]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-mq.c
blk-mq: Move more code into blk_mq_direct_issue_request()
[mirror_ubuntu-artful-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
25 #include <linux/prefetch.h>
26
27 #include <trace/events/block.h>
28
29 #include <linux/blk-mq.h>
30 #include "blk.h"
31 #include "blk-mq.h"
32 #include "blk-mq-tag.h"
33
34 static DEFINE_MUTEX(all_q_mutex);
35 static LIST_HEAD(all_q_list);
36
37 /*
38 * Check if any of the ctx's have pending work in this hardware queue
39 */
40 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
41 {
42 return sbitmap_any_bit_set(&hctx->ctx_map);
43 }
44
45 /*
46 * Mark this ctx as having pending work in this hardware queue
47 */
48 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
49 struct blk_mq_ctx *ctx)
50 {
51 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
52 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
53 }
54
55 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
56 struct blk_mq_ctx *ctx)
57 {
58 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
59 }
60
61 void blk_mq_freeze_queue_start(struct request_queue *q)
62 {
63 int freeze_depth;
64
65 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
66 if (freeze_depth == 1) {
67 percpu_ref_kill(&q->q_usage_counter);
68 blk_mq_run_hw_queues(q, false);
69 }
70 }
71 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
72
73 static void blk_mq_freeze_queue_wait(struct request_queue *q)
74 {
75 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
76 }
77
78 /*
79 * Guarantee no request is in use, so we can change any data structure of
80 * the queue afterward.
81 */
82 void blk_freeze_queue(struct request_queue *q)
83 {
84 /*
85 * In the !blk_mq case we are only calling this to kill the
86 * q_usage_counter, otherwise this increases the freeze depth
87 * and waits for it to return to zero. For this reason there is
88 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
89 * exported to drivers as the only user for unfreeze is blk_mq.
90 */
91 blk_mq_freeze_queue_start(q);
92 blk_mq_freeze_queue_wait(q);
93 }
94
95 void blk_mq_freeze_queue(struct request_queue *q)
96 {
97 /*
98 * ...just an alias to keep freeze and unfreeze actions balanced
99 * in the blk_mq_* namespace
100 */
101 blk_freeze_queue(q);
102 }
103 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
104
105 void blk_mq_unfreeze_queue(struct request_queue *q)
106 {
107 int freeze_depth;
108
109 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
110 WARN_ON_ONCE(freeze_depth < 0);
111 if (!freeze_depth) {
112 percpu_ref_reinit(&q->q_usage_counter);
113 wake_up_all(&q->mq_freeze_wq);
114 }
115 }
116 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
117
118 void blk_mq_wake_waiters(struct request_queue *q)
119 {
120 struct blk_mq_hw_ctx *hctx;
121 unsigned int i;
122
123 queue_for_each_hw_ctx(q, hctx, i)
124 if (blk_mq_hw_queue_mapped(hctx))
125 blk_mq_tag_wakeup_all(hctx->tags, true);
126
127 /*
128 * If we are called because the queue has now been marked as
129 * dying, we need to ensure that processes currently waiting on
130 * the queue are notified as well.
131 */
132 wake_up_all(&q->mq_freeze_wq);
133 }
134
135 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
136 {
137 return blk_mq_has_free_tags(hctx->tags);
138 }
139 EXPORT_SYMBOL(blk_mq_can_queue);
140
141 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
142 struct request *rq, unsigned int op)
143 {
144 INIT_LIST_HEAD(&rq->queuelist);
145 /* csd/requeue_work/fifo_time is initialized before use */
146 rq->q = q;
147 rq->mq_ctx = ctx;
148 rq->cmd_flags = op;
149 if (blk_queue_io_stat(q))
150 rq->rq_flags |= RQF_IO_STAT;
151 /* do not touch atomic flags, it needs atomic ops against the timer */
152 rq->cpu = -1;
153 INIT_HLIST_NODE(&rq->hash);
154 RB_CLEAR_NODE(&rq->rb_node);
155 rq->rq_disk = NULL;
156 rq->part = NULL;
157 rq->start_time = jiffies;
158 #ifdef CONFIG_BLK_CGROUP
159 rq->rl = NULL;
160 set_start_time_ns(rq);
161 rq->io_start_time_ns = 0;
162 #endif
163 rq->nr_phys_segments = 0;
164 #if defined(CONFIG_BLK_DEV_INTEGRITY)
165 rq->nr_integrity_segments = 0;
166 #endif
167 rq->special = NULL;
168 /* tag was already set */
169 rq->errors = 0;
170
171 rq->cmd = rq->__cmd;
172
173 rq->extra_len = 0;
174 rq->sense_len = 0;
175 rq->resid_len = 0;
176 rq->sense = NULL;
177
178 INIT_LIST_HEAD(&rq->timeout_list);
179 rq->timeout = 0;
180
181 rq->end_io = NULL;
182 rq->end_io_data = NULL;
183 rq->next_rq = NULL;
184
185 ctx->rq_dispatched[op_is_sync(op)]++;
186 }
187
188 static struct request *
189 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, unsigned int op)
190 {
191 struct request *rq;
192 unsigned int tag;
193
194 tag = blk_mq_get_tag(data);
195 if (tag != BLK_MQ_TAG_FAIL) {
196 rq = data->hctx->tags->rqs[tag];
197
198 if (blk_mq_tag_busy(data->hctx)) {
199 rq->rq_flags = RQF_MQ_INFLIGHT;
200 atomic_inc(&data->hctx->nr_active);
201 }
202
203 rq->tag = tag;
204 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
205 return rq;
206 }
207
208 return NULL;
209 }
210
211 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
212 unsigned int flags)
213 {
214 struct blk_mq_ctx *ctx;
215 struct blk_mq_hw_ctx *hctx;
216 struct request *rq;
217 struct blk_mq_alloc_data alloc_data;
218 int ret;
219
220 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
221 if (ret)
222 return ERR_PTR(ret);
223
224 ctx = blk_mq_get_ctx(q);
225 hctx = blk_mq_map_queue(q, ctx->cpu);
226 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
227 rq = __blk_mq_alloc_request(&alloc_data, rw);
228 blk_mq_put_ctx(ctx);
229
230 if (!rq) {
231 blk_queue_exit(q);
232 return ERR_PTR(-EWOULDBLOCK);
233 }
234
235 rq->__data_len = 0;
236 rq->__sector = (sector_t) -1;
237 rq->bio = rq->biotail = NULL;
238 return rq;
239 }
240 EXPORT_SYMBOL(blk_mq_alloc_request);
241
242 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
243 unsigned int flags, unsigned int hctx_idx)
244 {
245 struct blk_mq_hw_ctx *hctx;
246 struct blk_mq_ctx *ctx;
247 struct request *rq;
248 struct blk_mq_alloc_data alloc_data;
249 int ret;
250
251 /*
252 * If the tag allocator sleeps we could get an allocation for a
253 * different hardware context. No need to complicate the low level
254 * allocator for this for the rare use case of a command tied to
255 * a specific queue.
256 */
257 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
258 return ERR_PTR(-EINVAL);
259
260 if (hctx_idx >= q->nr_hw_queues)
261 return ERR_PTR(-EIO);
262
263 ret = blk_queue_enter(q, true);
264 if (ret)
265 return ERR_PTR(ret);
266
267 /*
268 * Check if the hardware context is actually mapped to anything.
269 * If not tell the caller that it should skip this queue.
270 */
271 hctx = q->queue_hw_ctx[hctx_idx];
272 if (!blk_mq_hw_queue_mapped(hctx)) {
273 ret = -EXDEV;
274 goto out_queue_exit;
275 }
276 ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));
277
278 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
279 rq = __blk_mq_alloc_request(&alloc_data, rw);
280 if (!rq) {
281 ret = -EWOULDBLOCK;
282 goto out_queue_exit;
283 }
284
285 return rq;
286
287 out_queue_exit:
288 blk_queue_exit(q);
289 return ERR_PTR(ret);
290 }
291 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
292
293 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
294 struct blk_mq_ctx *ctx, struct request *rq)
295 {
296 const int tag = rq->tag;
297 struct request_queue *q = rq->q;
298
299 if (rq->rq_flags & RQF_MQ_INFLIGHT)
300 atomic_dec(&hctx->nr_active);
301 rq->rq_flags = 0;
302
303 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
304 blk_mq_put_tag(hctx, ctx, tag);
305 blk_queue_exit(q);
306 }
307
308 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
309 {
310 struct blk_mq_ctx *ctx = rq->mq_ctx;
311
312 ctx->rq_completed[rq_is_sync(rq)]++;
313 __blk_mq_free_request(hctx, ctx, rq);
314
315 }
316 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
317
318 void blk_mq_free_request(struct request *rq)
319 {
320 blk_mq_free_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
321 }
322 EXPORT_SYMBOL_GPL(blk_mq_free_request);
323
324 inline void __blk_mq_end_request(struct request *rq, int error)
325 {
326 blk_account_io_done(rq);
327
328 if (rq->end_io) {
329 rq->end_io(rq, error);
330 } else {
331 if (unlikely(blk_bidi_rq(rq)))
332 blk_mq_free_request(rq->next_rq);
333 blk_mq_free_request(rq);
334 }
335 }
336 EXPORT_SYMBOL(__blk_mq_end_request);
337
338 void blk_mq_end_request(struct request *rq, int error)
339 {
340 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
341 BUG();
342 __blk_mq_end_request(rq, error);
343 }
344 EXPORT_SYMBOL(blk_mq_end_request);
345
346 static void __blk_mq_complete_request_remote(void *data)
347 {
348 struct request *rq = data;
349
350 rq->q->softirq_done_fn(rq);
351 }
352
353 static void blk_mq_ipi_complete_request(struct request *rq)
354 {
355 struct blk_mq_ctx *ctx = rq->mq_ctx;
356 bool shared = false;
357 int cpu;
358
359 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
360 rq->q->softirq_done_fn(rq);
361 return;
362 }
363
364 cpu = get_cpu();
365 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
366 shared = cpus_share_cache(cpu, ctx->cpu);
367
368 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
369 rq->csd.func = __blk_mq_complete_request_remote;
370 rq->csd.info = rq;
371 rq->csd.flags = 0;
372 smp_call_function_single_async(ctx->cpu, &rq->csd);
373 } else {
374 rq->q->softirq_done_fn(rq);
375 }
376 put_cpu();
377 }
378
379 static void __blk_mq_complete_request(struct request *rq)
380 {
381 struct request_queue *q = rq->q;
382
383 if (!q->softirq_done_fn)
384 blk_mq_end_request(rq, rq->errors);
385 else
386 blk_mq_ipi_complete_request(rq);
387 }
388
389 /**
390 * blk_mq_complete_request - end I/O on a request
391 * @rq: the request being processed
392 *
393 * Description:
394 * Ends all I/O on a request. It does not handle partial completions.
395 * The actual completion happens out-of-order, through a IPI handler.
396 **/
397 void blk_mq_complete_request(struct request *rq, int error)
398 {
399 struct request_queue *q = rq->q;
400
401 if (unlikely(blk_should_fake_timeout(q)))
402 return;
403 if (!blk_mark_rq_complete(rq)) {
404 rq->errors = error;
405 __blk_mq_complete_request(rq);
406 }
407 }
408 EXPORT_SYMBOL(blk_mq_complete_request);
409
410 int blk_mq_request_started(struct request *rq)
411 {
412 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
413 }
414 EXPORT_SYMBOL_GPL(blk_mq_request_started);
415
416 void blk_mq_start_request(struct request *rq)
417 {
418 struct request_queue *q = rq->q;
419
420 trace_block_rq_issue(q, rq);
421
422 rq->resid_len = blk_rq_bytes(rq);
423 if (unlikely(blk_bidi_rq(rq)))
424 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
425
426 blk_add_timer(rq);
427
428 /*
429 * Ensure that ->deadline is visible before set the started
430 * flag and clear the completed flag.
431 */
432 smp_mb__before_atomic();
433
434 /*
435 * Mark us as started and clear complete. Complete might have been
436 * set if requeue raced with timeout, which then marked it as
437 * complete. So be sure to clear complete again when we start
438 * the request, otherwise we'll ignore the completion event.
439 */
440 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
441 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
442 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
443 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
444
445 if (q->dma_drain_size && blk_rq_bytes(rq)) {
446 /*
447 * Make sure space for the drain appears. We know we can do
448 * this because max_hw_segments has been adjusted to be one
449 * fewer than the device can handle.
450 */
451 rq->nr_phys_segments++;
452 }
453 }
454 EXPORT_SYMBOL(blk_mq_start_request);
455
456 static void __blk_mq_requeue_request(struct request *rq)
457 {
458 struct request_queue *q = rq->q;
459
460 trace_block_rq_requeue(q, rq);
461
462 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
463 if (q->dma_drain_size && blk_rq_bytes(rq))
464 rq->nr_phys_segments--;
465 }
466 }
467
468 void blk_mq_requeue_request(struct request *rq)
469 {
470 __blk_mq_requeue_request(rq);
471
472 BUG_ON(blk_queued_rq(rq));
473 blk_mq_add_to_requeue_list(rq, true);
474 }
475 EXPORT_SYMBOL(blk_mq_requeue_request);
476
477 static void blk_mq_requeue_work(struct work_struct *work)
478 {
479 struct request_queue *q =
480 container_of(work, struct request_queue, requeue_work.work);
481 LIST_HEAD(rq_list);
482 struct request *rq, *next;
483 unsigned long flags;
484
485 spin_lock_irqsave(&q->requeue_lock, flags);
486 list_splice_init(&q->requeue_list, &rq_list);
487 spin_unlock_irqrestore(&q->requeue_lock, flags);
488
489 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
490 if (!(rq->rq_flags & RQF_SOFTBARRIER))
491 continue;
492
493 rq->rq_flags &= ~RQF_SOFTBARRIER;
494 list_del_init(&rq->queuelist);
495 blk_mq_insert_request(rq, true, false, false);
496 }
497
498 while (!list_empty(&rq_list)) {
499 rq = list_entry(rq_list.next, struct request, queuelist);
500 list_del_init(&rq->queuelist);
501 blk_mq_insert_request(rq, false, false, false);
502 }
503
504 /*
505 * Use the start variant of queue running here, so that running
506 * the requeue work will kick stopped queues.
507 */
508 blk_mq_start_hw_queues(q);
509 }
510
511 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
512 {
513 struct request_queue *q = rq->q;
514 unsigned long flags;
515
516 /*
517 * We abuse this flag that is otherwise used by the I/O scheduler to
518 * request head insertation from the workqueue.
519 */
520 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
521
522 spin_lock_irqsave(&q->requeue_lock, flags);
523 if (at_head) {
524 rq->rq_flags |= RQF_SOFTBARRIER;
525 list_add(&rq->queuelist, &q->requeue_list);
526 } else {
527 list_add_tail(&rq->queuelist, &q->requeue_list);
528 }
529 spin_unlock_irqrestore(&q->requeue_lock, flags);
530 }
531 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
532
533 void blk_mq_cancel_requeue_work(struct request_queue *q)
534 {
535 cancel_delayed_work_sync(&q->requeue_work);
536 }
537 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
538
539 void blk_mq_kick_requeue_list(struct request_queue *q)
540 {
541 kblockd_schedule_delayed_work(&q->requeue_work, 0);
542 }
543 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
544
545 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
546 unsigned long msecs)
547 {
548 kblockd_schedule_delayed_work(&q->requeue_work,
549 msecs_to_jiffies(msecs));
550 }
551 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
552
553 void blk_mq_abort_requeue_list(struct request_queue *q)
554 {
555 unsigned long flags;
556 LIST_HEAD(rq_list);
557
558 spin_lock_irqsave(&q->requeue_lock, flags);
559 list_splice_init(&q->requeue_list, &rq_list);
560 spin_unlock_irqrestore(&q->requeue_lock, flags);
561
562 while (!list_empty(&rq_list)) {
563 struct request *rq;
564
565 rq = list_first_entry(&rq_list, struct request, queuelist);
566 list_del_init(&rq->queuelist);
567 rq->errors = -EIO;
568 blk_mq_end_request(rq, rq->errors);
569 }
570 }
571 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
572
573 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
574 {
575 if (tag < tags->nr_tags) {
576 prefetch(tags->rqs[tag]);
577 return tags->rqs[tag];
578 }
579
580 return NULL;
581 }
582 EXPORT_SYMBOL(blk_mq_tag_to_rq);
583
584 struct blk_mq_timeout_data {
585 unsigned long next;
586 unsigned int next_set;
587 };
588
589 void blk_mq_rq_timed_out(struct request *req, bool reserved)
590 {
591 struct blk_mq_ops *ops = req->q->mq_ops;
592 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
593
594 /*
595 * We know that complete is set at this point. If STARTED isn't set
596 * anymore, then the request isn't active and the "timeout" should
597 * just be ignored. This can happen due to the bitflag ordering.
598 * Timeout first checks if STARTED is set, and if it is, assumes
599 * the request is active. But if we race with completion, then
600 * we both flags will get cleared. So check here again, and ignore
601 * a timeout event with a request that isn't active.
602 */
603 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
604 return;
605
606 if (ops->timeout)
607 ret = ops->timeout(req, reserved);
608
609 switch (ret) {
610 case BLK_EH_HANDLED:
611 __blk_mq_complete_request(req);
612 break;
613 case BLK_EH_RESET_TIMER:
614 blk_add_timer(req);
615 blk_clear_rq_complete(req);
616 break;
617 case BLK_EH_NOT_HANDLED:
618 break;
619 default:
620 printk(KERN_ERR "block: bad eh return: %d\n", ret);
621 break;
622 }
623 }
624
625 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
626 struct request *rq, void *priv, bool reserved)
627 {
628 struct blk_mq_timeout_data *data = priv;
629
630 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
631 /*
632 * If a request wasn't started before the queue was
633 * marked dying, kill it here or it'll go unnoticed.
634 */
635 if (unlikely(blk_queue_dying(rq->q))) {
636 rq->errors = -EIO;
637 blk_mq_end_request(rq, rq->errors);
638 }
639 return;
640 }
641
642 if (time_after_eq(jiffies, rq->deadline)) {
643 if (!blk_mark_rq_complete(rq))
644 blk_mq_rq_timed_out(rq, reserved);
645 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
646 data->next = rq->deadline;
647 data->next_set = 1;
648 }
649 }
650
651 static void blk_mq_timeout_work(struct work_struct *work)
652 {
653 struct request_queue *q =
654 container_of(work, struct request_queue, timeout_work);
655 struct blk_mq_timeout_data data = {
656 .next = 0,
657 .next_set = 0,
658 };
659 int i;
660
661 /* A deadlock might occur if a request is stuck requiring a
662 * timeout at the same time a queue freeze is waiting
663 * completion, since the timeout code would not be able to
664 * acquire the queue reference here.
665 *
666 * That's why we don't use blk_queue_enter here; instead, we use
667 * percpu_ref_tryget directly, because we need to be able to
668 * obtain a reference even in the short window between the queue
669 * starting to freeze, by dropping the first reference in
670 * blk_mq_freeze_queue_start, and the moment the last request is
671 * consumed, marked by the instant q_usage_counter reaches
672 * zero.
673 */
674 if (!percpu_ref_tryget(&q->q_usage_counter))
675 return;
676
677 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
678
679 if (data.next_set) {
680 data.next = blk_rq_timeout(round_jiffies_up(data.next));
681 mod_timer(&q->timeout, data.next);
682 } else {
683 struct blk_mq_hw_ctx *hctx;
684
685 queue_for_each_hw_ctx(q, hctx, i) {
686 /* the hctx may be unmapped, so check it here */
687 if (blk_mq_hw_queue_mapped(hctx))
688 blk_mq_tag_idle(hctx);
689 }
690 }
691 blk_queue_exit(q);
692 }
693
694 /*
695 * Reverse check our software queue for entries that we could potentially
696 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
697 * too much time checking for merges.
698 */
699 static bool blk_mq_attempt_merge(struct request_queue *q,
700 struct blk_mq_ctx *ctx, struct bio *bio)
701 {
702 struct request *rq;
703 int checked = 8;
704
705 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
706 int el_ret;
707
708 if (!checked--)
709 break;
710
711 if (!blk_rq_merge_ok(rq, bio))
712 continue;
713
714 el_ret = blk_try_merge(rq, bio);
715 if (el_ret == ELEVATOR_BACK_MERGE) {
716 if (bio_attempt_back_merge(q, rq, bio)) {
717 ctx->rq_merged++;
718 return true;
719 }
720 break;
721 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
722 if (bio_attempt_front_merge(q, rq, bio)) {
723 ctx->rq_merged++;
724 return true;
725 }
726 break;
727 }
728 }
729
730 return false;
731 }
732
733 struct flush_busy_ctx_data {
734 struct blk_mq_hw_ctx *hctx;
735 struct list_head *list;
736 };
737
738 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
739 {
740 struct flush_busy_ctx_data *flush_data = data;
741 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
742 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
743
744 sbitmap_clear_bit(sb, bitnr);
745 spin_lock(&ctx->lock);
746 list_splice_tail_init(&ctx->rq_list, flush_data->list);
747 spin_unlock(&ctx->lock);
748 return true;
749 }
750
751 /*
752 * Process software queues that have been marked busy, splicing them
753 * to the for-dispatch
754 */
755 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
756 {
757 struct flush_busy_ctx_data data = {
758 .hctx = hctx,
759 .list = list,
760 };
761
762 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
763 }
764
765 static inline unsigned int queued_to_index(unsigned int queued)
766 {
767 if (!queued)
768 return 0;
769
770 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
771 }
772
773 /*
774 * Run this hardware queue, pulling any software queues mapped to it in.
775 * Note that this function currently has various problems around ordering
776 * of IO. In particular, we'd like FIFO behaviour on handling existing
777 * items on the hctx->dispatch list. Ignore that for now.
778 */
779 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
780 {
781 struct request_queue *q = hctx->queue;
782 struct request *rq;
783 LIST_HEAD(rq_list);
784 LIST_HEAD(driver_list);
785 struct list_head *dptr;
786 int queued;
787
788 if (unlikely(blk_mq_hctx_stopped(hctx)))
789 return;
790
791 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
792 cpu_online(hctx->next_cpu));
793
794 hctx->run++;
795
796 /*
797 * Touch any software queue that has pending entries.
798 */
799 flush_busy_ctxs(hctx, &rq_list);
800
801 /*
802 * If we have previous entries on our dispatch list, grab them
803 * and stuff them at the front for more fair dispatch.
804 */
805 if (!list_empty_careful(&hctx->dispatch)) {
806 spin_lock(&hctx->lock);
807 if (!list_empty(&hctx->dispatch))
808 list_splice_init(&hctx->dispatch, &rq_list);
809 spin_unlock(&hctx->lock);
810 }
811
812 /*
813 * Start off with dptr being NULL, so we start the first request
814 * immediately, even if we have more pending.
815 */
816 dptr = NULL;
817
818 /*
819 * Now process all the entries, sending them to the driver.
820 */
821 queued = 0;
822 while (!list_empty(&rq_list)) {
823 struct blk_mq_queue_data bd;
824 int ret;
825
826 rq = list_first_entry(&rq_list, struct request, queuelist);
827 list_del_init(&rq->queuelist);
828
829 bd.rq = rq;
830 bd.list = dptr;
831 bd.last = list_empty(&rq_list);
832
833 ret = q->mq_ops->queue_rq(hctx, &bd);
834 switch (ret) {
835 case BLK_MQ_RQ_QUEUE_OK:
836 queued++;
837 break;
838 case BLK_MQ_RQ_QUEUE_BUSY:
839 list_add(&rq->queuelist, &rq_list);
840 __blk_mq_requeue_request(rq);
841 break;
842 default:
843 pr_err("blk-mq: bad return on queue: %d\n", ret);
844 case BLK_MQ_RQ_QUEUE_ERROR:
845 rq->errors = -EIO;
846 blk_mq_end_request(rq, rq->errors);
847 break;
848 }
849
850 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
851 break;
852
853 /*
854 * We've done the first request. If we have more than 1
855 * left in the list, set dptr to defer issue.
856 */
857 if (!dptr && rq_list.next != rq_list.prev)
858 dptr = &driver_list;
859 }
860
861 hctx->dispatched[queued_to_index(queued)]++;
862
863 /*
864 * Any items that need requeuing? Stuff them into hctx->dispatch,
865 * that is where we will continue on next queue run.
866 */
867 if (!list_empty(&rq_list)) {
868 spin_lock(&hctx->lock);
869 list_splice(&rq_list, &hctx->dispatch);
870 spin_unlock(&hctx->lock);
871 /*
872 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
873 * it's possible the queue is stopped and restarted again
874 * before this. Queue restart will dispatch requests. And since
875 * requests in rq_list aren't added into hctx->dispatch yet,
876 * the requests in rq_list might get lost.
877 *
878 * blk_mq_run_hw_queue() already checks the STOPPED bit
879 **/
880 blk_mq_run_hw_queue(hctx, true);
881 }
882 }
883
884 /*
885 * It'd be great if the workqueue API had a way to pass
886 * in a mask and had some smarts for more clever placement.
887 * For now we just round-robin here, switching for every
888 * BLK_MQ_CPU_WORK_BATCH queued items.
889 */
890 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
891 {
892 if (hctx->queue->nr_hw_queues == 1)
893 return WORK_CPU_UNBOUND;
894
895 if (--hctx->next_cpu_batch <= 0) {
896 int cpu = hctx->next_cpu, next_cpu;
897
898 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
899 if (next_cpu >= nr_cpu_ids)
900 next_cpu = cpumask_first(hctx->cpumask);
901
902 hctx->next_cpu = next_cpu;
903 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
904
905 return cpu;
906 }
907
908 return hctx->next_cpu;
909 }
910
911 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
912 {
913 if (unlikely(blk_mq_hctx_stopped(hctx) ||
914 !blk_mq_hw_queue_mapped(hctx)))
915 return;
916
917 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
918 int cpu = get_cpu();
919 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
920 __blk_mq_run_hw_queue(hctx);
921 put_cpu();
922 return;
923 }
924
925 put_cpu();
926 }
927
928 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
929 }
930
931 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
932 {
933 struct blk_mq_hw_ctx *hctx;
934 int i;
935
936 queue_for_each_hw_ctx(q, hctx, i) {
937 if ((!blk_mq_hctx_has_pending(hctx) &&
938 list_empty_careful(&hctx->dispatch)) ||
939 blk_mq_hctx_stopped(hctx))
940 continue;
941
942 blk_mq_run_hw_queue(hctx, async);
943 }
944 }
945 EXPORT_SYMBOL(blk_mq_run_hw_queues);
946
947 /**
948 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
949 * @q: request queue.
950 *
951 * The caller is responsible for serializing this function against
952 * blk_mq_{start,stop}_hw_queue().
953 */
954 bool blk_mq_queue_stopped(struct request_queue *q)
955 {
956 struct blk_mq_hw_ctx *hctx;
957 int i;
958
959 queue_for_each_hw_ctx(q, hctx, i)
960 if (blk_mq_hctx_stopped(hctx))
961 return true;
962
963 return false;
964 }
965 EXPORT_SYMBOL(blk_mq_queue_stopped);
966
967 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
968 {
969 cancel_work(&hctx->run_work);
970 cancel_delayed_work(&hctx->delay_work);
971 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
972 }
973 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
974
975 void blk_mq_stop_hw_queues(struct request_queue *q)
976 {
977 struct blk_mq_hw_ctx *hctx;
978 int i;
979
980 queue_for_each_hw_ctx(q, hctx, i)
981 blk_mq_stop_hw_queue(hctx);
982 }
983 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
984
985 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
986 {
987 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
988
989 blk_mq_run_hw_queue(hctx, false);
990 }
991 EXPORT_SYMBOL(blk_mq_start_hw_queue);
992
993 void blk_mq_start_hw_queues(struct request_queue *q)
994 {
995 struct blk_mq_hw_ctx *hctx;
996 int i;
997
998 queue_for_each_hw_ctx(q, hctx, i)
999 blk_mq_start_hw_queue(hctx);
1000 }
1001 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1002
1003 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1004 {
1005 struct blk_mq_hw_ctx *hctx;
1006 int i;
1007
1008 queue_for_each_hw_ctx(q, hctx, i) {
1009 if (!blk_mq_hctx_stopped(hctx))
1010 continue;
1011
1012 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1013 blk_mq_run_hw_queue(hctx, async);
1014 }
1015 }
1016 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1017
1018 static void blk_mq_run_work_fn(struct work_struct *work)
1019 {
1020 struct blk_mq_hw_ctx *hctx;
1021
1022 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1023
1024 __blk_mq_run_hw_queue(hctx);
1025 }
1026
1027 static void blk_mq_delay_work_fn(struct work_struct *work)
1028 {
1029 struct blk_mq_hw_ctx *hctx;
1030
1031 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1032
1033 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1034 __blk_mq_run_hw_queue(hctx);
1035 }
1036
1037 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1038 {
1039 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1040 return;
1041
1042 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1043 &hctx->delay_work, msecs_to_jiffies(msecs));
1044 }
1045 EXPORT_SYMBOL(blk_mq_delay_queue);
1046
1047 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1048 struct request *rq,
1049 bool at_head)
1050 {
1051 struct blk_mq_ctx *ctx = rq->mq_ctx;
1052
1053 trace_block_rq_insert(hctx->queue, rq);
1054
1055 if (at_head)
1056 list_add(&rq->queuelist, &ctx->rq_list);
1057 else
1058 list_add_tail(&rq->queuelist, &ctx->rq_list);
1059 }
1060
1061 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
1062 struct request *rq, bool at_head)
1063 {
1064 struct blk_mq_ctx *ctx = rq->mq_ctx;
1065
1066 __blk_mq_insert_req_list(hctx, rq, at_head);
1067 blk_mq_hctx_mark_pending(hctx, ctx);
1068 }
1069
1070 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1071 bool async)
1072 {
1073 struct blk_mq_ctx *ctx = rq->mq_ctx;
1074 struct request_queue *q = rq->q;
1075 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1076
1077 spin_lock(&ctx->lock);
1078 __blk_mq_insert_request(hctx, rq, at_head);
1079 spin_unlock(&ctx->lock);
1080
1081 if (run_queue)
1082 blk_mq_run_hw_queue(hctx, async);
1083 }
1084
1085 static void blk_mq_insert_requests(struct request_queue *q,
1086 struct blk_mq_ctx *ctx,
1087 struct list_head *list,
1088 int depth,
1089 bool from_schedule)
1090
1091 {
1092 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1093
1094 trace_block_unplug(q, depth, !from_schedule);
1095
1096 /*
1097 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1098 * offline now
1099 */
1100 spin_lock(&ctx->lock);
1101 while (!list_empty(list)) {
1102 struct request *rq;
1103
1104 rq = list_first_entry(list, struct request, queuelist);
1105 BUG_ON(rq->mq_ctx != ctx);
1106 list_del_init(&rq->queuelist);
1107 __blk_mq_insert_req_list(hctx, rq, false);
1108 }
1109 blk_mq_hctx_mark_pending(hctx, ctx);
1110 spin_unlock(&ctx->lock);
1111
1112 blk_mq_run_hw_queue(hctx, from_schedule);
1113 }
1114
1115 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1116 {
1117 struct request *rqa = container_of(a, struct request, queuelist);
1118 struct request *rqb = container_of(b, struct request, queuelist);
1119
1120 return !(rqa->mq_ctx < rqb->mq_ctx ||
1121 (rqa->mq_ctx == rqb->mq_ctx &&
1122 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1123 }
1124
1125 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1126 {
1127 struct blk_mq_ctx *this_ctx;
1128 struct request_queue *this_q;
1129 struct request *rq;
1130 LIST_HEAD(list);
1131 LIST_HEAD(ctx_list);
1132 unsigned int depth;
1133
1134 list_splice_init(&plug->mq_list, &list);
1135
1136 list_sort(NULL, &list, plug_ctx_cmp);
1137
1138 this_q = NULL;
1139 this_ctx = NULL;
1140 depth = 0;
1141
1142 while (!list_empty(&list)) {
1143 rq = list_entry_rq(list.next);
1144 list_del_init(&rq->queuelist);
1145 BUG_ON(!rq->q);
1146 if (rq->mq_ctx != this_ctx) {
1147 if (this_ctx) {
1148 blk_mq_insert_requests(this_q, this_ctx,
1149 &ctx_list, depth,
1150 from_schedule);
1151 }
1152
1153 this_ctx = rq->mq_ctx;
1154 this_q = rq->q;
1155 depth = 0;
1156 }
1157
1158 depth++;
1159 list_add_tail(&rq->queuelist, &ctx_list);
1160 }
1161
1162 /*
1163 * If 'this_ctx' is set, we know we have entries to complete
1164 * on 'ctx_list'. Do those.
1165 */
1166 if (this_ctx) {
1167 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1168 from_schedule);
1169 }
1170 }
1171
1172 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1173 {
1174 init_request_from_bio(rq, bio);
1175
1176 blk_account_io_start(rq, 1);
1177 }
1178
1179 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1180 {
1181 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1182 !blk_queue_nomerges(hctx->queue);
1183 }
1184
1185 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1186 struct blk_mq_ctx *ctx,
1187 struct request *rq, struct bio *bio)
1188 {
1189 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1190 blk_mq_bio_to_request(rq, bio);
1191 spin_lock(&ctx->lock);
1192 insert_rq:
1193 __blk_mq_insert_request(hctx, rq, false);
1194 spin_unlock(&ctx->lock);
1195 return false;
1196 } else {
1197 struct request_queue *q = hctx->queue;
1198
1199 spin_lock(&ctx->lock);
1200 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1201 blk_mq_bio_to_request(rq, bio);
1202 goto insert_rq;
1203 }
1204
1205 spin_unlock(&ctx->lock);
1206 __blk_mq_free_request(hctx, ctx, rq);
1207 return true;
1208 }
1209 }
1210
1211 static struct request *blk_mq_map_request(struct request_queue *q,
1212 struct bio *bio,
1213 struct blk_mq_alloc_data *data)
1214 {
1215 struct blk_mq_hw_ctx *hctx;
1216 struct blk_mq_ctx *ctx;
1217 struct request *rq;
1218
1219 blk_queue_enter_live(q);
1220 ctx = blk_mq_get_ctx(q);
1221 hctx = blk_mq_map_queue(q, ctx->cpu);
1222
1223 trace_block_getrq(q, bio, bio->bi_opf);
1224 blk_mq_set_alloc_data(data, q, 0, ctx, hctx);
1225 rq = __blk_mq_alloc_request(data, bio->bi_opf);
1226
1227 data->hctx->queued++;
1228 return rq;
1229 }
1230
1231 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1232 struct request *rq, blk_qc_t *cookie)
1233 {
1234 int ret;
1235 struct request_queue *q = rq->q;
1236 struct blk_mq_queue_data bd = {
1237 .rq = rq,
1238 .list = NULL,
1239 .last = 1
1240 };
1241 blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1242
1243 if (blk_mq_hctx_stopped(hctx))
1244 goto insert;
1245
1246 /*
1247 * For OK queue, we are done. For error, kill it. Any other
1248 * error (busy), just add it to our list as we previously
1249 * would have done
1250 */
1251 ret = q->mq_ops->queue_rq(hctx, &bd);
1252 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1253 *cookie = new_cookie;
1254 return;
1255 }
1256
1257 __blk_mq_requeue_request(rq);
1258
1259 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1260 *cookie = BLK_QC_T_NONE;
1261 rq->errors = -EIO;
1262 blk_mq_end_request(rq, rq->errors);
1263 return;
1264 }
1265
1266 insert:
1267 blk_mq_insert_request(rq, false, true, true);
1268 }
1269
1270 /*
1271 * Multiple hardware queue variant. This will not use per-process plugs,
1272 * but will attempt to bypass the hctx queueing if we can go straight to
1273 * hardware for SYNC IO.
1274 */
1275 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1276 {
1277 const int is_sync = op_is_sync(bio->bi_opf);
1278 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1279 struct blk_mq_alloc_data data;
1280 struct request *rq;
1281 unsigned int request_count = 0;
1282 struct blk_plug *plug;
1283 struct request *same_queue_rq = NULL;
1284 blk_qc_t cookie;
1285
1286 blk_queue_bounce(q, &bio);
1287
1288 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1289 bio_io_error(bio);
1290 return BLK_QC_T_NONE;
1291 }
1292
1293 blk_queue_split(q, &bio, q->bio_split);
1294
1295 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1296 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1297 return BLK_QC_T_NONE;
1298
1299 rq = blk_mq_map_request(q, bio, &data);
1300 if (unlikely(!rq))
1301 return BLK_QC_T_NONE;
1302
1303 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1304
1305 if (unlikely(is_flush_fua)) {
1306 blk_mq_bio_to_request(rq, bio);
1307 blk_insert_flush(rq);
1308 goto run_queue;
1309 }
1310
1311 plug = current->plug;
1312 /*
1313 * If the driver supports defer issued based on 'last', then
1314 * queue it up like normal since we can potentially save some
1315 * CPU this way.
1316 */
1317 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1318 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1319 struct request *old_rq = NULL;
1320
1321 blk_mq_bio_to_request(rq, bio);
1322
1323 /*
1324 * We do limited pluging. If the bio can be merged, do that.
1325 * Otherwise the existing request in the plug list will be
1326 * issued. So the plug list will have one request at most
1327 */
1328 if (plug) {
1329 /*
1330 * The plug list might get flushed before this. If that
1331 * happens, same_queue_rq is invalid and plug list is
1332 * empty
1333 */
1334 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1335 old_rq = same_queue_rq;
1336 list_del_init(&old_rq->queuelist);
1337 }
1338 list_add_tail(&rq->queuelist, &plug->mq_list);
1339 } else /* is_sync */
1340 old_rq = rq;
1341 blk_mq_put_ctx(data.ctx);
1342 if (!old_rq)
1343 goto done;
1344 blk_mq_try_issue_directly(data.hctx, old_rq, &cookie);
1345 goto done;
1346 }
1347
1348 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1349 /*
1350 * For a SYNC request, send it to the hardware immediately. For
1351 * an ASYNC request, just ensure that we run it later on. The
1352 * latter allows for merging opportunities and more efficient
1353 * dispatching.
1354 */
1355 run_queue:
1356 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1357 }
1358 blk_mq_put_ctx(data.ctx);
1359 done:
1360 return cookie;
1361 }
1362
1363 /*
1364 * Single hardware queue variant. This will attempt to use any per-process
1365 * plug for merging and IO deferral.
1366 */
1367 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1368 {
1369 const int is_sync = op_is_sync(bio->bi_opf);
1370 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1371 struct blk_plug *plug;
1372 unsigned int request_count = 0;
1373 struct blk_mq_alloc_data data;
1374 struct request *rq;
1375 blk_qc_t cookie;
1376
1377 blk_queue_bounce(q, &bio);
1378
1379 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1380 bio_io_error(bio);
1381 return BLK_QC_T_NONE;
1382 }
1383
1384 blk_queue_split(q, &bio, q->bio_split);
1385
1386 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1387 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1388 return BLK_QC_T_NONE;
1389 } else
1390 request_count = blk_plug_queued_count(q);
1391
1392 rq = blk_mq_map_request(q, bio, &data);
1393 if (unlikely(!rq))
1394 return BLK_QC_T_NONE;
1395
1396 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1397
1398 if (unlikely(is_flush_fua)) {
1399 blk_mq_bio_to_request(rq, bio);
1400 blk_insert_flush(rq);
1401 goto run_queue;
1402 }
1403
1404 /*
1405 * A task plug currently exists. Since this is completely lockless,
1406 * utilize that to temporarily store requests until the task is
1407 * either done or scheduled away.
1408 */
1409 plug = current->plug;
1410 if (plug) {
1411 blk_mq_bio_to_request(rq, bio);
1412 if (!request_count)
1413 trace_block_plug(q);
1414
1415 blk_mq_put_ctx(data.ctx);
1416
1417 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1418 blk_flush_plug_list(plug, false);
1419 trace_block_plug(q);
1420 }
1421
1422 list_add_tail(&rq->queuelist, &plug->mq_list);
1423 return cookie;
1424 }
1425
1426 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1427 /*
1428 * For a SYNC request, send it to the hardware immediately. For
1429 * an ASYNC request, just ensure that we run it later on. The
1430 * latter allows for merging opportunities and more efficient
1431 * dispatching.
1432 */
1433 run_queue:
1434 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1435 }
1436
1437 blk_mq_put_ctx(data.ctx);
1438 return cookie;
1439 }
1440
1441 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1442 struct blk_mq_tags *tags, unsigned int hctx_idx)
1443 {
1444 struct page *page;
1445
1446 if (tags->rqs && set->ops->exit_request) {
1447 int i;
1448
1449 for (i = 0; i < tags->nr_tags; i++) {
1450 if (!tags->rqs[i])
1451 continue;
1452 set->ops->exit_request(set->driver_data, tags->rqs[i],
1453 hctx_idx, i);
1454 tags->rqs[i] = NULL;
1455 }
1456 }
1457
1458 while (!list_empty(&tags->page_list)) {
1459 page = list_first_entry(&tags->page_list, struct page, lru);
1460 list_del_init(&page->lru);
1461 /*
1462 * Remove kmemleak object previously allocated in
1463 * blk_mq_init_rq_map().
1464 */
1465 kmemleak_free(page_address(page));
1466 __free_pages(page, page->private);
1467 }
1468
1469 kfree(tags->rqs);
1470
1471 blk_mq_free_tags(tags);
1472 }
1473
1474 static size_t order_to_size(unsigned int order)
1475 {
1476 return (size_t)PAGE_SIZE << order;
1477 }
1478
1479 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1480 unsigned int hctx_idx)
1481 {
1482 struct blk_mq_tags *tags;
1483 unsigned int i, j, entries_per_page, max_order = 4;
1484 size_t rq_size, left;
1485
1486 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1487 set->numa_node,
1488 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1489 if (!tags)
1490 return NULL;
1491
1492 INIT_LIST_HEAD(&tags->page_list);
1493
1494 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1495 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1496 set->numa_node);
1497 if (!tags->rqs) {
1498 blk_mq_free_tags(tags);
1499 return NULL;
1500 }
1501
1502 /*
1503 * rq_size is the size of the request plus driver payload, rounded
1504 * to the cacheline size
1505 */
1506 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1507 cache_line_size());
1508 left = rq_size * set->queue_depth;
1509
1510 for (i = 0; i < set->queue_depth; ) {
1511 int this_order = max_order;
1512 struct page *page;
1513 int to_do;
1514 void *p;
1515
1516 while (this_order && left < order_to_size(this_order - 1))
1517 this_order--;
1518
1519 do {
1520 page = alloc_pages_node(set->numa_node,
1521 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1522 this_order);
1523 if (page)
1524 break;
1525 if (!this_order--)
1526 break;
1527 if (order_to_size(this_order) < rq_size)
1528 break;
1529 } while (1);
1530
1531 if (!page)
1532 goto fail;
1533
1534 page->private = this_order;
1535 list_add_tail(&page->lru, &tags->page_list);
1536
1537 p = page_address(page);
1538 /*
1539 * Allow kmemleak to scan these pages as they contain pointers
1540 * to additional allocations like via ops->init_request().
1541 */
1542 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1543 entries_per_page = order_to_size(this_order) / rq_size;
1544 to_do = min(entries_per_page, set->queue_depth - i);
1545 left -= to_do * rq_size;
1546 for (j = 0; j < to_do; j++) {
1547 tags->rqs[i] = p;
1548 if (set->ops->init_request) {
1549 if (set->ops->init_request(set->driver_data,
1550 tags->rqs[i], hctx_idx, i,
1551 set->numa_node)) {
1552 tags->rqs[i] = NULL;
1553 goto fail;
1554 }
1555 }
1556
1557 p += rq_size;
1558 i++;
1559 }
1560 }
1561 return tags;
1562
1563 fail:
1564 blk_mq_free_rq_map(set, tags, hctx_idx);
1565 return NULL;
1566 }
1567
1568 /*
1569 * 'cpu' is going away. splice any existing rq_list entries from this
1570 * software queue to the hw queue dispatch list, and ensure that it
1571 * gets run.
1572 */
1573 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1574 {
1575 struct blk_mq_hw_ctx *hctx;
1576 struct blk_mq_ctx *ctx;
1577 LIST_HEAD(tmp);
1578
1579 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1580 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1581
1582 spin_lock(&ctx->lock);
1583 if (!list_empty(&ctx->rq_list)) {
1584 list_splice_init(&ctx->rq_list, &tmp);
1585 blk_mq_hctx_clear_pending(hctx, ctx);
1586 }
1587 spin_unlock(&ctx->lock);
1588
1589 if (list_empty(&tmp))
1590 return 0;
1591
1592 spin_lock(&hctx->lock);
1593 list_splice_tail_init(&tmp, &hctx->dispatch);
1594 spin_unlock(&hctx->lock);
1595
1596 blk_mq_run_hw_queue(hctx, true);
1597 return 0;
1598 }
1599
1600 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1601 {
1602 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1603 &hctx->cpuhp_dead);
1604 }
1605
1606 /* hctx->ctxs will be freed in queue's release handler */
1607 static void blk_mq_exit_hctx(struct request_queue *q,
1608 struct blk_mq_tag_set *set,
1609 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1610 {
1611 unsigned flush_start_tag = set->queue_depth;
1612
1613 blk_mq_tag_idle(hctx);
1614
1615 if (set->ops->exit_request)
1616 set->ops->exit_request(set->driver_data,
1617 hctx->fq->flush_rq, hctx_idx,
1618 flush_start_tag + hctx_idx);
1619
1620 if (set->ops->exit_hctx)
1621 set->ops->exit_hctx(hctx, hctx_idx);
1622
1623 blk_mq_remove_cpuhp(hctx);
1624 blk_free_flush_queue(hctx->fq);
1625 sbitmap_free(&hctx->ctx_map);
1626 }
1627
1628 static void blk_mq_exit_hw_queues(struct request_queue *q,
1629 struct blk_mq_tag_set *set, int nr_queue)
1630 {
1631 struct blk_mq_hw_ctx *hctx;
1632 unsigned int i;
1633
1634 queue_for_each_hw_ctx(q, hctx, i) {
1635 if (i == nr_queue)
1636 break;
1637 blk_mq_exit_hctx(q, set, hctx, i);
1638 }
1639 }
1640
1641 static void blk_mq_free_hw_queues(struct request_queue *q,
1642 struct blk_mq_tag_set *set)
1643 {
1644 struct blk_mq_hw_ctx *hctx;
1645 unsigned int i;
1646
1647 queue_for_each_hw_ctx(q, hctx, i)
1648 free_cpumask_var(hctx->cpumask);
1649 }
1650
1651 static int blk_mq_init_hctx(struct request_queue *q,
1652 struct blk_mq_tag_set *set,
1653 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1654 {
1655 int node;
1656 unsigned flush_start_tag = set->queue_depth;
1657
1658 node = hctx->numa_node;
1659 if (node == NUMA_NO_NODE)
1660 node = hctx->numa_node = set->numa_node;
1661
1662 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1663 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1664 spin_lock_init(&hctx->lock);
1665 INIT_LIST_HEAD(&hctx->dispatch);
1666 hctx->queue = q;
1667 hctx->queue_num = hctx_idx;
1668 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1669
1670 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1671
1672 hctx->tags = set->tags[hctx_idx];
1673
1674 /*
1675 * Allocate space for all possible cpus to avoid allocation at
1676 * runtime
1677 */
1678 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1679 GFP_KERNEL, node);
1680 if (!hctx->ctxs)
1681 goto unregister_cpu_notifier;
1682
1683 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1684 node))
1685 goto free_ctxs;
1686
1687 hctx->nr_ctx = 0;
1688
1689 if (set->ops->init_hctx &&
1690 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1691 goto free_bitmap;
1692
1693 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1694 if (!hctx->fq)
1695 goto exit_hctx;
1696
1697 if (set->ops->init_request &&
1698 set->ops->init_request(set->driver_data,
1699 hctx->fq->flush_rq, hctx_idx,
1700 flush_start_tag + hctx_idx, node))
1701 goto free_fq;
1702
1703 return 0;
1704
1705 free_fq:
1706 kfree(hctx->fq);
1707 exit_hctx:
1708 if (set->ops->exit_hctx)
1709 set->ops->exit_hctx(hctx, hctx_idx);
1710 free_bitmap:
1711 sbitmap_free(&hctx->ctx_map);
1712 free_ctxs:
1713 kfree(hctx->ctxs);
1714 unregister_cpu_notifier:
1715 blk_mq_remove_cpuhp(hctx);
1716 return -1;
1717 }
1718
1719 static void blk_mq_init_cpu_queues(struct request_queue *q,
1720 unsigned int nr_hw_queues)
1721 {
1722 unsigned int i;
1723
1724 for_each_possible_cpu(i) {
1725 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1726 struct blk_mq_hw_ctx *hctx;
1727
1728 memset(__ctx, 0, sizeof(*__ctx));
1729 __ctx->cpu = i;
1730 spin_lock_init(&__ctx->lock);
1731 INIT_LIST_HEAD(&__ctx->rq_list);
1732 __ctx->queue = q;
1733
1734 /* If the cpu isn't online, the cpu is mapped to first hctx */
1735 if (!cpu_online(i))
1736 continue;
1737
1738 hctx = blk_mq_map_queue(q, i);
1739
1740 /*
1741 * Set local node, IFF we have more than one hw queue. If
1742 * not, we remain on the home node of the device
1743 */
1744 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1745 hctx->numa_node = local_memory_node(cpu_to_node(i));
1746 }
1747 }
1748
1749 static void blk_mq_map_swqueue(struct request_queue *q,
1750 const struct cpumask *online_mask)
1751 {
1752 unsigned int i;
1753 struct blk_mq_hw_ctx *hctx;
1754 struct blk_mq_ctx *ctx;
1755 struct blk_mq_tag_set *set = q->tag_set;
1756
1757 /*
1758 * Avoid others reading imcomplete hctx->cpumask through sysfs
1759 */
1760 mutex_lock(&q->sysfs_lock);
1761
1762 queue_for_each_hw_ctx(q, hctx, i) {
1763 cpumask_clear(hctx->cpumask);
1764 hctx->nr_ctx = 0;
1765 }
1766
1767 /*
1768 * Map software to hardware queues
1769 */
1770 for_each_possible_cpu(i) {
1771 /* If the cpu isn't online, the cpu is mapped to first hctx */
1772 if (!cpumask_test_cpu(i, online_mask))
1773 continue;
1774
1775 ctx = per_cpu_ptr(q->queue_ctx, i);
1776 hctx = blk_mq_map_queue(q, i);
1777
1778 cpumask_set_cpu(i, hctx->cpumask);
1779 ctx->index_hw = hctx->nr_ctx;
1780 hctx->ctxs[hctx->nr_ctx++] = ctx;
1781 }
1782
1783 mutex_unlock(&q->sysfs_lock);
1784
1785 queue_for_each_hw_ctx(q, hctx, i) {
1786 /*
1787 * If no software queues are mapped to this hardware queue,
1788 * disable it and free the request entries.
1789 */
1790 if (!hctx->nr_ctx) {
1791 if (set->tags[i]) {
1792 blk_mq_free_rq_map(set, set->tags[i], i);
1793 set->tags[i] = NULL;
1794 }
1795 hctx->tags = NULL;
1796 continue;
1797 }
1798
1799 /* unmapped hw queue can be remapped after CPU topo changed */
1800 if (!set->tags[i])
1801 set->tags[i] = blk_mq_init_rq_map(set, i);
1802 hctx->tags = set->tags[i];
1803 WARN_ON(!hctx->tags);
1804
1805 /*
1806 * Set the map size to the number of mapped software queues.
1807 * This is more accurate and more efficient than looping
1808 * over all possibly mapped software queues.
1809 */
1810 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
1811
1812 /*
1813 * Initialize batch roundrobin counts
1814 */
1815 hctx->next_cpu = cpumask_first(hctx->cpumask);
1816 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1817 }
1818 }
1819
1820 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1821 {
1822 struct blk_mq_hw_ctx *hctx;
1823 int i;
1824
1825 queue_for_each_hw_ctx(q, hctx, i) {
1826 if (shared)
1827 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1828 else
1829 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1830 }
1831 }
1832
1833 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
1834 {
1835 struct request_queue *q;
1836
1837 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1838 blk_mq_freeze_queue(q);
1839 queue_set_hctx_shared(q, shared);
1840 blk_mq_unfreeze_queue(q);
1841 }
1842 }
1843
1844 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1845 {
1846 struct blk_mq_tag_set *set = q->tag_set;
1847
1848 mutex_lock(&set->tag_list_lock);
1849 list_del_init(&q->tag_set_list);
1850 if (list_is_singular(&set->tag_list)) {
1851 /* just transitioned to unshared */
1852 set->flags &= ~BLK_MQ_F_TAG_SHARED;
1853 /* update existing queue */
1854 blk_mq_update_tag_set_depth(set, false);
1855 }
1856 mutex_unlock(&set->tag_list_lock);
1857 }
1858
1859 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1860 struct request_queue *q)
1861 {
1862 q->tag_set = set;
1863
1864 mutex_lock(&set->tag_list_lock);
1865
1866 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
1867 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
1868 set->flags |= BLK_MQ_F_TAG_SHARED;
1869 /* update existing queue */
1870 blk_mq_update_tag_set_depth(set, true);
1871 }
1872 if (set->flags & BLK_MQ_F_TAG_SHARED)
1873 queue_set_hctx_shared(q, true);
1874 list_add_tail(&q->tag_set_list, &set->tag_list);
1875
1876 mutex_unlock(&set->tag_list_lock);
1877 }
1878
1879 /*
1880 * It is the actual release handler for mq, but we do it from
1881 * request queue's release handler for avoiding use-after-free
1882 * and headache because q->mq_kobj shouldn't have been introduced,
1883 * but we can't group ctx/kctx kobj without it.
1884 */
1885 void blk_mq_release(struct request_queue *q)
1886 {
1887 struct blk_mq_hw_ctx *hctx;
1888 unsigned int i;
1889
1890 /* hctx kobj stays in hctx */
1891 queue_for_each_hw_ctx(q, hctx, i) {
1892 if (!hctx)
1893 continue;
1894 kfree(hctx->ctxs);
1895 kfree(hctx);
1896 }
1897
1898 q->mq_map = NULL;
1899
1900 kfree(q->queue_hw_ctx);
1901
1902 /* ctx kobj stays in queue_ctx */
1903 free_percpu(q->queue_ctx);
1904 }
1905
1906 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1907 {
1908 struct request_queue *uninit_q, *q;
1909
1910 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1911 if (!uninit_q)
1912 return ERR_PTR(-ENOMEM);
1913
1914 q = blk_mq_init_allocated_queue(set, uninit_q);
1915 if (IS_ERR(q))
1916 blk_cleanup_queue(uninit_q);
1917
1918 return q;
1919 }
1920 EXPORT_SYMBOL(blk_mq_init_queue);
1921
1922 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
1923 struct request_queue *q)
1924 {
1925 int i, j;
1926 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
1927
1928 blk_mq_sysfs_unregister(q);
1929 for (i = 0; i < set->nr_hw_queues; i++) {
1930 int node;
1931
1932 if (hctxs[i])
1933 continue;
1934
1935 node = blk_mq_hw_queue_to_node(q->mq_map, i);
1936 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1937 GFP_KERNEL, node);
1938 if (!hctxs[i])
1939 break;
1940
1941 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1942 node)) {
1943 kfree(hctxs[i]);
1944 hctxs[i] = NULL;
1945 break;
1946 }
1947
1948 atomic_set(&hctxs[i]->nr_active, 0);
1949 hctxs[i]->numa_node = node;
1950 hctxs[i]->queue_num = i;
1951
1952 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
1953 free_cpumask_var(hctxs[i]->cpumask);
1954 kfree(hctxs[i]);
1955 hctxs[i] = NULL;
1956 break;
1957 }
1958 blk_mq_hctx_kobj_init(hctxs[i]);
1959 }
1960 for (j = i; j < q->nr_hw_queues; j++) {
1961 struct blk_mq_hw_ctx *hctx = hctxs[j];
1962
1963 if (hctx) {
1964 if (hctx->tags) {
1965 blk_mq_free_rq_map(set, hctx->tags, j);
1966 set->tags[j] = NULL;
1967 }
1968 blk_mq_exit_hctx(q, set, hctx, j);
1969 free_cpumask_var(hctx->cpumask);
1970 kobject_put(&hctx->kobj);
1971 kfree(hctx->ctxs);
1972 kfree(hctx);
1973 hctxs[j] = NULL;
1974
1975 }
1976 }
1977 q->nr_hw_queues = i;
1978 blk_mq_sysfs_register(q);
1979 }
1980
1981 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
1982 struct request_queue *q)
1983 {
1984 /* mark the queue as mq asap */
1985 q->mq_ops = set->ops;
1986
1987 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
1988 if (!q->queue_ctx)
1989 goto err_exit;
1990
1991 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
1992 GFP_KERNEL, set->numa_node);
1993 if (!q->queue_hw_ctx)
1994 goto err_percpu;
1995
1996 q->mq_map = set->mq_map;
1997
1998 blk_mq_realloc_hw_ctxs(set, q);
1999 if (!q->nr_hw_queues)
2000 goto err_hctxs;
2001
2002 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2003 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2004
2005 q->nr_queues = nr_cpu_ids;
2006
2007 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2008
2009 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2010 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2011
2012 q->sg_reserved_size = INT_MAX;
2013
2014 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2015 INIT_LIST_HEAD(&q->requeue_list);
2016 spin_lock_init(&q->requeue_lock);
2017
2018 if (q->nr_hw_queues > 1)
2019 blk_queue_make_request(q, blk_mq_make_request);
2020 else
2021 blk_queue_make_request(q, blk_sq_make_request);
2022
2023 /*
2024 * Do this after blk_queue_make_request() overrides it...
2025 */
2026 q->nr_requests = set->queue_depth;
2027
2028 if (set->ops->complete)
2029 blk_queue_softirq_done(q, set->ops->complete);
2030
2031 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2032
2033 get_online_cpus();
2034 mutex_lock(&all_q_mutex);
2035
2036 list_add_tail(&q->all_q_node, &all_q_list);
2037 blk_mq_add_queue_tag_set(set, q);
2038 blk_mq_map_swqueue(q, cpu_online_mask);
2039
2040 mutex_unlock(&all_q_mutex);
2041 put_online_cpus();
2042
2043 return q;
2044
2045 err_hctxs:
2046 kfree(q->queue_hw_ctx);
2047 err_percpu:
2048 free_percpu(q->queue_ctx);
2049 err_exit:
2050 q->mq_ops = NULL;
2051 return ERR_PTR(-ENOMEM);
2052 }
2053 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2054
2055 void blk_mq_free_queue(struct request_queue *q)
2056 {
2057 struct blk_mq_tag_set *set = q->tag_set;
2058
2059 mutex_lock(&all_q_mutex);
2060 list_del_init(&q->all_q_node);
2061 mutex_unlock(&all_q_mutex);
2062
2063 blk_mq_del_queue_tag_set(q);
2064
2065 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2066 blk_mq_free_hw_queues(q, set);
2067 }
2068
2069 /* Basically redo blk_mq_init_queue with queue frozen */
2070 static void blk_mq_queue_reinit(struct request_queue *q,
2071 const struct cpumask *online_mask)
2072 {
2073 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2074
2075 blk_mq_sysfs_unregister(q);
2076
2077 /*
2078 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2079 * we should change hctx numa_node according to new topology (this
2080 * involves free and re-allocate memory, worthy doing?)
2081 */
2082
2083 blk_mq_map_swqueue(q, online_mask);
2084
2085 blk_mq_sysfs_register(q);
2086 }
2087
2088 /*
2089 * New online cpumask which is going to be set in this hotplug event.
2090 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2091 * one-by-one and dynamically allocating this could result in a failure.
2092 */
2093 static struct cpumask cpuhp_online_new;
2094
2095 static void blk_mq_queue_reinit_work(void)
2096 {
2097 struct request_queue *q;
2098
2099 mutex_lock(&all_q_mutex);
2100 /*
2101 * We need to freeze and reinit all existing queues. Freezing
2102 * involves synchronous wait for an RCU grace period and doing it
2103 * one by one may take a long time. Start freezing all queues in
2104 * one swoop and then wait for the completions so that freezing can
2105 * take place in parallel.
2106 */
2107 list_for_each_entry(q, &all_q_list, all_q_node)
2108 blk_mq_freeze_queue_start(q);
2109 list_for_each_entry(q, &all_q_list, all_q_node) {
2110 blk_mq_freeze_queue_wait(q);
2111
2112 /*
2113 * timeout handler can't touch hw queue during the
2114 * reinitialization
2115 */
2116 del_timer_sync(&q->timeout);
2117 }
2118
2119 list_for_each_entry(q, &all_q_list, all_q_node)
2120 blk_mq_queue_reinit(q, &cpuhp_online_new);
2121
2122 list_for_each_entry(q, &all_q_list, all_q_node)
2123 blk_mq_unfreeze_queue(q);
2124
2125 mutex_unlock(&all_q_mutex);
2126 }
2127
2128 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2129 {
2130 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2131 blk_mq_queue_reinit_work();
2132 return 0;
2133 }
2134
2135 /*
2136 * Before hotadded cpu starts handling requests, new mappings must be
2137 * established. Otherwise, these requests in hw queue might never be
2138 * dispatched.
2139 *
2140 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2141 * for CPU0, and ctx1 for CPU1).
2142 *
2143 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2144 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2145 *
2146 * And then while running hw queue, flush_busy_ctxs() finds bit0 is set in
2147 * pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2148 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list
2149 * is ignored.
2150 */
2151 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2152 {
2153 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2154 cpumask_set_cpu(cpu, &cpuhp_online_new);
2155 blk_mq_queue_reinit_work();
2156 return 0;
2157 }
2158
2159 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2160 {
2161 int i;
2162
2163 for (i = 0; i < set->nr_hw_queues; i++) {
2164 set->tags[i] = blk_mq_init_rq_map(set, i);
2165 if (!set->tags[i])
2166 goto out_unwind;
2167 }
2168
2169 return 0;
2170
2171 out_unwind:
2172 while (--i >= 0)
2173 blk_mq_free_rq_map(set, set->tags[i], i);
2174
2175 return -ENOMEM;
2176 }
2177
2178 /*
2179 * Allocate the request maps associated with this tag_set. Note that this
2180 * may reduce the depth asked for, if memory is tight. set->queue_depth
2181 * will be updated to reflect the allocated depth.
2182 */
2183 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2184 {
2185 unsigned int depth;
2186 int err;
2187
2188 depth = set->queue_depth;
2189 do {
2190 err = __blk_mq_alloc_rq_maps(set);
2191 if (!err)
2192 break;
2193
2194 set->queue_depth >>= 1;
2195 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2196 err = -ENOMEM;
2197 break;
2198 }
2199 } while (set->queue_depth);
2200
2201 if (!set->queue_depth || err) {
2202 pr_err("blk-mq: failed to allocate request map\n");
2203 return -ENOMEM;
2204 }
2205
2206 if (depth != set->queue_depth)
2207 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2208 depth, set->queue_depth);
2209
2210 return 0;
2211 }
2212
2213 /*
2214 * Alloc a tag set to be associated with one or more request queues.
2215 * May fail with EINVAL for various error conditions. May adjust the
2216 * requested depth down, if if it too large. In that case, the set
2217 * value will be stored in set->queue_depth.
2218 */
2219 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2220 {
2221 int ret;
2222
2223 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2224
2225 if (!set->nr_hw_queues)
2226 return -EINVAL;
2227 if (!set->queue_depth)
2228 return -EINVAL;
2229 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2230 return -EINVAL;
2231
2232 if (!set->ops->queue_rq)
2233 return -EINVAL;
2234
2235 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2236 pr_info("blk-mq: reduced tag depth to %u\n",
2237 BLK_MQ_MAX_DEPTH);
2238 set->queue_depth = BLK_MQ_MAX_DEPTH;
2239 }
2240
2241 /*
2242 * If a crashdump is active, then we are potentially in a very
2243 * memory constrained environment. Limit us to 1 queue and
2244 * 64 tags to prevent using too much memory.
2245 */
2246 if (is_kdump_kernel()) {
2247 set->nr_hw_queues = 1;
2248 set->queue_depth = min(64U, set->queue_depth);
2249 }
2250 /*
2251 * There is no use for more h/w queues than cpus.
2252 */
2253 if (set->nr_hw_queues > nr_cpu_ids)
2254 set->nr_hw_queues = nr_cpu_ids;
2255
2256 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2257 GFP_KERNEL, set->numa_node);
2258 if (!set->tags)
2259 return -ENOMEM;
2260
2261 ret = -ENOMEM;
2262 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2263 GFP_KERNEL, set->numa_node);
2264 if (!set->mq_map)
2265 goto out_free_tags;
2266
2267 if (set->ops->map_queues)
2268 ret = set->ops->map_queues(set);
2269 else
2270 ret = blk_mq_map_queues(set);
2271 if (ret)
2272 goto out_free_mq_map;
2273
2274 ret = blk_mq_alloc_rq_maps(set);
2275 if (ret)
2276 goto out_free_mq_map;
2277
2278 mutex_init(&set->tag_list_lock);
2279 INIT_LIST_HEAD(&set->tag_list);
2280
2281 return 0;
2282
2283 out_free_mq_map:
2284 kfree(set->mq_map);
2285 set->mq_map = NULL;
2286 out_free_tags:
2287 kfree(set->tags);
2288 set->tags = NULL;
2289 return ret;
2290 }
2291 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2292
2293 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2294 {
2295 int i;
2296
2297 for (i = 0; i < nr_cpu_ids; i++) {
2298 if (set->tags[i])
2299 blk_mq_free_rq_map(set, set->tags[i], i);
2300 }
2301
2302 kfree(set->mq_map);
2303 set->mq_map = NULL;
2304
2305 kfree(set->tags);
2306 set->tags = NULL;
2307 }
2308 EXPORT_SYMBOL(blk_mq_free_tag_set);
2309
2310 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2311 {
2312 struct blk_mq_tag_set *set = q->tag_set;
2313 struct blk_mq_hw_ctx *hctx;
2314 int i, ret;
2315
2316 if (!set || nr > set->queue_depth)
2317 return -EINVAL;
2318
2319 ret = 0;
2320 queue_for_each_hw_ctx(q, hctx, i) {
2321 if (!hctx->tags)
2322 continue;
2323 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2324 if (ret)
2325 break;
2326 }
2327
2328 if (!ret)
2329 q->nr_requests = nr;
2330
2331 return ret;
2332 }
2333
2334 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2335 {
2336 struct request_queue *q;
2337
2338 if (nr_hw_queues > nr_cpu_ids)
2339 nr_hw_queues = nr_cpu_ids;
2340 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2341 return;
2342
2343 list_for_each_entry(q, &set->tag_list, tag_set_list)
2344 blk_mq_freeze_queue(q);
2345
2346 set->nr_hw_queues = nr_hw_queues;
2347 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2348 blk_mq_realloc_hw_ctxs(set, q);
2349
2350 if (q->nr_hw_queues > 1)
2351 blk_queue_make_request(q, blk_mq_make_request);
2352 else
2353 blk_queue_make_request(q, blk_sq_make_request);
2354
2355 blk_mq_queue_reinit(q, cpu_online_mask);
2356 }
2357
2358 list_for_each_entry(q, &set->tag_list, tag_set_list)
2359 blk_mq_unfreeze_queue(q);
2360 }
2361 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2362
2363 void blk_mq_disable_hotplug(void)
2364 {
2365 mutex_lock(&all_q_mutex);
2366 }
2367
2368 void blk_mq_enable_hotplug(void)
2369 {
2370 mutex_unlock(&all_q_mutex);
2371 }
2372
2373 static int __init blk_mq_init(void)
2374 {
2375 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2376 blk_mq_hctx_notify_dead);
2377
2378 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2379 blk_mq_queue_reinit_prepare,
2380 blk_mq_queue_reinit_dead);
2381 return 0;
2382 }
2383 subsys_initcall(blk_mq_init);