]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-mq.c
Merge tag 'for-linus-4.11' of git://git.code.sf.net/p/openipmi/linux-ipmi
[mirror_ubuntu-artful-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
25 #include <linux/prefetch.h>
26
27 #include <trace/events/block.h>
28
29 #include <linux/blk-mq.h>
30 #include "blk.h"
31 #include "blk-mq.h"
32 #include "blk-mq-tag.h"
33 #include "blk-stat.h"
34 #include "blk-wbt.h"
35 #include "blk-mq-sched.h"
36
37 static DEFINE_MUTEX(all_q_mutex);
38 static LIST_HEAD(all_q_list);
39
40 /*
41 * Check if any of the ctx's have pending work in this hardware queue
42 */
43 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
44 {
45 return sbitmap_any_bit_set(&hctx->ctx_map) ||
46 !list_empty_careful(&hctx->dispatch) ||
47 blk_mq_sched_has_work(hctx);
48 }
49
50 /*
51 * Mark this ctx as having pending work in this hardware queue
52 */
53 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
54 struct blk_mq_ctx *ctx)
55 {
56 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
57 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
58 }
59
60 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
61 struct blk_mq_ctx *ctx)
62 {
63 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
64 }
65
66 void blk_mq_freeze_queue_start(struct request_queue *q)
67 {
68 int freeze_depth;
69
70 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
71 if (freeze_depth == 1) {
72 percpu_ref_kill(&q->q_usage_counter);
73 blk_mq_run_hw_queues(q, false);
74 }
75 }
76 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
77
78 static void blk_mq_freeze_queue_wait(struct request_queue *q)
79 {
80 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
81 }
82
83 /*
84 * Guarantee no request is in use, so we can change any data structure of
85 * the queue afterward.
86 */
87 void blk_freeze_queue(struct request_queue *q)
88 {
89 /*
90 * In the !blk_mq case we are only calling this to kill the
91 * q_usage_counter, otherwise this increases the freeze depth
92 * and waits for it to return to zero. For this reason there is
93 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
94 * exported to drivers as the only user for unfreeze is blk_mq.
95 */
96 blk_mq_freeze_queue_start(q);
97 blk_mq_freeze_queue_wait(q);
98 }
99
100 void blk_mq_freeze_queue(struct request_queue *q)
101 {
102 /*
103 * ...just an alias to keep freeze and unfreeze actions balanced
104 * in the blk_mq_* namespace
105 */
106 blk_freeze_queue(q);
107 }
108 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
109
110 void blk_mq_unfreeze_queue(struct request_queue *q)
111 {
112 int freeze_depth;
113
114 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
115 WARN_ON_ONCE(freeze_depth < 0);
116 if (!freeze_depth) {
117 percpu_ref_reinit(&q->q_usage_counter);
118 wake_up_all(&q->mq_freeze_wq);
119 }
120 }
121 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
122
123 /**
124 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
125 * @q: request queue.
126 *
127 * Note: this function does not prevent that the struct request end_io()
128 * callback function is invoked. Additionally, it is not prevented that
129 * new queue_rq() calls occur unless the queue has been stopped first.
130 */
131 void blk_mq_quiesce_queue(struct request_queue *q)
132 {
133 struct blk_mq_hw_ctx *hctx;
134 unsigned int i;
135 bool rcu = false;
136
137 blk_mq_stop_hw_queues(q);
138
139 queue_for_each_hw_ctx(q, hctx, i) {
140 if (hctx->flags & BLK_MQ_F_BLOCKING)
141 synchronize_srcu(&hctx->queue_rq_srcu);
142 else
143 rcu = true;
144 }
145 if (rcu)
146 synchronize_rcu();
147 }
148 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
149
150 void blk_mq_wake_waiters(struct request_queue *q)
151 {
152 struct blk_mq_hw_ctx *hctx;
153 unsigned int i;
154
155 queue_for_each_hw_ctx(q, hctx, i)
156 if (blk_mq_hw_queue_mapped(hctx))
157 blk_mq_tag_wakeup_all(hctx->tags, true);
158
159 /*
160 * If we are called because the queue has now been marked as
161 * dying, we need to ensure that processes currently waiting on
162 * the queue are notified as well.
163 */
164 wake_up_all(&q->mq_freeze_wq);
165 }
166
167 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
168 {
169 return blk_mq_has_free_tags(hctx->tags);
170 }
171 EXPORT_SYMBOL(blk_mq_can_queue);
172
173 void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
174 struct request *rq, unsigned int op)
175 {
176 INIT_LIST_HEAD(&rq->queuelist);
177 /* csd/requeue_work/fifo_time is initialized before use */
178 rq->q = q;
179 rq->mq_ctx = ctx;
180 rq->cmd_flags = op;
181 if (blk_queue_io_stat(q))
182 rq->rq_flags |= RQF_IO_STAT;
183 /* do not touch atomic flags, it needs atomic ops against the timer */
184 rq->cpu = -1;
185 INIT_HLIST_NODE(&rq->hash);
186 RB_CLEAR_NODE(&rq->rb_node);
187 rq->rq_disk = NULL;
188 rq->part = NULL;
189 rq->start_time = jiffies;
190 #ifdef CONFIG_BLK_CGROUP
191 rq->rl = NULL;
192 set_start_time_ns(rq);
193 rq->io_start_time_ns = 0;
194 #endif
195 rq->nr_phys_segments = 0;
196 #if defined(CONFIG_BLK_DEV_INTEGRITY)
197 rq->nr_integrity_segments = 0;
198 #endif
199 rq->special = NULL;
200 /* tag was already set */
201 rq->errors = 0;
202 rq->extra_len = 0;
203
204 INIT_LIST_HEAD(&rq->timeout_list);
205 rq->timeout = 0;
206
207 rq->end_io = NULL;
208 rq->end_io_data = NULL;
209 rq->next_rq = NULL;
210
211 ctx->rq_dispatched[op_is_sync(op)]++;
212 }
213 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
214
215 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
216 unsigned int op)
217 {
218 struct request *rq;
219 unsigned int tag;
220
221 tag = blk_mq_get_tag(data);
222 if (tag != BLK_MQ_TAG_FAIL) {
223 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
224
225 rq = tags->static_rqs[tag];
226
227 if (data->flags & BLK_MQ_REQ_INTERNAL) {
228 rq->tag = -1;
229 rq->internal_tag = tag;
230 } else {
231 if (blk_mq_tag_busy(data->hctx)) {
232 rq->rq_flags = RQF_MQ_INFLIGHT;
233 atomic_inc(&data->hctx->nr_active);
234 }
235 rq->tag = tag;
236 rq->internal_tag = -1;
237 }
238
239 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
240 return rq;
241 }
242
243 return NULL;
244 }
245 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
246
247 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
248 unsigned int flags)
249 {
250 struct blk_mq_alloc_data alloc_data = { .flags = flags };
251 struct request *rq;
252 int ret;
253
254 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
255 if (ret)
256 return ERR_PTR(ret);
257
258 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
259
260 blk_mq_put_ctx(alloc_data.ctx);
261 blk_queue_exit(q);
262
263 if (!rq)
264 return ERR_PTR(-EWOULDBLOCK);
265
266 rq->__data_len = 0;
267 rq->__sector = (sector_t) -1;
268 rq->bio = rq->biotail = NULL;
269 return rq;
270 }
271 EXPORT_SYMBOL(blk_mq_alloc_request);
272
273 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
274 unsigned int flags, unsigned int hctx_idx)
275 {
276 struct blk_mq_hw_ctx *hctx;
277 struct blk_mq_ctx *ctx;
278 struct request *rq;
279 struct blk_mq_alloc_data alloc_data;
280 int ret;
281
282 /*
283 * If the tag allocator sleeps we could get an allocation for a
284 * different hardware context. No need to complicate the low level
285 * allocator for this for the rare use case of a command tied to
286 * a specific queue.
287 */
288 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
289 return ERR_PTR(-EINVAL);
290
291 if (hctx_idx >= q->nr_hw_queues)
292 return ERR_PTR(-EIO);
293
294 ret = blk_queue_enter(q, true);
295 if (ret)
296 return ERR_PTR(ret);
297
298 /*
299 * Check if the hardware context is actually mapped to anything.
300 * If not tell the caller that it should skip this queue.
301 */
302 hctx = q->queue_hw_ctx[hctx_idx];
303 if (!blk_mq_hw_queue_mapped(hctx)) {
304 ret = -EXDEV;
305 goto out_queue_exit;
306 }
307 ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));
308
309 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
310 rq = __blk_mq_alloc_request(&alloc_data, rw);
311 if (!rq) {
312 ret = -EWOULDBLOCK;
313 goto out_queue_exit;
314 }
315
316 return rq;
317
318 out_queue_exit:
319 blk_queue_exit(q);
320 return ERR_PTR(ret);
321 }
322 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
323
324 void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
325 struct request *rq)
326 {
327 const int sched_tag = rq->internal_tag;
328 struct request_queue *q = rq->q;
329
330 if (rq->rq_flags & RQF_MQ_INFLIGHT)
331 atomic_dec(&hctx->nr_active);
332
333 wbt_done(q->rq_wb, &rq->issue_stat);
334 rq->rq_flags = 0;
335
336 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
337 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
338 if (rq->tag != -1)
339 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
340 if (sched_tag != -1)
341 blk_mq_sched_completed_request(hctx, rq);
342 blk_mq_sched_restart_queues(hctx);
343 blk_queue_exit(q);
344 }
345
346 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
347 struct request *rq)
348 {
349 struct blk_mq_ctx *ctx = rq->mq_ctx;
350
351 ctx->rq_completed[rq_is_sync(rq)]++;
352 __blk_mq_finish_request(hctx, ctx, rq);
353 }
354
355 void blk_mq_finish_request(struct request *rq)
356 {
357 blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
358 }
359
360 void blk_mq_free_request(struct request *rq)
361 {
362 blk_mq_sched_put_request(rq);
363 }
364 EXPORT_SYMBOL_GPL(blk_mq_free_request);
365
366 inline void __blk_mq_end_request(struct request *rq, int error)
367 {
368 blk_account_io_done(rq);
369
370 if (rq->end_io) {
371 wbt_done(rq->q->rq_wb, &rq->issue_stat);
372 rq->end_io(rq, error);
373 } else {
374 if (unlikely(blk_bidi_rq(rq)))
375 blk_mq_free_request(rq->next_rq);
376 blk_mq_free_request(rq);
377 }
378 }
379 EXPORT_SYMBOL(__blk_mq_end_request);
380
381 void blk_mq_end_request(struct request *rq, int error)
382 {
383 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
384 BUG();
385 __blk_mq_end_request(rq, error);
386 }
387 EXPORT_SYMBOL(blk_mq_end_request);
388
389 static void __blk_mq_complete_request_remote(void *data)
390 {
391 struct request *rq = data;
392
393 rq->q->softirq_done_fn(rq);
394 }
395
396 static void blk_mq_ipi_complete_request(struct request *rq)
397 {
398 struct blk_mq_ctx *ctx = rq->mq_ctx;
399 bool shared = false;
400 int cpu;
401
402 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
403 rq->q->softirq_done_fn(rq);
404 return;
405 }
406
407 cpu = get_cpu();
408 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
409 shared = cpus_share_cache(cpu, ctx->cpu);
410
411 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
412 rq->csd.func = __blk_mq_complete_request_remote;
413 rq->csd.info = rq;
414 rq->csd.flags = 0;
415 smp_call_function_single_async(ctx->cpu, &rq->csd);
416 } else {
417 rq->q->softirq_done_fn(rq);
418 }
419 put_cpu();
420 }
421
422 static void blk_mq_stat_add(struct request *rq)
423 {
424 if (rq->rq_flags & RQF_STATS) {
425 /*
426 * We could rq->mq_ctx here, but there's less of a risk
427 * of races if we have the completion event add the stats
428 * to the local software queue.
429 */
430 struct blk_mq_ctx *ctx;
431
432 ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
433 blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
434 }
435 }
436
437 static void __blk_mq_complete_request(struct request *rq)
438 {
439 struct request_queue *q = rq->q;
440
441 blk_mq_stat_add(rq);
442
443 if (!q->softirq_done_fn)
444 blk_mq_end_request(rq, rq->errors);
445 else
446 blk_mq_ipi_complete_request(rq);
447 }
448
449 /**
450 * blk_mq_complete_request - end I/O on a request
451 * @rq: the request being processed
452 *
453 * Description:
454 * Ends all I/O on a request. It does not handle partial completions.
455 * The actual completion happens out-of-order, through a IPI handler.
456 **/
457 void blk_mq_complete_request(struct request *rq, int error)
458 {
459 struct request_queue *q = rq->q;
460
461 if (unlikely(blk_should_fake_timeout(q)))
462 return;
463 if (!blk_mark_rq_complete(rq)) {
464 rq->errors = error;
465 __blk_mq_complete_request(rq);
466 }
467 }
468 EXPORT_SYMBOL(blk_mq_complete_request);
469
470 int blk_mq_request_started(struct request *rq)
471 {
472 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
473 }
474 EXPORT_SYMBOL_GPL(blk_mq_request_started);
475
476 void blk_mq_start_request(struct request *rq)
477 {
478 struct request_queue *q = rq->q;
479
480 blk_mq_sched_started_request(rq);
481
482 trace_block_rq_issue(q, rq);
483
484 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
485 blk_stat_set_issue_time(&rq->issue_stat);
486 rq->rq_flags |= RQF_STATS;
487 wbt_issue(q->rq_wb, &rq->issue_stat);
488 }
489
490 blk_add_timer(rq);
491
492 /*
493 * Ensure that ->deadline is visible before set the started
494 * flag and clear the completed flag.
495 */
496 smp_mb__before_atomic();
497
498 /*
499 * Mark us as started and clear complete. Complete might have been
500 * set if requeue raced with timeout, which then marked it as
501 * complete. So be sure to clear complete again when we start
502 * the request, otherwise we'll ignore the completion event.
503 */
504 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
505 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
506 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
507 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
508
509 if (q->dma_drain_size && blk_rq_bytes(rq)) {
510 /*
511 * Make sure space for the drain appears. We know we can do
512 * this because max_hw_segments has been adjusted to be one
513 * fewer than the device can handle.
514 */
515 rq->nr_phys_segments++;
516 }
517 }
518 EXPORT_SYMBOL(blk_mq_start_request);
519
520 static void __blk_mq_requeue_request(struct request *rq)
521 {
522 struct request_queue *q = rq->q;
523
524 trace_block_rq_requeue(q, rq);
525 wbt_requeue(q->rq_wb, &rq->issue_stat);
526 blk_mq_sched_requeue_request(rq);
527
528 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
529 if (q->dma_drain_size && blk_rq_bytes(rq))
530 rq->nr_phys_segments--;
531 }
532 }
533
534 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
535 {
536 __blk_mq_requeue_request(rq);
537
538 BUG_ON(blk_queued_rq(rq));
539 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
540 }
541 EXPORT_SYMBOL(blk_mq_requeue_request);
542
543 static void blk_mq_requeue_work(struct work_struct *work)
544 {
545 struct request_queue *q =
546 container_of(work, struct request_queue, requeue_work.work);
547 LIST_HEAD(rq_list);
548 struct request *rq, *next;
549 unsigned long flags;
550
551 spin_lock_irqsave(&q->requeue_lock, flags);
552 list_splice_init(&q->requeue_list, &rq_list);
553 spin_unlock_irqrestore(&q->requeue_lock, flags);
554
555 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
556 if (!(rq->rq_flags & RQF_SOFTBARRIER))
557 continue;
558
559 rq->rq_flags &= ~RQF_SOFTBARRIER;
560 list_del_init(&rq->queuelist);
561 blk_mq_sched_insert_request(rq, true, false, false, true);
562 }
563
564 while (!list_empty(&rq_list)) {
565 rq = list_entry(rq_list.next, struct request, queuelist);
566 list_del_init(&rq->queuelist);
567 blk_mq_sched_insert_request(rq, false, false, false, true);
568 }
569
570 blk_mq_run_hw_queues(q, false);
571 }
572
573 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
574 bool kick_requeue_list)
575 {
576 struct request_queue *q = rq->q;
577 unsigned long flags;
578
579 /*
580 * We abuse this flag that is otherwise used by the I/O scheduler to
581 * request head insertation from the workqueue.
582 */
583 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
584
585 spin_lock_irqsave(&q->requeue_lock, flags);
586 if (at_head) {
587 rq->rq_flags |= RQF_SOFTBARRIER;
588 list_add(&rq->queuelist, &q->requeue_list);
589 } else {
590 list_add_tail(&rq->queuelist, &q->requeue_list);
591 }
592 spin_unlock_irqrestore(&q->requeue_lock, flags);
593
594 if (kick_requeue_list)
595 blk_mq_kick_requeue_list(q);
596 }
597 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
598
599 void blk_mq_kick_requeue_list(struct request_queue *q)
600 {
601 kblockd_schedule_delayed_work(&q->requeue_work, 0);
602 }
603 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
604
605 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
606 unsigned long msecs)
607 {
608 kblockd_schedule_delayed_work(&q->requeue_work,
609 msecs_to_jiffies(msecs));
610 }
611 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
612
613 void blk_mq_abort_requeue_list(struct request_queue *q)
614 {
615 unsigned long flags;
616 LIST_HEAD(rq_list);
617
618 spin_lock_irqsave(&q->requeue_lock, flags);
619 list_splice_init(&q->requeue_list, &rq_list);
620 spin_unlock_irqrestore(&q->requeue_lock, flags);
621
622 while (!list_empty(&rq_list)) {
623 struct request *rq;
624
625 rq = list_first_entry(&rq_list, struct request, queuelist);
626 list_del_init(&rq->queuelist);
627 rq->errors = -EIO;
628 blk_mq_end_request(rq, rq->errors);
629 }
630 }
631 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
632
633 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
634 {
635 if (tag < tags->nr_tags) {
636 prefetch(tags->rqs[tag]);
637 return tags->rqs[tag];
638 }
639
640 return NULL;
641 }
642 EXPORT_SYMBOL(blk_mq_tag_to_rq);
643
644 struct blk_mq_timeout_data {
645 unsigned long next;
646 unsigned int next_set;
647 };
648
649 void blk_mq_rq_timed_out(struct request *req, bool reserved)
650 {
651 const struct blk_mq_ops *ops = req->q->mq_ops;
652 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
653
654 /*
655 * We know that complete is set at this point. If STARTED isn't set
656 * anymore, then the request isn't active and the "timeout" should
657 * just be ignored. This can happen due to the bitflag ordering.
658 * Timeout first checks if STARTED is set, and if it is, assumes
659 * the request is active. But if we race with completion, then
660 * we both flags will get cleared. So check here again, and ignore
661 * a timeout event with a request that isn't active.
662 */
663 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
664 return;
665
666 if (ops->timeout)
667 ret = ops->timeout(req, reserved);
668
669 switch (ret) {
670 case BLK_EH_HANDLED:
671 __blk_mq_complete_request(req);
672 break;
673 case BLK_EH_RESET_TIMER:
674 blk_add_timer(req);
675 blk_clear_rq_complete(req);
676 break;
677 case BLK_EH_NOT_HANDLED:
678 break;
679 default:
680 printk(KERN_ERR "block: bad eh return: %d\n", ret);
681 break;
682 }
683 }
684
685 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
686 struct request *rq, void *priv, bool reserved)
687 {
688 struct blk_mq_timeout_data *data = priv;
689
690 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
691 /*
692 * If a request wasn't started before the queue was
693 * marked dying, kill it here or it'll go unnoticed.
694 */
695 if (unlikely(blk_queue_dying(rq->q))) {
696 rq->errors = -EIO;
697 blk_mq_end_request(rq, rq->errors);
698 }
699 return;
700 }
701
702 if (time_after_eq(jiffies, rq->deadline)) {
703 if (!blk_mark_rq_complete(rq))
704 blk_mq_rq_timed_out(rq, reserved);
705 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
706 data->next = rq->deadline;
707 data->next_set = 1;
708 }
709 }
710
711 static void blk_mq_timeout_work(struct work_struct *work)
712 {
713 struct request_queue *q =
714 container_of(work, struct request_queue, timeout_work);
715 struct blk_mq_timeout_data data = {
716 .next = 0,
717 .next_set = 0,
718 };
719 int i;
720
721 /* A deadlock might occur if a request is stuck requiring a
722 * timeout at the same time a queue freeze is waiting
723 * completion, since the timeout code would not be able to
724 * acquire the queue reference here.
725 *
726 * That's why we don't use blk_queue_enter here; instead, we use
727 * percpu_ref_tryget directly, because we need to be able to
728 * obtain a reference even in the short window between the queue
729 * starting to freeze, by dropping the first reference in
730 * blk_mq_freeze_queue_start, and the moment the last request is
731 * consumed, marked by the instant q_usage_counter reaches
732 * zero.
733 */
734 if (!percpu_ref_tryget(&q->q_usage_counter))
735 return;
736
737 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
738
739 if (data.next_set) {
740 data.next = blk_rq_timeout(round_jiffies_up(data.next));
741 mod_timer(&q->timeout, data.next);
742 } else {
743 struct blk_mq_hw_ctx *hctx;
744
745 queue_for_each_hw_ctx(q, hctx, i) {
746 /* the hctx may be unmapped, so check it here */
747 if (blk_mq_hw_queue_mapped(hctx))
748 blk_mq_tag_idle(hctx);
749 }
750 }
751 blk_queue_exit(q);
752 }
753
754 /*
755 * Reverse check our software queue for entries that we could potentially
756 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
757 * too much time checking for merges.
758 */
759 static bool blk_mq_attempt_merge(struct request_queue *q,
760 struct blk_mq_ctx *ctx, struct bio *bio)
761 {
762 struct request *rq;
763 int checked = 8;
764
765 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
766 bool merged = false;
767
768 if (!checked--)
769 break;
770
771 if (!blk_rq_merge_ok(rq, bio))
772 continue;
773
774 switch (blk_try_merge(rq, bio)) {
775 case ELEVATOR_BACK_MERGE:
776 if (blk_mq_sched_allow_merge(q, rq, bio))
777 merged = bio_attempt_back_merge(q, rq, bio);
778 break;
779 case ELEVATOR_FRONT_MERGE:
780 if (blk_mq_sched_allow_merge(q, rq, bio))
781 merged = bio_attempt_front_merge(q, rq, bio);
782 break;
783 case ELEVATOR_DISCARD_MERGE:
784 merged = bio_attempt_discard_merge(q, rq, bio);
785 break;
786 default:
787 continue;
788 }
789
790 if (merged)
791 ctx->rq_merged++;
792 return merged;
793 }
794
795 return false;
796 }
797
798 struct flush_busy_ctx_data {
799 struct blk_mq_hw_ctx *hctx;
800 struct list_head *list;
801 };
802
803 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
804 {
805 struct flush_busy_ctx_data *flush_data = data;
806 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
807 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
808
809 sbitmap_clear_bit(sb, bitnr);
810 spin_lock(&ctx->lock);
811 list_splice_tail_init(&ctx->rq_list, flush_data->list);
812 spin_unlock(&ctx->lock);
813 return true;
814 }
815
816 /*
817 * Process software queues that have been marked busy, splicing them
818 * to the for-dispatch
819 */
820 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
821 {
822 struct flush_busy_ctx_data data = {
823 .hctx = hctx,
824 .list = list,
825 };
826
827 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
828 }
829 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
830
831 static inline unsigned int queued_to_index(unsigned int queued)
832 {
833 if (!queued)
834 return 0;
835
836 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
837 }
838
839 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
840 bool wait)
841 {
842 struct blk_mq_alloc_data data = {
843 .q = rq->q,
844 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
845 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
846 };
847
848 if (rq->tag != -1) {
849 done:
850 if (hctx)
851 *hctx = data.hctx;
852 return true;
853 }
854
855 rq->tag = blk_mq_get_tag(&data);
856 if (rq->tag >= 0) {
857 if (blk_mq_tag_busy(data.hctx)) {
858 rq->rq_flags |= RQF_MQ_INFLIGHT;
859 atomic_inc(&data.hctx->nr_active);
860 }
861 data.hctx->tags->rqs[rq->tag] = rq;
862 goto done;
863 }
864
865 return false;
866 }
867
868 static void blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
869 struct request *rq)
870 {
871 if (rq->tag == -1 || rq->internal_tag == -1)
872 return;
873
874 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
875 rq->tag = -1;
876
877 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
878 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
879 atomic_dec(&hctx->nr_active);
880 }
881 }
882
883 /*
884 * If we fail getting a driver tag because all the driver tags are already
885 * assigned and on the dispatch list, BUT the first entry does not have a
886 * tag, then we could deadlock. For that case, move entries with assigned
887 * driver tags to the front, leaving the set of tagged requests in the
888 * same order, and the untagged set in the same order.
889 */
890 static bool reorder_tags_to_front(struct list_head *list)
891 {
892 struct request *rq, *tmp, *first = NULL;
893
894 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
895 if (rq == first)
896 break;
897 if (rq->tag != -1) {
898 list_move(&rq->queuelist, list);
899 if (!first)
900 first = rq;
901 }
902 }
903
904 return first != NULL;
905 }
906
907 static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
908 void *key)
909 {
910 struct blk_mq_hw_ctx *hctx;
911
912 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
913
914 list_del(&wait->task_list);
915 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
916 blk_mq_run_hw_queue(hctx, true);
917 return 1;
918 }
919
920 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
921 {
922 struct sbq_wait_state *ws;
923
924 /*
925 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
926 * The thread which wins the race to grab this bit adds the hardware
927 * queue to the wait queue.
928 */
929 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
930 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
931 return false;
932
933 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
934 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
935
936 /*
937 * As soon as this returns, it's no longer safe to fiddle with
938 * hctx->dispatch_wait, since a completion can wake up the wait queue
939 * and unlock the bit.
940 */
941 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
942 return true;
943 }
944
945 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
946 {
947 struct request_queue *q = hctx->queue;
948 struct request *rq;
949 LIST_HEAD(driver_list);
950 struct list_head *dptr;
951 int queued, ret = BLK_MQ_RQ_QUEUE_OK;
952
953 /*
954 * Start off with dptr being NULL, so we start the first request
955 * immediately, even if we have more pending.
956 */
957 dptr = NULL;
958
959 /*
960 * Now process all the entries, sending them to the driver.
961 */
962 queued = 0;
963 while (!list_empty(list)) {
964 struct blk_mq_queue_data bd;
965
966 rq = list_first_entry(list, struct request, queuelist);
967 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
968 if (!queued && reorder_tags_to_front(list))
969 continue;
970
971 /*
972 * The initial allocation attempt failed, so we need to
973 * rerun the hardware queue when a tag is freed.
974 */
975 if (blk_mq_dispatch_wait_add(hctx)) {
976 /*
977 * It's possible that a tag was freed in the
978 * window between the allocation failure and
979 * adding the hardware queue to the wait queue.
980 */
981 if (!blk_mq_get_driver_tag(rq, &hctx, false))
982 break;
983 } else {
984 break;
985 }
986 }
987
988 list_del_init(&rq->queuelist);
989
990 bd.rq = rq;
991 bd.list = dptr;
992 bd.last = list_empty(list);
993
994 ret = q->mq_ops->queue_rq(hctx, &bd);
995 switch (ret) {
996 case BLK_MQ_RQ_QUEUE_OK:
997 queued++;
998 break;
999 case BLK_MQ_RQ_QUEUE_BUSY:
1000 blk_mq_put_driver_tag(hctx, rq);
1001 list_add(&rq->queuelist, list);
1002 __blk_mq_requeue_request(rq);
1003 break;
1004 default:
1005 pr_err("blk-mq: bad return on queue: %d\n", ret);
1006 case BLK_MQ_RQ_QUEUE_ERROR:
1007 rq->errors = -EIO;
1008 blk_mq_end_request(rq, rq->errors);
1009 break;
1010 }
1011
1012 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
1013 break;
1014
1015 /*
1016 * We've done the first request. If we have more than 1
1017 * left in the list, set dptr to defer issue.
1018 */
1019 if (!dptr && list->next != list->prev)
1020 dptr = &driver_list;
1021 }
1022
1023 hctx->dispatched[queued_to_index(queued)]++;
1024
1025 /*
1026 * Any items that need requeuing? Stuff them into hctx->dispatch,
1027 * that is where we will continue on next queue run.
1028 */
1029 if (!list_empty(list)) {
1030 spin_lock(&hctx->lock);
1031 list_splice_init(list, &hctx->dispatch);
1032 spin_unlock(&hctx->lock);
1033
1034 /*
1035 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
1036 * it's possible the queue is stopped and restarted again
1037 * before this. Queue restart will dispatch requests. And since
1038 * requests in rq_list aren't added into hctx->dispatch yet,
1039 * the requests in rq_list might get lost.
1040 *
1041 * blk_mq_run_hw_queue() already checks the STOPPED bit
1042 *
1043 * If RESTART or TAG_WAITING is set, then let completion restart
1044 * the queue instead of potentially looping here.
1045 */
1046 if (!blk_mq_sched_needs_restart(hctx) &&
1047 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1048 blk_mq_run_hw_queue(hctx, true);
1049 }
1050
1051 return queued != 0;
1052 }
1053
1054 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1055 {
1056 int srcu_idx;
1057
1058 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1059 cpu_online(hctx->next_cpu));
1060
1061 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1062 rcu_read_lock();
1063 blk_mq_sched_dispatch_requests(hctx);
1064 rcu_read_unlock();
1065 } else {
1066 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1067 blk_mq_sched_dispatch_requests(hctx);
1068 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1069 }
1070 }
1071
1072 /*
1073 * It'd be great if the workqueue API had a way to pass
1074 * in a mask and had some smarts for more clever placement.
1075 * For now we just round-robin here, switching for every
1076 * BLK_MQ_CPU_WORK_BATCH queued items.
1077 */
1078 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1079 {
1080 if (hctx->queue->nr_hw_queues == 1)
1081 return WORK_CPU_UNBOUND;
1082
1083 if (--hctx->next_cpu_batch <= 0) {
1084 int next_cpu;
1085
1086 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1087 if (next_cpu >= nr_cpu_ids)
1088 next_cpu = cpumask_first(hctx->cpumask);
1089
1090 hctx->next_cpu = next_cpu;
1091 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1092 }
1093
1094 return hctx->next_cpu;
1095 }
1096
1097 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1098 {
1099 if (unlikely(blk_mq_hctx_stopped(hctx) ||
1100 !blk_mq_hw_queue_mapped(hctx)))
1101 return;
1102
1103 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1104 int cpu = get_cpu();
1105 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1106 __blk_mq_run_hw_queue(hctx);
1107 put_cpu();
1108 return;
1109 }
1110
1111 put_cpu();
1112 }
1113
1114 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
1115 }
1116
1117 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1118 {
1119 struct blk_mq_hw_ctx *hctx;
1120 int i;
1121
1122 queue_for_each_hw_ctx(q, hctx, i) {
1123 if (!blk_mq_hctx_has_pending(hctx) ||
1124 blk_mq_hctx_stopped(hctx))
1125 continue;
1126
1127 blk_mq_run_hw_queue(hctx, async);
1128 }
1129 }
1130 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1131
1132 /**
1133 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1134 * @q: request queue.
1135 *
1136 * The caller is responsible for serializing this function against
1137 * blk_mq_{start,stop}_hw_queue().
1138 */
1139 bool blk_mq_queue_stopped(struct request_queue *q)
1140 {
1141 struct blk_mq_hw_ctx *hctx;
1142 int i;
1143
1144 queue_for_each_hw_ctx(q, hctx, i)
1145 if (blk_mq_hctx_stopped(hctx))
1146 return true;
1147
1148 return false;
1149 }
1150 EXPORT_SYMBOL(blk_mq_queue_stopped);
1151
1152 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1153 {
1154 cancel_work(&hctx->run_work);
1155 cancel_delayed_work(&hctx->delay_work);
1156 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1157 }
1158 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1159
1160 void blk_mq_stop_hw_queues(struct request_queue *q)
1161 {
1162 struct blk_mq_hw_ctx *hctx;
1163 int i;
1164
1165 queue_for_each_hw_ctx(q, hctx, i)
1166 blk_mq_stop_hw_queue(hctx);
1167 }
1168 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1169
1170 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1171 {
1172 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1173
1174 blk_mq_run_hw_queue(hctx, false);
1175 }
1176 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1177
1178 void blk_mq_start_hw_queues(struct request_queue *q)
1179 {
1180 struct blk_mq_hw_ctx *hctx;
1181 int i;
1182
1183 queue_for_each_hw_ctx(q, hctx, i)
1184 blk_mq_start_hw_queue(hctx);
1185 }
1186 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1187
1188 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1189 {
1190 if (!blk_mq_hctx_stopped(hctx))
1191 return;
1192
1193 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1194 blk_mq_run_hw_queue(hctx, async);
1195 }
1196 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1197
1198 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1199 {
1200 struct blk_mq_hw_ctx *hctx;
1201 int i;
1202
1203 queue_for_each_hw_ctx(q, hctx, i)
1204 blk_mq_start_stopped_hw_queue(hctx, async);
1205 }
1206 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1207
1208 static void blk_mq_run_work_fn(struct work_struct *work)
1209 {
1210 struct blk_mq_hw_ctx *hctx;
1211
1212 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1213
1214 __blk_mq_run_hw_queue(hctx);
1215 }
1216
1217 static void blk_mq_delay_work_fn(struct work_struct *work)
1218 {
1219 struct blk_mq_hw_ctx *hctx;
1220
1221 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1222
1223 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1224 __blk_mq_run_hw_queue(hctx);
1225 }
1226
1227 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1228 {
1229 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1230 return;
1231
1232 blk_mq_stop_hw_queue(hctx);
1233 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1234 &hctx->delay_work, msecs_to_jiffies(msecs));
1235 }
1236 EXPORT_SYMBOL(blk_mq_delay_queue);
1237
1238 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1239 struct request *rq,
1240 bool at_head)
1241 {
1242 struct blk_mq_ctx *ctx = rq->mq_ctx;
1243
1244 trace_block_rq_insert(hctx->queue, rq);
1245
1246 if (at_head)
1247 list_add(&rq->queuelist, &ctx->rq_list);
1248 else
1249 list_add_tail(&rq->queuelist, &ctx->rq_list);
1250 }
1251
1252 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1253 bool at_head)
1254 {
1255 struct blk_mq_ctx *ctx = rq->mq_ctx;
1256
1257 __blk_mq_insert_req_list(hctx, rq, at_head);
1258 blk_mq_hctx_mark_pending(hctx, ctx);
1259 }
1260
1261 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1262 struct list_head *list)
1263
1264 {
1265 /*
1266 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1267 * offline now
1268 */
1269 spin_lock(&ctx->lock);
1270 while (!list_empty(list)) {
1271 struct request *rq;
1272
1273 rq = list_first_entry(list, struct request, queuelist);
1274 BUG_ON(rq->mq_ctx != ctx);
1275 list_del_init(&rq->queuelist);
1276 __blk_mq_insert_req_list(hctx, rq, false);
1277 }
1278 blk_mq_hctx_mark_pending(hctx, ctx);
1279 spin_unlock(&ctx->lock);
1280 }
1281
1282 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1283 {
1284 struct request *rqa = container_of(a, struct request, queuelist);
1285 struct request *rqb = container_of(b, struct request, queuelist);
1286
1287 return !(rqa->mq_ctx < rqb->mq_ctx ||
1288 (rqa->mq_ctx == rqb->mq_ctx &&
1289 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1290 }
1291
1292 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1293 {
1294 struct blk_mq_ctx *this_ctx;
1295 struct request_queue *this_q;
1296 struct request *rq;
1297 LIST_HEAD(list);
1298 LIST_HEAD(ctx_list);
1299 unsigned int depth;
1300
1301 list_splice_init(&plug->mq_list, &list);
1302
1303 list_sort(NULL, &list, plug_ctx_cmp);
1304
1305 this_q = NULL;
1306 this_ctx = NULL;
1307 depth = 0;
1308
1309 while (!list_empty(&list)) {
1310 rq = list_entry_rq(list.next);
1311 list_del_init(&rq->queuelist);
1312 BUG_ON(!rq->q);
1313 if (rq->mq_ctx != this_ctx) {
1314 if (this_ctx) {
1315 trace_block_unplug(this_q, depth, from_schedule);
1316 blk_mq_sched_insert_requests(this_q, this_ctx,
1317 &ctx_list,
1318 from_schedule);
1319 }
1320
1321 this_ctx = rq->mq_ctx;
1322 this_q = rq->q;
1323 depth = 0;
1324 }
1325
1326 depth++;
1327 list_add_tail(&rq->queuelist, &ctx_list);
1328 }
1329
1330 /*
1331 * If 'this_ctx' is set, we know we have entries to complete
1332 * on 'ctx_list'. Do those.
1333 */
1334 if (this_ctx) {
1335 trace_block_unplug(this_q, depth, from_schedule);
1336 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1337 from_schedule);
1338 }
1339 }
1340
1341 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1342 {
1343 init_request_from_bio(rq, bio);
1344
1345 blk_account_io_start(rq, true);
1346 }
1347
1348 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1349 {
1350 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1351 !blk_queue_nomerges(hctx->queue);
1352 }
1353
1354 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1355 struct blk_mq_ctx *ctx,
1356 struct request *rq, struct bio *bio)
1357 {
1358 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1359 blk_mq_bio_to_request(rq, bio);
1360 spin_lock(&ctx->lock);
1361 insert_rq:
1362 __blk_mq_insert_request(hctx, rq, false);
1363 spin_unlock(&ctx->lock);
1364 return false;
1365 } else {
1366 struct request_queue *q = hctx->queue;
1367
1368 spin_lock(&ctx->lock);
1369 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1370 blk_mq_bio_to_request(rq, bio);
1371 goto insert_rq;
1372 }
1373
1374 spin_unlock(&ctx->lock);
1375 __blk_mq_finish_request(hctx, ctx, rq);
1376 return true;
1377 }
1378 }
1379
1380 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1381 {
1382 if (rq->tag != -1)
1383 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1384
1385 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1386 }
1387
1388 static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie)
1389 {
1390 struct request_queue *q = rq->q;
1391 struct blk_mq_queue_data bd = {
1392 .rq = rq,
1393 .list = NULL,
1394 .last = 1
1395 };
1396 struct blk_mq_hw_ctx *hctx;
1397 blk_qc_t new_cookie;
1398 int ret;
1399
1400 if (q->elevator)
1401 goto insert;
1402
1403 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1404 goto insert;
1405
1406 new_cookie = request_to_qc_t(hctx, rq);
1407
1408 /*
1409 * For OK queue, we are done. For error, kill it. Any other
1410 * error (busy), just add it to our list as we previously
1411 * would have done
1412 */
1413 ret = q->mq_ops->queue_rq(hctx, &bd);
1414 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1415 *cookie = new_cookie;
1416 return;
1417 }
1418
1419 __blk_mq_requeue_request(rq);
1420
1421 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1422 *cookie = BLK_QC_T_NONE;
1423 rq->errors = -EIO;
1424 blk_mq_end_request(rq, rq->errors);
1425 return;
1426 }
1427
1428 insert:
1429 blk_mq_sched_insert_request(rq, false, true, true, false);
1430 }
1431
1432 /*
1433 * Multiple hardware queue variant. This will not use per-process plugs,
1434 * but will attempt to bypass the hctx queueing if we can go straight to
1435 * hardware for SYNC IO.
1436 */
1437 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1438 {
1439 const int is_sync = op_is_sync(bio->bi_opf);
1440 const int is_flush_fua = op_is_flush(bio->bi_opf);
1441 struct blk_mq_alloc_data data = { .flags = 0 };
1442 struct request *rq;
1443 unsigned int request_count = 0, srcu_idx;
1444 struct blk_plug *plug;
1445 struct request *same_queue_rq = NULL;
1446 blk_qc_t cookie;
1447 unsigned int wb_acct;
1448
1449 blk_queue_bounce(q, &bio);
1450
1451 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1452 bio_io_error(bio);
1453 return BLK_QC_T_NONE;
1454 }
1455
1456 blk_queue_split(q, &bio, q->bio_split);
1457
1458 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1459 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1460 return BLK_QC_T_NONE;
1461
1462 if (blk_mq_sched_bio_merge(q, bio))
1463 return BLK_QC_T_NONE;
1464
1465 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1466
1467 trace_block_getrq(q, bio, bio->bi_opf);
1468
1469 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1470 if (unlikely(!rq)) {
1471 __wbt_done(q->rq_wb, wb_acct);
1472 return BLK_QC_T_NONE;
1473 }
1474
1475 wbt_track(&rq->issue_stat, wb_acct);
1476
1477 cookie = request_to_qc_t(data.hctx, rq);
1478
1479 if (unlikely(is_flush_fua)) {
1480 if (q->elevator)
1481 goto elv_insert;
1482 blk_mq_bio_to_request(rq, bio);
1483 blk_insert_flush(rq);
1484 goto run_queue;
1485 }
1486
1487 plug = current->plug;
1488 /*
1489 * If the driver supports defer issued based on 'last', then
1490 * queue it up like normal since we can potentially save some
1491 * CPU this way.
1492 */
1493 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1494 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1495 struct request *old_rq = NULL;
1496
1497 blk_mq_bio_to_request(rq, bio);
1498
1499 /*
1500 * We do limited plugging. If the bio can be merged, do that.
1501 * Otherwise the existing request in the plug list will be
1502 * issued. So the plug list will have one request at most
1503 */
1504 if (plug) {
1505 /*
1506 * The plug list might get flushed before this. If that
1507 * happens, same_queue_rq is invalid and plug list is
1508 * empty
1509 */
1510 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1511 old_rq = same_queue_rq;
1512 list_del_init(&old_rq->queuelist);
1513 }
1514 list_add_tail(&rq->queuelist, &plug->mq_list);
1515 } else /* is_sync */
1516 old_rq = rq;
1517 blk_mq_put_ctx(data.ctx);
1518 if (!old_rq)
1519 goto done;
1520
1521 if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
1522 rcu_read_lock();
1523 blk_mq_try_issue_directly(old_rq, &cookie);
1524 rcu_read_unlock();
1525 } else {
1526 srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
1527 blk_mq_try_issue_directly(old_rq, &cookie);
1528 srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
1529 }
1530 goto done;
1531 }
1532
1533 if (q->elevator) {
1534 elv_insert:
1535 blk_mq_put_ctx(data.ctx);
1536 blk_mq_bio_to_request(rq, bio);
1537 blk_mq_sched_insert_request(rq, false, true,
1538 !is_sync || is_flush_fua, true);
1539 goto done;
1540 }
1541 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1542 /*
1543 * For a SYNC request, send it to the hardware immediately. For
1544 * an ASYNC request, just ensure that we run it later on. The
1545 * latter allows for merging opportunities and more efficient
1546 * dispatching.
1547 */
1548 run_queue:
1549 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1550 }
1551 blk_mq_put_ctx(data.ctx);
1552 done:
1553 return cookie;
1554 }
1555
1556 /*
1557 * Single hardware queue variant. This will attempt to use any per-process
1558 * plug for merging and IO deferral.
1559 */
1560 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1561 {
1562 const int is_sync = op_is_sync(bio->bi_opf);
1563 const int is_flush_fua = op_is_flush(bio->bi_opf);
1564 struct blk_plug *plug;
1565 unsigned int request_count = 0;
1566 struct blk_mq_alloc_data data = { .flags = 0 };
1567 struct request *rq;
1568 blk_qc_t cookie;
1569 unsigned int wb_acct;
1570
1571 blk_queue_bounce(q, &bio);
1572
1573 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1574 bio_io_error(bio);
1575 return BLK_QC_T_NONE;
1576 }
1577
1578 blk_queue_split(q, &bio, q->bio_split);
1579
1580 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1581 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1582 return BLK_QC_T_NONE;
1583 } else
1584 request_count = blk_plug_queued_count(q);
1585
1586 if (blk_mq_sched_bio_merge(q, bio))
1587 return BLK_QC_T_NONE;
1588
1589 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1590
1591 trace_block_getrq(q, bio, bio->bi_opf);
1592
1593 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1594 if (unlikely(!rq)) {
1595 __wbt_done(q->rq_wb, wb_acct);
1596 return BLK_QC_T_NONE;
1597 }
1598
1599 wbt_track(&rq->issue_stat, wb_acct);
1600
1601 cookie = request_to_qc_t(data.hctx, rq);
1602
1603 if (unlikely(is_flush_fua)) {
1604 if (q->elevator)
1605 goto elv_insert;
1606 blk_mq_bio_to_request(rq, bio);
1607 blk_insert_flush(rq);
1608 goto run_queue;
1609 }
1610
1611 /*
1612 * A task plug currently exists. Since this is completely lockless,
1613 * utilize that to temporarily store requests until the task is
1614 * either done or scheduled away.
1615 */
1616 plug = current->plug;
1617 if (plug) {
1618 struct request *last = NULL;
1619
1620 blk_mq_bio_to_request(rq, bio);
1621
1622 /*
1623 * @request_count may become stale because of schedule
1624 * out, so check the list again.
1625 */
1626 if (list_empty(&plug->mq_list))
1627 request_count = 0;
1628 if (!request_count)
1629 trace_block_plug(q);
1630 else
1631 last = list_entry_rq(plug->mq_list.prev);
1632
1633 blk_mq_put_ctx(data.ctx);
1634
1635 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1636 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1637 blk_flush_plug_list(plug, false);
1638 trace_block_plug(q);
1639 }
1640
1641 list_add_tail(&rq->queuelist, &plug->mq_list);
1642 return cookie;
1643 }
1644
1645 if (q->elevator) {
1646 elv_insert:
1647 blk_mq_put_ctx(data.ctx);
1648 blk_mq_bio_to_request(rq, bio);
1649 blk_mq_sched_insert_request(rq, false, true,
1650 !is_sync || is_flush_fua, true);
1651 goto done;
1652 }
1653 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1654 /*
1655 * For a SYNC request, send it to the hardware immediately. For
1656 * an ASYNC request, just ensure that we run it later on. The
1657 * latter allows for merging opportunities and more efficient
1658 * dispatching.
1659 */
1660 run_queue:
1661 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1662 }
1663
1664 blk_mq_put_ctx(data.ctx);
1665 done:
1666 return cookie;
1667 }
1668
1669 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1670 unsigned int hctx_idx)
1671 {
1672 struct page *page;
1673
1674 if (tags->rqs && set->ops->exit_request) {
1675 int i;
1676
1677 for (i = 0; i < tags->nr_tags; i++) {
1678 struct request *rq = tags->static_rqs[i];
1679
1680 if (!rq)
1681 continue;
1682 set->ops->exit_request(set->driver_data, rq,
1683 hctx_idx, i);
1684 tags->static_rqs[i] = NULL;
1685 }
1686 }
1687
1688 while (!list_empty(&tags->page_list)) {
1689 page = list_first_entry(&tags->page_list, struct page, lru);
1690 list_del_init(&page->lru);
1691 /*
1692 * Remove kmemleak object previously allocated in
1693 * blk_mq_init_rq_map().
1694 */
1695 kmemleak_free(page_address(page));
1696 __free_pages(page, page->private);
1697 }
1698 }
1699
1700 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1701 {
1702 kfree(tags->rqs);
1703 tags->rqs = NULL;
1704 kfree(tags->static_rqs);
1705 tags->static_rqs = NULL;
1706
1707 blk_mq_free_tags(tags);
1708 }
1709
1710 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1711 unsigned int hctx_idx,
1712 unsigned int nr_tags,
1713 unsigned int reserved_tags)
1714 {
1715 struct blk_mq_tags *tags;
1716
1717 tags = blk_mq_init_tags(nr_tags, reserved_tags,
1718 set->numa_node,
1719 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1720 if (!tags)
1721 return NULL;
1722
1723 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1724 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1725 set->numa_node);
1726 if (!tags->rqs) {
1727 blk_mq_free_tags(tags);
1728 return NULL;
1729 }
1730
1731 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1732 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1733 set->numa_node);
1734 if (!tags->static_rqs) {
1735 kfree(tags->rqs);
1736 blk_mq_free_tags(tags);
1737 return NULL;
1738 }
1739
1740 return tags;
1741 }
1742
1743 static size_t order_to_size(unsigned int order)
1744 {
1745 return (size_t)PAGE_SIZE << order;
1746 }
1747
1748 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1749 unsigned int hctx_idx, unsigned int depth)
1750 {
1751 unsigned int i, j, entries_per_page, max_order = 4;
1752 size_t rq_size, left;
1753
1754 INIT_LIST_HEAD(&tags->page_list);
1755
1756 /*
1757 * rq_size is the size of the request plus driver payload, rounded
1758 * to the cacheline size
1759 */
1760 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1761 cache_line_size());
1762 left = rq_size * depth;
1763
1764 for (i = 0; i < depth; ) {
1765 int this_order = max_order;
1766 struct page *page;
1767 int to_do;
1768 void *p;
1769
1770 while (this_order && left < order_to_size(this_order - 1))
1771 this_order--;
1772
1773 do {
1774 page = alloc_pages_node(set->numa_node,
1775 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1776 this_order);
1777 if (page)
1778 break;
1779 if (!this_order--)
1780 break;
1781 if (order_to_size(this_order) < rq_size)
1782 break;
1783 } while (1);
1784
1785 if (!page)
1786 goto fail;
1787
1788 page->private = this_order;
1789 list_add_tail(&page->lru, &tags->page_list);
1790
1791 p = page_address(page);
1792 /*
1793 * Allow kmemleak to scan these pages as they contain pointers
1794 * to additional allocations like via ops->init_request().
1795 */
1796 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1797 entries_per_page = order_to_size(this_order) / rq_size;
1798 to_do = min(entries_per_page, depth - i);
1799 left -= to_do * rq_size;
1800 for (j = 0; j < to_do; j++) {
1801 struct request *rq = p;
1802
1803 tags->static_rqs[i] = rq;
1804 if (set->ops->init_request) {
1805 if (set->ops->init_request(set->driver_data,
1806 rq, hctx_idx, i,
1807 set->numa_node)) {
1808 tags->static_rqs[i] = NULL;
1809 goto fail;
1810 }
1811 }
1812
1813 p += rq_size;
1814 i++;
1815 }
1816 }
1817 return 0;
1818
1819 fail:
1820 blk_mq_free_rqs(set, tags, hctx_idx);
1821 return -ENOMEM;
1822 }
1823
1824 /*
1825 * 'cpu' is going away. splice any existing rq_list entries from this
1826 * software queue to the hw queue dispatch list, and ensure that it
1827 * gets run.
1828 */
1829 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1830 {
1831 struct blk_mq_hw_ctx *hctx;
1832 struct blk_mq_ctx *ctx;
1833 LIST_HEAD(tmp);
1834
1835 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1836 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1837
1838 spin_lock(&ctx->lock);
1839 if (!list_empty(&ctx->rq_list)) {
1840 list_splice_init(&ctx->rq_list, &tmp);
1841 blk_mq_hctx_clear_pending(hctx, ctx);
1842 }
1843 spin_unlock(&ctx->lock);
1844
1845 if (list_empty(&tmp))
1846 return 0;
1847
1848 spin_lock(&hctx->lock);
1849 list_splice_tail_init(&tmp, &hctx->dispatch);
1850 spin_unlock(&hctx->lock);
1851
1852 blk_mq_run_hw_queue(hctx, true);
1853 return 0;
1854 }
1855
1856 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1857 {
1858 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1859 &hctx->cpuhp_dead);
1860 }
1861
1862 /* hctx->ctxs will be freed in queue's release handler */
1863 static void blk_mq_exit_hctx(struct request_queue *q,
1864 struct blk_mq_tag_set *set,
1865 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1866 {
1867 unsigned flush_start_tag = set->queue_depth;
1868
1869 blk_mq_tag_idle(hctx);
1870
1871 if (set->ops->exit_request)
1872 set->ops->exit_request(set->driver_data,
1873 hctx->fq->flush_rq, hctx_idx,
1874 flush_start_tag + hctx_idx);
1875
1876 if (set->ops->exit_hctx)
1877 set->ops->exit_hctx(hctx, hctx_idx);
1878
1879 if (hctx->flags & BLK_MQ_F_BLOCKING)
1880 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1881
1882 blk_mq_remove_cpuhp(hctx);
1883 blk_free_flush_queue(hctx->fq);
1884 sbitmap_free(&hctx->ctx_map);
1885 }
1886
1887 static void blk_mq_exit_hw_queues(struct request_queue *q,
1888 struct blk_mq_tag_set *set, int nr_queue)
1889 {
1890 struct blk_mq_hw_ctx *hctx;
1891 unsigned int i;
1892
1893 queue_for_each_hw_ctx(q, hctx, i) {
1894 if (i == nr_queue)
1895 break;
1896 blk_mq_exit_hctx(q, set, hctx, i);
1897 }
1898 }
1899
1900 static void blk_mq_free_hw_queues(struct request_queue *q,
1901 struct blk_mq_tag_set *set)
1902 {
1903 struct blk_mq_hw_ctx *hctx;
1904 unsigned int i;
1905
1906 queue_for_each_hw_ctx(q, hctx, i)
1907 free_cpumask_var(hctx->cpumask);
1908 }
1909
1910 static int blk_mq_init_hctx(struct request_queue *q,
1911 struct blk_mq_tag_set *set,
1912 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1913 {
1914 int node;
1915 unsigned flush_start_tag = set->queue_depth;
1916
1917 node = hctx->numa_node;
1918 if (node == NUMA_NO_NODE)
1919 node = hctx->numa_node = set->numa_node;
1920
1921 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1922 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1923 spin_lock_init(&hctx->lock);
1924 INIT_LIST_HEAD(&hctx->dispatch);
1925 hctx->queue = q;
1926 hctx->queue_num = hctx_idx;
1927 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1928
1929 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1930
1931 hctx->tags = set->tags[hctx_idx];
1932
1933 /*
1934 * Allocate space for all possible cpus to avoid allocation at
1935 * runtime
1936 */
1937 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1938 GFP_KERNEL, node);
1939 if (!hctx->ctxs)
1940 goto unregister_cpu_notifier;
1941
1942 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1943 node))
1944 goto free_ctxs;
1945
1946 hctx->nr_ctx = 0;
1947
1948 if (set->ops->init_hctx &&
1949 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1950 goto free_bitmap;
1951
1952 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1953 if (!hctx->fq)
1954 goto exit_hctx;
1955
1956 if (set->ops->init_request &&
1957 set->ops->init_request(set->driver_data,
1958 hctx->fq->flush_rq, hctx_idx,
1959 flush_start_tag + hctx_idx, node))
1960 goto free_fq;
1961
1962 if (hctx->flags & BLK_MQ_F_BLOCKING)
1963 init_srcu_struct(&hctx->queue_rq_srcu);
1964
1965 return 0;
1966
1967 free_fq:
1968 kfree(hctx->fq);
1969 exit_hctx:
1970 if (set->ops->exit_hctx)
1971 set->ops->exit_hctx(hctx, hctx_idx);
1972 free_bitmap:
1973 sbitmap_free(&hctx->ctx_map);
1974 free_ctxs:
1975 kfree(hctx->ctxs);
1976 unregister_cpu_notifier:
1977 blk_mq_remove_cpuhp(hctx);
1978 return -1;
1979 }
1980
1981 static void blk_mq_init_cpu_queues(struct request_queue *q,
1982 unsigned int nr_hw_queues)
1983 {
1984 unsigned int i;
1985
1986 for_each_possible_cpu(i) {
1987 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1988 struct blk_mq_hw_ctx *hctx;
1989
1990 memset(__ctx, 0, sizeof(*__ctx));
1991 __ctx->cpu = i;
1992 spin_lock_init(&__ctx->lock);
1993 INIT_LIST_HEAD(&__ctx->rq_list);
1994 __ctx->queue = q;
1995 blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
1996 blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
1997
1998 /* If the cpu isn't online, the cpu is mapped to first hctx */
1999 if (!cpu_online(i))
2000 continue;
2001
2002 hctx = blk_mq_map_queue(q, i);
2003
2004 /*
2005 * Set local node, IFF we have more than one hw queue. If
2006 * not, we remain on the home node of the device
2007 */
2008 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2009 hctx->numa_node = local_memory_node(cpu_to_node(i));
2010 }
2011 }
2012
2013 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2014 {
2015 int ret = 0;
2016
2017 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2018 set->queue_depth, set->reserved_tags);
2019 if (!set->tags[hctx_idx])
2020 return false;
2021
2022 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2023 set->queue_depth);
2024 if (!ret)
2025 return true;
2026
2027 blk_mq_free_rq_map(set->tags[hctx_idx]);
2028 set->tags[hctx_idx] = NULL;
2029 return false;
2030 }
2031
2032 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2033 unsigned int hctx_idx)
2034 {
2035 if (set->tags[hctx_idx]) {
2036 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2037 blk_mq_free_rq_map(set->tags[hctx_idx]);
2038 set->tags[hctx_idx] = NULL;
2039 }
2040 }
2041
2042 static void blk_mq_map_swqueue(struct request_queue *q,
2043 const struct cpumask *online_mask)
2044 {
2045 unsigned int i, hctx_idx;
2046 struct blk_mq_hw_ctx *hctx;
2047 struct blk_mq_ctx *ctx;
2048 struct blk_mq_tag_set *set = q->tag_set;
2049
2050 /*
2051 * Avoid others reading imcomplete hctx->cpumask through sysfs
2052 */
2053 mutex_lock(&q->sysfs_lock);
2054
2055 queue_for_each_hw_ctx(q, hctx, i) {
2056 cpumask_clear(hctx->cpumask);
2057 hctx->nr_ctx = 0;
2058 }
2059
2060 /*
2061 * Map software to hardware queues
2062 */
2063 for_each_possible_cpu(i) {
2064 /* If the cpu isn't online, the cpu is mapped to first hctx */
2065 if (!cpumask_test_cpu(i, online_mask))
2066 continue;
2067
2068 hctx_idx = q->mq_map[i];
2069 /* unmapped hw queue can be remapped after CPU topo changed */
2070 if (!set->tags[hctx_idx] &&
2071 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2072 /*
2073 * If tags initialization fail for some hctx,
2074 * that hctx won't be brought online. In this
2075 * case, remap the current ctx to hctx[0] which
2076 * is guaranteed to always have tags allocated
2077 */
2078 q->mq_map[i] = 0;
2079 }
2080
2081 ctx = per_cpu_ptr(q->queue_ctx, i);
2082 hctx = blk_mq_map_queue(q, i);
2083
2084 cpumask_set_cpu(i, hctx->cpumask);
2085 ctx->index_hw = hctx->nr_ctx;
2086 hctx->ctxs[hctx->nr_ctx++] = ctx;
2087 }
2088
2089 mutex_unlock(&q->sysfs_lock);
2090
2091 queue_for_each_hw_ctx(q, hctx, i) {
2092 /*
2093 * If no software queues are mapped to this hardware queue,
2094 * disable it and free the request entries.
2095 */
2096 if (!hctx->nr_ctx) {
2097 /* Never unmap queue 0. We need it as a
2098 * fallback in case of a new remap fails
2099 * allocation
2100 */
2101 if (i && set->tags[i])
2102 blk_mq_free_map_and_requests(set, i);
2103
2104 hctx->tags = NULL;
2105 continue;
2106 }
2107
2108 hctx->tags = set->tags[i];
2109 WARN_ON(!hctx->tags);
2110
2111 /*
2112 * Set the map size to the number of mapped software queues.
2113 * This is more accurate and more efficient than looping
2114 * over all possibly mapped software queues.
2115 */
2116 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2117
2118 /*
2119 * Initialize batch roundrobin counts
2120 */
2121 hctx->next_cpu = cpumask_first(hctx->cpumask);
2122 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2123 }
2124 }
2125
2126 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2127 {
2128 struct blk_mq_hw_ctx *hctx;
2129 int i;
2130
2131 queue_for_each_hw_ctx(q, hctx, i) {
2132 if (shared)
2133 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2134 else
2135 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2136 }
2137 }
2138
2139 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2140 {
2141 struct request_queue *q;
2142
2143 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2144 blk_mq_freeze_queue(q);
2145 queue_set_hctx_shared(q, shared);
2146 blk_mq_unfreeze_queue(q);
2147 }
2148 }
2149
2150 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2151 {
2152 struct blk_mq_tag_set *set = q->tag_set;
2153
2154 mutex_lock(&set->tag_list_lock);
2155 list_del_init(&q->tag_set_list);
2156 if (list_is_singular(&set->tag_list)) {
2157 /* just transitioned to unshared */
2158 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2159 /* update existing queue */
2160 blk_mq_update_tag_set_depth(set, false);
2161 }
2162 mutex_unlock(&set->tag_list_lock);
2163 }
2164
2165 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2166 struct request_queue *q)
2167 {
2168 q->tag_set = set;
2169
2170 mutex_lock(&set->tag_list_lock);
2171
2172 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2173 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2174 set->flags |= BLK_MQ_F_TAG_SHARED;
2175 /* update existing queue */
2176 blk_mq_update_tag_set_depth(set, true);
2177 }
2178 if (set->flags & BLK_MQ_F_TAG_SHARED)
2179 queue_set_hctx_shared(q, true);
2180 list_add_tail(&q->tag_set_list, &set->tag_list);
2181
2182 mutex_unlock(&set->tag_list_lock);
2183 }
2184
2185 /*
2186 * It is the actual release handler for mq, but we do it from
2187 * request queue's release handler for avoiding use-after-free
2188 * and headache because q->mq_kobj shouldn't have been introduced,
2189 * but we can't group ctx/kctx kobj without it.
2190 */
2191 void blk_mq_release(struct request_queue *q)
2192 {
2193 struct blk_mq_hw_ctx *hctx;
2194 unsigned int i;
2195
2196 blk_mq_sched_teardown(q);
2197
2198 /* hctx kobj stays in hctx */
2199 queue_for_each_hw_ctx(q, hctx, i) {
2200 if (!hctx)
2201 continue;
2202 kfree(hctx->ctxs);
2203 kfree(hctx);
2204 }
2205
2206 q->mq_map = NULL;
2207
2208 kfree(q->queue_hw_ctx);
2209
2210 /* ctx kobj stays in queue_ctx */
2211 free_percpu(q->queue_ctx);
2212 }
2213
2214 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2215 {
2216 struct request_queue *uninit_q, *q;
2217
2218 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2219 if (!uninit_q)
2220 return ERR_PTR(-ENOMEM);
2221
2222 q = blk_mq_init_allocated_queue(set, uninit_q);
2223 if (IS_ERR(q))
2224 blk_cleanup_queue(uninit_q);
2225
2226 return q;
2227 }
2228 EXPORT_SYMBOL(blk_mq_init_queue);
2229
2230 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2231 struct request_queue *q)
2232 {
2233 int i, j;
2234 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2235
2236 blk_mq_sysfs_unregister(q);
2237 for (i = 0; i < set->nr_hw_queues; i++) {
2238 int node;
2239
2240 if (hctxs[i])
2241 continue;
2242
2243 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2244 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2245 GFP_KERNEL, node);
2246 if (!hctxs[i])
2247 break;
2248
2249 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2250 node)) {
2251 kfree(hctxs[i]);
2252 hctxs[i] = NULL;
2253 break;
2254 }
2255
2256 atomic_set(&hctxs[i]->nr_active, 0);
2257 hctxs[i]->numa_node = node;
2258 hctxs[i]->queue_num = i;
2259
2260 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2261 free_cpumask_var(hctxs[i]->cpumask);
2262 kfree(hctxs[i]);
2263 hctxs[i] = NULL;
2264 break;
2265 }
2266 blk_mq_hctx_kobj_init(hctxs[i]);
2267 }
2268 for (j = i; j < q->nr_hw_queues; j++) {
2269 struct blk_mq_hw_ctx *hctx = hctxs[j];
2270
2271 if (hctx) {
2272 if (hctx->tags)
2273 blk_mq_free_map_and_requests(set, j);
2274 blk_mq_exit_hctx(q, set, hctx, j);
2275 free_cpumask_var(hctx->cpumask);
2276 kobject_put(&hctx->kobj);
2277 kfree(hctx->ctxs);
2278 kfree(hctx);
2279 hctxs[j] = NULL;
2280
2281 }
2282 }
2283 q->nr_hw_queues = i;
2284 blk_mq_sysfs_register(q);
2285 }
2286
2287 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2288 struct request_queue *q)
2289 {
2290 /* mark the queue as mq asap */
2291 q->mq_ops = set->ops;
2292
2293 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2294 if (!q->queue_ctx)
2295 goto err_exit;
2296
2297 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2298 GFP_KERNEL, set->numa_node);
2299 if (!q->queue_hw_ctx)
2300 goto err_percpu;
2301
2302 q->mq_map = set->mq_map;
2303
2304 blk_mq_realloc_hw_ctxs(set, q);
2305 if (!q->nr_hw_queues)
2306 goto err_hctxs;
2307
2308 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2309 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2310
2311 q->nr_queues = nr_cpu_ids;
2312
2313 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2314
2315 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2316 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2317
2318 q->sg_reserved_size = INT_MAX;
2319
2320 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2321 INIT_LIST_HEAD(&q->requeue_list);
2322 spin_lock_init(&q->requeue_lock);
2323
2324 if (q->nr_hw_queues > 1)
2325 blk_queue_make_request(q, blk_mq_make_request);
2326 else
2327 blk_queue_make_request(q, blk_sq_make_request);
2328
2329 /*
2330 * Do this after blk_queue_make_request() overrides it...
2331 */
2332 q->nr_requests = set->queue_depth;
2333
2334 /*
2335 * Default to classic polling
2336 */
2337 q->poll_nsec = -1;
2338
2339 if (set->ops->complete)
2340 blk_queue_softirq_done(q, set->ops->complete);
2341
2342 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2343
2344 get_online_cpus();
2345 mutex_lock(&all_q_mutex);
2346
2347 list_add_tail(&q->all_q_node, &all_q_list);
2348 blk_mq_add_queue_tag_set(set, q);
2349 blk_mq_map_swqueue(q, cpu_online_mask);
2350
2351 mutex_unlock(&all_q_mutex);
2352 put_online_cpus();
2353
2354 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2355 int ret;
2356
2357 ret = blk_mq_sched_init(q);
2358 if (ret)
2359 return ERR_PTR(ret);
2360 }
2361
2362 return q;
2363
2364 err_hctxs:
2365 kfree(q->queue_hw_ctx);
2366 err_percpu:
2367 free_percpu(q->queue_ctx);
2368 err_exit:
2369 q->mq_ops = NULL;
2370 return ERR_PTR(-ENOMEM);
2371 }
2372 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2373
2374 void blk_mq_free_queue(struct request_queue *q)
2375 {
2376 struct blk_mq_tag_set *set = q->tag_set;
2377
2378 mutex_lock(&all_q_mutex);
2379 list_del_init(&q->all_q_node);
2380 mutex_unlock(&all_q_mutex);
2381
2382 wbt_exit(q);
2383
2384 blk_mq_del_queue_tag_set(q);
2385
2386 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2387 blk_mq_free_hw_queues(q, set);
2388 }
2389
2390 /* Basically redo blk_mq_init_queue with queue frozen */
2391 static void blk_mq_queue_reinit(struct request_queue *q,
2392 const struct cpumask *online_mask)
2393 {
2394 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2395
2396 blk_mq_sysfs_unregister(q);
2397
2398 /*
2399 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2400 * we should change hctx numa_node according to new topology (this
2401 * involves free and re-allocate memory, worthy doing?)
2402 */
2403
2404 blk_mq_map_swqueue(q, online_mask);
2405
2406 blk_mq_sysfs_register(q);
2407 }
2408
2409 /*
2410 * New online cpumask which is going to be set in this hotplug event.
2411 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2412 * one-by-one and dynamically allocating this could result in a failure.
2413 */
2414 static struct cpumask cpuhp_online_new;
2415
2416 static void blk_mq_queue_reinit_work(void)
2417 {
2418 struct request_queue *q;
2419
2420 mutex_lock(&all_q_mutex);
2421 /*
2422 * We need to freeze and reinit all existing queues. Freezing
2423 * involves synchronous wait for an RCU grace period and doing it
2424 * one by one may take a long time. Start freezing all queues in
2425 * one swoop and then wait for the completions so that freezing can
2426 * take place in parallel.
2427 */
2428 list_for_each_entry(q, &all_q_list, all_q_node)
2429 blk_mq_freeze_queue_start(q);
2430 list_for_each_entry(q, &all_q_list, all_q_node)
2431 blk_mq_freeze_queue_wait(q);
2432
2433 list_for_each_entry(q, &all_q_list, all_q_node)
2434 blk_mq_queue_reinit(q, &cpuhp_online_new);
2435
2436 list_for_each_entry(q, &all_q_list, all_q_node)
2437 blk_mq_unfreeze_queue(q);
2438
2439 mutex_unlock(&all_q_mutex);
2440 }
2441
2442 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2443 {
2444 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2445 blk_mq_queue_reinit_work();
2446 return 0;
2447 }
2448
2449 /*
2450 * Before hotadded cpu starts handling requests, new mappings must be
2451 * established. Otherwise, these requests in hw queue might never be
2452 * dispatched.
2453 *
2454 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2455 * for CPU0, and ctx1 for CPU1).
2456 *
2457 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2458 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2459 *
2460 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2461 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2462 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2463 * ignored.
2464 */
2465 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2466 {
2467 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2468 cpumask_set_cpu(cpu, &cpuhp_online_new);
2469 blk_mq_queue_reinit_work();
2470 return 0;
2471 }
2472
2473 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2474 {
2475 int i;
2476
2477 for (i = 0; i < set->nr_hw_queues; i++)
2478 if (!__blk_mq_alloc_rq_map(set, i))
2479 goto out_unwind;
2480
2481 return 0;
2482
2483 out_unwind:
2484 while (--i >= 0)
2485 blk_mq_free_rq_map(set->tags[i]);
2486
2487 return -ENOMEM;
2488 }
2489
2490 /*
2491 * Allocate the request maps associated with this tag_set. Note that this
2492 * may reduce the depth asked for, if memory is tight. set->queue_depth
2493 * will be updated to reflect the allocated depth.
2494 */
2495 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2496 {
2497 unsigned int depth;
2498 int err;
2499
2500 depth = set->queue_depth;
2501 do {
2502 err = __blk_mq_alloc_rq_maps(set);
2503 if (!err)
2504 break;
2505
2506 set->queue_depth >>= 1;
2507 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2508 err = -ENOMEM;
2509 break;
2510 }
2511 } while (set->queue_depth);
2512
2513 if (!set->queue_depth || err) {
2514 pr_err("blk-mq: failed to allocate request map\n");
2515 return -ENOMEM;
2516 }
2517
2518 if (depth != set->queue_depth)
2519 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2520 depth, set->queue_depth);
2521
2522 return 0;
2523 }
2524
2525 /*
2526 * Alloc a tag set to be associated with one or more request queues.
2527 * May fail with EINVAL for various error conditions. May adjust the
2528 * requested depth down, if if it too large. In that case, the set
2529 * value will be stored in set->queue_depth.
2530 */
2531 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2532 {
2533 int ret;
2534
2535 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2536
2537 if (!set->nr_hw_queues)
2538 return -EINVAL;
2539 if (!set->queue_depth)
2540 return -EINVAL;
2541 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2542 return -EINVAL;
2543
2544 if (!set->ops->queue_rq)
2545 return -EINVAL;
2546
2547 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2548 pr_info("blk-mq: reduced tag depth to %u\n",
2549 BLK_MQ_MAX_DEPTH);
2550 set->queue_depth = BLK_MQ_MAX_DEPTH;
2551 }
2552
2553 /*
2554 * If a crashdump is active, then we are potentially in a very
2555 * memory constrained environment. Limit us to 1 queue and
2556 * 64 tags to prevent using too much memory.
2557 */
2558 if (is_kdump_kernel()) {
2559 set->nr_hw_queues = 1;
2560 set->queue_depth = min(64U, set->queue_depth);
2561 }
2562 /*
2563 * There is no use for more h/w queues than cpus.
2564 */
2565 if (set->nr_hw_queues > nr_cpu_ids)
2566 set->nr_hw_queues = nr_cpu_ids;
2567
2568 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2569 GFP_KERNEL, set->numa_node);
2570 if (!set->tags)
2571 return -ENOMEM;
2572
2573 ret = -ENOMEM;
2574 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2575 GFP_KERNEL, set->numa_node);
2576 if (!set->mq_map)
2577 goto out_free_tags;
2578
2579 if (set->ops->map_queues)
2580 ret = set->ops->map_queues(set);
2581 else
2582 ret = blk_mq_map_queues(set);
2583 if (ret)
2584 goto out_free_mq_map;
2585
2586 ret = blk_mq_alloc_rq_maps(set);
2587 if (ret)
2588 goto out_free_mq_map;
2589
2590 mutex_init(&set->tag_list_lock);
2591 INIT_LIST_HEAD(&set->tag_list);
2592
2593 return 0;
2594
2595 out_free_mq_map:
2596 kfree(set->mq_map);
2597 set->mq_map = NULL;
2598 out_free_tags:
2599 kfree(set->tags);
2600 set->tags = NULL;
2601 return ret;
2602 }
2603 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2604
2605 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2606 {
2607 int i;
2608
2609 for (i = 0; i < nr_cpu_ids; i++)
2610 blk_mq_free_map_and_requests(set, i);
2611
2612 kfree(set->mq_map);
2613 set->mq_map = NULL;
2614
2615 kfree(set->tags);
2616 set->tags = NULL;
2617 }
2618 EXPORT_SYMBOL(blk_mq_free_tag_set);
2619
2620 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2621 {
2622 struct blk_mq_tag_set *set = q->tag_set;
2623 struct blk_mq_hw_ctx *hctx;
2624 int i, ret;
2625
2626 if (!set)
2627 return -EINVAL;
2628
2629 blk_mq_freeze_queue(q);
2630 blk_mq_quiesce_queue(q);
2631
2632 ret = 0;
2633 queue_for_each_hw_ctx(q, hctx, i) {
2634 if (!hctx->tags)
2635 continue;
2636 /*
2637 * If we're using an MQ scheduler, just update the scheduler
2638 * queue depth. This is similar to what the old code would do.
2639 */
2640 if (!hctx->sched_tags) {
2641 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2642 min(nr, set->queue_depth),
2643 false);
2644 } else {
2645 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2646 nr, true);
2647 }
2648 if (ret)
2649 break;
2650 }
2651
2652 if (!ret)
2653 q->nr_requests = nr;
2654
2655 blk_mq_unfreeze_queue(q);
2656 blk_mq_start_stopped_hw_queues(q, true);
2657
2658 return ret;
2659 }
2660
2661 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2662 {
2663 struct request_queue *q;
2664
2665 if (nr_hw_queues > nr_cpu_ids)
2666 nr_hw_queues = nr_cpu_ids;
2667 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2668 return;
2669
2670 list_for_each_entry(q, &set->tag_list, tag_set_list)
2671 blk_mq_freeze_queue(q);
2672
2673 set->nr_hw_queues = nr_hw_queues;
2674 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2675 blk_mq_realloc_hw_ctxs(set, q);
2676
2677 /*
2678 * Manually set the make_request_fn as blk_queue_make_request
2679 * resets a lot of the queue settings.
2680 */
2681 if (q->nr_hw_queues > 1)
2682 q->make_request_fn = blk_mq_make_request;
2683 else
2684 q->make_request_fn = blk_sq_make_request;
2685
2686 blk_mq_queue_reinit(q, cpu_online_mask);
2687 }
2688
2689 list_for_each_entry(q, &set->tag_list, tag_set_list)
2690 blk_mq_unfreeze_queue(q);
2691 }
2692 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2693
2694 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2695 struct blk_mq_hw_ctx *hctx,
2696 struct request *rq)
2697 {
2698 struct blk_rq_stat stat[2];
2699 unsigned long ret = 0;
2700
2701 /*
2702 * If stats collection isn't on, don't sleep but turn it on for
2703 * future users
2704 */
2705 if (!blk_stat_enable(q))
2706 return 0;
2707
2708 /*
2709 * We don't have to do this once per IO, should optimize this
2710 * to just use the current window of stats until it changes
2711 */
2712 memset(&stat, 0, sizeof(stat));
2713 blk_hctx_stat_get(hctx, stat);
2714
2715 /*
2716 * As an optimistic guess, use half of the mean service time
2717 * for this type of request. We can (and should) make this smarter.
2718 * For instance, if the completion latencies are tight, we can
2719 * get closer than just half the mean. This is especially
2720 * important on devices where the completion latencies are longer
2721 * than ~10 usec.
2722 */
2723 if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
2724 ret = (stat[BLK_STAT_READ].mean + 1) / 2;
2725 else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
2726 ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;
2727
2728 return ret;
2729 }
2730
2731 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2732 struct blk_mq_hw_ctx *hctx,
2733 struct request *rq)
2734 {
2735 struct hrtimer_sleeper hs;
2736 enum hrtimer_mode mode;
2737 unsigned int nsecs;
2738 ktime_t kt;
2739
2740 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2741 return false;
2742
2743 /*
2744 * poll_nsec can be:
2745 *
2746 * -1: don't ever hybrid sleep
2747 * 0: use half of prev avg
2748 * >0: use this specific value
2749 */
2750 if (q->poll_nsec == -1)
2751 return false;
2752 else if (q->poll_nsec > 0)
2753 nsecs = q->poll_nsec;
2754 else
2755 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2756
2757 if (!nsecs)
2758 return false;
2759
2760 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2761
2762 /*
2763 * This will be replaced with the stats tracking code, using
2764 * 'avg_completion_time / 2' as the pre-sleep target.
2765 */
2766 kt = nsecs;
2767
2768 mode = HRTIMER_MODE_REL;
2769 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2770 hrtimer_set_expires(&hs.timer, kt);
2771
2772 hrtimer_init_sleeper(&hs, current);
2773 do {
2774 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2775 break;
2776 set_current_state(TASK_UNINTERRUPTIBLE);
2777 hrtimer_start_expires(&hs.timer, mode);
2778 if (hs.task)
2779 io_schedule();
2780 hrtimer_cancel(&hs.timer);
2781 mode = HRTIMER_MODE_ABS;
2782 } while (hs.task && !signal_pending(current));
2783
2784 __set_current_state(TASK_RUNNING);
2785 destroy_hrtimer_on_stack(&hs.timer);
2786 return true;
2787 }
2788
2789 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2790 {
2791 struct request_queue *q = hctx->queue;
2792 long state;
2793
2794 /*
2795 * If we sleep, have the caller restart the poll loop to reset
2796 * the state. Like for the other success return cases, the
2797 * caller is responsible for checking if the IO completed. If
2798 * the IO isn't complete, we'll get called again and will go
2799 * straight to the busy poll loop.
2800 */
2801 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2802 return true;
2803
2804 hctx->poll_considered++;
2805
2806 state = current->state;
2807 while (!need_resched()) {
2808 int ret;
2809
2810 hctx->poll_invoked++;
2811
2812 ret = q->mq_ops->poll(hctx, rq->tag);
2813 if (ret > 0) {
2814 hctx->poll_success++;
2815 set_current_state(TASK_RUNNING);
2816 return true;
2817 }
2818
2819 if (signal_pending_state(state, current))
2820 set_current_state(TASK_RUNNING);
2821
2822 if (current->state == TASK_RUNNING)
2823 return true;
2824 if (ret < 0)
2825 break;
2826 cpu_relax();
2827 }
2828
2829 return false;
2830 }
2831
2832 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2833 {
2834 struct blk_mq_hw_ctx *hctx;
2835 struct blk_plug *plug;
2836 struct request *rq;
2837
2838 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2839 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2840 return false;
2841
2842 plug = current->plug;
2843 if (plug)
2844 blk_flush_plug_list(plug, false);
2845
2846 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2847 if (!blk_qc_t_is_internal(cookie))
2848 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2849 else
2850 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2851
2852 return __blk_mq_poll(hctx, rq);
2853 }
2854 EXPORT_SYMBOL_GPL(blk_mq_poll);
2855
2856 void blk_mq_disable_hotplug(void)
2857 {
2858 mutex_lock(&all_q_mutex);
2859 }
2860
2861 void blk_mq_enable_hotplug(void)
2862 {
2863 mutex_unlock(&all_q_mutex);
2864 }
2865
2866 static int __init blk_mq_init(void)
2867 {
2868 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2869 blk_mq_hctx_notify_dead);
2870
2871 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2872 blk_mq_queue_reinit_prepare,
2873 blk_mq_queue_reinit_dead);
2874 return 0;
2875 }
2876 subsys_initcall(blk_mq_init);