]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-mq.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/shli/md
[mirror_ubuntu-artful-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-tag.h"
35 #include "blk-stat.h"
36 #include "blk-wbt.h"
37 #include "blk-mq-sched.h"
38
39 static DEFINE_MUTEX(all_q_mutex);
40 static LIST_HEAD(all_q_list);
41
42 /*
43 * Check if any of the ctx's have pending work in this hardware queue
44 */
45 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
46 {
47 return sbitmap_any_bit_set(&hctx->ctx_map) ||
48 !list_empty_careful(&hctx->dispatch) ||
49 blk_mq_sched_has_work(hctx);
50 }
51
52 /*
53 * Mark this ctx as having pending work in this hardware queue
54 */
55 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
56 struct blk_mq_ctx *ctx)
57 {
58 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
59 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
60 }
61
62 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
63 struct blk_mq_ctx *ctx)
64 {
65 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
66 }
67
68 void blk_mq_freeze_queue_start(struct request_queue *q)
69 {
70 int freeze_depth;
71
72 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
73 if (freeze_depth == 1) {
74 percpu_ref_kill(&q->q_usage_counter);
75 blk_mq_run_hw_queues(q, false);
76 }
77 }
78 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
79
80 void blk_mq_freeze_queue_wait(struct request_queue *q)
81 {
82 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
83 }
84 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
85
86 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
87 unsigned long timeout)
88 {
89 return wait_event_timeout(q->mq_freeze_wq,
90 percpu_ref_is_zero(&q->q_usage_counter),
91 timeout);
92 }
93 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
94
95 /*
96 * Guarantee no request is in use, so we can change any data structure of
97 * the queue afterward.
98 */
99 void blk_freeze_queue(struct request_queue *q)
100 {
101 /*
102 * In the !blk_mq case we are only calling this to kill the
103 * q_usage_counter, otherwise this increases the freeze depth
104 * and waits for it to return to zero. For this reason there is
105 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
106 * exported to drivers as the only user for unfreeze is blk_mq.
107 */
108 blk_mq_freeze_queue_start(q);
109 blk_mq_freeze_queue_wait(q);
110 }
111
112 void blk_mq_freeze_queue(struct request_queue *q)
113 {
114 /*
115 * ...just an alias to keep freeze and unfreeze actions balanced
116 * in the blk_mq_* namespace
117 */
118 blk_freeze_queue(q);
119 }
120 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
121
122 void blk_mq_unfreeze_queue(struct request_queue *q)
123 {
124 int freeze_depth;
125
126 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
127 WARN_ON_ONCE(freeze_depth < 0);
128 if (!freeze_depth) {
129 percpu_ref_reinit(&q->q_usage_counter);
130 wake_up_all(&q->mq_freeze_wq);
131 }
132 }
133 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
134
135 /**
136 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
137 * @q: request queue.
138 *
139 * Note: this function does not prevent that the struct request end_io()
140 * callback function is invoked. Additionally, it is not prevented that
141 * new queue_rq() calls occur unless the queue has been stopped first.
142 */
143 void blk_mq_quiesce_queue(struct request_queue *q)
144 {
145 struct blk_mq_hw_ctx *hctx;
146 unsigned int i;
147 bool rcu = false;
148
149 blk_mq_stop_hw_queues(q);
150
151 queue_for_each_hw_ctx(q, hctx, i) {
152 if (hctx->flags & BLK_MQ_F_BLOCKING)
153 synchronize_srcu(&hctx->queue_rq_srcu);
154 else
155 rcu = true;
156 }
157 if (rcu)
158 synchronize_rcu();
159 }
160 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
161
162 void blk_mq_wake_waiters(struct request_queue *q)
163 {
164 struct blk_mq_hw_ctx *hctx;
165 unsigned int i;
166
167 queue_for_each_hw_ctx(q, hctx, i)
168 if (blk_mq_hw_queue_mapped(hctx))
169 blk_mq_tag_wakeup_all(hctx->tags, true);
170
171 /*
172 * If we are called because the queue has now been marked as
173 * dying, we need to ensure that processes currently waiting on
174 * the queue are notified as well.
175 */
176 wake_up_all(&q->mq_freeze_wq);
177 }
178
179 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
180 {
181 return blk_mq_has_free_tags(hctx->tags);
182 }
183 EXPORT_SYMBOL(blk_mq_can_queue);
184
185 void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
186 struct request *rq, unsigned int op)
187 {
188 INIT_LIST_HEAD(&rq->queuelist);
189 /* csd/requeue_work/fifo_time is initialized before use */
190 rq->q = q;
191 rq->mq_ctx = ctx;
192 rq->cmd_flags = op;
193 if (blk_queue_io_stat(q))
194 rq->rq_flags |= RQF_IO_STAT;
195 /* do not touch atomic flags, it needs atomic ops against the timer */
196 rq->cpu = -1;
197 INIT_HLIST_NODE(&rq->hash);
198 RB_CLEAR_NODE(&rq->rb_node);
199 rq->rq_disk = NULL;
200 rq->part = NULL;
201 rq->start_time = jiffies;
202 #ifdef CONFIG_BLK_CGROUP
203 rq->rl = NULL;
204 set_start_time_ns(rq);
205 rq->io_start_time_ns = 0;
206 #endif
207 rq->nr_phys_segments = 0;
208 #if defined(CONFIG_BLK_DEV_INTEGRITY)
209 rq->nr_integrity_segments = 0;
210 #endif
211 rq->special = NULL;
212 /* tag was already set */
213 rq->errors = 0;
214 rq->extra_len = 0;
215
216 INIT_LIST_HEAD(&rq->timeout_list);
217 rq->timeout = 0;
218
219 rq->end_io = NULL;
220 rq->end_io_data = NULL;
221 rq->next_rq = NULL;
222
223 ctx->rq_dispatched[op_is_sync(op)]++;
224 }
225 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
226
227 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
228 unsigned int op)
229 {
230 struct request *rq;
231 unsigned int tag;
232
233 tag = blk_mq_get_tag(data);
234 if (tag != BLK_MQ_TAG_FAIL) {
235 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
236
237 rq = tags->static_rqs[tag];
238
239 if (data->flags & BLK_MQ_REQ_INTERNAL) {
240 rq->tag = -1;
241 rq->internal_tag = tag;
242 } else {
243 if (blk_mq_tag_busy(data->hctx)) {
244 rq->rq_flags = RQF_MQ_INFLIGHT;
245 atomic_inc(&data->hctx->nr_active);
246 }
247 rq->tag = tag;
248 rq->internal_tag = -1;
249 data->hctx->tags->rqs[rq->tag] = rq;
250 }
251
252 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
253 return rq;
254 }
255
256 return NULL;
257 }
258 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
259
260 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
261 unsigned int flags)
262 {
263 struct blk_mq_alloc_data alloc_data = { .flags = flags };
264 struct request *rq;
265 int ret;
266
267 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
268 if (ret)
269 return ERR_PTR(ret);
270
271 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
272
273 blk_mq_put_ctx(alloc_data.ctx);
274 blk_queue_exit(q);
275
276 if (!rq)
277 return ERR_PTR(-EWOULDBLOCK);
278
279 rq->__data_len = 0;
280 rq->__sector = (sector_t) -1;
281 rq->bio = rq->biotail = NULL;
282 return rq;
283 }
284 EXPORT_SYMBOL(blk_mq_alloc_request);
285
286 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
287 unsigned int flags, unsigned int hctx_idx)
288 {
289 struct blk_mq_alloc_data alloc_data = { .flags = flags };
290 struct request *rq;
291 unsigned int cpu;
292 int ret;
293
294 /*
295 * If the tag allocator sleeps we could get an allocation for a
296 * different hardware context. No need to complicate the low level
297 * allocator for this for the rare use case of a command tied to
298 * a specific queue.
299 */
300 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
301 return ERR_PTR(-EINVAL);
302
303 if (hctx_idx >= q->nr_hw_queues)
304 return ERR_PTR(-EIO);
305
306 ret = blk_queue_enter(q, true);
307 if (ret)
308 return ERR_PTR(ret);
309
310 /*
311 * Check if the hardware context is actually mapped to anything.
312 * If not tell the caller that it should skip this queue.
313 */
314 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
315 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
316 blk_queue_exit(q);
317 return ERR_PTR(-EXDEV);
318 }
319 cpu = cpumask_first(alloc_data.hctx->cpumask);
320 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
321
322 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
323
324 blk_mq_put_ctx(alloc_data.ctx);
325 blk_queue_exit(q);
326
327 if (!rq)
328 return ERR_PTR(-EWOULDBLOCK);
329
330 return rq;
331 }
332 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
333
334 void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
335 struct request *rq)
336 {
337 const int sched_tag = rq->internal_tag;
338 struct request_queue *q = rq->q;
339
340 if (rq->rq_flags & RQF_MQ_INFLIGHT)
341 atomic_dec(&hctx->nr_active);
342
343 wbt_done(q->rq_wb, &rq->issue_stat);
344 rq->rq_flags = 0;
345
346 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
347 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
348 if (rq->tag != -1)
349 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
350 if (sched_tag != -1)
351 blk_mq_sched_completed_request(hctx, rq);
352 blk_mq_sched_restart_queues(hctx);
353 blk_queue_exit(q);
354 }
355
356 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
357 struct request *rq)
358 {
359 struct blk_mq_ctx *ctx = rq->mq_ctx;
360
361 ctx->rq_completed[rq_is_sync(rq)]++;
362 __blk_mq_finish_request(hctx, ctx, rq);
363 }
364
365 void blk_mq_finish_request(struct request *rq)
366 {
367 blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
368 }
369
370 void blk_mq_free_request(struct request *rq)
371 {
372 blk_mq_sched_put_request(rq);
373 }
374 EXPORT_SYMBOL_GPL(blk_mq_free_request);
375
376 inline void __blk_mq_end_request(struct request *rq, int error)
377 {
378 blk_account_io_done(rq);
379
380 if (rq->end_io) {
381 wbt_done(rq->q->rq_wb, &rq->issue_stat);
382 rq->end_io(rq, error);
383 } else {
384 if (unlikely(blk_bidi_rq(rq)))
385 blk_mq_free_request(rq->next_rq);
386 blk_mq_free_request(rq);
387 }
388 }
389 EXPORT_SYMBOL(__blk_mq_end_request);
390
391 void blk_mq_end_request(struct request *rq, int error)
392 {
393 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
394 BUG();
395 __blk_mq_end_request(rq, error);
396 }
397 EXPORT_SYMBOL(blk_mq_end_request);
398
399 static void __blk_mq_complete_request_remote(void *data)
400 {
401 struct request *rq = data;
402
403 rq->q->softirq_done_fn(rq);
404 }
405
406 static void blk_mq_ipi_complete_request(struct request *rq)
407 {
408 struct blk_mq_ctx *ctx = rq->mq_ctx;
409 bool shared = false;
410 int cpu;
411
412 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
413 rq->q->softirq_done_fn(rq);
414 return;
415 }
416
417 cpu = get_cpu();
418 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
419 shared = cpus_share_cache(cpu, ctx->cpu);
420
421 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
422 rq->csd.func = __blk_mq_complete_request_remote;
423 rq->csd.info = rq;
424 rq->csd.flags = 0;
425 smp_call_function_single_async(ctx->cpu, &rq->csd);
426 } else {
427 rq->q->softirq_done_fn(rq);
428 }
429 put_cpu();
430 }
431
432 static void blk_mq_stat_add(struct request *rq)
433 {
434 if (rq->rq_flags & RQF_STATS) {
435 /*
436 * We could rq->mq_ctx here, but there's less of a risk
437 * of races if we have the completion event add the stats
438 * to the local software queue.
439 */
440 struct blk_mq_ctx *ctx;
441
442 ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
443 blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
444 }
445 }
446
447 static void __blk_mq_complete_request(struct request *rq)
448 {
449 struct request_queue *q = rq->q;
450
451 blk_mq_stat_add(rq);
452
453 if (!q->softirq_done_fn)
454 blk_mq_end_request(rq, rq->errors);
455 else
456 blk_mq_ipi_complete_request(rq);
457 }
458
459 /**
460 * blk_mq_complete_request - end I/O on a request
461 * @rq: the request being processed
462 *
463 * Description:
464 * Ends all I/O on a request. It does not handle partial completions.
465 * The actual completion happens out-of-order, through a IPI handler.
466 **/
467 void blk_mq_complete_request(struct request *rq, int error)
468 {
469 struct request_queue *q = rq->q;
470
471 if (unlikely(blk_should_fake_timeout(q)))
472 return;
473 if (!blk_mark_rq_complete(rq)) {
474 rq->errors = error;
475 __blk_mq_complete_request(rq);
476 }
477 }
478 EXPORT_SYMBOL(blk_mq_complete_request);
479
480 int blk_mq_request_started(struct request *rq)
481 {
482 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
483 }
484 EXPORT_SYMBOL_GPL(blk_mq_request_started);
485
486 void blk_mq_start_request(struct request *rq)
487 {
488 struct request_queue *q = rq->q;
489
490 blk_mq_sched_started_request(rq);
491
492 trace_block_rq_issue(q, rq);
493
494 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
495 blk_stat_set_issue_time(&rq->issue_stat);
496 rq->rq_flags |= RQF_STATS;
497 wbt_issue(q->rq_wb, &rq->issue_stat);
498 }
499
500 blk_add_timer(rq);
501
502 /*
503 * Ensure that ->deadline is visible before set the started
504 * flag and clear the completed flag.
505 */
506 smp_mb__before_atomic();
507
508 /*
509 * Mark us as started and clear complete. Complete might have been
510 * set if requeue raced with timeout, which then marked it as
511 * complete. So be sure to clear complete again when we start
512 * the request, otherwise we'll ignore the completion event.
513 */
514 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
515 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
516 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
517 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
518
519 if (q->dma_drain_size && blk_rq_bytes(rq)) {
520 /*
521 * Make sure space for the drain appears. We know we can do
522 * this because max_hw_segments has been adjusted to be one
523 * fewer than the device can handle.
524 */
525 rq->nr_phys_segments++;
526 }
527 }
528 EXPORT_SYMBOL(blk_mq_start_request);
529
530 static void __blk_mq_requeue_request(struct request *rq)
531 {
532 struct request_queue *q = rq->q;
533
534 trace_block_rq_requeue(q, rq);
535 wbt_requeue(q->rq_wb, &rq->issue_stat);
536 blk_mq_sched_requeue_request(rq);
537
538 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
539 if (q->dma_drain_size && blk_rq_bytes(rq))
540 rq->nr_phys_segments--;
541 }
542 }
543
544 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
545 {
546 __blk_mq_requeue_request(rq);
547
548 BUG_ON(blk_queued_rq(rq));
549 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
550 }
551 EXPORT_SYMBOL(blk_mq_requeue_request);
552
553 static void blk_mq_requeue_work(struct work_struct *work)
554 {
555 struct request_queue *q =
556 container_of(work, struct request_queue, requeue_work.work);
557 LIST_HEAD(rq_list);
558 struct request *rq, *next;
559 unsigned long flags;
560
561 spin_lock_irqsave(&q->requeue_lock, flags);
562 list_splice_init(&q->requeue_list, &rq_list);
563 spin_unlock_irqrestore(&q->requeue_lock, flags);
564
565 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
566 if (!(rq->rq_flags & RQF_SOFTBARRIER))
567 continue;
568
569 rq->rq_flags &= ~RQF_SOFTBARRIER;
570 list_del_init(&rq->queuelist);
571 blk_mq_sched_insert_request(rq, true, false, false, true);
572 }
573
574 while (!list_empty(&rq_list)) {
575 rq = list_entry(rq_list.next, struct request, queuelist);
576 list_del_init(&rq->queuelist);
577 blk_mq_sched_insert_request(rq, false, false, false, true);
578 }
579
580 blk_mq_run_hw_queues(q, false);
581 }
582
583 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
584 bool kick_requeue_list)
585 {
586 struct request_queue *q = rq->q;
587 unsigned long flags;
588
589 /*
590 * We abuse this flag that is otherwise used by the I/O scheduler to
591 * request head insertation from the workqueue.
592 */
593 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
594
595 spin_lock_irqsave(&q->requeue_lock, flags);
596 if (at_head) {
597 rq->rq_flags |= RQF_SOFTBARRIER;
598 list_add(&rq->queuelist, &q->requeue_list);
599 } else {
600 list_add_tail(&rq->queuelist, &q->requeue_list);
601 }
602 spin_unlock_irqrestore(&q->requeue_lock, flags);
603
604 if (kick_requeue_list)
605 blk_mq_kick_requeue_list(q);
606 }
607 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
608
609 void blk_mq_kick_requeue_list(struct request_queue *q)
610 {
611 kblockd_schedule_delayed_work(&q->requeue_work, 0);
612 }
613 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
614
615 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
616 unsigned long msecs)
617 {
618 kblockd_schedule_delayed_work(&q->requeue_work,
619 msecs_to_jiffies(msecs));
620 }
621 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
622
623 void blk_mq_abort_requeue_list(struct request_queue *q)
624 {
625 unsigned long flags;
626 LIST_HEAD(rq_list);
627
628 spin_lock_irqsave(&q->requeue_lock, flags);
629 list_splice_init(&q->requeue_list, &rq_list);
630 spin_unlock_irqrestore(&q->requeue_lock, flags);
631
632 while (!list_empty(&rq_list)) {
633 struct request *rq;
634
635 rq = list_first_entry(&rq_list, struct request, queuelist);
636 list_del_init(&rq->queuelist);
637 rq->errors = -EIO;
638 blk_mq_end_request(rq, rq->errors);
639 }
640 }
641 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
642
643 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
644 {
645 if (tag < tags->nr_tags) {
646 prefetch(tags->rqs[tag]);
647 return tags->rqs[tag];
648 }
649
650 return NULL;
651 }
652 EXPORT_SYMBOL(blk_mq_tag_to_rq);
653
654 struct blk_mq_timeout_data {
655 unsigned long next;
656 unsigned int next_set;
657 };
658
659 void blk_mq_rq_timed_out(struct request *req, bool reserved)
660 {
661 const struct blk_mq_ops *ops = req->q->mq_ops;
662 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
663
664 /*
665 * We know that complete is set at this point. If STARTED isn't set
666 * anymore, then the request isn't active and the "timeout" should
667 * just be ignored. This can happen due to the bitflag ordering.
668 * Timeout first checks if STARTED is set, and if it is, assumes
669 * the request is active. But if we race with completion, then
670 * we both flags will get cleared. So check here again, and ignore
671 * a timeout event with a request that isn't active.
672 */
673 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
674 return;
675
676 if (ops->timeout)
677 ret = ops->timeout(req, reserved);
678
679 switch (ret) {
680 case BLK_EH_HANDLED:
681 __blk_mq_complete_request(req);
682 break;
683 case BLK_EH_RESET_TIMER:
684 blk_add_timer(req);
685 blk_clear_rq_complete(req);
686 break;
687 case BLK_EH_NOT_HANDLED:
688 break;
689 default:
690 printk(KERN_ERR "block: bad eh return: %d\n", ret);
691 break;
692 }
693 }
694
695 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
696 struct request *rq, void *priv, bool reserved)
697 {
698 struct blk_mq_timeout_data *data = priv;
699
700 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
701 /*
702 * If a request wasn't started before the queue was
703 * marked dying, kill it here or it'll go unnoticed.
704 */
705 if (unlikely(blk_queue_dying(rq->q))) {
706 rq->errors = -EIO;
707 blk_mq_end_request(rq, rq->errors);
708 }
709 return;
710 }
711
712 if (time_after_eq(jiffies, rq->deadline)) {
713 if (!blk_mark_rq_complete(rq))
714 blk_mq_rq_timed_out(rq, reserved);
715 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
716 data->next = rq->deadline;
717 data->next_set = 1;
718 }
719 }
720
721 static void blk_mq_timeout_work(struct work_struct *work)
722 {
723 struct request_queue *q =
724 container_of(work, struct request_queue, timeout_work);
725 struct blk_mq_timeout_data data = {
726 .next = 0,
727 .next_set = 0,
728 };
729 int i;
730
731 /* A deadlock might occur if a request is stuck requiring a
732 * timeout at the same time a queue freeze is waiting
733 * completion, since the timeout code would not be able to
734 * acquire the queue reference here.
735 *
736 * That's why we don't use blk_queue_enter here; instead, we use
737 * percpu_ref_tryget directly, because we need to be able to
738 * obtain a reference even in the short window between the queue
739 * starting to freeze, by dropping the first reference in
740 * blk_mq_freeze_queue_start, and the moment the last request is
741 * consumed, marked by the instant q_usage_counter reaches
742 * zero.
743 */
744 if (!percpu_ref_tryget(&q->q_usage_counter))
745 return;
746
747 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
748
749 if (data.next_set) {
750 data.next = blk_rq_timeout(round_jiffies_up(data.next));
751 mod_timer(&q->timeout, data.next);
752 } else {
753 struct blk_mq_hw_ctx *hctx;
754
755 queue_for_each_hw_ctx(q, hctx, i) {
756 /* the hctx may be unmapped, so check it here */
757 if (blk_mq_hw_queue_mapped(hctx))
758 blk_mq_tag_idle(hctx);
759 }
760 }
761 blk_queue_exit(q);
762 }
763
764 /*
765 * Reverse check our software queue for entries that we could potentially
766 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
767 * too much time checking for merges.
768 */
769 static bool blk_mq_attempt_merge(struct request_queue *q,
770 struct blk_mq_ctx *ctx, struct bio *bio)
771 {
772 struct request *rq;
773 int checked = 8;
774
775 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
776 bool merged = false;
777
778 if (!checked--)
779 break;
780
781 if (!blk_rq_merge_ok(rq, bio))
782 continue;
783
784 switch (blk_try_merge(rq, bio)) {
785 case ELEVATOR_BACK_MERGE:
786 if (blk_mq_sched_allow_merge(q, rq, bio))
787 merged = bio_attempt_back_merge(q, rq, bio);
788 break;
789 case ELEVATOR_FRONT_MERGE:
790 if (blk_mq_sched_allow_merge(q, rq, bio))
791 merged = bio_attempt_front_merge(q, rq, bio);
792 break;
793 case ELEVATOR_DISCARD_MERGE:
794 merged = bio_attempt_discard_merge(q, rq, bio);
795 break;
796 default:
797 continue;
798 }
799
800 if (merged)
801 ctx->rq_merged++;
802 return merged;
803 }
804
805 return false;
806 }
807
808 struct flush_busy_ctx_data {
809 struct blk_mq_hw_ctx *hctx;
810 struct list_head *list;
811 };
812
813 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
814 {
815 struct flush_busy_ctx_data *flush_data = data;
816 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
817 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
818
819 sbitmap_clear_bit(sb, bitnr);
820 spin_lock(&ctx->lock);
821 list_splice_tail_init(&ctx->rq_list, flush_data->list);
822 spin_unlock(&ctx->lock);
823 return true;
824 }
825
826 /*
827 * Process software queues that have been marked busy, splicing them
828 * to the for-dispatch
829 */
830 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
831 {
832 struct flush_busy_ctx_data data = {
833 .hctx = hctx,
834 .list = list,
835 };
836
837 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
838 }
839 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
840
841 static inline unsigned int queued_to_index(unsigned int queued)
842 {
843 if (!queued)
844 return 0;
845
846 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
847 }
848
849 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
850 bool wait)
851 {
852 struct blk_mq_alloc_data data = {
853 .q = rq->q,
854 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
855 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
856 };
857
858 if (rq->tag != -1) {
859 done:
860 if (hctx)
861 *hctx = data.hctx;
862 return true;
863 }
864
865 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
866 data.flags |= BLK_MQ_REQ_RESERVED;
867
868 rq->tag = blk_mq_get_tag(&data);
869 if (rq->tag >= 0) {
870 if (blk_mq_tag_busy(data.hctx)) {
871 rq->rq_flags |= RQF_MQ_INFLIGHT;
872 atomic_inc(&data.hctx->nr_active);
873 }
874 data.hctx->tags->rqs[rq->tag] = rq;
875 goto done;
876 }
877
878 return false;
879 }
880
881 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
882 struct request *rq)
883 {
884 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
885 rq->tag = -1;
886
887 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
888 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
889 atomic_dec(&hctx->nr_active);
890 }
891 }
892
893 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
894 struct request *rq)
895 {
896 if (rq->tag == -1 || rq->internal_tag == -1)
897 return;
898
899 __blk_mq_put_driver_tag(hctx, rq);
900 }
901
902 static void blk_mq_put_driver_tag(struct request *rq)
903 {
904 struct blk_mq_hw_ctx *hctx;
905
906 if (rq->tag == -1 || rq->internal_tag == -1)
907 return;
908
909 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
910 __blk_mq_put_driver_tag(hctx, rq);
911 }
912
913 /*
914 * If we fail getting a driver tag because all the driver tags are already
915 * assigned and on the dispatch list, BUT the first entry does not have a
916 * tag, then we could deadlock. For that case, move entries with assigned
917 * driver tags to the front, leaving the set of tagged requests in the
918 * same order, and the untagged set in the same order.
919 */
920 static bool reorder_tags_to_front(struct list_head *list)
921 {
922 struct request *rq, *tmp, *first = NULL;
923
924 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
925 if (rq == first)
926 break;
927 if (rq->tag != -1) {
928 list_move(&rq->queuelist, list);
929 if (!first)
930 first = rq;
931 }
932 }
933
934 return first != NULL;
935 }
936
937 static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
938 void *key)
939 {
940 struct blk_mq_hw_ctx *hctx;
941
942 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
943
944 list_del(&wait->task_list);
945 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
946 blk_mq_run_hw_queue(hctx, true);
947 return 1;
948 }
949
950 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
951 {
952 struct sbq_wait_state *ws;
953
954 /*
955 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
956 * The thread which wins the race to grab this bit adds the hardware
957 * queue to the wait queue.
958 */
959 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
960 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
961 return false;
962
963 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
964 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
965
966 /*
967 * As soon as this returns, it's no longer safe to fiddle with
968 * hctx->dispatch_wait, since a completion can wake up the wait queue
969 * and unlock the bit.
970 */
971 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
972 return true;
973 }
974
975 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
976 {
977 struct request_queue *q = hctx->queue;
978 struct request *rq;
979 LIST_HEAD(driver_list);
980 struct list_head *dptr;
981 int queued, ret = BLK_MQ_RQ_QUEUE_OK;
982
983 /*
984 * Start off with dptr being NULL, so we start the first request
985 * immediately, even if we have more pending.
986 */
987 dptr = NULL;
988
989 /*
990 * Now process all the entries, sending them to the driver.
991 */
992 queued = 0;
993 while (!list_empty(list)) {
994 struct blk_mq_queue_data bd;
995
996 rq = list_first_entry(list, struct request, queuelist);
997 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
998 if (!queued && reorder_tags_to_front(list))
999 continue;
1000
1001 /*
1002 * The initial allocation attempt failed, so we need to
1003 * rerun the hardware queue when a tag is freed.
1004 */
1005 if (blk_mq_dispatch_wait_add(hctx)) {
1006 /*
1007 * It's possible that a tag was freed in the
1008 * window between the allocation failure and
1009 * adding the hardware queue to the wait queue.
1010 */
1011 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1012 break;
1013 } else {
1014 break;
1015 }
1016 }
1017
1018 list_del_init(&rq->queuelist);
1019
1020 bd.rq = rq;
1021 bd.list = dptr;
1022
1023 /*
1024 * Flag last if we have no more requests, or if we have more
1025 * but can't assign a driver tag to it.
1026 */
1027 if (list_empty(list))
1028 bd.last = true;
1029 else {
1030 struct request *nxt;
1031
1032 nxt = list_first_entry(list, struct request, queuelist);
1033 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1034 }
1035
1036 ret = q->mq_ops->queue_rq(hctx, &bd);
1037 switch (ret) {
1038 case BLK_MQ_RQ_QUEUE_OK:
1039 queued++;
1040 break;
1041 case BLK_MQ_RQ_QUEUE_BUSY:
1042 blk_mq_put_driver_tag_hctx(hctx, rq);
1043 list_add(&rq->queuelist, list);
1044 __blk_mq_requeue_request(rq);
1045 break;
1046 default:
1047 pr_err("blk-mq: bad return on queue: %d\n", ret);
1048 case BLK_MQ_RQ_QUEUE_ERROR:
1049 rq->errors = -EIO;
1050 blk_mq_end_request(rq, rq->errors);
1051 break;
1052 }
1053
1054 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
1055 break;
1056
1057 /*
1058 * We've done the first request. If we have more than 1
1059 * left in the list, set dptr to defer issue.
1060 */
1061 if (!dptr && list->next != list->prev)
1062 dptr = &driver_list;
1063 }
1064
1065 hctx->dispatched[queued_to_index(queued)]++;
1066
1067 /*
1068 * Any items that need requeuing? Stuff them into hctx->dispatch,
1069 * that is where we will continue on next queue run.
1070 */
1071 if (!list_empty(list)) {
1072 /*
1073 * If we got a driver tag for the next request already,
1074 * free it again.
1075 */
1076 rq = list_first_entry(list, struct request, queuelist);
1077 blk_mq_put_driver_tag(rq);
1078
1079 spin_lock(&hctx->lock);
1080 list_splice_init(list, &hctx->dispatch);
1081 spin_unlock(&hctx->lock);
1082
1083 /*
1084 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
1085 * it's possible the queue is stopped and restarted again
1086 * before this. Queue restart will dispatch requests. And since
1087 * requests in rq_list aren't added into hctx->dispatch yet,
1088 * the requests in rq_list might get lost.
1089 *
1090 * blk_mq_run_hw_queue() already checks the STOPPED bit
1091 *
1092 * If RESTART or TAG_WAITING is set, then let completion restart
1093 * the queue instead of potentially looping here.
1094 */
1095 if (!blk_mq_sched_needs_restart(hctx) &&
1096 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1097 blk_mq_run_hw_queue(hctx, true);
1098 }
1099
1100 return queued != 0;
1101 }
1102
1103 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1104 {
1105 int srcu_idx;
1106
1107 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1108 cpu_online(hctx->next_cpu));
1109
1110 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1111 rcu_read_lock();
1112 blk_mq_sched_dispatch_requests(hctx);
1113 rcu_read_unlock();
1114 } else {
1115 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1116 blk_mq_sched_dispatch_requests(hctx);
1117 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1118 }
1119 }
1120
1121 /*
1122 * It'd be great if the workqueue API had a way to pass
1123 * in a mask and had some smarts for more clever placement.
1124 * For now we just round-robin here, switching for every
1125 * BLK_MQ_CPU_WORK_BATCH queued items.
1126 */
1127 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1128 {
1129 if (hctx->queue->nr_hw_queues == 1)
1130 return WORK_CPU_UNBOUND;
1131
1132 if (--hctx->next_cpu_batch <= 0) {
1133 int next_cpu;
1134
1135 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1136 if (next_cpu >= nr_cpu_ids)
1137 next_cpu = cpumask_first(hctx->cpumask);
1138
1139 hctx->next_cpu = next_cpu;
1140 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1141 }
1142
1143 return hctx->next_cpu;
1144 }
1145
1146 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1147 {
1148 if (unlikely(blk_mq_hctx_stopped(hctx) ||
1149 !blk_mq_hw_queue_mapped(hctx)))
1150 return;
1151
1152 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1153 int cpu = get_cpu();
1154 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1155 __blk_mq_run_hw_queue(hctx);
1156 put_cpu();
1157 return;
1158 }
1159
1160 put_cpu();
1161 }
1162
1163 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
1164 }
1165
1166 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1167 {
1168 struct blk_mq_hw_ctx *hctx;
1169 int i;
1170
1171 queue_for_each_hw_ctx(q, hctx, i) {
1172 if (!blk_mq_hctx_has_pending(hctx) ||
1173 blk_mq_hctx_stopped(hctx))
1174 continue;
1175
1176 blk_mq_run_hw_queue(hctx, async);
1177 }
1178 }
1179 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1180
1181 /**
1182 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1183 * @q: request queue.
1184 *
1185 * The caller is responsible for serializing this function against
1186 * blk_mq_{start,stop}_hw_queue().
1187 */
1188 bool blk_mq_queue_stopped(struct request_queue *q)
1189 {
1190 struct blk_mq_hw_ctx *hctx;
1191 int i;
1192
1193 queue_for_each_hw_ctx(q, hctx, i)
1194 if (blk_mq_hctx_stopped(hctx))
1195 return true;
1196
1197 return false;
1198 }
1199 EXPORT_SYMBOL(blk_mq_queue_stopped);
1200
1201 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1202 {
1203 cancel_work(&hctx->run_work);
1204 cancel_delayed_work(&hctx->delay_work);
1205 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1206 }
1207 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1208
1209 void blk_mq_stop_hw_queues(struct request_queue *q)
1210 {
1211 struct blk_mq_hw_ctx *hctx;
1212 int i;
1213
1214 queue_for_each_hw_ctx(q, hctx, i)
1215 blk_mq_stop_hw_queue(hctx);
1216 }
1217 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1218
1219 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1220 {
1221 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1222
1223 blk_mq_run_hw_queue(hctx, false);
1224 }
1225 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1226
1227 void blk_mq_start_hw_queues(struct request_queue *q)
1228 {
1229 struct blk_mq_hw_ctx *hctx;
1230 int i;
1231
1232 queue_for_each_hw_ctx(q, hctx, i)
1233 blk_mq_start_hw_queue(hctx);
1234 }
1235 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1236
1237 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1238 {
1239 if (!blk_mq_hctx_stopped(hctx))
1240 return;
1241
1242 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1243 blk_mq_run_hw_queue(hctx, async);
1244 }
1245 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1246
1247 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1248 {
1249 struct blk_mq_hw_ctx *hctx;
1250 int i;
1251
1252 queue_for_each_hw_ctx(q, hctx, i)
1253 blk_mq_start_stopped_hw_queue(hctx, async);
1254 }
1255 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1256
1257 static void blk_mq_run_work_fn(struct work_struct *work)
1258 {
1259 struct blk_mq_hw_ctx *hctx;
1260
1261 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1262
1263 __blk_mq_run_hw_queue(hctx);
1264 }
1265
1266 static void blk_mq_delay_work_fn(struct work_struct *work)
1267 {
1268 struct blk_mq_hw_ctx *hctx;
1269
1270 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1271
1272 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1273 __blk_mq_run_hw_queue(hctx);
1274 }
1275
1276 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1277 {
1278 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1279 return;
1280
1281 blk_mq_stop_hw_queue(hctx);
1282 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1283 &hctx->delay_work, msecs_to_jiffies(msecs));
1284 }
1285 EXPORT_SYMBOL(blk_mq_delay_queue);
1286
1287 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1288 struct request *rq,
1289 bool at_head)
1290 {
1291 struct blk_mq_ctx *ctx = rq->mq_ctx;
1292
1293 trace_block_rq_insert(hctx->queue, rq);
1294
1295 if (at_head)
1296 list_add(&rq->queuelist, &ctx->rq_list);
1297 else
1298 list_add_tail(&rq->queuelist, &ctx->rq_list);
1299 }
1300
1301 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1302 bool at_head)
1303 {
1304 struct blk_mq_ctx *ctx = rq->mq_ctx;
1305
1306 __blk_mq_insert_req_list(hctx, rq, at_head);
1307 blk_mq_hctx_mark_pending(hctx, ctx);
1308 }
1309
1310 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1311 struct list_head *list)
1312
1313 {
1314 /*
1315 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1316 * offline now
1317 */
1318 spin_lock(&ctx->lock);
1319 while (!list_empty(list)) {
1320 struct request *rq;
1321
1322 rq = list_first_entry(list, struct request, queuelist);
1323 BUG_ON(rq->mq_ctx != ctx);
1324 list_del_init(&rq->queuelist);
1325 __blk_mq_insert_req_list(hctx, rq, false);
1326 }
1327 blk_mq_hctx_mark_pending(hctx, ctx);
1328 spin_unlock(&ctx->lock);
1329 }
1330
1331 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1332 {
1333 struct request *rqa = container_of(a, struct request, queuelist);
1334 struct request *rqb = container_of(b, struct request, queuelist);
1335
1336 return !(rqa->mq_ctx < rqb->mq_ctx ||
1337 (rqa->mq_ctx == rqb->mq_ctx &&
1338 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1339 }
1340
1341 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1342 {
1343 struct blk_mq_ctx *this_ctx;
1344 struct request_queue *this_q;
1345 struct request *rq;
1346 LIST_HEAD(list);
1347 LIST_HEAD(ctx_list);
1348 unsigned int depth;
1349
1350 list_splice_init(&plug->mq_list, &list);
1351
1352 list_sort(NULL, &list, plug_ctx_cmp);
1353
1354 this_q = NULL;
1355 this_ctx = NULL;
1356 depth = 0;
1357
1358 while (!list_empty(&list)) {
1359 rq = list_entry_rq(list.next);
1360 list_del_init(&rq->queuelist);
1361 BUG_ON(!rq->q);
1362 if (rq->mq_ctx != this_ctx) {
1363 if (this_ctx) {
1364 trace_block_unplug(this_q, depth, from_schedule);
1365 blk_mq_sched_insert_requests(this_q, this_ctx,
1366 &ctx_list,
1367 from_schedule);
1368 }
1369
1370 this_ctx = rq->mq_ctx;
1371 this_q = rq->q;
1372 depth = 0;
1373 }
1374
1375 depth++;
1376 list_add_tail(&rq->queuelist, &ctx_list);
1377 }
1378
1379 /*
1380 * If 'this_ctx' is set, we know we have entries to complete
1381 * on 'ctx_list'. Do those.
1382 */
1383 if (this_ctx) {
1384 trace_block_unplug(this_q, depth, from_schedule);
1385 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1386 from_schedule);
1387 }
1388 }
1389
1390 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1391 {
1392 init_request_from_bio(rq, bio);
1393
1394 blk_account_io_start(rq, true);
1395 }
1396
1397 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1398 {
1399 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1400 !blk_queue_nomerges(hctx->queue);
1401 }
1402
1403 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1404 struct blk_mq_ctx *ctx,
1405 struct request *rq, struct bio *bio)
1406 {
1407 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1408 blk_mq_bio_to_request(rq, bio);
1409 spin_lock(&ctx->lock);
1410 insert_rq:
1411 __blk_mq_insert_request(hctx, rq, false);
1412 spin_unlock(&ctx->lock);
1413 return false;
1414 } else {
1415 struct request_queue *q = hctx->queue;
1416
1417 spin_lock(&ctx->lock);
1418 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1419 blk_mq_bio_to_request(rq, bio);
1420 goto insert_rq;
1421 }
1422
1423 spin_unlock(&ctx->lock);
1424 __blk_mq_finish_request(hctx, ctx, rq);
1425 return true;
1426 }
1427 }
1428
1429 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1430 {
1431 if (rq->tag != -1)
1432 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1433
1434 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1435 }
1436
1437 static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
1438 bool may_sleep)
1439 {
1440 struct request_queue *q = rq->q;
1441 struct blk_mq_queue_data bd = {
1442 .rq = rq,
1443 .list = NULL,
1444 .last = 1
1445 };
1446 struct blk_mq_hw_ctx *hctx;
1447 blk_qc_t new_cookie;
1448 int ret;
1449
1450 if (q->elevator)
1451 goto insert;
1452
1453 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1454 goto insert;
1455
1456 new_cookie = request_to_qc_t(hctx, rq);
1457
1458 /*
1459 * For OK queue, we are done. For error, kill it. Any other
1460 * error (busy), just add it to our list as we previously
1461 * would have done
1462 */
1463 ret = q->mq_ops->queue_rq(hctx, &bd);
1464 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1465 *cookie = new_cookie;
1466 return;
1467 }
1468
1469 __blk_mq_requeue_request(rq);
1470
1471 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1472 *cookie = BLK_QC_T_NONE;
1473 rq->errors = -EIO;
1474 blk_mq_end_request(rq, rq->errors);
1475 return;
1476 }
1477
1478 insert:
1479 blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
1480 }
1481
1482 /*
1483 * Multiple hardware queue variant. This will not use per-process plugs,
1484 * but will attempt to bypass the hctx queueing if we can go straight to
1485 * hardware for SYNC IO.
1486 */
1487 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1488 {
1489 const int is_sync = op_is_sync(bio->bi_opf);
1490 const int is_flush_fua = op_is_flush(bio->bi_opf);
1491 struct blk_mq_alloc_data data = { .flags = 0 };
1492 struct request *rq;
1493 unsigned int request_count = 0, srcu_idx;
1494 struct blk_plug *plug;
1495 struct request *same_queue_rq = NULL;
1496 blk_qc_t cookie;
1497 unsigned int wb_acct;
1498
1499 blk_queue_bounce(q, &bio);
1500
1501 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1502 bio_io_error(bio);
1503 return BLK_QC_T_NONE;
1504 }
1505
1506 blk_queue_split(q, &bio, q->bio_split);
1507
1508 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1509 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1510 return BLK_QC_T_NONE;
1511
1512 if (blk_mq_sched_bio_merge(q, bio))
1513 return BLK_QC_T_NONE;
1514
1515 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1516
1517 trace_block_getrq(q, bio, bio->bi_opf);
1518
1519 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1520 if (unlikely(!rq)) {
1521 __wbt_done(q->rq_wb, wb_acct);
1522 return BLK_QC_T_NONE;
1523 }
1524
1525 wbt_track(&rq->issue_stat, wb_acct);
1526
1527 cookie = request_to_qc_t(data.hctx, rq);
1528
1529 if (unlikely(is_flush_fua)) {
1530 if (q->elevator)
1531 goto elv_insert;
1532 blk_mq_bio_to_request(rq, bio);
1533 blk_insert_flush(rq);
1534 goto run_queue;
1535 }
1536
1537 plug = current->plug;
1538 /*
1539 * If the driver supports defer issued based on 'last', then
1540 * queue it up like normal since we can potentially save some
1541 * CPU this way.
1542 */
1543 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1544 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1545 struct request *old_rq = NULL;
1546
1547 blk_mq_bio_to_request(rq, bio);
1548
1549 /*
1550 * We do limited plugging. If the bio can be merged, do that.
1551 * Otherwise the existing request in the plug list will be
1552 * issued. So the plug list will have one request at most
1553 */
1554 if (plug) {
1555 /*
1556 * The plug list might get flushed before this. If that
1557 * happens, same_queue_rq is invalid and plug list is
1558 * empty
1559 */
1560 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1561 old_rq = same_queue_rq;
1562 list_del_init(&old_rq->queuelist);
1563 }
1564 list_add_tail(&rq->queuelist, &plug->mq_list);
1565 } else /* is_sync */
1566 old_rq = rq;
1567 blk_mq_put_ctx(data.ctx);
1568 if (!old_rq)
1569 goto done;
1570
1571 if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
1572 rcu_read_lock();
1573 blk_mq_try_issue_directly(old_rq, &cookie, false);
1574 rcu_read_unlock();
1575 } else {
1576 srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
1577 blk_mq_try_issue_directly(old_rq, &cookie, true);
1578 srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
1579 }
1580 goto done;
1581 }
1582
1583 if (q->elevator) {
1584 elv_insert:
1585 blk_mq_put_ctx(data.ctx);
1586 blk_mq_bio_to_request(rq, bio);
1587 blk_mq_sched_insert_request(rq, false, true,
1588 !is_sync || is_flush_fua, true);
1589 goto done;
1590 }
1591 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1592 /*
1593 * For a SYNC request, send it to the hardware immediately. For
1594 * an ASYNC request, just ensure that we run it later on. The
1595 * latter allows for merging opportunities and more efficient
1596 * dispatching.
1597 */
1598 run_queue:
1599 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1600 }
1601 blk_mq_put_ctx(data.ctx);
1602 done:
1603 return cookie;
1604 }
1605
1606 /*
1607 * Single hardware queue variant. This will attempt to use any per-process
1608 * plug for merging and IO deferral.
1609 */
1610 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1611 {
1612 const int is_sync = op_is_sync(bio->bi_opf);
1613 const int is_flush_fua = op_is_flush(bio->bi_opf);
1614 struct blk_plug *plug;
1615 unsigned int request_count = 0;
1616 struct blk_mq_alloc_data data = { .flags = 0 };
1617 struct request *rq;
1618 blk_qc_t cookie;
1619 unsigned int wb_acct;
1620
1621 blk_queue_bounce(q, &bio);
1622
1623 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1624 bio_io_error(bio);
1625 return BLK_QC_T_NONE;
1626 }
1627
1628 blk_queue_split(q, &bio, q->bio_split);
1629
1630 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1631 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1632 return BLK_QC_T_NONE;
1633 } else
1634 request_count = blk_plug_queued_count(q);
1635
1636 if (blk_mq_sched_bio_merge(q, bio))
1637 return BLK_QC_T_NONE;
1638
1639 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1640
1641 trace_block_getrq(q, bio, bio->bi_opf);
1642
1643 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1644 if (unlikely(!rq)) {
1645 __wbt_done(q->rq_wb, wb_acct);
1646 return BLK_QC_T_NONE;
1647 }
1648
1649 wbt_track(&rq->issue_stat, wb_acct);
1650
1651 cookie = request_to_qc_t(data.hctx, rq);
1652
1653 if (unlikely(is_flush_fua)) {
1654 if (q->elevator)
1655 goto elv_insert;
1656 blk_mq_bio_to_request(rq, bio);
1657 blk_insert_flush(rq);
1658 goto run_queue;
1659 }
1660
1661 /*
1662 * A task plug currently exists. Since this is completely lockless,
1663 * utilize that to temporarily store requests until the task is
1664 * either done or scheduled away.
1665 */
1666 plug = current->plug;
1667 if (plug) {
1668 struct request *last = NULL;
1669
1670 blk_mq_bio_to_request(rq, bio);
1671
1672 /*
1673 * @request_count may become stale because of schedule
1674 * out, so check the list again.
1675 */
1676 if (list_empty(&plug->mq_list))
1677 request_count = 0;
1678 if (!request_count)
1679 trace_block_plug(q);
1680 else
1681 last = list_entry_rq(plug->mq_list.prev);
1682
1683 blk_mq_put_ctx(data.ctx);
1684
1685 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1686 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1687 blk_flush_plug_list(plug, false);
1688 trace_block_plug(q);
1689 }
1690
1691 list_add_tail(&rq->queuelist, &plug->mq_list);
1692 return cookie;
1693 }
1694
1695 if (q->elevator) {
1696 elv_insert:
1697 blk_mq_put_ctx(data.ctx);
1698 blk_mq_bio_to_request(rq, bio);
1699 blk_mq_sched_insert_request(rq, false, true,
1700 !is_sync || is_flush_fua, true);
1701 goto done;
1702 }
1703 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1704 /*
1705 * For a SYNC request, send it to the hardware immediately. For
1706 * an ASYNC request, just ensure that we run it later on. The
1707 * latter allows for merging opportunities and more efficient
1708 * dispatching.
1709 */
1710 run_queue:
1711 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1712 }
1713
1714 blk_mq_put_ctx(data.ctx);
1715 done:
1716 return cookie;
1717 }
1718
1719 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1720 unsigned int hctx_idx)
1721 {
1722 struct page *page;
1723
1724 if (tags->rqs && set->ops->exit_request) {
1725 int i;
1726
1727 for (i = 0; i < tags->nr_tags; i++) {
1728 struct request *rq = tags->static_rqs[i];
1729
1730 if (!rq)
1731 continue;
1732 set->ops->exit_request(set->driver_data, rq,
1733 hctx_idx, i);
1734 tags->static_rqs[i] = NULL;
1735 }
1736 }
1737
1738 while (!list_empty(&tags->page_list)) {
1739 page = list_first_entry(&tags->page_list, struct page, lru);
1740 list_del_init(&page->lru);
1741 /*
1742 * Remove kmemleak object previously allocated in
1743 * blk_mq_init_rq_map().
1744 */
1745 kmemleak_free(page_address(page));
1746 __free_pages(page, page->private);
1747 }
1748 }
1749
1750 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1751 {
1752 kfree(tags->rqs);
1753 tags->rqs = NULL;
1754 kfree(tags->static_rqs);
1755 tags->static_rqs = NULL;
1756
1757 blk_mq_free_tags(tags);
1758 }
1759
1760 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1761 unsigned int hctx_idx,
1762 unsigned int nr_tags,
1763 unsigned int reserved_tags)
1764 {
1765 struct blk_mq_tags *tags;
1766 int node;
1767
1768 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1769 if (node == NUMA_NO_NODE)
1770 node = set->numa_node;
1771
1772 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1773 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1774 if (!tags)
1775 return NULL;
1776
1777 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1778 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1779 node);
1780 if (!tags->rqs) {
1781 blk_mq_free_tags(tags);
1782 return NULL;
1783 }
1784
1785 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1786 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1787 node);
1788 if (!tags->static_rqs) {
1789 kfree(tags->rqs);
1790 blk_mq_free_tags(tags);
1791 return NULL;
1792 }
1793
1794 return tags;
1795 }
1796
1797 static size_t order_to_size(unsigned int order)
1798 {
1799 return (size_t)PAGE_SIZE << order;
1800 }
1801
1802 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1803 unsigned int hctx_idx, unsigned int depth)
1804 {
1805 unsigned int i, j, entries_per_page, max_order = 4;
1806 size_t rq_size, left;
1807 int node;
1808
1809 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1810 if (node == NUMA_NO_NODE)
1811 node = set->numa_node;
1812
1813 INIT_LIST_HEAD(&tags->page_list);
1814
1815 /*
1816 * rq_size is the size of the request plus driver payload, rounded
1817 * to the cacheline size
1818 */
1819 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1820 cache_line_size());
1821 left = rq_size * depth;
1822
1823 for (i = 0; i < depth; ) {
1824 int this_order = max_order;
1825 struct page *page;
1826 int to_do;
1827 void *p;
1828
1829 while (this_order && left < order_to_size(this_order - 1))
1830 this_order--;
1831
1832 do {
1833 page = alloc_pages_node(node,
1834 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1835 this_order);
1836 if (page)
1837 break;
1838 if (!this_order--)
1839 break;
1840 if (order_to_size(this_order) < rq_size)
1841 break;
1842 } while (1);
1843
1844 if (!page)
1845 goto fail;
1846
1847 page->private = this_order;
1848 list_add_tail(&page->lru, &tags->page_list);
1849
1850 p = page_address(page);
1851 /*
1852 * Allow kmemleak to scan these pages as they contain pointers
1853 * to additional allocations like via ops->init_request().
1854 */
1855 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1856 entries_per_page = order_to_size(this_order) / rq_size;
1857 to_do = min(entries_per_page, depth - i);
1858 left -= to_do * rq_size;
1859 for (j = 0; j < to_do; j++) {
1860 struct request *rq = p;
1861
1862 tags->static_rqs[i] = rq;
1863 if (set->ops->init_request) {
1864 if (set->ops->init_request(set->driver_data,
1865 rq, hctx_idx, i,
1866 node)) {
1867 tags->static_rqs[i] = NULL;
1868 goto fail;
1869 }
1870 }
1871
1872 p += rq_size;
1873 i++;
1874 }
1875 }
1876 return 0;
1877
1878 fail:
1879 blk_mq_free_rqs(set, tags, hctx_idx);
1880 return -ENOMEM;
1881 }
1882
1883 /*
1884 * 'cpu' is going away. splice any existing rq_list entries from this
1885 * software queue to the hw queue dispatch list, and ensure that it
1886 * gets run.
1887 */
1888 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1889 {
1890 struct blk_mq_hw_ctx *hctx;
1891 struct blk_mq_ctx *ctx;
1892 LIST_HEAD(tmp);
1893
1894 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1895 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1896
1897 spin_lock(&ctx->lock);
1898 if (!list_empty(&ctx->rq_list)) {
1899 list_splice_init(&ctx->rq_list, &tmp);
1900 blk_mq_hctx_clear_pending(hctx, ctx);
1901 }
1902 spin_unlock(&ctx->lock);
1903
1904 if (list_empty(&tmp))
1905 return 0;
1906
1907 spin_lock(&hctx->lock);
1908 list_splice_tail_init(&tmp, &hctx->dispatch);
1909 spin_unlock(&hctx->lock);
1910
1911 blk_mq_run_hw_queue(hctx, true);
1912 return 0;
1913 }
1914
1915 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1916 {
1917 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1918 &hctx->cpuhp_dead);
1919 }
1920
1921 /* hctx->ctxs will be freed in queue's release handler */
1922 static void blk_mq_exit_hctx(struct request_queue *q,
1923 struct blk_mq_tag_set *set,
1924 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1925 {
1926 unsigned flush_start_tag = set->queue_depth;
1927
1928 blk_mq_tag_idle(hctx);
1929
1930 if (set->ops->exit_request)
1931 set->ops->exit_request(set->driver_data,
1932 hctx->fq->flush_rq, hctx_idx,
1933 flush_start_tag + hctx_idx);
1934
1935 if (set->ops->exit_hctx)
1936 set->ops->exit_hctx(hctx, hctx_idx);
1937
1938 if (hctx->flags & BLK_MQ_F_BLOCKING)
1939 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1940
1941 blk_mq_remove_cpuhp(hctx);
1942 blk_free_flush_queue(hctx->fq);
1943 sbitmap_free(&hctx->ctx_map);
1944 }
1945
1946 static void blk_mq_exit_hw_queues(struct request_queue *q,
1947 struct blk_mq_tag_set *set, int nr_queue)
1948 {
1949 struct blk_mq_hw_ctx *hctx;
1950 unsigned int i;
1951
1952 queue_for_each_hw_ctx(q, hctx, i) {
1953 if (i == nr_queue)
1954 break;
1955 blk_mq_exit_hctx(q, set, hctx, i);
1956 }
1957 }
1958
1959 static int blk_mq_init_hctx(struct request_queue *q,
1960 struct blk_mq_tag_set *set,
1961 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1962 {
1963 int node;
1964 unsigned flush_start_tag = set->queue_depth;
1965
1966 node = hctx->numa_node;
1967 if (node == NUMA_NO_NODE)
1968 node = hctx->numa_node = set->numa_node;
1969
1970 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1971 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1972 spin_lock_init(&hctx->lock);
1973 INIT_LIST_HEAD(&hctx->dispatch);
1974 hctx->queue = q;
1975 hctx->queue_num = hctx_idx;
1976 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1977
1978 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1979
1980 hctx->tags = set->tags[hctx_idx];
1981
1982 /*
1983 * Allocate space for all possible cpus to avoid allocation at
1984 * runtime
1985 */
1986 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1987 GFP_KERNEL, node);
1988 if (!hctx->ctxs)
1989 goto unregister_cpu_notifier;
1990
1991 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1992 node))
1993 goto free_ctxs;
1994
1995 hctx->nr_ctx = 0;
1996
1997 if (set->ops->init_hctx &&
1998 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1999 goto free_bitmap;
2000
2001 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2002 if (!hctx->fq)
2003 goto exit_hctx;
2004
2005 if (set->ops->init_request &&
2006 set->ops->init_request(set->driver_data,
2007 hctx->fq->flush_rq, hctx_idx,
2008 flush_start_tag + hctx_idx, node))
2009 goto free_fq;
2010
2011 if (hctx->flags & BLK_MQ_F_BLOCKING)
2012 init_srcu_struct(&hctx->queue_rq_srcu);
2013
2014 return 0;
2015
2016 free_fq:
2017 kfree(hctx->fq);
2018 exit_hctx:
2019 if (set->ops->exit_hctx)
2020 set->ops->exit_hctx(hctx, hctx_idx);
2021 free_bitmap:
2022 sbitmap_free(&hctx->ctx_map);
2023 free_ctxs:
2024 kfree(hctx->ctxs);
2025 unregister_cpu_notifier:
2026 blk_mq_remove_cpuhp(hctx);
2027 return -1;
2028 }
2029
2030 static void blk_mq_init_cpu_queues(struct request_queue *q,
2031 unsigned int nr_hw_queues)
2032 {
2033 unsigned int i;
2034
2035 for_each_possible_cpu(i) {
2036 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2037 struct blk_mq_hw_ctx *hctx;
2038
2039 __ctx->cpu = i;
2040 spin_lock_init(&__ctx->lock);
2041 INIT_LIST_HEAD(&__ctx->rq_list);
2042 __ctx->queue = q;
2043 blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
2044 blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
2045
2046 /* If the cpu isn't online, the cpu is mapped to first hctx */
2047 if (!cpu_online(i))
2048 continue;
2049
2050 hctx = blk_mq_map_queue(q, i);
2051
2052 /*
2053 * Set local node, IFF we have more than one hw queue. If
2054 * not, we remain on the home node of the device
2055 */
2056 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2057 hctx->numa_node = local_memory_node(cpu_to_node(i));
2058 }
2059 }
2060
2061 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2062 {
2063 int ret = 0;
2064
2065 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2066 set->queue_depth, set->reserved_tags);
2067 if (!set->tags[hctx_idx])
2068 return false;
2069
2070 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2071 set->queue_depth);
2072 if (!ret)
2073 return true;
2074
2075 blk_mq_free_rq_map(set->tags[hctx_idx]);
2076 set->tags[hctx_idx] = NULL;
2077 return false;
2078 }
2079
2080 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2081 unsigned int hctx_idx)
2082 {
2083 if (set->tags[hctx_idx]) {
2084 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2085 blk_mq_free_rq_map(set->tags[hctx_idx]);
2086 set->tags[hctx_idx] = NULL;
2087 }
2088 }
2089
2090 static void blk_mq_map_swqueue(struct request_queue *q,
2091 const struct cpumask *online_mask)
2092 {
2093 unsigned int i, hctx_idx;
2094 struct blk_mq_hw_ctx *hctx;
2095 struct blk_mq_ctx *ctx;
2096 struct blk_mq_tag_set *set = q->tag_set;
2097
2098 /*
2099 * Avoid others reading imcomplete hctx->cpumask through sysfs
2100 */
2101 mutex_lock(&q->sysfs_lock);
2102
2103 queue_for_each_hw_ctx(q, hctx, i) {
2104 cpumask_clear(hctx->cpumask);
2105 hctx->nr_ctx = 0;
2106 }
2107
2108 /*
2109 * Map software to hardware queues
2110 */
2111 for_each_possible_cpu(i) {
2112 /* If the cpu isn't online, the cpu is mapped to first hctx */
2113 if (!cpumask_test_cpu(i, online_mask))
2114 continue;
2115
2116 hctx_idx = q->mq_map[i];
2117 /* unmapped hw queue can be remapped after CPU topo changed */
2118 if (!set->tags[hctx_idx] &&
2119 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2120 /*
2121 * If tags initialization fail for some hctx,
2122 * that hctx won't be brought online. In this
2123 * case, remap the current ctx to hctx[0] which
2124 * is guaranteed to always have tags allocated
2125 */
2126 q->mq_map[i] = 0;
2127 }
2128
2129 ctx = per_cpu_ptr(q->queue_ctx, i);
2130 hctx = blk_mq_map_queue(q, i);
2131
2132 cpumask_set_cpu(i, hctx->cpumask);
2133 ctx->index_hw = hctx->nr_ctx;
2134 hctx->ctxs[hctx->nr_ctx++] = ctx;
2135 }
2136
2137 mutex_unlock(&q->sysfs_lock);
2138
2139 queue_for_each_hw_ctx(q, hctx, i) {
2140 /*
2141 * If no software queues are mapped to this hardware queue,
2142 * disable it and free the request entries.
2143 */
2144 if (!hctx->nr_ctx) {
2145 /* Never unmap queue 0. We need it as a
2146 * fallback in case of a new remap fails
2147 * allocation
2148 */
2149 if (i && set->tags[i])
2150 blk_mq_free_map_and_requests(set, i);
2151
2152 hctx->tags = NULL;
2153 continue;
2154 }
2155
2156 hctx->tags = set->tags[i];
2157 WARN_ON(!hctx->tags);
2158
2159 /*
2160 * Set the map size to the number of mapped software queues.
2161 * This is more accurate and more efficient than looping
2162 * over all possibly mapped software queues.
2163 */
2164 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2165
2166 /*
2167 * Initialize batch roundrobin counts
2168 */
2169 hctx->next_cpu = cpumask_first(hctx->cpumask);
2170 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2171 }
2172 }
2173
2174 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2175 {
2176 struct blk_mq_hw_ctx *hctx;
2177 int i;
2178
2179 queue_for_each_hw_ctx(q, hctx, i) {
2180 if (shared)
2181 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2182 else
2183 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2184 }
2185 }
2186
2187 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2188 {
2189 struct request_queue *q;
2190
2191 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2192 blk_mq_freeze_queue(q);
2193 queue_set_hctx_shared(q, shared);
2194 blk_mq_unfreeze_queue(q);
2195 }
2196 }
2197
2198 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2199 {
2200 struct blk_mq_tag_set *set = q->tag_set;
2201
2202 mutex_lock(&set->tag_list_lock);
2203 list_del_init(&q->tag_set_list);
2204 if (list_is_singular(&set->tag_list)) {
2205 /* just transitioned to unshared */
2206 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2207 /* update existing queue */
2208 blk_mq_update_tag_set_depth(set, false);
2209 }
2210 mutex_unlock(&set->tag_list_lock);
2211 }
2212
2213 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2214 struct request_queue *q)
2215 {
2216 q->tag_set = set;
2217
2218 mutex_lock(&set->tag_list_lock);
2219
2220 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2221 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2222 set->flags |= BLK_MQ_F_TAG_SHARED;
2223 /* update existing queue */
2224 blk_mq_update_tag_set_depth(set, true);
2225 }
2226 if (set->flags & BLK_MQ_F_TAG_SHARED)
2227 queue_set_hctx_shared(q, true);
2228 list_add_tail(&q->tag_set_list, &set->tag_list);
2229
2230 mutex_unlock(&set->tag_list_lock);
2231 }
2232
2233 /*
2234 * It is the actual release handler for mq, but we do it from
2235 * request queue's release handler for avoiding use-after-free
2236 * and headache because q->mq_kobj shouldn't have been introduced,
2237 * but we can't group ctx/kctx kobj without it.
2238 */
2239 void blk_mq_release(struct request_queue *q)
2240 {
2241 struct blk_mq_hw_ctx *hctx;
2242 unsigned int i;
2243
2244 blk_mq_sched_teardown(q);
2245
2246 /* hctx kobj stays in hctx */
2247 queue_for_each_hw_ctx(q, hctx, i) {
2248 if (!hctx)
2249 continue;
2250 kobject_put(&hctx->kobj);
2251 }
2252
2253 q->mq_map = NULL;
2254
2255 kfree(q->queue_hw_ctx);
2256
2257 /*
2258 * release .mq_kobj and sw queue's kobject now because
2259 * both share lifetime with request queue.
2260 */
2261 blk_mq_sysfs_deinit(q);
2262
2263 free_percpu(q->queue_ctx);
2264 }
2265
2266 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2267 {
2268 struct request_queue *uninit_q, *q;
2269
2270 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2271 if (!uninit_q)
2272 return ERR_PTR(-ENOMEM);
2273
2274 q = blk_mq_init_allocated_queue(set, uninit_q);
2275 if (IS_ERR(q))
2276 blk_cleanup_queue(uninit_q);
2277
2278 return q;
2279 }
2280 EXPORT_SYMBOL(blk_mq_init_queue);
2281
2282 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2283 struct request_queue *q)
2284 {
2285 int i, j;
2286 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2287
2288 blk_mq_sysfs_unregister(q);
2289 for (i = 0; i < set->nr_hw_queues; i++) {
2290 int node;
2291
2292 if (hctxs[i])
2293 continue;
2294
2295 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2296 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2297 GFP_KERNEL, node);
2298 if (!hctxs[i])
2299 break;
2300
2301 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2302 node)) {
2303 kfree(hctxs[i]);
2304 hctxs[i] = NULL;
2305 break;
2306 }
2307
2308 atomic_set(&hctxs[i]->nr_active, 0);
2309 hctxs[i]->numa_node = node;
2310 hctxs[i]->queue_num = i;
2311
2312 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2313 free_cpumask_var(hctxs[i]->cpumask);
2314 kfree(hctxs[i]);
2315 hctxs[i] = NULL;
2316 break;
2317 }
2318 blk_mq_hctx_kobj_init(hctxs[i]);
2319 }
2320 for (j = i; j < q->nr_hw_queues; j++) {
2321 struct blk_mq_hw_ctx *hctx = hctxs[j];
2322
2323 if (hctx) {
2324 if (hctx->tags)
2325 blk_mq_free_map_and_requests(set, j);
2326 blk_mq_exit_hctx(q, set, hctx, j);
2327 kobject_put(&hctx->kobj);
2328 hctxs[j] = NULL;
2329
2330 }
2331 }
2332 q->nr_hw_queues = i;
2333 blk_mq_sysfs_register(q);
2334 }
2335
2336 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2337 struct request_queue *q)
2338 {
2339 /* mark the queue as mq asap */
2340 q->mq_ops = set->ops;
2341
2342 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2343 if (!q->queue_ctx)
2344 goto err_exit;
2345
2346 /* init q->mq_kobj and sw queues' kobjects */
2347 blk_mq_sysfs_init(q);
2348
2349 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2350 GFP_KERNEL, set->numa_node);
2351 if (!q->queue_hw_ctx)
2352 goto err_percpu;
2353
2354 q->mq_map = set->mq_map;
2355
2356 blk_mq_realloc_hw_ctxs(set, q);
2357 if (!q->nr_hw_queues)
2358 goto err_hctxs;
2359
2360 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2361 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2362
2363 q->nr_queues = nr_cpu_ids;
2364
2365 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2366
2367 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2368 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2369
2370 q->sg_reserved_size = INT_MAX;
2371
2372 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2373 INIT_LIST_HEAD(&q->requeue_list);
2374 spin_lock_init(&q->requeue_lock);
2375
2376 if (q->nr_hw_queues > 1)
2377 blk_queue_make_request(q, blk_mq_make_request);
2378 else
2379 blk_queue_make_request(q, blk_sq_make_request);
2380
2381 /*
2382 * Do this after blk_queue_make_request() overrides it...
2383 */
2384 q->nr_requests = set->queue_depth;
2385
2386 /*
2387 * Default to classic polling
2388 */
2389 q->poll_nsec = -1;
2390
2391 if (set->ops->complete)
2392 blk_queue_softirq_done(q, set->ops->complete);
2393
2394 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2395
2396 get_online_cpus();
2397 mutex_lock(&all_q_mutex);
2398
2399 list_add_tail(&q->all_q_node, &all_q_list);
2400 blk_mq_add_queue_tag_set(set, q);
2401 blk_mq_map_swqueue(q, cpu_online_mask);
2402
2403 mutex_unlock(&all_q_mutex);
2404 put_online_cpus();
2405
2406 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2407 int ret;
2408
2409 ret = blk_mq_sched_init(q);
2410 if (ret)
2411 return ERR_PTR(ret);
2412 }
2413
2414 return q;
2415
2416 err_hctxs:
2417 kfree(q->queue_hw_ctx);
2418 err_percpu:
2419 free_percpu(q->queue_ctx);
2420 err_exit:
2421 q->mq_ops = NULL;
2422 return ERR_PTR(-ENOMEM);
2423 }
2424 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2425
2426 void blk_mq_free_queue(struct request_queue *q)
2427 {
2428 struct blk_mq_tag_set *set = q->tag_set;
2429
2430 mutex_lock(&all_q_mutex);
2431 list_del_init(&q->all_q_node);
2432 mutex_unlock(&all_q_mutex);
2433
2434 wbt_exit(q);
2435
2436 blk_mq_del_queue_tag_set(q);
2437
2438 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2439 }
2440
2441 /* Basically redo blk_mq_init_queue with queue frozen */
2442 static void blk_mq_queue_reinit(struct request_queue *q,
2443 const struct cpumask *online_mask)
2444 {
2445 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2446
2447 blk_mq_sysfs_unregister(q);
2448
2449 /*
2450 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2451 * we should change hctx numa_node according to new topology (this
2452 * involves free and re-allocate memory, worthy doing?)
2453 */
2454
2455 blk_mq_map_swqueue(q, online_mask);
2456
2457 blk_mq_sysfs_register(q);
2458 }
2459
2460 /*
2461 * New online cpumask which is going to be set in this hotplug event.
2462 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2463 * one-by-one and dynamically allocating this could result in a failure.
2464 */
2465 static struct cpumask cpuhp_online_new;
2466
2467 static void blk_mq_queue_reinit_work(void)
2468 {
2469 struct request_queue *q;
2470
2471 mutex_lock(&all_q_mutex);
2472 /*
2473 * We need to freeze and reinit all existing queues. Freezing
2474 * involves synchronous wait for an RCU grace period and doing it
2475 * one by one may take a long time. Start freezing all queues in
2476 * one swoop and then wait for the completions so that freezing can
2477 * take place in parallel.
2478 */
2479 list_for_each_entry(q, &all_q_list, all_q_node)
2480 blk_mq_freeze_queue_start(q);
2481 list_for_each_entry(q, &all_q_list, all_q_node)
2482 blk_mq_freeze_queue_wait(q);
2483
2484 list_for_each_entry(q, &all_q_list, all_q_node)
2485 blk_mq_queue_reinit(q, &cpuhp_online_new);
2486
2487 list_for_each_entry(q, &all_q_list, all_q_node)
2488 blk_mq_unfreeze_queue(q);
2489
2490 mutex_unlock(&all_q_mutex);
2491 }
2492
2493 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2494 {
2495 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2496 blk_mq_queue_reinit_work();
2497 return 0;
2498 }
2499
2500 /*
2501 * Before hotadded cpu starts handling requests, new mappings must be
2502 * established. Otherwise, these requests in hw queue might never be
2503 * dispatched.
2504 *
2505 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2506 * for CPU0, and ctx1 for CPU1).
2507 *
2508 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2509 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2510 *
2511 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2512 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2513 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2514 * ignored.
2515 */
2516 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2517 {
2518 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2519 cpumask_set_cpu(cpu, &cpuhp_online_new);
2520 blk_mq_queue_reinit_work();
2521 return 0;
2522 }
2523
2524 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2525 {
2526 int i;
2527
2528 for (i = 0; i < set->nr_hw_queues; i++)
2529 if (!__blk_mq_alloc_rq_map(set, i))
2530 goto out_unwind;
2531
2532 return 0;
2533
2534 out_unwind:
2535 while (--i >= 0)
2536 blk_mq_free_rq_map(set->tags[i]);
2537
2538 return -ENOMEM;
2539 }
2540
2541 /*
2542 * Allocate the request maps associated with this tag_set. Note that this
2543 * may reduce the depth asked for, if memory is tight. set->queue_depth
2544 * will be updated to reflect the allocated depth.
2545 */
2546 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2547 {
2548 unsigned int depth;
2549 int err;
2550
2551 depth = set->queue_depth;
2552 do {
2553 err = __blk_mq_alloc_rq_maps(set);
2554 if (!err)
2555 break;
2556
2557 set->queue_depth >>= 1;
2558 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2559 err = -ENOMEM;
2560 break;
2561 }
2562 } while (set->queue_depth);
2563
2564 if (!set->queue_depth || err) {
2565 pr_err("blk-mq: failed to allocate request map\n");
2566 return -ENOMEM;
2567 }
2568
2569 if (depth != set->queue_depth)
2570 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2571 depth, set->queue_depth);
2572
2573 return 0;
2574 }
2575
2576 /*
2577 * Alloc a tag set to be associated with one or more request queues.
2578 * May fail with EINVAL for various error conditions. May adjust the
2579 * requested depth down, if if it too large. In that case, the set
2580 * value will be stored in set->queue_depth.
2581 */
2582 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2583 {
2584 int ret;
2585
2586 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2587
2588 if (!set->nr_hw_queues)
2589 return -EINVAL;
2590 if (!set->queue_depth)
2591 return -EINVAL;
2592 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2593 return -EINVAL;
2594
2595 if (!set->ops->queue_rq)
2596 return -EINVAL;
2597
2598 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2599 pr_info("blk-mq: reduced tag depth to %u\n",
2600 BLK_MQ_MAX_DEPTH);
2601 set->queue_depth = BLK_MQ_MAX_DEPTH;
2602 }
2603
2604 /*
2605 * If a crashdump is active, then we are potentially in a very
2606 * memory constrained environment. Limit us to 1 queue and
2607 * 64 tags to prevent using too much memory.
2608 */
2609 if (is_kdump_kernel()) {
2610 set->nr_hw_queues = 1;
2611 set->queue_depth = min(64U, set->queue_depth);
2612 }
2613 /*
2614 * There is no use for more h/w queues than cpus.
2615 */
2616 if (set->nr_hw_queues > nr_cpu_ids)
2617 set->nr_hw_queues = nr_cpu_ids;
2618
2619 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2620 GFP_KERNEL, set->numa_node);
2621 if (!set->tags)
2622 return -ENOMEM;
2623
2624 ret = -ENOMEM;
2625 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2626 GFP_KERNEL, set->numa_node);
2627 if (!set->mq_map)
2628 goto out_free_tags;
2629
2630 if (set->ops->map_queues)
2631 ret = set->ops->map_queues(set);
2632 else
2633 ret = blk_mq_map_queues(set);
2634 if (ret)
2635 goto out_free_mq_map;
2636
2637 ret = blk_mq_alloc_rq_maps(set);
2638 if (ret)
2639 goto out_free_mq_map;
2640
2641 mutex_init(&set->tag_list_lock);
2642 INIT_LIST_HEAD(&set->tag_list);
2643
2644 return 0;
2645
2646 out_free_mq_map:
2647 kfree(set->mq_map);
2648 set->mq_map = NULL;
2649 out_free_tags:
2650 kfree(set->tags);
2651 set->tags = NULL;
2652 return ret;
2653 }
2654 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2655
2656 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2657 {
2658 int i;
2659
2660 for (i = 0; i < nr_cpu_ids; i++)
2661 blk_mq_free_map_and_requests(set, i);
2662
2663 kfree(set->mq_map);
2664 set->mq_map = NULL;
2665
2666 kfree(set->tags);
2667 set->tags = NULL;
2668 }
2669 EXPORT_SYMBOL(blk_mq_free_tag_set);
2670
2671 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2672 {
2673 struct blk_mq_tag_set *set = q->tag_set;
2674 struct blk_mq_hw_ctx *hctx;
2675 int i, ret;
2676
2677 if (!set)
2678 return -EINVAL;
2679
2680 blk_mq_freeze_queue(q);
2681 blk_mq_quiesce_queue(q);
2682
2683 ret = 0;
2684 queue_for_each_hw_ctx(q, hctx, i) {
2685 if (!hctx->tags)
2686 continue;
2687 /*
2688 * If we're using an MQ scheduler, just update the scheduler
2689 * queue depth. This is similar to what the old code would do.
2690 */
2691 if (!hctx->sched_tags) {
2692 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2693 min(nr, set->queue_depth),
2694 false);
2695 } else {
2696 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2697 nr, true);
2698 }
2699 if (ret)
2700 break;
2701 }
2702
2703 if (!ret)
2704 q->nr_requests = nr;
2705
2706 blk_mq_unfreeze_queue(q);
2707 blk_mq_start_stopped_hw_queues(q, true);
2708
2709 return ret;
2710 }
2711
2712 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2713 {
2714 struct request_queue *q;
2715
2716 if (nr_hw_queues > nr_cpu_ids)
2717 nr_hw_queues = nr_cpu_ids;
2718 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2719 return;
2720
2721 list_for_each_entry(q, &set->tag_list, tag_set_list)
2722 blk_mq_freeze_queue(q);
2723
2724 set->nr_hw_queues = nr_hw_queues;
2725 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2726 blk_mq_realloc_hw_ctxs(set, q);
2727
2728 /*
2729 * Manually set the make_request_fn as blk_queue_make_request
2730 * resets a lot of the queue settings.
2731 */
2732 if (q->nr_hw_queues > 1)
2733 q->make_request_fn = blk_mq_make_request;
2734 else
2735 q->make_request_fn = blk_sq_make_request;
2736
2737 blk_mq_queue_reinit(q, cpu_online_mask);
2738 }
2739
2740 list_for_each_entry(q, &set->tag_list, tag_set_list)
2741 blk_mq_unfreeze_queue(q);
2742 }
2743 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2744
2745 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2746 struct blk_mq_hw_ctx *hctx,
2747 struct request *rq)
2748 {
2749 struct blk_rq_stat stat[2];
2750 unsigned long ret = 0;
2751
2752 /*
2753 * If stats collection isn't on, don't sleep but turn it on for
2754 * future users
2755 */
2756 if (!blk_stat_enable(q))
2757 return 0;
2758
2759 /*
2760 * We don't have to do this once per IO, should optimize this
2761 * to just use the current window of stats until it changes
2762 */
2763 memset(&stat, 0, sizeof(stat));
2764 blk_hctx_stat_get(hctx, stat);
2765
2766 /*
2767 * As an optimistic guess, use half of the mean service time
2768 * for this type of request. We can (and should) make this smarter.
2769 * For instance, if the completion latencies are tight, we can
2770 * get closer than just half the mean. This is especially
2771 * important on devices where the completion latencies are longer
2772 * than ~10 usec.
2773 */
2774 if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
2775 ret = (stat[BLK_STAT_READ].mean + 1) / 2;
2776 else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
2777 ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;
2778
2779 return ret;
2780 }
2781
2782 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2783 struct blk_mq_hw_ctx *hctx,
2784 struct request *rq)
2785 {
2786 struct hrtimer_sleeper hs;
2787 enum hrtimer_mode mode;
2788 unsigned int nsecs;
2789 ktime_t kt;
2790
2791 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2792 return false;
2793
2794 /*
2795 * poll_nsec can be:
2796 *
2797 * -1: don't ever hybrid sleep
2798 * 0: use half of prev avg
2799 * >0: use this specific value
2800 */
2801 if (q->poll_nsec == -1)
2802 return false;
2803 else if (q->poll_nsec > 0)
2804 nsecs = q->poll_nsec;
2805 else
2806 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2807
2808 if (!nsecs)
2809 return false;
2810
2811 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2812
2813 /*
2814 * This will be replaced with the stats tracking code, using
2815 * 'avg_completion_time / 2' as the pre-sleep target.
2816 */
2817 kt = nsecs;
2818
2819 mode = HRTIMER_MODE_REL;
2820 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2821 hrtimer_set_expires(&hs.timer, kt);
2822
2823 hrtimer_init_sleeper(&hs, current);
2824 do {
2825 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2826 break;
2827 set_current_state(TASK_UNINTERRUPTIBLE);
2828 hrtimer_start_expires(&hs.timer, mode);
2829 if (hs.task)
2830 io_schedule();
2831 hrtimer_cancel(&hs.timer);
2832 mode = HRTIMER_MODE_ABS;
2833 } while (hs.task && !signal_pending(current));
2834
2835 __set_current_state(TASK_RUNNING);
2836 destroy_hrtimer_on_stack(&hs.timer);
2837 return true;
2838 }
2839
2840 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2841 {
2842 struct request_queue *q = hctx->queue;
2843 long state;
2844
2845 /*
2846 * If we sleep, have the caller restart the poll loop to reset
2847 * the state. Like for the other success return cases, the
2848 * caller is responsible for checking if the IO completed. If
2849 * the IO isn't complete, we'll get called again and will go
2850 * straight to the busy poll loop.
2851 */
2852 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2853 return true;
2854
2855 hctx->poll_considered++;
2856
2857 state = current->state;
2858 while (!need_resched()) {
2859 int ret;
2860
2861 hctx->poll_invoked++;
2862
2863 ret = q->mq_ops->poll(hctx, rq->tag);
2864 if (ret > 0) {
2865 hctx->poll_success++;
2866 set_current_state(TASK_RUNNING);
2867 return true;
2868 }
2869
2870 if (signal_pending_state(state, current))
2871 set_current_state(TASK_RUNNING);
2872
2873 if (current->state == TASK_RUNNING)
2874 return true;
2875 if (ret < 0)
2876 break;
2877 cpu_relax();
2878 }
2879
2880 return false;
2881 }
2882
2883 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2884 {
2885 struct blk_mq_hw_ctx *hctx;
2886 struct blk_plug *plug;
2887 struct request *rq;
2888
2889 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2890 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2891 return false;
2892
2893 plug = current->plug;
2894 if (plug)
2895 blk_flush_plug_list(plug, false);
2896
2897 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2898 if (!blk_qc_t_is_internal(cookie))
2899 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2900 else
2901 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2902
2903 return __blk_mq_poll(hctx, rq);
2904 }
2905 EXPORT_SYMBOL_GPL(blk_mq_poll);
2906
2907 void blk_mq_disable_hotplug(void)
2908 {
2909 mutex_lock(&all_q_mutex);
2910 }
2911
2912 void blk_mq_enable_hotplug(void)
2913 {
2914 mutex_unlock(&all_q_mutex);
2915 }
2916
2917 static int __init blk_mq_init(void)
2918 {
2919 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2920 blk_mq_hctx_notify_dead);
2921
2922 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2923 blk_mq_queue_reinit_prepare,
2924 blk_mq_queue_reinit_dead);
2925 return 0;
2926 }
2927 subsys_initcall(blk_mq_init);