queue_depth >>= 1;
2457 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2458 err = -ENOMEM;
2459 break;
2460 }
2461 } while (set->queue_depth);
2462
2463 if (!set->queue_depth || err) {
2464 pr_err("blk-mq: failed to allocate request map\n");
2465 return -ENOMEM;
2466 }
2467
2468 if (depth != set->queue_depth)
2469 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2470 depth, set->queue_depth);
2471
2472 return 0;
2473 }
2474
2475 /*
2476 * Alloc a tag set to be associated with one or more request queues.
2477 * May fail with EINVAL for various error conditions. May adjust the
2478 * requested depth down, if if it too large. In that case, the set
2479 * value will be stored in set->queue_depth.
2480 */
2481 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2482 {
2483 int ret;
2484
2485 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2486
2487 if (!set->nr_hw_queues)
2488 return -EINVAL;
2489 if (!set->queue_depth)
2490 return -EINVAL;
2491 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2492 return -EINVAL;
2493
2494 if (!set->ops->queue_rq)
2495 return -EINVAL;
2496
2497 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2498 pr_info("blk-mq: reduced tag depth to %u\n",
2499 BLK_MQ_MAX_DEPTH);
2500 set->queue_depth = BLK_MQ_MAX_DEPTH;
2501 }
2502
2503 /*
2504 * If a crashdump is active, then we are potentially in a very
2505 * memory constrained environment. Limit us to 1 queue and
2506 * 64 tags to prevent using too much memory.
2507 */
2508 if (is_kdump_kernel()) {
2509 set->nr_hw_queues = 1;
2510 set->queue_depth = min(64U, set->queue_depth);
2511 }
2512 /*
2513 * There is no use for more h/w queues than cpus.
2514 */
2515 if (set->nr_hw_queues > nr_cpu_ids)
2516 set->nr_hw_queues = nr_cpu_ids;
2517
2518 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2519 GFP_KERNEL, set->numa_node);
2520 if (!set->tags)
2521 return -ENOMEM;
2522
2523 ret = -ENOMEM;
2524 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2525 GFP_KERNEL, set->numa_node);
2526 if (!set->mq_map)
2527 goto out_free_tags;
2528
2529 if (set->ops->map_queues)
2530 ret = set->ops->map_queues(set);
2531 else
2532 ret = blk_mq_map_queues(set);
2533 if (ret)
2534 goto out_free_mq_map;
2535
2536 ret = blk_mq_alloc_rq_maps(set);
2537 if (ret)
2538 goto out_free_mq_map;
2539
2540 mutex_init(&set->tag_list_lock);
2541 INIT_LIST_HEAD(&set->tag_list);
2542
2543 return 0;
2544
2545 out_free_mq_map:
2546 kfree(set->mq_map);
2547 set->mq_map = NULL;
2548 out_free_tags:
2549 kfree(set->tags);
2550 set->tags = NULL;
2551 return ret;
2552 }
2553 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2554
2555 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2556 {
2557 int i;
2558
2559 for (i = 0; i < nr_cpu_ids; i++)
2560 blk_mq_free_map_and_requests(set, i);
2561
2562 kfree(set->mq_map);
2563 set->mq_map = NULL;
2564
2565 kfree(set->tags);
2566 set->tags = NULL;
2567 }
2568 EXPORT_SYMBOL(blk_mq_free_tag_set);
2569
2570 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2571 {
2572 struct blk_mq_tag_set *set = q->tag_set;
2573 struct blk_mq_hw_ctx *hctx;
2574 int i, ret;
2575
2576 if (!set)
2577 return -EINVAL;
2578
2579 blk_mq_freeze_queue(q);
2580 blk_mq_quiesce_queue(q);
2581
2582 ret = 0;
2583 queue_for_each_hw_ctx(q, hctx, i) {
2584 if (!hctx->tags)
2585 continue;
2586 /*
2587 * If we're using an MQ scheduler, just update the scheduler
2588 * queue depth. This is similar to what the old code would do.
2589 */
2590 if (!hctx->sched_tags) {
2591 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2592 min(nr, set->queue_depth),
2593 false);
2594 } else {
2595 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2596 nr, true);
2597 }
2598 if (ret)
2599 break;
2600 }
2601
2602 if (!ret)
2603 q->nr_requests = nr;
2604
2605 blk_mq_unfreeze_queue(q);
2606 blk_mq_start_stopped_hw_queues(q, true);
2607
2608 return ret;
2609 }
2610
2611 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2612 {
2613 struct request_queue *q;
2614
2615 if (nr_hw_queues > nr_cpu_ids)
2616 nr_hw_queues = nr_cpu_ids;
2617 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2618 return;
2619
2620 list_for_each_entry(q, &set->tag_list, tag_set_list)
2621 blk_mq_freeze_queue(q);
2622
2623 set->nr_hw_queues = nr_hw_queues;
2624 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2625 blk_mq_realloc_hw_ctxs(set, q);
2626 blk_mq_queue_reinit(q, cpu_online_mask);
2627 }
2628
2629 list_for_each_entry(q, &set->tag_list, tag_set_list)
2630 blk_mq_unfreeze_queue(q);
2631 }
2632 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2633
2634 /* Enable polling stats and return whether they were already enabled. */
2635 static bool blk_poll_stats_enable(struct request_queue *q)
2636 {
2637 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2638 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2639 return true;
2640 blk_stat_add_callback(q, q->poll_cb);
2641 return false;
2642 }
2643
2644 static void blk_mq_poll_stats_start(struct request_queue *q)
2645 {
2646 /*
2647 * We don't arm the callback if polling stats are not enabled or the
2648 * callback is already active.
2649 */
2650 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2651 blk_stat_is_active(q->poll_cb))
2652 return;
2653
2654 blk_stat_activate_msecs(q->poll_cb, 100);
2655 }
2656
2657 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2658 {
2659 struct request_queue *q = cb->data;
2660
2661 if (cb->stat[READ].nr_samples)
2662 q->poll_stat[READ] = cb->stat[READ];
2663 if (cb->stat[WRITE].nr_samples)
2664 q->poll_stat[WRITE] = cb->stat[WRITE];
2665 }
2666
2667 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2668 struct blk_mq_hw_ctx *hctx,
2669 struct request *rq)
2670 {
2671 unsigned long ret = 0;
2672
2673 /*
2674 * If stats collection isn't on, don't sleep but turn it on for
2675 * future users
2676 */
2677 if (!blk_poll_stats_enable(q))
2678 return 0;
2679
2680 /*
2681 * As an optimistic guess, use half of the mean service time
2682 * for this type of request. We can (and should) make this smarter.
2683 * For instance, if the completion latencies are tight, we can
2684 * get closer than just half the mean. This is especially
2685 * important on devices where the completion latencies are longer
2686 * than ~10 usec.
2687 */
2688 if (req_op(rq) == REQ_OP_READ && q->poll_stat[READ].nr_samples)
2689 ret = (q->poll_stat[READ].mean + 1) / 2;
2690 else if (req_op(rq) == REQ_OP_WRITE && q->poll_stat[WRITE].nr_samples)
2691 ret = (q->poll_stat[WRITE].mean + 1) / 2;
2692
2693 return ret;
2694 }
2695
2696 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2697 struct blk_mq_hw_ctx *hctx,
2698 struct request *rq)
2699 {
2700 struct hrtimer_sleeper hs;
2701 enum hrtimer_mode mode;
2702 unsigned int nsecs;
2703 ktime_t kt;
2704
2705 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2706 return false;
2707
2708 /*
2709 * poll_nsec can be:
2710 *
2711 * -1: don't ever hybrid sleep
2712 * 0: use half of prev avg
2713 * >0: use this specific value
2714 */
2715 if (q->poll_nsec == -1)
2716 return false;
2717 else if (q->poll_nsec > 0)
2718 nsecs = q->poll_nsec;
2719 else
2720 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2721
2722 if (!nsecs)
2723 return false;
2724
2725 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2726
2727 /*
2728 * This will be replaced with the stats tracking code, using
2729 * 'avg_completion_time / 2' as the pre-sleep target.
2730 */
2731 kt = nsecs;
2732
2733 mode = HRTIMER_MODE_REL;
2734 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2735 hrtimer_set_expires(&hs.timer, kt);
2736
2737 hrtimer_init_sleeper(&hs, current);
2738 do {
2739 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2740 break;
2741 set_current_state(TASK_UNINTERRUPTIBLE);
2742 hrtimer_start_expires(&hs.timer, mode);
2743 if (hs.task)
2744 io_schedule();
2745 hrtimer_cancel(&hs.timer);
2746 mode = HRTIMER_MODE_ABS;
2747 } while (hs.task && !signal_pending(current));
2748
2749 __set_current_state(TASK_RUNNING);
2750 destroy_hrtimer_on_stack(&hs.timer);
2751 return true;
2752 }
2753
2754 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2755 {
2756 struct request_queue *q = hctx->queue;
2757 long state;
2758
2759 /*
2760 * If we sleep, have the caller restart the poll loop to reset
2761 * the state. Like for the other success return cases, the
2762 * caller is responsible for checking if the IO completed. If
2763 * the IO isn't complete, we'll get called again and will go
2764 * straight to the busy poll loop.
2765 */
2766 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2767 return true;
2768
2769 hctx->poll_considered++;
2770
2771 state = current->state;
2772 while (!need_resched()) {
2773 int ret;
2774
2775 hctx->poll_invoked++;
2776
2777 ret = q->mq_ops->poll(hctx, rq->tag);
2778 if (ret > 0) {
2779 hctx->poll_success++;
2780 set_current_state(TASK_RUNNING);
2781 return true;
2782 }
2783
2784 if (signal_pending_state(state, current))
2785 set_current_state(TASK_RUNNING);
2786
2787 if (current->state == TASK_RUNNING)
2788 return true;
2789 if (ret < 0)
2790 break;
2791 cpu_relax();
2792 }
2793
2794 return false;
2795 }
2796
2797 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2798 {
2799 struct blk_mq_hw_ctx *hctx;
2800 struct blk_plug *plug;
2801 struct request *rq;
2802
2803 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2804 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2805 return false;
2806
2807 plug = current->plug;
2808 if (plug)
2809 blk_flush_plug_list(plug, false);
2810
2811 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2812 if (!blk_qc_t_is_internal(cookie))
2813 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2814 else
2815 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2816
2817 return __blk_mq_poll(hctx, rq);
2818 }
2819 EXPORT_SYMBOL_GPL(blk_mq_poll);
2820
2821 void blk_mq_disable_hotplug(void)
2822 {
2823 mutex_lock(&all_q_mutex);
2824 }
2825
2826 void blk_mq_enable_hotplug(void)
2827 {
2828 mutex_unlock(&all_q_mutex);
2829 }
2830
2831 static int __init blk_mq_init(void)
2832 {
2833 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2834 blk_mq_hctx_notify_dead);
2835
2836 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2837 blk_mq_queue_reinit_prepare,
2838 blk_mq_queue_reinit_dead);
2839 return 0;
2840 }
2841 subsys_initcall(blk_mq_init);