]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-mq.c
Revert "blk-mq: simplify queue mapping & schedule with each possisble CPU"
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46 int ddir, bytes, bucket;
47
48 ddir = rq_data_dir(rq);
49 bytes = blk_rq_bytes(rq);
50
51 bucket = ddir + 2*(ilog2(bytes) - 9);
52
53 if (bucket < 0)
54 return -1;
55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58 return bucket;
59 }
60
61 /*
62 * Check if any of the ctx's have pending work in this hardware queue
63 */
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66 return !list_empty_careful(&hctx->dispatch) ||
67 sbitmap_any_bit_set(&hctx->ctx_map) ||
68 blk_mq_sched_has_work(hctx);
69 }
70
71 /*
72 * Mark this ctx as having pending work in this hardware queue
73 */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 struct blk_mq_ctx *ctx)
76 {
77 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 }
80
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 struct blk_mq_ctx *ctx)
83 {
84 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 }
86
87 struct mq_inflight {
88 struct hd_struct *part;
89 unsigned int *inflight;
90 };
91
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93 struct request *rq, void *priv,
94 bool reserved)
95 {
96 struct mq_inflight *mi = priv;
97
98 if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
99 !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
100 /*
101 * index[0] counts the specific partition that was asked
102 * for. index[1] counts the ones that are active on the
103 * whole device, so increment that if mi->part is indeed
104 * a partition, and not a whole device.
105 */
106 if (rq->part == mi->part)
107 mi->inflight[0]++;
108 if (mi->part->partno)
109 mi->inflight[1]++;
110 }
111 }
112
113 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
114 unsigned int inflight[2])
115 {
116 struct mq_inflight mi = { .part = part, .inflight = inflight, };
117
118 inflight[0] = inflight[1] = 0;
119 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120 }
121
122 void blk_freeze_queue_start(struct request_queue *q)
123 {
124 int freeze_depth;
125
126 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
127 if (freeze_depth == 1) {
128 percpu_ref_kill(&q->q_usage_counter);
129 if (q->mq_ops)
130 blk_mq_run_hw_queues(q, false);
131 }
132 }
133 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
134
135 void blk_mq_freeze_queue_wait(struct request_queue *q)
136 {
137 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
138 }
139 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
140
141 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
142 unsigned long timeout)
143 {
144 return wait_event_timeout(q->mq_freeze_wq,
145 percpu_ref_is_zero(&q->q_usage_counter),
146 timeout);
147 }
148 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
149
150 /*
151 * Guarantee no request is in use, so we can change any data structure of
152 * the queue afterward.
153 */
154 void blk_freeze_queue(struct request_queue *q)
155 {
156 /*
157 * In the !blk_mq case we are only calling this to kill the
158 * q_usage_counter, otherwise this increases the freeze depth
159 * and waits for it to return to zero. For this reason there is
160 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
161 * exported to drivers as the only user for unfreeze is blk_mq.
162 */
163 blk_freeze_queue_start(q);
164 if (!q->mq_ops)
165 blk_drain_queue(q);
166 blk_mq_freeze_queue_wait(q);
167 }
168
169 void blk_mq_freeze_queue(struct request_queue *q)
170 {
171 /*
172 * ...just an alias to keep freeze and unfreeze actions balanced
173 * in the blk_mq_* namespace
174 */
175 blk_freeze_queue(q);
176 }
177 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
178
179 void blk_mq_unfreeze_queue(struct request_queue *q)
180 {
181 int freeze_depth;
182
183 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
184 WARN_ON_ONCE(freeze_depth < 0);
185 if (!freeze_depth) {
186 percpu_ref_reinit(&q->q_usage_counter);
187 wake_up_all(&q->mq_freeze_wq);
188 }
189 }
190 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
191
192 /*
193 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
194 * mpt3sas driver such that this function can be removed.
195 */
196 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
197 {
198 unsigned long flags;
199
200 spin_lock_irqsave(q->queue_lock, flags);
201 queue_flag_set(QUEUE_FLAG_QUIESCED, q);
202 spin_unlock_irqrestore(q->queue_lock, flags);
203 }
204 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
205
206 /**
207 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
208 * @q: request queue.
209 *
210 * Note: this function does not prevent that the struct request end_io()
211 * callback function is invoked. Once this function is returned, we make
212 * sure no dispatch can happen until the queue is unquiesced via
213 * blk_mq_unquiesce_queue().
214 */
215 void blk_mq_quiesce_queue(struct request_queue *q)
216 {
217 struct blk_mq_hw_ctx *hctx;
218 unsigned int i;
219 bool rcu = false;
220
221 blk_mq_quiesce_queue_nowait(q);
222
223 queue_for_each_hw_ctx(q, hctx, i) {
224 if (hctx->flags & BLK_MQ_F_BLOCKING)
225 synchronize_srcu(hctx->queue_rq_srcu);
226 else
227 rcu = true;
228 }
229 if (rcu)
230 synchronize_rcu();
231 }
232 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
233
234 /*
235 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
236 * @q: request queue.
237 *
238 * This function recovers queue into the state before quiescing
239 * which is done by blk_mq_quiesce_queue.
240 */
241 void blk_mq_unquiesce_queue(struct request_queue *q)
242 {
243 unsigned long flags;
244
245 spin_lock_irqsave(q->queue_lock, flags);
246 queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
247 spin_unlock_irqrestore(q->queue_lock, flags);
248
249 /* dispatch requests which are inserted during quiescing */
250 blk_mq_run_hw_queues(q, true);
251 }
252 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
253
254 void blk_mq_wake_waiters(struct request_queue *q)
255 {
256 struct blk_mq_hw_ctx *hctx;
257 unsigned int i;
258
259 queue_for_each_hw_ctx(q, hctx, i)
260 if (blk_mq_hw_queue_mapped(hctx))
261 blk_mq_tag_wakeup_all(hctx->tags, true);
262 }
263
264 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
265 {
266 return blk_mq_has_free_tags(hctx->tags);
267 }
268 EXPORT_SYMBOL(blk_mq_can_queue);
269
270 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
271 unsigned int tag, unsigned int op)
272 {
273 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
274 struct request *rq = tags->static_rqs[tag];
275
276 rq->rq_flags = 0;
277
278 if (data->flags & BLK_MQ_REQ_INTERNAL) {
279 rq->tag = -1;
280 rq->internal_tag = tag;
281 } else {
282 if (blk_mq_tag_busy(data->hctx)) {
283 rq->rq_flags = RQF_MQ_INFLIGHT;
284 atomic_inc(&data->hctx->nr_active);
285 }
286 rq->tag = tag;
287 rq->internal_tag = -1;
288 data->hctx->tags->rqs[rq->tag] = rq;
289 }
290
291 INIT_LIST_HEAD(&rq->queuelist);
292 /* csd/requeue_work/fifo_time is initialized before use */
293 rq->q = data->q;
294 rq->mq_ctx = data->ctx;
295 rq->cmd_flags = op;
296 if (data->flags & BLK_MQ_REQ_PREEMPT)
297 rq->rq_flags |= RQF_PREEMPT;
298 if (blk_queue_io_stat(data->q))
299 rq->rq_flags |= RQF_IO_STAT;
300 /* do not touch atomic flags, it needs atomic ops against the timer */
301 rq->cpu = -1;
302 INIT_HLIST_NODE(&rq->hash);
303 RB_CLEAR_NODE(&rq->rb_node);
304 rq->rq_disk = NULL;
305 rq->part = NULL;
306 rq->start_time = jiffies;
307 #ifdef CONFIG_BLK_CGROUP
308 rq->rl = NULL;
309 set_start_time_ns(rq);
310 rq->io_start_time_ns = 0;
311 #endif
312 rq->nr_phys_segments = 0;
313 #if defined(CONFIG_BLK_DEV_INTEGRITY)
314 rq->nr_integrity_segments = 0;
315 #endif
316 rq->special = NULL;
317 /* tag was already set */
318 rq->extra_len = 0;
319
320 INIT_LIST_HEAD(&rq->timeout_list);
321 rq->timeout = 0;
322
323 rq->end_io = NULL;
324 rq->end_io_data = NULL;
325 rq->next_rq = NULL;
326
327 data->ctx->rq_dispatched[op_is_sync(op)]++;
328 return rq;
329 }
330
331 static struct request *blk_mq_get_request(struct request_queue *q,
332 struct bio *bio, unsigned int op,
333 struct blk_mq_alloc_data *data)
334 {
335 struct elevator_queue *e = q->elevator;
336 struct request *rq;
337 unsigned int tag;
338 bool put_ctx_on_error = false;
339
340 blk_queue_enter_live(q);
341 data->q = q;
342 if (likely(!data->ctx)) {
343 data->ctx = blk_mq_get_ctx(q);
344 put_ctx_on_error = true;
345 }
346 if (likely(!data->hctx))
347 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
348 if (op & REQ_NOWAIT)
349 data->flags |= BLK_MQ_REQ_NOWAIT;
350
351 if (e) {
352 data->flags |= BLK_MQ_REQ_INTERNAL;
353
354 /*
355 * Flush requests are special and go directly to the
356 * dispatch list.
357 */
358 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
359 e->type->ops.mq.limit_depth(op, data);
360 }
361
362 tag = blk_mq_get_tag(data);
363 if (tag == BLK_MQ_TAG_FAIL) {
364 if (put_ctx_on_error) {
365 blk_mq_put_ctx(data->ctx);
366 data->ctx = NULL;
367 }
368 blk_queue_exit(q);
369 return NULL;
370 }
371
372 rq = blk_mq_rq_ctx_init(data, tag, op);
373 if (!op_is_flush(op)) {
374 rq->elv.icq = NULL;
375 if (e && e->type->ops.mq.prepare_request) {
376 if (e->type->icq_cache && rq_ioc(bio))
377 blk_mq_sched_assign_ioc(rq, bio);
378
379 e->type->ops.mq.prepare_request(rq, bio);
380 rq->rq_flags |= RQF_ELVPRIV;
381 }
382 }
383 data->hctx->queued++;
384 return rq;
385 }
386
387 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
388 blk_mq_req_flags_t flags)
389 {
390 struct blk_mq_alloc_data alloc_data = { .flags = flags };
391 struct request *rq;
392 int ret;
393
394 ret = blk_queue_enter(q, flags);
395 if (ret)
396 return ERR_PTR(ret);
397
398 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
399 blk_queue_exit(q);
400
401 if (!rq)
402 return ERR_PTR(-EWOULDBLOCK);
403
404 blk_mq_put_ctx(alloc_data.ctx);
405
406 rq->__data_len = 0;
407 rq->__sector = (sector_t) -1;
408 rq->bio = rq->biotail = NULL;
409 return rq;
410 }
411 EXPORT_SYMBOL(blk_mq_alloc_request);
412
413 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
414 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
415 {
416 struct blk_mq_alloc_data alloc_data = { .flags = flags };
417 struct request *rq;
418 unsigned int cpu;
419 int ret;
420
421 /*
422 * If the tag allocator sleeps we could get an allocation for a
423 * different hardware context. No need to complicate the low level
424 * allocator for this for the rare use case of a command tied to
425 * a specific queue.
426 */
427 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
428 return ERR_PTR(-EINVAL);
429
430 if (hctx_idx >= q->nr_hw_queues)
431 return ERR_PTR(-EIO);
432
433 ret = blk_queue_enter(q, flags);
434 if (ret)
435 return ERR_PTR(ret);
436
437 /*
438 * Check if the hardware context is actually mapped to anything.
439 * If not tell the caller that it should skip this queue.
440 */
441 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
442 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
443 blk_queue_exit(q);
444 return ERR_PTR(-EXDEV);
445 }
446 cpu = cpumask_first(alloc_data.hctx->cpumask);
447 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
448
449 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
450 blk_queue_exit(q);
451
452 if (!rq)
453 return ERR_PTR(-EWOULDBLOCK);
454
455 return rq;
456 }
457 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
458
459 void blk_mq_free_request(struct request *rq)
460 {
461 struct request_queue *q = rq->q;
462 struct elevator_queue *e = q->elevator;
463 struct blk_mq_ctx *ctx = rq->mq_ctx;
464 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
465 const int sched_tag = rq->internal_tag;
466
467 if (rq->rq_flags & RQF_ELVPRIV) {
468 if (e && e->type->ops.mq.finish_request)
469 e->type->ops.mq.finish_request(rq);
470 if (rq->elv.icq) {
471 put_io_context(rq->elv.icq->ioc);
472 rq->elv.icq = NULL;
473 }
474 }
475
476 ctx->rq_completed[rq_is_sync(rq)]++;
477 if (rq->rq_flags & RQF_MQ_INFLIGHT)
478 atomic_dec(&hctx->nr_active);
479
480 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
481 laptop_io_completion(q->backing_dev_info);
482
483 wbt_done(q->rq_wb, &rq->issue_stat);
484
485 if (blk_rq_rl(rq))
486 blk_put_rl(blk_rq_rl(rq));
487
488 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
489 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
490 if (rq->tag != -1)
491 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
492 if (sched_tag != -1)
493 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
494 blk_mq_sched_restart(hctx);
495 blk_queue_exit(q);
496 }
497 EXPORT_SYMBOL_GPL(blk_mq_free_request);
498
499 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
500 {
501 blk_account_io_done(rq);
502
503 if (rq->end_io) {
504 wbt_done(rq->q->rq_wb, &rq->issue_stat);
505 rq->end_io(rq, error);
506 } else {
507 if (unlikely(blk_bidi_rq(rq)))
508 blk_mq_free_request(rq->next_rq);
509 blk_mq_free_request(rq);
510 }
511 }
512 EXPORT_SYMBOL(__blk_mq_end_request);
513
514 void blk_mq_end_request(struct request *rq, blk_status_t error)
515 {
516 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
517 BUG();
518 __blk_mq_end_request(rq, error);
519 }
520 EXPORT_SYMBOL(blk_mq_end_request);
521
522 static void __blk_mq_complete_request_remote(void *data)
523 {
524 struct request *rq = data;
525
526 rq->q->softirq_done_fn(rq);
527 }
528
529 static void __blk_mq_complete_request(struct request *rq)
530 {
531 struct blk_mq_ctx *ctx = rq->mq_ctx;
532 bool shared = false;
533 int cpu;
534
535 if (rq->internal_tag != -1)
536 blk_mq_sched_completed_request(rq);
537 if (rq->rq_flags & RQF_STATS) {
538 blk_mq_poll_stats_start(rq->q);
539 blk_stat_add(rq);
540 }
541
542 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
543 rq->q->softirq_done_fn(rq);
544 return;
545 }
546
547 cpu = get_cpu();
548 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
549 shared = cpus_share_cache(cpu, ctx->cpu);
550
551 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
552 rq->csd.func = __blk_mq_complete_request_remote;
553 rq->csd.info = rq;
554 rq->csd.flags = 0;
555 smp_call_function_single_async(ctx->cpu, &rq->csd);
556 } else {
557 rq->q->softirq_done_fn(rq);
558 }
559 put_cpu();
560 }
561
562 /**
563 * blk_mq_complete_request - end I/O on a request
564 * @rq: the request being processed
565 *
566 * Description:
567 * Ends all I/O on a request. It does not handle partial completions.
568 * The actual completion happens out-of-order, through a IPI handler.
569 **/
570 void blk_mq_complete_request(struct request *rq)
571 {
572 struct request_queue *q = rq->q;
573
574 if (unlikely(blk_should_fake_timeout(q)))
575 return;
576 if (!blk_mark_rq_complete(rq))
577 __blk_mq_complete_request(rq);
578 }
579 EXPORT_SYMBOL(blk_mq_complete_request);
580
581 int blk_mq_request_started(struct request *rq)
582 {
583 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
584 }
585 EXPORT_SYMBOL_GPL(blk_mq_request_started);
586
587 void blk_mq_start_request(struct request *rq)
588 {
589 struct request_queue *q = rq->q;
590
591 blk_mq_sched_started_request(rq);
592
593 trace_block_rq_issue(q, rq);
594
595 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
596 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
597 rq->rq_flags |= RQF_STATS;
598 wbt_issue(q->rq_wb, &rq->issue_stat);
599 }
600
601 blk_add_timer(rq);
602
603 WARN_ON_ONCE(test_bit(REQ_ATOM_STARTED, &rq->atomic_flags));
604
605 /*
606 * Mark us as started and clear complete. Complete might have been
607 * set if requeue raced with timeout, which then marked it as
608 * complete. So be sure to clear complete again when we start
609 * the request, otherwise we'll ignore the completion event.
610 *
611 * Ensure that ->deadline is visible before we set STARTED, such that
612 * blk_mq_check_expired() is guaranteed to observe our ->deadline when
613 * it observes STARTED.
614 */
615 smp_wmb();
616 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
617 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
618 /*
619 * Coherence order guarantees these consecutive stores to a
620 * single variable propagate in the specified order. Thus the
621 * clear_bit() is ordered _after_ the set bit. See
622 * blk_mq_check_expired().
623 *
624 * (the bits must be part of the same byte for this to be
625 * true).
626 */
627 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
628 }
629
630 if (q->dma_drain_size && blk_rq_bytes(rq)) {
631 /*
632 * Make sure space for the drain appears. We know we can do
633 * this because max_hw_segments has been adjusted to be one
634 * fewer than the device can handle.
635 */
636 rq->nr_phys_segments++;
637 }
638 }
639 EXPORT_SYMBOL(blk_mq_start_request);
640
641 /*
642 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
643 * flag isn't set yet, so there may be race with timeout handler,
644 * but given rq->deadline is just set in .queue_rq() under
645 * this situation, the race won't be possible in reality because
646 * rq->timeout should be set as big enough to cover the window
647 * between blk_mq_start_request() called from .queue_rq() and
648 * clearing REQ_ATOM_STARTED here.
649 */
650 static void __blk_mq_requeue_request(struct request *rq)
651 {
652 struct request_queue *q = rq->q;
653
654 blk_mq_put_driver_tag(rq);
655
656 trace_block_rq_requeue(q, rq);
657 wbt_requeue(q->rq_wb, &rq->issue_stat);
658
659 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
660 if (q->dma_drain_size && blk_rq_bytes(rq))
661 rq->nr_phys_segments--;
662 }
663 }
664
665 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
666 {
667 __blk_mq_requeue_request(rq);
668
669 /* this request will be re-inserted to io scheduler queue */
670 blk_mq_sched_requeue_request(rq);
671
672 BUG_ON(blk_queued_rq(rq));
673 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
674 }
675 EXPORT_SYMBOL(blk_mq_requeue_request);
676
677 static void blk_mq_requeue_work(struct work_struct *work)
678 {
679 struct request_queue *q =
680 container_of(work, struct request_queue, requeue_work.work);
681 LIST_HEAD(rq_list);
682 struct request *rq, *next;
683
684 spin_lock_irq(&q->requeue_lock);
685 list_splice_init(&q->requeue_list, &rq_list);
686 spin_unlock_irq(&q->requeue_lock);
687
688 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
689 if (!(rq->rq_flags & RQF_SOFTBARRIER))
690 continue;
691
692 rq->rq_flags &= ~RQF_SOFTBARRIER;
693 list_del_init(&rq->queuelist);
694 blk_mq_sched_insert_request(rq, true, false, false, true);
695 }
696
697 while (!list_empty(&rq_list)) {
698 rq = list_entry(rq_list.next, struct request, queuelist);
699 list_del_init(&rq->queuelist);
700 blk_mq_sched_insert_request(rq, false, false, false, true);
701 }
702
703 blk_mq_run_hw_queues(q, false);
704 }
705
706 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
707 bool kick_requeue_list)
708 {
709 struct request_queue *q = rq->q;
710 unsigned long flags;
711
712 /*
713 * We abuse this flag that is otherwise used by the I/O scheduler to
714 * request head insertion from the workqueue.
715 */
716 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
717
718 spin_lock_irqsave(&q->requeue_lock, flags);
719 if (at_head) {
720 rq->rq_flags |= RQF_SOFTBARRIER;
721 list_add(&rq->queuelist, &q->requeue_list);
722 } else {
723 list_add_tail(&rq->queuelist, &q->requeue_list);
724 }
725 spin_unlock_irqrestore(&q->requeue_lock, flags);
726
727 if (kick_requeue_list)
728 blk_mq_kick_requeue_list(q);
729 }
730 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
731
732 void blk_mq_kick_requeue_list(struct request_queue *q)
733 {
734 kblockd_schedule_delayed_work(&q->requeue_work, 0);
735 }
736 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
737
738 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
739 unsigned long msecs)
740 {
741 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
742 msecs_to_jiffies(msecs));
743 }
744 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
745
746 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
747 {
748 if (tag < tags->nr_tags) {
749 prefetch(tags->rqs[tag]);
750 return tags->rqs[tag];
751 }
752
753 return NULL;
754 }
755 EXPORT_SYMBOL(blk_mq_tag_to_rq);
756
757 struct blk_mq_timeout_data {
758 unsigned long next;
759 unsigned int next_set;
760 };
761
762 void blk_mq_rq_timed_out(struct request *req, bool reserved)
763 {
764 const struct blk_mq_ops *ops = req->q->mq_ops;
765 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
766
767 /*
768 * We know that complete is set at this point. If STARTED isn't set
769 * anymore, then the request isn't active and the "timeout" should
770 * just be ignored. This can happen due to the bitflag ordering.
771 * Timeout first checks if STARTED is set, and if it is, assumes
772 * the request is active. But if we race with completion, then
773 * both flags will get cleared. So check here again, and ignore
774 * a timeout event with a request that isn't active.
775 */
776 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
777 return;
778
779 if (ops->timeout)
780 ret = ops->timeout(req, reserved);
781
782 switch (ret) {
783 case BLK_EH_HANDLED:
784 __blk_mq_complete_request(req);
785 break;
786 case BLK_EH_RESET_TIMER:
787 blk_add_timer(req);
788 blk_clear_rq_complete(req);
789 break;
790 case BLK_EH_NOT_HANDLED:
791 break;
792 default:
793 printk(KERN_ERR "block: bad eh return: %d\n", ret);
794 break;
795 }
796 }
797
798 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
799 struct request *rq, void *priv, bool reserved)
800 {
801 struct blk_mq_timeout_data *data = priv;
802 unsigned long deadline;
803
804 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
805 return;
806
807 /*
808 * Ensures that if we see STARTED we must also see our
809 * up-to-date deadline, see blk_mq_start_request().
810 */
811 smp_rmb();
812
813 deadline = READ_ONCE(rq->deadline);
814
815 /*
816 * The rq being checked may have been freed and reallocated
817 * out already here, we avoid this race by checking rq->deadline
818 * and REQ_ATOM_COMPLETE flag together:
819 *
820 * - if rq->deadline is observed as new value because of
821 * reusing, the rq won't be timed out because of timing.
822 * - if rq->deadline is observed as previous value,
823 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
824 * because we put a barrier between setting rq->deadline
825 * and clearing the flag in blk_mq_start_request(), so
826 * this rq won't be timed out too.
827 */
828 if (time_after_eq(jiffies, deadline)) {
829 if (!blk_mark_rq_complete(rq)) {
830 /*
831 * Again coherence order ensures that consecutive reads
832 * from the same variable must be in that order. This
833 * ensures that if we see COMPLETE clear, we must then
834 * see STARTED set and we'll ignore this timeout.
835 *
836 * (There's also the MB implied by the test_and_clear())
837 */
838 blk_mq_rq_timed_out(rq, reserved);
839 }
840 } else if (!data->next_set || time_after(data->next, deadline)) {
841 data->next = deadline;
842 data->next_set = 1;
843 }
844 }
845
846 static void blk_mq_timeout_work(struct work_struct *work)
847 {
848 struct request_queue *q =
849 container_of(work, struct request_queue, timeout_work);
850 struct blk_mq_timeout_data data = {
851 .next = 0,
852 .next_set = 0,
853 };
854 int i;
855
856 /* A deadlock might occur if a request is stuck requiring a
857 * timeout at the same time a queue freeze is waiting
858 * completion, since the timeout code would not be able to
859 * acquire the queue reference here.
860 *
861 * That's why we don't use blk_queue_enter here; instead, we use
862 * percpu_ref_tryget directly, because we need to be able to
863 * obtain a reference even in the short window between the queue
864 * starting to freeze, by dropping the first reference in
865 * blk_freeze_queue_start, and the moment the last request is
866 * consumed, marked by the instant q_usage_counter reaches
867 * zero.
868 */
869 if (!percpu_ref_tryget(&q->q_usage_counter))
870 return;
871
872 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
873
874 if (data.next_set) {
875 data.next = blk_rq_timeout(round_jiffies_up(data.next));
876 mod_timer(&q->timeout, data.next);
877 } else {
878 struct blk_mq_hw_ctx *hctx;
879
880 queue_for_each_hw_ctx(q, hctx, i) {
881 /* the hctx may be unmapped, so check it here */
882 if (blk_mq_hw_queue_mapped(hctx))
883 blk_mq_tag_idle(hctx);
884 }
885 }
886 blk_queue_exit(q);
887 }
888
889 struct flush_busy_ctx_data {
890 struct blk_mq_hw_ctx *hctx;
891 struct list_head *list;
892 };
893
894 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
895 {
896 struct flush_busy_ctx_data *flush_data = data;
897 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
898 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
899
900 sbitmap_clear_bit(sb, bitnr);
901 spin_lock(&ctx->lock);
902 list_splice_tail_init(&ctx->rq_list, flush_data->list);
903 spin_unlock(&ctx->lock);
904 return true;
905 }
906
907 /*
908 * Process software queues that have been marked busy, splicing them
909 * to the for-dispatch
910 */
911 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
912 {
913 struct flush_busy_ctx_data data = {
914 .hctx = hctx,
915 .list = list,
916 };
917
918 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
919 }
920 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
921
922 struct dispatch_rq_data {
923 struct blk_mq_hw_ctx *hctx;
924 struct request *rq;
925 };
926
927 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
928 void *data)
929 {
930 struct dispatch_rq_data *dispatch_data = data;
931 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
932 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
933
934 spin_lock(&ctx->lock);
935 if (unlikely(!list_empty(&ctx->rq_list))) {
936 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
937 list_del_init(&dispatch_data->rq->queuelist);
938 if (list_empty(&ctx->rq_list))
939 sbitmap_clear_bit(sb, bitnr);
940 }
941 spin_unlock(&ctx->lock);
942
943 return !dispatch_data->rq;
944 }
945
946 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
947 struct blk_mq_ctx *start)
948 {
949 unsigned off = start ? start->index_hw : 0;
950 struct dispatch_rq_data data = {
951 .hctx = hctx,
952 .rq = NULL,
953 };
954
955 __sbitmap_for_each_set(&hctx->ctx_map, off,
956 dispatch_rq_from_ctx, &data);
957
958 return data.rq;
959 }
960
961 static inline unsigned int queued_to_index(unsigned int queued)
962 {
963 if (!queued)
964 return 0;
965
966 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
967 }
968
969 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
970 bool wait)
971 {
972 struct blk_mq_alloc_data data = {
973 .q = rq->q,
974 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
975 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
976 };
977
978 might_sleep_if(wait);
979
980 if (rq->tag != -1)
981 goto done;
982
983 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
984 data.flags |= BLK_MQ_REQ_RESERVED;
985
986 rq->tag = blk_mq_get_tag(&data);
987 if (rq->tag >= 0) {
988 if (blk_mq_tag_busy(data.hctx)) {
989 rq->rq_flags |= RQF_MQ_INFLIGHT;
990 atomic_inc(&data.hctx->nr_active);
991 }
992 data.hctx->tags->rqs[rq->tag] = rq;
993 }
994
995 done:
996 if (hctx)
997 *hctx = data.hctx;
998 return rq->tag != -1;
999 }
1000
1001 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1002 int flags, void *key)
1003 {
1004 struct blk_mq_hw_ctx *hctx;
1005
1006 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1007
1008 list_del_init(&wait->entry);
1009 blk_mq_run_hw_queue(hctx, true);
1010 return 1;
1011 }
1012
1013 /*
1014 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1015 * the tag wakeups. For non-shared tags, we can simply mark us nedeing a
1016 * restart. For both caes, take care to check the condition again after
1017 * marking us as waiting.
1018 */
1019 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
1020 struct request *rq)
1021 {
1022 struct blk_mq_hw_ctx *this_hctx = *hctx;
1023 bool shared_tags = (this_hctx->flags & BLK_MQ_F_TAG_SHARED) != 0;
1024 struct sbq_wait_state *ws;
1025 wait_queue_entry_t *wait;
1026 bool ret;
1027
1028 if (!shared_tags) {
1029 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
1030 set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
1031 } else {
1032 wait = &this_hctx->dispatch_wait;
1033 if (!list_empty_careful(&wait->entry))
1034 return false;
1035
1036 spin_lock(&this_hctx->lock);
1037 if (!list_empty(&wait->entry)) {
1038 spin_unlock(&this_hctx->lock);
1039 return false;
1040 }
1041
1042 ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
1043 add_wait_queue(&ws->wait, wait);
1044 }
1045
1046 /*
1047 * It's possible that a tag was freed in the window between the
1048 * allocation failure and adding the hardware queue to the wait
1049 * queue.
1050 */
1051 ret = blk_mq_get_driver_tag(rq, hctx, false);
1052
1053 if (!shared_tags) {
1054 /*
1055 * Don't clear RESTART here, someone else could have set it.
1056 * At most this will cost an extra queue run.
1057 */
1058 return ret;
1059 } else {
1060 if (!ret) {
1061 spin_unlock(&this_hctx->lock);
1062 return false;
1063 }
1064
1065 /*
1066 * We got a tag, remove ourselves from the wait queue to ensure
1067 * someone else gets the wakeup.
1068 */
1069 spin_lock_irq(&ws->wait.lock);
1070 list_del_init(&wait->entry);
1071 spin_unlock_irq(&ws->wait.lock);
1072 spin_unlock(&this_hctx->lock);
1073 return true;
1074 }
1075 }
1076
1077 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1078 bool got_budget)
1079 {
1080 struct blk_mq_hw_ctx *hctx;
1081 struct request *rq, *nxt;
1082 bool no_tag = false;
1083 int errors, queued;
1084
1085 if (list_empty(list))
1086 return false;
1087
1088 WARN_ON(!list_is_singular(list) && got_budget);
1089
1090 /*
1091 * Now process all the entries, sending them to the driver.
1092 */
1093 errors = queued = 0;
1094 do {
1095 struct blk_mq_queue_data bd;
1096 blk_status_t ret;
1097
1098 rq = list_first_entry(list, struct request, queuelist);
1099 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1100 /*
1101 * The initial allocation attempt failed, so we need to
1102 * rerun the hardware queue when a tag is freed. The
1103 * waitqueue takes care of that. If the queue is run
1104 * before we add this entry back on the dispatch list,
1105 * we'll re-run it below.
1106 */
1107 if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1108 if (got_budget)
1109 blk_mq_put_dispatch_budget(hctx);
1110 /*
1111 * For non-shared tags, the RESTART check
1112 * will suffice.
1113 */
1114 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1115 no_tag = true;
1116 break;
1117 }
1118 }
1119
1120 if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) {
1121 blk_mq_put_driver_tag(rq);
1122 break;
1123 }
1124
1125 list_del_init(&rq->queuelist);
1126
1127 bd.rq = rq;
1128
1129 /*
1130 * Flag last if we have no more requests, or if we have more
1131 * but can't assign a driver tag to it.
1132 */
1133 if (list_empty(list))
1134 bd.last = true;
1135 else {
1136 nxt = list_first_entry(list, struct request, queuelist);
1137 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1138 }
1139
1140 ret = q->mq_ops->queue_rq(hctx, &bd);
1141 if (ret == BLK_STS_RESOURCE) {
1142 /*
1143 * If an I/O scheduler has been configured and we got a
1144 * driver tag for the next request already, free it
1145 * again.
1146 */
1147 if (!list_empty(list)) {
1148 nxt = list_first_entry(list, struct request, queuelist);
1149 blk_mq_put_driver_tag(nxt);
1150 }
1151 list_add(&rq->queuelist, list);
1152 __blk_mq_requeue_request(rq);
1153 break;
1154 }
1155
1156 if (unlikely(ret != BLK_STS_OK)) {
1157 errors++;
1158 blk_mq_end_request(rq, BLK_STS_IOERR);
1159 continue;
1160 }
1161
1162 queued++;
1163 } while (!list_empty(list));
1164
1165 hctx->dispatched[queued_to_index(queued)]++;
1166
1167 /*
1168 * Any items that need requeuing? Stuff them into hctx->dispatch,
1169 * that is where we will continue on next queue run.
1170 */
1171 if (!list_empty(list)) {
1172 spin_lock(&hctx->lock);
1173 list_splice_init(list, &hctx->dispatch);
1174 spin_unlock(&hctx->lock);
1175
1176 /*
1177 * If SCHED_RESTART was set by the caller of this function and
1178 * it is no longer set that means that it was cleared by another
1179 * thread and hence that a queue rerun is needed.
1180 *
1181 * If 'no_tag' is set, that means that we failed getting
1182 * a driver tag with an I/O scheduler attached. If our dispatch
1183 * waitqueue is no longer active, ensure that we run the queue
1184 * AFTER adding our entries back to the list.
1185 *
1186 * If no I/O scheduler has been configured it is possible that
1187 * the hardware queue got stopped and restarted before requests
1188 * were pushed back onto the dispatch list. Rerun the queue to
1189 * avoid starvation. Notes:
1190 * - blk_mq_run_hw_queue() checks whether or not a queue has
1191 * been stopped before rerunning a queue.
1192 * - Some but not all block drivers stop a queue before
1193 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1194 * and dm-rq.
1195 */
1196 if (!blk_mq_sched_needs_restart(hctx) ||
1197 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1198 blk_mq_run_hw_queue(hctx, true);
1199 }
1200
1201 return (queued + errors) != 0;
1202 }
1203
1204 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1205 {
1206 int srcu_idx;
1207
1208 /*
1209 * We should be running this queue from one of the CPUs that
1210 * are mapped to it.
1211 *
1212 * There are at least two related races now between setting
1213 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1214 * __blk_mq_run_hw_queue():
1215 *
1216 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1217 * but later it becomes online, then this warning is harmless
1218 * at all
1219 *
1220 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1221 * but later it becomes offline, then the warning can't be
1222 * triggered, and we depend on blk-mq timeout handler to
1223 * handle dispatched requests to this hctx
1224 */
1225 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1226 cpu_online(hctx->next_cpu)) {
1227 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1228 raw_smp_processor_id(),
1229 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1230 dump_stack();
1231 }
1232
1233 /*
1234 * We can't run the queue inline with ints disabled. Ensure that
1235 * we catch bad users of this early.
1236 */
1237 WARN_ON_ONCE(in_interrupt());
1238
1239 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1240 rcu_read_lock();
1241 blk_mq_sched_dispatch_requests(hctx);
1242 rcu_read_unlock();
1243 } else {
1244 might_sleep();
1245
1246 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1247 blk_mq_sched_dispatch_requests(hctx);
1248 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1249 }
1250 }
1251
1252 /*
1253 * It'd be great if the workqueue API had a way to pass
1254 * in a mask and had some smarts for more clever placement.
1255 * For now we just round-robin here, switching for every
1256 * BLK_MQ_CPU_WORK_BATCH queued items.
1257 */
1258 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1259 {
1260 if (hctx->queue->nr_hw_queues == 1)
1261 return WORK_CPU_UNBOUND;
1262
1263 if (--hctx->next_cpu_batch <= 0) {
1264 int next_cpu;
1265
1266 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1267 if (next_cpu >= nr_cpu_ids)
1268 next_cpu = cpumask_first(hctx->cpumask);
1269
1270 hctx->next_cpu = next_cpu;
1271 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1272 }
1273
1274 return hctx->next_cpu;
1275 }
1276
1277 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1278 unsigned long msecs)
1279 {
1280 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1281 return;
1282
1283 if (unlikely(blk_mq_hctx_stopped(hctx)))
1284 return;
1285
1286 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1287 int cpu = get_cpu();
1288 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1289 __blk_mq_run_hw_queue(hctx);
1290 put_cpu();
1291 return;
1292 }
1293
1294 put_cpu();
1295 }
1296
1297 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1298 &hctx->run_work,
1299 msecs_to_jiffies(msecs));
1300 }
1301
1302 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1303 {
1304 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1305 }
1306 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1307
1308 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1309 {
1310 if (blk_mq_hctx_has_pending(hctx)) {
1311 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1312 return true;
1313 }
1314
1315 return false;
1316 }
1317 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1318
1319 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1320 {
1321 struct blk_mq_hw_ctx *hctx;
1322 int i;
1323
1324 queue_for_each_hw_ctx(q, hctx, i) {
1325 if (blk_mq_hctx_stopped(hctx))
1326 continue;
1327
1328 blk_mq_run_hw_queue(hctx, async);
1329 }
1330 }
1331 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1332
1333 /**
1334 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1335 * @q: request queue.
1336 *
1337 * The caller is responsible for serializing this function against
1338 * blk_mq_{start,stop}_hw_queue().
1339 */
1340 bool blk_mq_queue_stopped(struct request_queue *q)
1341 {
1342 struct blk_mq_hw_ctx *hctx;
1343 int i;
1344
1345 queue_for_each_hw_ctx(q, hctx, i)
1346 if (blk_mq_hctx_stopped(hctx))
1347 return true;
1348
1349 return false;
1350 }
1351 EXPORT_SYMBOL(blk_mq_queue_stopped);
1352
1353 /*
1354 * This function is often used for pausing .queue_rq() by driver when
1355 * there isn't enough resource or some conditions aren't satisfied, and
1356 * BLK_STS_RESOURCE is usually returned.
1357 *
1358 * We do not guarantee that dispatch can be drained or blocked
1359 * after blk_mq_stop_hw_queue() returns. Please use
1360 * blk_mq_quiesce_queue() for that requirement.
1361 */
1362 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1363 {
1364 cancel_delayed_work(&hctx->run_work);
1365
1366 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1367 }
1368 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1369
1370 /*
1371 * This function is often used for pausing .queue_rq() by driver when
1372 * there isn't enough resource or some conditions aren't satisfied, and
1373 * BLK_STS_RESOURCE is usually returned.
1374 *
1375 * We do not guarantee that dispatch can be drained or blocked
1376 * after blk_mq_stop_hw_queues() returns. Please use
1377 * blk_mq_quiesce_queue() for that requirement.
1378 */
1379 void blk_mq_stop_hw_queues(struct request_queue *q)
1380 {
1381 struct blk_mq_hw_ctx *hctx;
1382 int i;
1383
1384 queue_for_each_hw_ctx(q, hctx, i)
1385 blk_mq_stop_hw_queue(hctx);
1386 }
1387 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1388
1389 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1390 {
1391 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1392
1393 blk_mq_run_hw_queue(hctx, false);
1394 }
1395 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1396
1397 void blk_mq_start_hw_queues(struct request_queue *q)
1398 {
1399 struct blk_mq_hw_ctx *hctx;
1400 int i;
1401
1402 queue_for_each_hw_ctx(q, hctx, i)
1403 blk_mq_start_hw_queue(hctx);
1404 }
1405 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1406
1407 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1408 {
1409 if (!blk_mq_hctx_stopped(hctx))
1410 return;
1411
1412 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1413 blk_mq_run_hw_queue(hctx, async);
1414 }
1415 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1416
1417 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1418 {
1419 struct blk_mq_hw_ctx *hctx;
1420 int i;
1421
1422 queue_for_each_hw_ctx(q, hctx, i)
1423 blk_mq_start_stopped_hw_queue(hctx, async);
1424 }
1425 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1426
1427 static void blk_mq_run_work_fn(struct work_struct *work)
1428 {
1429 struct blk_mq_hw_ctx *hctx;
1430
1431 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1432
1433 /*
1434 * If we are stopped, don't run the queue. The exception is if
1435 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1436 * the STOPPED bit and run it.
1437 */
1438 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1439 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1440 return;
1441
1442 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1443 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1444 }
1445
1446 __blk_mq_run_hw_queue(hctx);
1447 }
1448
1449
1450 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1451 {
1452 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1453 return;
1454
1455 /*
1456 * Stop the hw queue, then modify currently delayed work.
1457 * This should prevent us from running the queue prematurely.
1458 * Mark the queue as auto-clearing STOPPED when it runs.
1459 */
1460 blk_mq_stop_hw_queue(hctx);
1461 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1462 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1463 &hctx->run_work,
1464 msecs_to_jiffies(msecs));
1465 }
1466 EXPORT_SYMBOL(blk_mq_delay_queue);
1467
1468 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1469 struct request *rq,
1470 bool at_head)
1471 {
1472 struct blk_mq_ctx *ctx = rq->mq_ctx;
1473
1474 lockdep_assert_held(&ctx->lock);
1475
1476 trace_block_rq_insert(hctx->queue, rq);
1477
1478 if (at_head)
1479 list_add(&rq->queuelist, &ctx->rq_list);
1480 else
1481 list_add_tail(&rq->queuelist, &ctx->rq_list);
1482 }
1483
1484 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1485 bool at_head)
1486 {
1487 struct blk_mq_ctx *ctx = rq->mq_ctx;
1488
1489 lockdep_assert_held(&ctx->lock);
1490
1491 __blk_mq_insert_req_list(hctx, rq, at_head);
1492 blk_mq_hctx_mark_pending(hctx, ctx);
1493 }
1494
1495 /*
1496 * Should only be used carefully, when the caller knows we want to
1497 * bypass a potential IO scheduler on the target device.
1498 */
1499 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1500 {
1501 struct blk_mq_ctx *ctx = rq->mq_ctx;
1502 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1503
1504 spin_lock(&hctx->lock);
1505 list_add_tail(&rq->queuelist, &hctx->dispatch);
1506 spin_unlock(&hctx->lock);
1507
1508 if (run_queue)
1509 blk_mq_run_hw_queue(hctx, false);
1510 }
1511
1512 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1513 struct list_head *list)
1514
1515 {
1516 /*
1517 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1518 * offline now
1519 */
1520 spin_lock(&ctx->lock);
1521 while (!list_empty(list)) {
1522 struct request *rq;
1523
1524 rq = list_first_entry(list, struct request, queuelist);
1525 BUG_ON(rq->mq_ctx != ctx);
1526 list_del_init(&rq->queuelist);
1527 __blk_mq_insert_req_list(hctx, rq, false);
1528 }
1529 blk_mq_hctx_mark_pending(hctx, ctx);
1530 spin_unlock(&ctx->lock);
1531 }
1532
1533 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1534 {
1535 struct request *rqa = container_of(a, struct request, queuelist);
1536 struct request *rqb = container_of(b, struct request, queuelist);
1537
1538 return !(rqa->mq_ctx < rqb->mq_ctx ||
1539 (rqa->mq_ctx == rqb->mq_ctx &&
1540 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1541 }
1542
1543 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1544 {
1545 struct blk_mq_ctx *this_ctx;
1546 struct request_queue *this_q;
1547 struct request *rq;
1548 LIST_HEAD(list);
1549 LIST_HEAD(ctx_list);
1550 unsigned int depth;
1551
1552 list_splice_init(&plug->mq_list, &list);
1553
1554 list_sort(NULL, &list, plug_ctx_cmp);
1555
1556 this_q = NULL;
1557 this_ctx = NULL;
1558 depth = 0;
1559
1560 while (!list_empty(&list)) {
1561 rq = list_entry_rq(list.next);
1562 list_del_init(&rq->queuelist);
1563 BUG_ON(!rq->q);
1564 if (rq->mq_ctx != this_ctx) {
1565 if (this_ctx) {
1566 trace_block_unplug(this_q, depth, from_schedule);
1567 blk_mq_sched_insert_requests(this_q, this_ctx,
1568 &ctx_list,
1569 from_schedule);
1570 }
1571
1572 this_ctx = rq->mq_ctx;
1573 this_q = rq->q;
1574 depth = 0;
1575 }
1576
1577 depth++;
1578 list_add_tail(&rq->queuelist, &ctx_list);
1579 }
1580
1581 /*
1582 * If 'this_ctx' is set, we know we have entries to complete
1583 * on 'ctx_list'. Do those.
1584 */
1585 if (this_ctx) {
1586 trace_block_unplug(this_q, depth, from_schedule);
1587 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1588 from_schedule);
1589 }
1590 }
1591
1592 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1593 {
1594 blk_init_request_from_bio(rq, bio);
1595
1596 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1597
1598 blk_account_io_start(rq, true);
1599 }
1600
1601 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1602 struct blk_mq_ctx *ctx,
1603 struct request *rq)
1604 {
1605 spin_lock(&ctx->lock);
1606 __blk_mq_insert_request(hctx, rq, false);
1607 spin_unlock(&ctx->lock);
1608 }
1609
1610 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1611 {
1612 if (rq->tag != -1)
1613 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1614
1615 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1616 }
1617
1618 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1619 struct request *rq,
1620 blk_qc_t *cookie, bool may_sleep)
1621 {
1622 struct request_queue *q = rq->q;
1623 struct blk_mq_queue_data bd = {
1624 .rq = rq,
1625 .last = true,
1626 };
1627 blk_qc_t new_cookie;
1628 blk_status_t ret;
1629 bool run_queue = true;
1630
1631 /* RCU or SRCU read lock is needed before checking quiesced flag */
1632 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1633 run_queue = false;
1634 goto insert;
1635 }
1636
1637 if (q->elevator)
1638 goto insert;
1639
1640 if (!blk_mq_get_driver_tag(rq, NULL, false))
1641 goto insert;
1642
1643 if (!blk_mq_get_dispatch_budget(hctx)) {
1644 blk_mq_put_driver_tag(rq);
1645 goto insert;
1646 }
1647
1648 new_cookie = request_to_qc_t(hctx, rq);
1649
1650 /*
1651 * For OK queue, we are done. For error, kill it. Any other
1652 * error (busy), just add it to our list as we previously
1653 * would have done
1654 */
1655 ret = q->mq_ops->queue_rq(hctx, &bd);
1656 switch (ret) {
1657 case BLK_STS_OK:
1658 *cookie = new_cookie;
1659 return;
1660 case BLK_STS_RESOURCE:
1661 __blk_mq_requeue_request(rq);
1662 goto insert;
1663 default:
1664 *cookie = BLK_QC_T_NONE;
1665 blk_mq_end_request(rq, ret);
1666 return;
1667 }
1668
1669 insert:
1670 blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1671 }
1672
1673 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1674 struct request *rq, blk_qc_t *cookie)
1675 {
1676 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1677 rcu_read_lock();
1678 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1679 rcu_read_unlock();
1680 } else {
1681 unsigned int srcu_idx;
1682
1683 might_sleep();
1684
1685 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1686 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
1687 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1688 }
1689 }
1690
1691 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1692 {
1693 const int is_sync = op_is_sync(bio->bi_opf);
1694 const int is_flush_fua = op_is_flush(bio->bi_opf);
1695 struct blk_mq_alloc_data data = { .flags = 0 };
1696 struct request *rq;
1697 unsigned int request_count = 0;
1698 struct blk_plug *plug;
1699 struct request *same_queue_rq = NULL;
1700 blk_qc_t cookie;
1701 unsigned int wb_acct;
1702
1703 blk_queue_bounce(q, &bio);
1704
1705 blk_queue_split(q, &bio);
1706
1707 if (!bio_integrity_prep(bio))
1708 return BLK_QC_T_NONE;
1709
1710 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1711 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1712 return BLK_QC_T_NONE;
1713
1714 if (blk_mq_sched_bio_merge(q, bio))
1715 return BLK_QC_T_NONE;
1716
1717 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1718
1719 trace_block_getrq(q, bio, bio->bi_opf);
1720
1721 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1722 if (unlikely(!rq)) {
1723 __wbt_done(q->rq_wb, wb_acct);
1724 if (bio->bi_opf & REQ_NOWAIT)
1725 bio_wouldblock_error(bio);
1726 return BLK_QC_T_NONE;
1727 }
1728
1729 wbt_track(&rq->issue_stat, wb_acct);
1730
1731 cookie = request_to_qc_t(data.hctx, rq);
1732
1733 plug = current->plug;
1734 if (unlikely(is_flush_fua)) {
1735 blk_mq_put_ctx(data.ctx);
1736 blk_mq_bio_to_request(rq, bio);
1737
1738 /* bypass scheduler for flush rq */
1739 blk_insert_flush(rq);
1740 blk_mq_run_hw_queue(data.hctx, true);
1741 } else if (plug && q->nr_hw_queues == 1) {
1742 struct request *last = NULL;
1743
1744 blk_mq_put_ctx(data.ctx);
1745 blk_mq_bio_to_request(rq, bio);
1746
1747 /*
1748 * @request_count may become stale because of schedule
1749 * out, so check the list again.
1750 */
1751 if (list_empty(&plug->mq_list))
1752 request_count = 0;
1753 else if (blk_queue_nomerges(q))
1754 request_count = blk_plug_queued_count(q);
1755
1756 if (!request_count)
1757 trace_block_plug(q);
1758 else
1759 last = list_entry_rq(plug->mq_list.prev);
1760
1761 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1762 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1763 blk_flush_plug_list(plug, false);
1764 trace_block_plug(q);
1765 }
1766
1767 list_add_tail(&rq->queuelist, &plug->mq_list);
1768 } else if (plug && !blk_queue_nomerges(q)) {
1769 blk_mq_bio_to_request(rq, bio);
1770
1771 /*
1772 * We do limited plugging. If the bio can be merged, do that.
1773 * Otherwise the existing request in the plug list will be
1774 * issued. So the plug list will have one request at most
1775 * The plug list might get flushed before this. If that happens,
1776 * the plug list is empty, and same_queue_rq is invalid.
1777 */
1778 if (list_empty(&plug->mq_list))
1779 same_queue_rq = NULL;
1780 if (same_queue_rq)
1781 list_del_init(&same_queue_rq->queuelist);
1782 list_add_tail(&rq->queuelist, &plug->mq_list);
1783
1784 blk_mq_put_ctx(data.ctx);
1785
1786 if (same_queue_rq) {
1787 data.hctx = blk_mq_map_queue(q,
1788 same_queue_rq->mq_ctx->cpu);
1789 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1790 &cookie);
1791 }
1792 } else if (q->nr_hw_queues > 1 && is_sync) {
1793 blk_mq_put_ctx(data.ctx);
1794 blk_mq_bio_to_request(rq, bio);
1795 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1796 } else if (q->elevator) {
1797 blk_mq_put_ctx(data.ctx);
1798 blk_mq_bio_to_request(rq, bio);
1799 blk_mq_sched_insert_request(rq, false, true, true, true);
1800 } else {
1801 blk_mq_put_ctx(data.ctx);
1802 blk_mq_bio_to_request(rq, bio);
1803 blk_mq_queue_io(data.hctx, data.ctx, rq);
1804 blk_mq_run_hw_queue(data.hctx, true);
1805 }
1806
1807 return cookie;
1808 }
1809
1810 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1811 unsigned int hctx_idx)
1812 {
1813 struct page *page;
1814
1815 if (tags->rqs && set->ops->exit_request) {
1816 int i;
1817
1818 for (i = 0; i < tags->nr_tags; i++) {
1819 struct request *rq = tags->static_rqs[i];
1820
1821 if (!rq)
1822 continue;
1823 set->ops->exit_request(set, rq, hctx_idx);
1824 tags->static_rqs[i] = NULL;
1825 }
1826 }
1827
1828 while (!list_empty(&tags->page_list)) {
1829 page = list_first_entry(&tags->page_list, struct page, lru);
1830 list_del_init(&page->lru);
1831 /*
1832 * Remove kmemleak object previously allocated in
1833 * blk_mq_init_rq_map().
1834 */
1835 kmemleak_free(page_address(page));
1836 __free_pages(page, page->private);
1837 }
1838 }
1839
1840 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1841 {
1842 kfree(tags->rqs);
1843 tags->rqs = NULL;
1844 kfree(tags->static_rqs);
1845 tags->static_rqs = NULL;
1846
1847 blk_mq_free_tags(tags);
1848 }
1849
1850 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1851 unsigned int hctx_idx,
1852 unsigned int nr_tags,
1853 unsigned int reserved_tags)
1854 {
1855 struct blk_mq_tags *tags;
1856 int node;
1857
1858 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1859 if (node == NUMA_NO_NODE)
1860 node = set->numa_node;
1861
1862 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1863 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1864 if (!tags)
1865 return NULL;
1866
1867 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1868 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1869 node);
1870 if (!tags->rqs) {
1871 blk_mq_free_tags(tags);
1872 return NULL;
1873 }
1874
1875 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1876 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1877 node);
1878 if (!tags->static_rqs) {
1879 kfree(tags->rqs);
1880 blk_mq_free_tags(tags);
1881 return NULL;
1882 }
1883
1884 return tags;
1885 }
1886
1887 static size_t order_to_size(unsigned int order)
1888 {
1889 return (size_t)PAGE_SIZE << order;
1890 }
1891
1892 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1893 unsigned int hctx_idx, unsigned int depth)
1894 {
1895 unsigned int i, j, entries_per_page, max_order = 4;
1896 size_t rq_size, left;
1897 int node;
1898
1899 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1900 if (node == NUMA_NO_NODE)
1901 node = set->numa_node;
1902
1903 INIT_LIST_HEAD(&tags->page_list);
1904
1905 /*
1906 * rq_size is the size of the request plus driver payload, rounded
1907 * to the cacheline size
1908 */
1909 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1910 cache_line_size());
1911 left = rq_size * depth;
1912
1913 for (i = 0; i < depth; ) {
1914 int this_order = max_order;
1915 struct page *page;
1916 int to_do;
1917 void *p;
1918
1919 while (this_order && left < order_to_size(this_order - 1))
1920 this_order--;
1921
1922 do {
1923 page = alloc_pages_node(node,
1924 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1925 this_order);
1926 if (page)
1927 break;
1928 if (!this_order--)
1929 break;
1930 if (order_to_size(this_order) < rq_size)
1931 break;
1932 } while (1);
1933
1934 if (!page)
1935 goto fail;
1936
1937 page->private = this_order;
1938 list_add_tail(&page->lru, &tags->page_list);
1939
1940 p = page_address(page);
1941 /*
1942 * Allow kmemleak to scan these pages as they contain pointers
1943 * to additional allocations like via ops->init_request().
1944 */
1945 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1946 entries_per_page = order_to_size(this_order) / rq_size;
1947 to_do = min(entries_per_page, depth - i);
1948 left -= to_do * rq_size;
1949 for (j = 0; j < to_do; j++) {
1950 struct request *rq = p;
1951
1952 tags->static_rqs[i] = rq;
1953 if (set->ops->init_request) {
1954 if (set->ops->init_request(set, rq, hctx_idx,
1955 node)) {
1956 tags->static_rqs[i] = NULL;
1957 goto fail;
1958 }
1959 }
1960
1961 p += rq_size;
1962 i++;
1963 }
1964 }
1965 return 0;
1966
1967 fail:
1968 blk_mq_free_rqs(set, tags, hctx_idx);
1969 return -ENOMEM;
1970 }
1971
1972 /*
1973 * 'cpu' is going away. splice any existing rq_list entries from this
1974 * software queue to the hw queue dispatch list, and ensure that it
1975 * gets run.
1976 */
1977 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1978 {
1979 struct blk_mq_hw_ctx *hctx;
1980 struct blk_mq_ctx *ctx;
1981 LIST_HEAD(tmp);
1982
1983 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1984 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1985
1986 spin_lock(&ctx->lock);
1987 if (!list_empty(&ctx->rq_list)) {
1988 list_splice_init(&ctx->rq_list, &tmp);
1989 blk_mq_hctx_clear_pending(hctx, ctx);
1990 }
1991 spin_unlock(&ctx->lock);
1992
1993 if (list_empty(&tmp))
1994 return 0;
1995
1996 spin_lock(&hctx->lock);
1997 list_splice_tail_init(&tmp, &hctx->dispatch);
1998 spin_unlock(&hctx->lock);
1999
2000 blk_mq_run_hw_queue(hctx, true);
2001 return 0;
2002 }
2003
2004 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2005 {
2006 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2007 &hctx->cpuhp_dead);
2008 }
2009
2010 /* hctx->ctxs will be freed in queue's release handler */
2011 static void blk_mq_exit_hctx(struct request_queue *q,
2012 struct blk_mq_tag_set *set,
2013 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2014 {
2015 blk_mq_debugfs_unregister_hctx(hctx);
2016
2017 if (blk_mq_hw_queue_mapped(hctx))
2018 blk_mq_tag_idle(hctx);
2019
2020 if (set->ops->exit_request)
2021 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2022
2023 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2024
2025 if (set->ops->exit_hctx)
2026 set->ops->exit_hctx(hctx, hctx_idx);
2027
2028 if (hctx->flags & BLK_MQ_F_BLOCKING)
2029 cleanup_srcu_struct(hctx->queue_rq_srcu);
2030
2031 blk_mq_remove_cpuhp(hctx);
2032 blk_free_flush_queue(hctx->fq);
2033 sbitmap_free(&hctx->ctx_map);
2034 }
2035
2036 static void blk_mq_exit_hw_queues(struct request_queue *q,
2037 struct blk_mq_tag_set *set, int nr_queue)
2038 {
2039 struct blk_mq_hw_ctx *hctx;
2040 unsigned int i;
2041
2042 queue_for_each_hw_ctx(q, hctx, i) {
2043 if (i == nr_queue)
2044 break;
2045 blk_mq_exit_hctx(q, set, hctx, i);
2046 }
2047 }
2048
2049 static int blk_mq_init_hctx(struct request_queue *q,
2050 struct blk_mq_tag_set *set,
2051 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2052 {
2053 int node;
2054
2055 node = hctx->numa_node;
2056 if (node == NUMA_NO_NODE)
2057 node = hctx->numa_node = set->numa_node;
2058
2059 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2060 spin_lock_init(&hctx->lock);
2061 INIT_LIST_HEAD(&hctx->dispatch);
2062 hctx->queue = q;
2063 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2064
2065 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2066
2067 hctx->tags = set->tags[hctx_idx];
2068
2069 /*
2070 * Allocate space for all possible cpus to avoid allocation at
2071 * runtime
2072 */
2073 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2074 GFP_KERNEL, node);
2075 if (!hctx->ctxs)
2076 goto unregister_cpu_notifier;
2077
2078 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2079 node))
2080 goto free_ctxs;
2081
2082 hctx->nr_ctx = 0;
2083
2084 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2085 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2086
2087 if (set->ops->init_hctx &&
2088 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2089 goto free_bitmap;
2090
2091 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2092 goto exit_hctx;
2093
2094 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2095 if (!hctx->fq)
2096 goto sched_exit_hctx;
2097
2098 if (set->ops->init_request &&
2099 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
2100 node))
2101 goto free_fq;
2102
2103 if (hctx->flags & BLK_MQ_F_BLOCKING)
2104 init_srcu_struct(hctx->queue_rq_srcu);
2105
2106 blk_mq_debugfs_register_hctx(q, hctx);
2107
2108 return 0;
2109
2110 free_fq:
2111 kfree(hctx->fq);
2112 sched_exit_hctx:
2113 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2114 exit_hctx:
2115 if (set->ops->exit_hctx)
2116 set->ops->exit_hctx(hctx, hctx_idx);
2117 free_bitmap:
2118 sbitmap_free(&hctx->ctx_map);
2119 free_ctxs:
2120 kfree(hctx->ctxs);
2121 unregister_cpu_notifier:
2122 blk_mq_remove_cpuhp(hctx);
2123 return -1;
2124 }
2125
2126 static void blk_mq_init_cpu_queues(struct request_queue *q,
2127 unsigned int nr_hw_queues)
2128 {
2129 unsigned int i;
2130
2131 for_each_possible_cpu(i) {
2132 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2133 struct blk_mq_hw_ctx *hctx;
2134
2135 __ctx->cpu = i;
2136 spin_lock_init(&__ctx->lock);
2137 INIT_LIST_HEAD(&__ctx->rq_list);
2138 __ctx->queue = q;
2139
2140 /* If the cpu isn't present, the cpu is mapped to first hctx */
2141 if (!cpu_present(i))
2142 continue;
2143
2144 hctx = blk_mq_map_queue(q, i);
2145
2146 /*
2147 * Set local node, IFF we have more than one hw queue. If
2148 * not, we remain on the home node of the device
2149 */
2150 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2151 hctx->numa_node = local_memory_node(cpu_to_node(i));
2152 }
2153 }
2154
2155 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2156 {
2157 int ret = 0;
2158
2159 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2160 set->queue_depth, set->reserved_tags);
2161 if (!set->tags[hctx_idx])
2162 return false;
2163
2164 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2165 set->queue_depth);
2166 if (!ret)
2167 return true;
2168
2169 blk_mq_free_rq_map(set->tags[hctx_idx]);
2170 set->tags[hctx_idx] = NULL;
2171 return false;
2172 }
2173
2174 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2175 unsigned int hctx_idx)
2176 {
2177 if (set->tags[hctx_idx]) {
2178 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2179 blk_mq_free_rq_map(set->tags[hctx_idx]);
2180 set->tags[hctx_idx] = NULL;
2181 }
2182 }
2183
2184 static void blk_mq_map_swqueue(struct request_queue *q)
2185 {
2186 unsigned int i, hctx_idx;
2187 struct blk_mq_hw_ctx *hctx;
2188 struct blk_mq_ctx *ctx;
2189 struct blk_mq_tag_set *set = q->tag_set;
2190
2191 /*
2192 * Avoid others reading imcomplete hctx->cpumask through sysfs
2193 */
2194 mutex_lock(&q->sysfs_lock);
2195
2196 queue_for_each_hw_ctx(q, hctx, i) {
2197 cpumask_clear(hctx->cpumask);
2198 hctx->nr_ctx = 0;
2199 }
2200
2201 /*
2202 * Map software to hardware queues.
2203 *
2204 * If the cpu isn't present, the cpu is mapped to first hctx.
2205 */
2206 for_each_present_cpu(i) {
2207 hctx_idx = q->mq_map[i];
2208 /* unmapped hw queue can be remapped after CPU topo changed */
2209 if (!set->tags[hctx_idx] &&
2210 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2211 /*
2212 * If tags initialization fail for some hctx,
2213 * that hctx won't be brought online. In this
2214 * case, remap the current ctx to hctx[0] which
2215 * is guaranteed to always have tags allocated
2216 */
2217 q->mq_map[i] = 0;
2218 }
2219
2220 ctx = per_cpu_ptr(q->queue_ctx, i);
2221 hctx = blk_mq_map_queue(q, i);
2222
2223 cpumask_set_cpu(i, hctx->cpumask);
2224 ctx->index_hw = hctx->nr_ctx;
2225 hctx->ctxs[hctx->nr_ctx++] = ctx;
2226 }
2227
2228 mutex_unlock(&q->sysfs_lock);
2229
2230 queue_for_each_hw_ctx(q, hctx, i) {
2231 /*
2232 * If no software queues are mapped to this hardware queue,
2233 * disable it and free the request entries.
2234 */
2235 if (!hctx->nr_ctx) {
2236 /* Never unmap queue 0. We need it as a
2237 * fallback in case of a new remap fails
2238 * allocation
2239 */
2240 if (i && set->tags[i])
2241 blk_mq_free_map_and_requests(set, i);
2242
2243 hctx->tags = NULL;
2244 continue;
2245 }
2246
2247 hctx->tags = set->tags[i];
2248 WARN_ON(!hctx->tags);
2249
2250 /*
2251 * Set the map size to the number of mapped software queues.
2252 * This is more accurate and more efficient than looping
2253 * over all possibly mapped software queues.
2254 */
2255 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2256
2257 /*
2258 * Initialize batch roundrobin counts
2259 */
2260 hctx->next_cpu = cpumask_first(hctx->cpumask);
2261 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2262 }
2263 }
2264
2265 /*
2266 * Caller needs to ensure that we're either frozen/quiesced, or that
2267 * the queue isn't live yet.
2268 */
2269 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2270 {
2271 struct blk_mq_hw_ctx *hctx;
2272 int i;
2273
2274 queue_for_each_hw_ctx(q, hctx, i) {
2275 if (shared) {
2276 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2277 atomic_inc(&q->shared_hctx_restart);
2278 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2279 } else {
2280 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2281 atomic_dec(&q->shared_hctx_restart);
2282 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2283 }
2284 }
2285 }
2286
2287 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2288 bool shared)
2289 {
2290 struct request_queue *q;
2291
2292 lockdep_assert_held(&set->tag_list_lock);
2293
2294 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2295 blk_mq_freeze_queue(q);
2296 queue_set_hctx_shared(q, shared);
2297 blk_mq_unfreeze_queue(q);
2298 }
2299 }
2300
2301 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2302 {
2303 struct blk_mq_tag_set *set = q->tag_set;
2304
2305 mutex_lock(&set->tag_list_lock);
2306 list_del_rcu(&q->tag_set_list);
2307 INIT_LIST_HEAD(&q->tag_set_list);
2308 if (list_is_singular(&set->tag_list)) {
2309 /* just transitioned to unshared */
2310 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2311 /* update existing queue */
2312 blk_mq_update_tag_set_depth(set, false);
2313 }
2314 mutex_unlock(&set->tag_list_lock);
2315
2316 synchronize_rcu();
2317 }
2318
2319 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2320 struct request_queue *q)
2321 {
2322 q->tag_set = set;
2323
2324 mutex_lock(&set->tag_list_lock);
2325
2326 /*
2327 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2328 */
2329 if (!list_empty(&set->tag_list) &&
2330 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2331 set->flags |= BLK_MQ_F_TAG_SHARED;
2332 /* update existing queue */
2333 blk_mq_update_tag_set_depth(set, true);
2334 }
2335 if (set->flags & BLK_MQ_F_TAG_SHARED)
2336 queue_set_hctx_shared(q, true);
2337 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2338
2339 mutex_unlock(&set->tag_list_lock);
2340 }
2341
2342 /*
2343 * It is the actual release handler for mq, but we do it from
2344 * request queue's release handler for avoiding use-after-free
2345 * and headache because q->mq_kobj shouldn't have been introduced,
2346 * but we can't group ctx/kctx kobj without it.
2347 */
2348 void blk_mq_release(struct request_queue *q)
2349 {
2350 struct blk_mq_hw_ctx *hctx;
2351 unsigned int i;
2352
2353 /* hctx kobj stays in hctx */
2354 queue_for_each_hw_ctx(q, hctx, i) {
2355 if (!hctx)
2356 continue;
2357 kobject_put(&hctx->kobj);
2358 }
2359
2360 q->mq_map = NULL;
2361
2362 kfree(q->queue_hw_ctx);
2363
2364 /*
2365 * release .mq_kobj and sw queue's kobject now because
2366 * both share lifetime with request queue.
2367 */
2368 blk_mq_sysfs_deinit(q);
2369
2370 free_percpu(q->queue_ctx);
2371 }
2372
2373 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2374 {
2375 struct request_queue *uninit_q, *q;
2376
2377 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2378 if (!uninit_q)
2379 return ERR_PTR(-ENOMEM);
2380
2381 q = blk_mq_init_allocated_queue(set, uninit_q);
2382 if (IS_ERR(q))
2383 blk_cleanup_queue(uninit_q);
2384
2385 return q;
2386 }
2387 EXPORT_SYMBOL(blk_mq_init_queue);
2388
2389 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2390 {
2391 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2392
2393 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
2394 __alignof__(struct blk_mq_hw_ctx)) !=
2395 sizeof(struct blk_mq_hw_ctx));
2396
2397 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2398 hw_ctx_size += sizeof(struct srcu_struct);
2399
2400 return hw_ctx_size;
2401 }
2402
2403 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2404 struct request_queue *q)
2405 {
2406 int i, j;
2407 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2408
2409 blk_mq_sysfs_unregister(q);
2410
2411 /* protect against switching io scheduler */
2412 mutex_lock(&q->sysfs_lock);
2413 for (i = 0; i < set->nr_hw_queues; i++) {
2414 int node;
2415
2416 if (hctxs[i])
2417 continue;
2418
2419 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2420 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2421 GFP_KERNEL, node);
2422 if (!hctxs[i])
2423 break;
2424
2425 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2426 node)) {
2427 kfree(hctxs[i]);
2428 hctxs[i] = NULL;
2429 break;
2430 }
2431
2432 atomic_set(&hctxs[i]->nr_active, 0);
2433 hctxs[i]->numa_node = node;
2434 hctxs[i]->queue_num = i;
2435
2436 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2437 free_cpumask_var(hctxs[i]->cpumask);
2438 kfree(hctxs[i]);
2439 hctxs[i] = NULL;
2440 break;
2441 }
2442 blk_mq_hctx_kobj_init(hctxs[i]);
2443 }
2444 for (j = i; j < q->nr_hw_queues; j++) {
2445 struct blk_mq_hw_ctx *hctx = hctxs[j];
2446
2447 if (hctx) {
2448 if (hctx->tags)
2449 blk_mq_free_map_and_requests(set, j);
2450 blk_mq_exit_hctx(q, set, hctx, j);
2451 kobject_put(&hctx->kobj);
2452 hctxs[j] = NULL;
2453
2454 }
2455 }
2456 q->nr_hw_queues = i;
2457 mutex_unlock(&q->sysfs_lock);
2458 blk_mq_sysfs_register(q);
2459 }
2460
2461 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2462 struct request_queue *q)
2463 {
2464 /* mark the queue as mq asap */
2465 q->mq_ops = set->ops;
2466
2467 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2468 blk_mq_poll_stats_bkt,
2469 BLK_MQ_POLL_STATS_BKTS, q);
2470 if (!q->poll_cb)
2471 goto err_exit;
2472
2473 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2474 if (!q->queue_ctx)
2475 goto err_exit;
2476
2477 /* init q->mq_kobj and sw queues' kobjects */
2478 blk_mq_sysfs_init(q);
2479
2480 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2481 GFP_KERNEL, set->numa_node);
2482 if (!q->queue_hw_ctx)
2483 goto err_percpu;
2484
2485 q->mq_map = set->mq_map;
2486
2487 blk_mq_realloc_hw_ctxs(set, q);
2488 if (!q->nr_hw_queues)
2489 goto err_hctxs;
2490
2491 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2492 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2493
2494 q->nr_queues = nr_cpu_ids;
2495
2496 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2497
2498 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2499 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2500
2501 q->sg_reserved_size = INT_MAX;
2502
2503 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2504 INIT_LIST_HEAD(&q->requeue_list);
2505 spin_lock_init(&q->requeue_lock);
2506
2507 blk_queue_make_request(q, blk_mq_make_request);
2508 if (q->mq_ops->poll)
2509 q->poll_fn = blk_mq_poll;
2510
2511 /*
2512 * Do this after blk_queue_make_request() overrides it...
2513 */
2514 q->nr_requests = set->queue_depth;
2515
2516 /*
2517 * Default to classic polling
2518 */
2519 q->poll_nsec = -1;
2520
2521 if (set->ops->complete)
2522 blk_queue_softirq_done(q, set->ops->complete);
2523
2524 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2525 blk_mq_add_queue_tag_set(set, q);
2526 blk_mq_map_swqueue(q);
2527
2528 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2529 int ret;
2530
2531 ret = blk_mq_sched_init(q);
2532 if (ret)
2533 return ERR_PTR(ret);
2534 }
2535
2536 return q;
2537
2538 err_hctxs:
2539 kfree(q->queue_hw_ctx);
2540 err_percpu:
2541 free_percpu(q->queue_ctx);
2542 err_exit:
2543 q->mq_ops = NULL;
2544 return ERR_PTR(-ENOMEM);
2545 }
2546 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2547
2548 void blk_mq_free_queue(struct request_queue *q)
2549 {
2550 struct blk_mq_tag_set *set = q->tag_set;
2551
2552 blk_mq_del_queue_tag_set(q);
2553 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2554 }
2555
2556 /* Basically redo blk_mq_init_queue with queue frozen */
2557 static void blk_mq_queue_reinit(struct request_queue *q)
2558 {
2559 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2560
2561 blk_mq_debugfs_unregister_hctxs(q);
2562 blk_mq_sysfs_unregister(q);
2563
2564 /*
2565 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2566 * we should change hctx numa_node according to the new topology (this
2567 * involves freeing and re-allocating memory, worth doing?)
2568 */
2569 blk_mq_map_swqueue(q);
2570
2571 blk_mq_sysfs_register(q);
2572 blk_mq_debugfs_register_hctxs(q);
2573 }
2574
2575 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2576 {
2577 int i;
2578
2579 for (i = 0; i < set->nr_hw_queues; i++)
2580 if (!__blk_mq_alloc_rq_map(set, i))
2581 goto out_unwind;
2582
2583 return 0;
2584
2585 out_unwind:
2586 while (--i >= 0)
2587 blk_mq_free_rq_map(set->tags[i]);
2588
2589 return -ENOMEM;
2590 }
2591
2592 /*
2593 * Allocate the request maps associated with this tag_set. Note that this
2594 * may reduce the depth asked for, if memory is tight. set->queue_depth
2595 * will be updated to reflect the allocated depth.
2596 */
2597 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2598 {
2599 unsigned int depth;
2600 int err;
2601
2602 depth = set->queue_depth;
2603 do {
2604 err = __blk_mq_alloc_rq_maps(set);
2605 if (!err)
2606 break;
2607
2608 set->queue_depth >>= 1;
2609 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2610 err = -ENOMEM;
2611 break;
2612 }
2613 } while (set->queue_depth);
2614
2615 if (!set->queue_depth || err) {
2616 pr_err("blk-mq: failed to allocate request map\n");
2617 return -ENOMEM;
2618 }
2619
2620 if (depth != set->queue_depth)
2621 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2622 depth, set->queue_depth);
2623
2624 return 0;
2625 }
2626
2627 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2628 {
2629 if (set->ops->map_queues) {
2630 int cpu;
2631 /*
2632 * transport .map_queues is usually done in the following
2633 * way:
2634 *
2635 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2636 * mask = get_cpu_mask(queue)
2637 * for_each_cpu(cpu, mask)
2638 * set->mq_map[cpu] = queue;
2639 * }
2640 *
2641 * When we need to remap, the table has to be cleared for
2642 * killing stale mapping since one CPU may not be mapped
2643 * to any hw queue.
2644 */
2645 for_each_possible_cpu(cpu)
2646 set->mq_map[cpu] = 0;
2647
2648 return set->ops->map_queues(set);
2649 } else
2650 return blk_mq_map_queues(set);
2651 }
2652
2653 /*
2654 * Alloc a tag set to be associated with one or more request queues.
2655 * May fail with EINVAL for various error conditions. May adjust the
2656 * requested depth down, if if it too large. In that case, the set
2657 * value will be stored in set->queue_depth.
2658 */
2659 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2660 {
2661 int ret;
2662
2663 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2664
2665 if (!set->nr_hw_queues)
2666 return -EINVAL;
2667 if (!set->queue_depth)
2668 return -EINVAL;
2669 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2670 return -EINVAL;
2671
2672 if (!set->ops->queue_rq)
2673 return -EINVAL;
2674
2675 if (!set->ops->get_budget ^ !set->ops->put_budget)
2676 return -EINVAL;
2677
2678 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2679 pr_info("blk-mq: reduced tag depth to %u\n",
2680 BLK_MQ_MAX_DEPTH);
2681 set->queue_depth = BLK_MQ_MAX_DEPTH;
2682 }
2683
2684 /*
2685 * If a crashdump is active, then we are potentially in a very
2686 * memory constrained environment. Limit us to 1 queue and
2687 * 64 tags to prevent using too much memory.
2688 */
2689 if (is_kdump_kernel()) {
2690 set->nr_hw_queues = 1;
2691 set->queue_depth = min(64U, set->queue_depth);
2692 }
2693 /*
2694 * There is no use for more h/w queues than cpus.
2695 */
2696 if (set->nr_hw_queues > nr_cpu_ids)
2697 set->nr_hw_queues = nr_cpu_ids;
2698
2699 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2700 GFP_KERNEL, set->numa_node);
2701 if (!set->tags)
2702 return -ENOMEM;
2703
2704 ret = -ENOMEM;
2705 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2706 GFP_KERNEL, set->numa_node);
2707 if (!set->mq_map)
2708 goto out_free_tags;
2709
2710 ret = blk_mq_update_queue_map(set);
2711 if (ret)
2712 goto out_free_mq_map;
2713
2714 ret = blk_mq_alloc_rq_maps(set);
2715 if (ret)
2716 goto out_free_mq_map;
2717
2718 mutex_init(&set->tag_list_lock);
2719 INIT_LIST_HEAD(&set->tag_list);
2720
2721 return 0;
2722
2723 out_free_mq_map:
2724 kfree(set->mq_map);
2725 set->mq_map = NULL;
2726 out_free_tags:
2727 kfree(set->tags);
2728 set->tags = NULL;
2729 return ret;
2730 }
2731 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2732
2733 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2734 {
2735 int i;
2736
2737 for (i = 0; i < nr_cpu_ids; i++)
2738 blk_mq_free_map_and_requests(set, i);
2739
2740 kfree(set->mq_map);
2741 set->mq_map = NULL;
2742
2743 kfree(set->tags);
2744 set->tags = NULL;
2745 }
2746 EXPORT_SYMBOL(blk_mq_free_tag_set);
2747
2748 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2749 {
2750 struct blk_mq_tag_set *set = q->tag_set;
2751 struct blk_mq_hw_ctx *hctx;
2752 int i, ret;
2753
2754 if (!set)
2755 return -EINVAL;
2756
2757 blk_mq_freeze_queue(q);
2758
2759 ret = 0;
2760 queue_for_each_hw_ctx(q, hctx, i) {
2761 if (!hctx->tags)
2762 continue;
2763 /*
2764 * If we're using an MQ scheduler, just update the scheduler
2765 * queue depth. This is similar to what the old code would do.
2766 */
2767 if (!hctx->sched_tags) {
2768 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2769 false);
2770 } else {
2771 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2772 nr, true);
2773 }
2774 if (ret)
2775 break;
2776 }
2777
2778 if (!ret)
2779 q->nr_requests = nr;
2780
2781 blk_mq_unfreeze_queue(q);
2782
2783 return ret;
2784 }
2785
2786 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2787 int nr_hw_queues)
2788 {
2789 struct request_queue *q;
2790
2791 lockdep_assert_held(&set->tag_list_lock);
2792
2793 if (nr_hw_queues > nr_cpu_ids)
2794 nr_hw_queues = nr_cpu_ids;
2795 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2796 return;
2797
2798 list_for_each_entry(q, &set->tag_list, tag_set_list)
2799 blk_mq_freeze_queue(q);
2800
2801 set->nr_hw_queues = nr_hw_queues;
2802 blk_mq_update_queue_map(set);
2803 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2804 blk_mq_realloc_hw_ctxs(set, q);
2805 blk_mq_queue_reinit(q);
2806 }
2807
2808 list_for_each_entry(q, &set->tag_list, tag_set_list)
2809 blk_mq_unfreeze_queue(q);
2810 }
2811
2812 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2813 {
2814 mutex_lock(&set->tag_list_lock);
2815 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2816 mutex_unlock(&set->tag_list_lock);
2817 }
2818 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2819
2820 /* Enable polling stats and return whether they were already enabled. */
2821 static bool blk_poll_stats_enable(struct request_queue *q)
2822 {
2823 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2824 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2825 return true;
2826 blk_stat_add_callback(q, q->poll_cb);
2827 return false;
2828 }
2829
2830 static void blk_mq_poll_stats_start(struct request_queue *q)
2831 {
2832 /*
2833 * We don't arm the callback if polling stats are not enabled or the
2834 * callback is already active.
2835 */
2836 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2837 blk_stat_is_active(q->poll_cb))
2838 return;
2839
2840 blk_stat_activate_msecs(q->poll_cb, 100);
2841 }
2842
2843 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2844 {
2845 struct request_queue *q = cb->data;
2846 int bucket;
2847
2848 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2849 if (cb->stat[bucket].nr_samples)
2850 q->poll_stat[bucket] = cb->stat[bucket];
2851 }
2852 }
2853
2854 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2855 struct blk_mq_hw_ctx *hctx,
2856 struct request *rq)
2857 {
2858 unsigned long ret = 0;
2859 int bucket;
2860
2861 /*
2862 * If stats collection isn't on, don't sleep but turn it on for
2863 * future users
2864 */
2865 if (!blk_poll_stats_enable(q))
2866 return 0;
2867
2868 /*
2869 * As an optimistic guess, use half of the mean service time
2870 * for this type of request. We can (and should) make this smarter.
2871 * For instance, if the completion latencies are tight, we can
2872 * get closer than just half the mean. This is especially
2873 * important on devices where the completion latencies are longer
2874 * than ~10 usec. We do use the stats for the relevant IO size
2875 * if available which does lead to better estimates.
2876 */
2877 bucket = blk_mq_poll_stats_bkt(rq);
2878 if (bucket < 0)
2879 return ret;
2880
2881 if (q->poll_stat[bucket].nr_samples)
2882 ret = (q->poll_stat[bucket].mean + 1) / 2;
2883
2884 return ret;
2885 }
2886
2887 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2888 struct blk_mq_hw_ctx *hctx,
2889 struct request *rq)
2890 {
2891 struct hrtimer_sleeper hs;
2892 enum hrtimer_mode mode;
2893 unsigned int nsecs;
2894 ktime_t kt;
2895
2896 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2897 return false;
2898
2899 /*
2900 * poll_nsec can be:
2901 *
2902 * -1: don't ever hybrid sleep
2903 * 0: use half of prev avg
2904 * >0: use this specific value
2905 */
2906 if (q->poll_nsec == -1)
2907 return false;
2908 else if (q->poll_nsec > 0)
2909 nsecs = q->poll_nsec;
2910 else
2911 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2912
2913 if (!nsecs)
2914 return false;
2915
2916 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2917
2918 /*
2919 * This will be replaced with the stats tracking code, using
2920 * 'avg_completion_time / 2' as the pre-sleep target.
2921 */
2922 kt = nsecs;
2923
2924 mode = HRTIMER_MODE_REL;
2925 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2926 hrtimer_set_expires(&hs.timer, kt);
2927
2928 hrtimer_init_sleeper(&hs, current);
2929 do {
2930 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2931 break;
2932 set_current_state(TASK_UNINTERRUPTIBLE);
2933 hrtimer_start_expires(&hs.timer, mode);
2934 if (hs.task)
2935 io_schedule();
2936 hrtimer_cancel(&hs.timer);
2937 mode = HRTIMER_MODE_ABS;
2938 } while (hs.task && !signal_pending(current));
2939
2940 __set_current_state(TASK_RUNNING);
2941 destroy_hrtimer_on_stack(&hs.timer);
2942 return true;
2943 }
2944
2945 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2946 {
2947 struct request_queue *q = hctx->queue;
2948 long state;
2949
2950 /*
2951 * If we sleep, have the caller restart the poll loop to reset
2952 * the state. Like for the other success return cases, the
2953 * caller is responsible for checking if the IO completed. If
2954 * the IO isn't complete, we'll get called again and will go
2955 * straight to the busy poll loop.
2956 */
2957 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2958 return true;
2959
2960 hctx->poll_considered++;
2961
2962 state = current->state;
2963 while (!need_resched()) {
2964 int ret;
2965
2966 hctx->poll_invoked++;
2967
2968 ret = q->mq_ops->poll(hctx, rq->tag);
2969 if (ret > 0) {
2970 hctx->poll_success++;
2971 set_current_state(TASK_RUNNING);
2972 return true;
2973 }
2974
2975 if (signal_pending_state(state, current))
2976 set_current_state(TASK_RUNNING);
2977
2978 if (current->state == TASK_RUNNING)
2979 return true;
2980 if (ret < 0)
2981 break;
2982 cpu_relax();
2983 }
2984
2985 return false;
2986 }
2987
2988 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2989 {
2990 struct blk_mq_hw_ctx *hctx;
2991 struct request *rq;
2992
2993 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2994 return false;
2995
2996 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2997 if (!blk_qc_t_is_internal(cookie))
2998 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2999 else {
3000 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3001 /*
3002 * With scheduling, if the request has completed, we'll
3003 * get a NULL return here, as we clear the sched tag when
3004 * that happens. The request still remains valid, like always,
3005 * so we should be safe with just the NULL check.
3006 */
3007 if (!rq)
3008 return false;
3009 }
3010
3011 return __blk_mq_poll(hctx, rq);
3012 }
3013
3014 static int __init blk_mq_init(void)
3015 {
3016 /*
3017 * See comment in block/blk.h rq_atomic_flags enum
3018 */
3019 BUILD_BUG_ON((REQ_ATOM_STARTED / BITS_PER_BYTE) !=
3020 (REQ_ATOM_COMPLETE / BITS_PER_BYTE));
3021
3022 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3023 blk_mq_hctx_notify_dead);
3024 return 0;
3025 }
3026 subsys_initcall(blk_mq_init);