]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-mq.c
Merge tag 'pci-v3.16-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaa...
[mirror_ubuntu-artful-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23
24 #include <trace/events/block.h>
25
26 #include <linux/blk-mq.h>
27 #include "blk.h"
28 #include "blk-mq.h"
29 #include "blk-mq-tag.h"
30
31 static DEFINE_MUTEX(all_q_mutex);
32 static LIST_HEAD(all_q_list);
33
34 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
35
36 static struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
37 unsigned int cpu)
38 {
39 return per_cpu_ptr(q->queue_ctx, cpu);
40 }
41
42 /*
43 * This assumes per-cpu software queueing queues. They could be per-node
44 * as well, for instance. For now this is hardcoded as-is. Note that we don't
45 * care about preemption, since we know the ctx's are persistent. This does
46 * mean that we can't rely on ctx always matching the currently running CPU.
47 */
48 static struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
49 {
50 return __blk_mq_get_ctx(q, get_cpu());
51 }
52
53 static void blk_mq_put_ctx(struct blk_mq_ctx *ctx)
54 {
55 put_cpu();
56 }
57
58 /*
59 * Check if any of the ctx's have pending work in this hardware queue
60 */
61 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
62 {
63 unsigned int i;
64
65 for (i = 0; i < hctx->ctx_map.map_size; i++)
66 if (hctx->ctx_map.map[i].word)
67 return true;
68
69 return false;
70 }
71
72 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
73 struct blk_mq_ctx *ctx)
74 {
75 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
76 }
77
78 #define CTX_TO_BIT(hctx, ctx) \
79 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
80
81 /*
82 * Mark this ctx as having pending work in this hardware queue
83 */
84 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
85 struct blk_mq_ctx *ctx)
86 {
87 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
88
89 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
90 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
91 }
92
93 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
94 struct blk_mq_ctx *ctx)
95 {
96 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
97
98 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
99 }
100
101 static int blk_mq_queue_enter(struct request_queue *q)
102 {
103 int ret;
104
105 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
106 smp_wmb();
107 /* we have problems to freeze the queue if it's initializing */
108 if (!blk_queue_bypass(q) || !blk_queue_init_done(q))
109 return 0;
110
111 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
112
113 spin_lock_irq(q->queue_lock);
114 ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq,
115 !blk_queue_bypass(q) || blk_queue_dying(q),
116 *q->queue_lock);
117 /* inc usage with lock hold to avoid freeze_queue runs here */
118 if (!ret && !blk_queue_dying(q))
119 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
120 else if (blk_queue_dying(q))
121 ret = -ENODEV;
122 spin_unlock_irq(q->queue_lock);
123
124 return ret;
125 }
126
127 static void blk_mq_queue_exit(struct request_queue *q)
128 {
129 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
130 }
131
132 static void __blk_mq_drain_queue(struct request_queue *q)
133 {
134 while (true) {
135 s64 count;
136
137 spin_lock_irq(q->queue_lock);
138 count = percpu_counter_sum(&q->mq_usage_counter);
139 spin_unlock_irq(q->queue_lock);
140
141 if (count == 0)
142 break;
143 blk_mq_run_queues(q, false);
144 msleep(10);
145 }
146 }
147
148 /*
149 * Guarantee no request is in use, so we can change any data structure of
150 * the queue afterward.
151 */
152 static void blk_mq_freeze_queue(struct request_queue *q)
153 {
154 bool drain;
155
156 spin_lock_irq(q->queue_lock);
157 drain = !q->bypass_depth++;
158 queue_flag_set(QUEUE_FLAG_BYPASS, q);
159 spin_unlock_irq(q->queue_lock);
160
161 if (drain)
162 __blk_mq_drain_queue(q);
163 }
164
165 void blk_mq_drain_queue(struct request_queue *q)
166 {
167 __blk_mq_drain_queue(q);
168 }
169
170 static void blk_mq_unfreeze_queue(struct request_queue *q)
171 {
172 bool wake = false;
173
174 spin_lock_irq(q->queue_lock);
175 if (!--q->bypass_depth) {
176 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
177 wake = true;
178 }
179 WARN_ON_ONCE(q->bypass_depth < 0);
180 spin_unlock_irq(q->queue_lock);
181 if (wake)
182 wake_up_all(&q->mq_freeze_wq);
183 }
184
185 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
186 {
187 return blk_mq_has_free_tags(hctx->tags);
188 }
189 EXPORT_SYMBOL(blk_mq_can_queue);
190
191 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
192 struct request *rq, unsigned int rw_flags)
193 {
194 if (blk_queue_io_stat(q))
195 rw_flags |= REQ_IO_STAT;
196
197 INIT_LIST_HEAD(&rq->queuelist);
198 /* csd/requeue_work/fifo_time is initialized before use */
199 rq->q = q;
200 rq->mq_ctx = ctx;
201 rq->cmd_flags |= rw_flags;
202 /* do not touch atomic flags, it needs atomic ops against the timer */
203 rq->cpu = -1;
204 INIT_HLIST_NODE(&rq->hash);
205 RB_CLEAR_NODE(&rq->rb_node);
206 rq->rq_disk = NULL;
207 rq->part = NULL;
208 #ifdef CONFIG_BLK_CGROUP
209 rq->rl = NULL;
210 set_start_time_ns(rq);
211 rq->io_start_time_ns = 0;
212 #endif
213 rq->nr_phys_segments = 0;
214 #if defined(CONFIG_BLK_DEV_INTEGRITY)
215 rq->nr_integrity_segments = 0;
216 #endif
217 rq->special = NULL;
218 /* tag was already set */
219 rq->errors = 0;
220
221 rq->extra_len = 0;
222 rq->sense_len = 0;
223 rq->resid_len = 0;
224 rq->sense = NULL;
225
226 INIT_LIST_HEAD(&rq->timeout_list);
227 rq->end_io = NULL;
228 rq->end_io_data = NULL;
229 rq->next_rq = NULL;
230
231 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
232 }
233
234 static struct request *
235 __blk_mq_alloc_request(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
236 struct blk_mq_ctx *ctx, int rw, gfp_t gfp, bool reserved)
237 {
238 struct request *rq;
239 unsigned int tag;
240
241 tag = blk_mq_get_tag(hctx, &ctx->last_tag, gfp, reserved);
242 if (tag != BLK_MQ_TAG_FAIL) {
243 rq = hctx->tags->rqs[tag];
244
245 rq->cmd_flags = 0;
246 if (blk_mq_tag_busy(hctx)) {
247 rq->cmd_flags = REQ_MQ_INFLIGHT;
248 atomic_inc(&hctx->nr_active);
249 }
250
251 rq->tag = tag;
252 blk_mq_rq_ctx_init(q, ctx, rq, rw);
253 return rq;
254 }
255
256 return NULL;
257 }
258
259 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
260 bool reserved)
261 {
262 struct blk_mq_ctx *ctx;
263 struct blk_mq_hw_ctx *hctx;
264 struct request *rq;
265
266 if (blk_mq_queue_enter(q))
267 return NULL;
268
269 ctx = blk_mq_get_ctx(q);
270 hctx = q->mq_ops->map_queue(q, ctx->cpu);
271
272 rq = __blk_mq_alloc_request(q, hctx, ctx, rw, gfp & ~__GFP_WAIT,
273 reserved);
274 if (!rq && (gfp & __GFP_WAIT)) {
275 __blk_mq_run_hw_queue(hctx);
276 blk_mq_put_ctx(ctx);
277
278 ctx = blk_mq_get_ctx(q);
279 hctx = q->mq_ops->map_queue(q, ctx->cpu);
280 rq = __blk_mq_alloc_request(q, hctx, ctx, rw, gfp, reserved);
281 }
282 blk_mq_put_ctx(ctx);
283 return rq;
284 }
285 EXPORT_SYMBOL(blk_mq_alloc_request);
286
287 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
288 struct blk_mq_ctx *ctx, struct request *rq)
289 {
290 const int tag = rq->tag;
291 struct request_queue *q = rq->q;
292
293 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
294 atomic_dec(&hctx->nr_active);
295
296 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
297 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
298 blk_mq_queue_exit(q);
299 }
300
301 void blk_mq_free_request(struct request *rq)
302 {
303 struct blk_mq_ctx *ctx = rq->mq_ctx;
304 struct blk_mq_hw_ctx *hctx;
305 struct request_queue *q = rq->q;
306
307 ctx->rq_completed[rq_is_sync(rq)]++;
308
309 hctx = q->mq_ops->map_queue(q, ctx->cpu);
310 __blk_mq_free_request(hctx, ctx, rq);
311 }
312
313 /*
314 * Clone all relevant state from a request that has been put on hold in
315 * the flush state machine into the preallocated flush request that hangs
316 * off the request queue.
317 *
318 * For a driver the flush request should be invisible, that's why we are
319 * impersonating the original request here.
320 */
321 void blk_mq_clone_flush_request(struct request *flush_rq,
322 struct request *orig_rq)
323 {
324 struct blk_mq_hw_ctx *hctx =
325 orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu);
326
327 flush_rq->mq_ctx = orig_rq->mq_ctx;
328 flush_rq->tag = orig_rq->tag;
329 memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq),
330 hctx->cmd_size);
331 }
332
333 inline void __blk_mq_end_io(struct request *rq, int error)
334 {
335 blk_account_io_done(rq);
336
337 if (rq->end_io) {
338 rq->end_io(rq, error);
339 } else {
340 if (unlikely(blk_bidi_rq(rq)))
341 blk_mq_free_request(rq->next_rq);
342 blk_mq_free_request(rq);
343 }
344 }
345 EXPORT_SYMBOL(__blk_mq_end_io);
346
347 void blk_mq_end_io(struct request *rq, int error)
348 {
349 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
350 BUG();
351 __blk_mq_end_io(rq, error);
352 }
353 EXPORT_SYMBOL(blk_mq_end_io);
354
355 static void __blk_mq_complete_request_remote(void *data)
356 {
357 struct request *rq = data;
358
359 rq->q->softirq_done_fn(rq);
360 }
361
362 static void blk_mq_ipi_complete_request(struct request *rq)
363 {
364 struct blk_mq_ctx *ctx = rq->mq_ctx;
365 bool shared = false;
366 int cpu;
367
368 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
369 rq->q->softirq_done_fn(rq);
370 return;
371 }
372
373 cpu = get_cpu();
374 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
375 shared = cpus_share_cache(cpu, ctx->cpu);
376
377 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
378 rq->csd.func = __blk_mq_complete_request_remote;
379 rq->csd.info = rq;
380 rq->csd.flags = 0;
381 smp_call_function_single_async(ctx->cpu, &rq->csd);
382 } else {
383 rq->q->softirq_done_fn(rq);
384 }
385 put_cpu();
386 }
387
388 void __blk_mq_complete_request(struct request *rq)
389 {
390 struct request_queue *q = rq->q;
391
392 if (!q->softirq_done_fn)
393 blk_mq_end_io(rq, rq->errors);
394 else
395 blk_mq_ipi_complete_request(rq);
396 }
397
398 /**
399 * blk_mq_complete_request - end I/O on a request
400 * @rq: the request being processed
401 *
402 * Description:
403 * Ends all I/O on a request. It does not handle partial completions.
404 * The actual completion happens out-of-order, through a IPI handler.
405 **/
406 void blk_mq_complete_request(struct request *rq)
407 {
408 struct request_queue *q = rq->q;
409
410 if (unlikely(blk_should_fake_timeout(q)))
411 return;
412 if (!blk_mark_rq_complete(rq))
413 __blk_mq_complete_request(rq);
414 }
415 EXPORT_SYMBOL(blk_mq_complete_request);
416
417 static void blk_mq_start_request(struct request *rq, bool last)
418 {
419 struct request_queue *q = rq->q;
420
421 trace_block_rq_issue(q, rq);
422
423 rq->resid_len = blk_rq_bytes(rq);
424 if (unlikely(blk_bidi_rq(rq)))
425 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
426
427 /*
428 * Just mark start time and set the started bit. Due to memory
429 * ordering, we know we'll see the correct deadline as long as
430 * REQ_ATOMIC_STARTED is seen. Use the default queue timeout,
431 * unless one has been set in the request.
432 */
433 if (!rq->timeout)
434 rq->deadline = jiffies + q->rq_timeout;
435 else
436 rq->deadline = jiffies + rq->timeout;
437
438 /*
439 * Mark us as started and clear complete. Complete might have been
440 * set if requeue raced with timeout, which then marked it as
441 * complete. So be sure to clear complete again when we start
442 * the request, otherwise we'll ignore the completion event.
443 */
444 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
445 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
446 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
447 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
448
449 if (q->dma_drain_size && blk_rq_bytes(rq)) {
450 /*
451 * Make sure space for the drain appears. We know we can do
452 * this because max_hw_segments has been adjusted to be one
453 * fewer than the device can handle.
454 */
455 rq->nr_phys_segments++;
456 }
457
458 /*
459 * Flag the last request in the series so that drivers know when IO
460 * should be kicked off, if they don't do it on a per-request basis.
461 *
462 * Note: the flag isn't the only condition drivers should do kick off.
463 * If drive is busy, the last request might not have the bit set.
464 */
465 if (last)
466 rq->cmd_flags |= REQ_END;
467 }
468
469 static void __blk_mq_requeue_request(struct request *rq)
470 {
471 struct request_queue *q = rq->q;
472
473 trace_block_rq_requeue(q, rq);
474 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
475
476 rq->cmd_flags &= ~REQ_END;
477
478 if (q->dma_drain_size && blk_rq_bytes(rq))
479 rq->nr_phys_segments--;
480 }
481
482 void blk_mq_requeue_request(struct request *rq)
483 {
484 __blk_mq_requeue_request(rq);
485 blk_clear_rq_complete(rq);
486
487 BUG_ON(blk_queued_rq(rq));
488 blk_mq_add_to_requeue_list(rq, true);
489 }
490 EXPORT_SYMBOL(blk_mq_requeue_request);
491
492 static void blk_mq_requeue_work(struct work_struct *work)
493 {
494 struct request_queue *q =
495 container_of(work, struct request_queue, requeue_work);
496 LIST_HEAD(rq_list);
497 struct request *rq, *next;
498 unsigned long flags;
499
500 spin_lock_irqsave(&q->requeue_lock, flags);
501 list_splice_init(&q->requeue_list, &rq_list);
502 spin_unlock_irqrestore(&q->requeue_lock, flags);
503
504 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
505 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
506 continue;
507
508 rq->cmd_flags &= ~REQ_SOFTBARRIER;
509 list_del_init(&rq->queuelist);
510 blk_mq_insert_request(rq, true, false, false);
511 }
512
513 while (!list_empty(&rq_list)) {
514 rq = list_entry(rq_list.next, struct request, queuelist);
515 list_del_init(&rq->queuelist);
516 blk_mq_insert_request(rq, false, false, false);
517 }
518
519 blk_mq_run_queues(q, false);
520 }
521
522 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
523 {
524 struct request_queue *q = rq->q;
525 unsigned long flags;
526
527 /*
528 * We abuse this flag that is otherwise used by the I/O scheduler to
529 * request head insertation from the workqueue.
530 */
531 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
532
533 spin_lock_irqsave(&q->requeue_lock, flags);
534 if (at_head) {
535 rq->cmd_flags |= REQ_SOFTBARRIER;
536 list_add(&rq->queuelist, &q->requeue_list);
537 } else {
538 list_add_tail(&rq->queuelist, &q->requeue_list);
539 }
540 spin_unlock_irqrestore(&q->requeue_lock, flags);
541 }
542 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
543
544 void blk_mq_kick_requeue_list(struct request_queue *q)
545 {
546 kblockd_schedule_work(&q->requeue_work);
547 }
548 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
549
550 struct request *blk_mq_tag_to_rq(struct blk_mq_hw_ctx *hctx, unsigned int tag)
551 {
552 struct request_queue *q = hctx->queue;
553
554 if ((q->flush_rq->cmd_flags & REQ_FLUSH_SEQ) &&
555 q->flush_rq->tag == tag)
556 return q->flush_rq;
557
558 return hctx->tags->rqs[tag];
559 }
560 EXPORT_SYMBOL(blk_mq_tag_to_rq);
561
562 struct blk_mq_timeout_data {
563 struct blk_mq_hw_ctx *hctx;
564 unsigned long *next;
565 unsigned int *next_set;
566 };
567
568 static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
569 {
570 struct blk_mq_timeout_data *data = __data;
571 struct blk_mq_hw_ctx *hctx = data->hctx;
572 unsigned int tag;
573
574 /* It may not be in flight yet (this is where
575 * the REQ_ATOMIC_STARTED flag comes in). The requests are
576 * statically allocated, so we know it's always safe to access the
577 * memory associated with a bit offset into ->rqs[].
578 */
579 tag = 0;
580 do {
581 struct request *rq;
582
583 tag = find_next_zero_bit(free_tags, hctx->tags->nr_tags, tag);
584 if (tag >= hctx->tags->nr_tags)
585 break;
586
587 rq = blk_mq_tag_to_rq(hctx, tag++);
588 if (rq->q != hctx->queue)
589 continue;
590 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
591 continue;
592
593 blk_rq_check_expired(rq, data->next, data->next_set);
594 } while (1);
595 }
596
597 static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
598 unsigned long *next,
599 unsigned int *next_set)
600 {
601 struct blk_mq_timeout_data data = {
602 .hctx = hctx,
603 .next = next,
604 .next_set = next_set,
605 };
606
607 /*
608 * Ask the tagging code to iterate busy requests, so we can
609 * check them for timeout.
610 */
611 blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
612 }
613
614 static enum blk_eh_timer_return blk_mq_rq_timed_out(struct request *rq)
615 {
616 struct request_queue *q = rq->q;
617
618 /*
619 * We know that complete is set at this point. If STARTED isn't set
620 * anymore, then the request isn't active and the "timeout" should
621 * just be ignored. This can happen due to the bitflag ordering.
622 * Timeout first checks if STARTED is set, and if it is, assumes
623 * the request is active. But if we race with completion, then
624 * we both flags will get cleared. So check here again, and ignore
625 * a timeout event with a request that isn't active.
626 */
627 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
628 return BLK_EH_NOT_HANDLED;
629
630 if (!q->mq_ops->timeout)
631 return BLK_EH_RESET_TIMER;
632
633 return q->mq_ops->timeout(rq);
634 }
635
636 static void blk_mq_rq_timer(unsigned long data)
637 {
638 struct request_queue *q = (struct request_queue *) data;
639 struct blk_mq_hw_ctx *hctx;
640 unsigned long next = 0;
641 int i, next_set = 0;
642
643 queue_for_each_hw_ctx(q, hctx, i) {
644 /*
645 * If not software queues are currently mapped to this
646 * hardware queue, there's nothing to check
647 */
648 if (!hctx->nr_ctx || !hctx->tags)
649 continue;
650
651 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
652 }
653
654 if (next_set) {
655 next = blk_rq_timeout(round_jiffies_up(next));
656 mod_timer(&q->timeout, next);
657 } else {
658 queue_for_each_hw_ctx(q, hctx, i)
659 blk_mq_tag_idle(hctx);
660 }
661 }
662
663 /*
664 * Reverse check our software queue for entries that we could potentially
665 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
666 * too much time checking for merges.
667 */
668 static bool blk_mq_attempt_merge(struct request_queue *q,
669 struct blk_mq_ctx *ctx, struct bio *bio)
670 {
671 struct request *rq;
672 int checked = 8;
673
674 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
675 int el_ret;
676
677 if (!checked--)
678 break;
679
680 if (!blk_rq_merge_ok(rq, bio))
681 continue;
682
683 el_ret = blk_try_merge(rq, bio);
684 if (el_ret == ELEVATOR_BACK_MERGE) {
685 if (bio_attempt_back_merge(q, rq, bio)) {
686 ctx->rq_merged++;
687 return true;
688 }
689 break;
690 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
691 if (bio_attempt_front_merge(q, rq, bio)) {
692 ctx->rq_merged++;
693 return true;
694 }
695 break;
696 }
697 }
698
699 return false;
700 }
701
702 /*
703 * Process software queues that have been marked busy, splicing them
704 * to the for-dispatch
705 */
706 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
707 {
708 struct blk_mq_ctx *ctx;
709 int i;
710
711 for (i = 0; i < hctx->ctx_map.map_size; i++) {
712 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
713 unsigned int off, bit;
714
715 if (!bm->word)
716 continue;
717
718 bit = 0;
719 off = i * hctx->ctx_map.bits_per_word;
720 do {
721 bit = find_next_bit(&bm->word, bm->depth, bit);
722 if (bit >= bm->depth)
723 break;
724
725 ctx = hctx->ctxs[bit + off];
726 clear_bit(bit, &bm->word);
727 spin_lock(&ctx->lock);
728 list_splice_tail_init(&ctx->rq_list, list);
729 spin_unlock(&ctx->lock);
730
731 bit++;
732 } while (1);
733 }
734 }
735
736 /*
737 * Run this hardware queue, pulling any software queues mapped to it in.
738 * Note that this function currently has various problems around ordering
739 * of IO. In particular, we'd like FIFO behaviour on handling existing
740 * items on the hctx->dispatch list. Ignore that for now.
741 */
742 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
743 {
744 struct request_queue *q = hctx->queue;
745 struct request *rq;
746 LIST_HEAD(rq_list);
747 int queued;
748
749 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
750
751 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
752 return;
753
754 hctx->run++;
755
756 /*
757 * Touch any software queue that has pending entries.
758 */
759 flush_busy_ctxs(hctx, &rq_list);
760
761 /*
762 * If we have previous entries on our dispatch list, grab them
763 * and stuff them at the front for more fair dispatch.
764 */
765 if (!list_empty_careful(&hctx->dispatch)) {
766 spin_lock(&hctx->lock);
767 if (!list_empty(&hctx->dispatch))
768 list_splice_init(&hctx->dispatch, &rq_list);
769 spin_unlock(&hctx->lock);
770 }
771
772 /*
773 * Now process all the entries, sending them to the driver.
774 */
775 queued = 0;
776 while (!list_empty(&rq_list)) {
777 int ret;
778
779 rq = list_first_entry(&rq_list, struct request, queuelist);
780 list_del_init(&rq->queuelist);
781
782 blk_mq_start_request(rq, list_empty(&rq_list));
783
784 ret = q->mq_ops->queue_rq(hctx, rq);
785 switch (ret) {
786 case BLK_MQ_RQ_QUEUE_OK:
787 queued++;
788 continue;
789 case BLK_MQ_RQ_QUEUE_BUSY:
790 list_add(&rq->queuelist, &rq_list);
791 __blk_mq_requeue_request(rq);
792 break;
793 default:
794 pr_err("blk-mq: bad return on queue: %d\n", ret);
795 case BLK_MQ_RQ_QUEUE_ERROR:
796 rq->errors = -EIO;
797 blk_mq_end_io(rq, rq->errors);
798 break;
799 }
800
801 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
802 break;
803 }
804
805 if (!queued)
806 hctx->dispatched[0]++;
807 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
808 hctx->dispatched[ilog2(queued) + 1]++;
809
810 /*
811 * Any items that need requeuing? Stuff them into hctx->dispatch,
812 * that is where we will continue on next queue run.
813 */
814 if (!list_empty(&rq_list)) {
815 spin_lock(&hctx->lock);
816 list_splice(&rq_list, &hctx->dispatch);
817 spin_unlock(&hctx->lock);
818 }
819 }
820
821 /*
822 * It'd be great if the workqueue API had a way to pass
823 * in a mask and had some smarts for more clever placement.
824 * For now we just round-robin here, switching for every
825 * BLK_MQ_CPU_WORK_BATCH queued items.
826 */
827 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
828 {
829 int cpu = hctx->next_cpu;
830
831 if (--hctx->next_cpu_batch <= 0) {
832 int next_cpu;
833
834 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
835 if (next_cpu >= nr_cpu_ids)
836 next_cpu = cpumask_first(hctx->cpumask);
837
838 hctx->next_cpu = next_cpu;
839 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
840 }
841
842 return cpu;
843 }
844
845 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
846 {
847 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
848 return;
849
850 if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
851 __blk_mq_run_hw_queue(hctx);
852 else if (hctx->queue->nr_hw_queues == 1)
853 kblockd_schedule_delayed_work(&hctx->run_work, 0);
854 else {
855 unsigned int cpu;
856
857 cpu = blk_mq_hctx_next_cpu(hctx);
858 kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
859 }
860 }
861
862 void blk_mq_run_queues(struct request_queue *q, bool async)
863 {
864 struct blk_mq_hw_ctx *hctx;
865 int i;
866
867 queue_for_each_hw_ctx(q, hctx, i) {
868 if ((!blk_mq_hctx_has_pending(hctx) &&
869 list_empty_careful(&hctx->dispatch)) ||
870 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
871 continue;
872
873 preempt_disable();
874 blk_mq_run_hw_queue(hctx, async);
875 preempt_enable();
876 }
877 }
878 EXPORT_SYMBOL(blk_mq_run_queues);
879
880 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
881 {
882 cancel_delayed_work(&hctx->run_work);
883 cancel_delayed_work(&hctx->delay_work);
884 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
885 }
886 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
887
888 void blk_mq_stop_hw_queues(struct request_queue *q)
889 {
890 struct blk_mq_hw_ctx *hctx;
891 int i;
892
893 queue_for_each_hw_ctx(q, hctx, i)
894 blk_mq_stop_hw_queue(hctx);
895 }
896 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
897
898 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
899 {
900 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
901
902 preempt_disable();
903 __blk_mq_run_hw_queue(hctx);
904 preempt_enable();
905 }
906 EXPORT_SYMBOL(blk_mq_start_hw_queue);
907
908 void blk_mq_start_hw_queues(struct request_queue *q)
909 {
910 struct blk_mq_hw_ctx *hctx;
911 int i;
912
913 queue_for_each_hw_ctx(q, hctx, i)
914 blk_mq_start_hw_queue(hctx);
915 }
916 EXPORT_SYMBOL(blk_mq_start_hw_queues);
917
918
919 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
920 {
921 struct blk_mq_hw_ctx *hctx;
922 int i;
923
924 queue_for_each_hw_ctx(q, hctx, i) {
925 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
926 continue;
927
928 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
929 preempt_disable();
930 blk_mq_run_hw_queue(hctx, async);
931 preempt_enable();
932 }
933 }
934 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
935
936 static void blk_mq_run_work_fn(struct work_struct *work)
937 {
938 struct blk_mq_hw_ctx *hctx;
939
940 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
941
942 __blk_mq_run_hw_queue(hctx);
943 }
944
945 static void blk_mq_delay_work_fn(struct work_struct *work)
946 {
947 struct blk_mq_hw_ctx *hctx;
948
949 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
950
951 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
952 __blk_mq_run_hw_queue(hctx);
953 }
954
955 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
956 {
957 unsigned long tmo = msecs_to_jiffies(msecs);
958
959 if (hctx->queue->nr_hw_queues == 1)
960 kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
961 else {
962 unsigned int cpu;
963
964 cpu = blk_mq_hctx_next_cpu(hctx);
965 kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
966 }
967 }
968 EXPORT_SYMBOL(blk_mq_delay_queue);
969
970 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
971 struct request *rq, bool at_head)
972 {
973 struct blk_mq_ctx *ctx = rq->mq_ctx;
974
975 trace_block_rq_insert(hctx->queue, rq);
976
977 if (at_head)
978 list_add(&rq->queuelist, &ctx->rq_list);
979 else
980 list_add_tail(&rq->queuelist, &ctx->rq_list);
981
982 blk_mq_hctx_mark_pending(hctx, ctx);
983
984 /*
985 * We do this early, to ensure we are on the right CPU.
986 */
987 blk_add_timer(rq);
988 }
989
990 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
991 bool async)
992 {
993 struct request_queue *q = rq->q;
994 struct blk_mq_hw_ctx *hctx;
995 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
996
997 current_ctx = blk_mq_get_ctx(q);
998 if (!cpu_online(ctx->cpu))
999 rq->mq_ctx = ctx = current_ctx;
1000
1001 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1002
1003 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA) &&
1004 !(rq->cmd_flags & (REQ_FLUSH_SEQ))) {
1005 blk_insert_flush(rq);
1006 } else {
1007 spin_lock(&ctx->lock);
1008 __blk_mq_insert_request(hctx, rq, at_head);
1009 spin_unlock(&ctx->lock);
1010 }
1011
1012 if (run_queue)
1013 blk_mq_run_hw_queue(hctx, async);
1014
1015 blk_mq_put_ctx(current_ctx);
1016 }
1017
1018 static void blk_mq_insert_requests(struct request_queue *q,
1019 struct blk_mq_ctx *ctx,
1020 struct list_head *list,
1021 int depth,
1022 bool from_schedule)
1023
1024 {
1025 struct blk_mq_hw_ctx *hctx;
1026 struct blk_mq_ctx *current_ctx;
1027
1028 trace_block_unplug(q, depth, !from_schedule);
1029
1030 current_ctx = blk_mq_get_ctx(q);
1031
1032 if (!cpu_online(ctx->cpu))
1033 ctx = current_ctx;
1034 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1035
1036 /*
1037 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1038 * offline now
1039 */
1040 spin_lock(&ctx->lock);
1041 while (!list_empty(list)) {
1042 struct request *rq;
1043
1044 rq = list_first_entry(list, struct request, queuelist);
1045 list_del_init(&rq->queuelist);
1046 rq->mq_ctx = ctx;
1047 __blk_mq_insert_request(hctx, rq, false);
1048 }
1049 spin_unlock(&ctx->lock);
1050
1051 blk_mq_run_hw_queue(hctx, from_schedule);
1052 blk_mq_put_ctx(current_ctx);
1053 }
1054
1055 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1056 {
1057 struct request *rqa = container_of(a, struct request, queuelist);
1058 struct request *rqb = container_of(b, struct request, queuelist);
1059
1060 return !(rqa->mq_ctx < rqb->mq_ctx ||
1061 (rqa->mq_ctx == rqb->mq_ctx &&
1062 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1063 }
1064
1065 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1066 {
1067 struct blk_mq_ctx *this_ctx;
1068 struct request_queue *this_q;
1069 struct request *rq;
1070 LIST_HEAD(list);
1071 LIST_HEAD(ctx_list);
1072 unsigned int depth;
1073
1074 list_splice_init(&plug->mq_list, &list);
1075
1076 list_sort(NULL, &list, plug_ctx_cmp);
1077
1078 this_q = NULL;
1079 this_ctx = NULL;
1080 depth = 0;
1081
1082 while (!list_empty(&list)) {
1083 rq = list_entry_rq(list.next);
1084 list_del_init(&rq->queuelist);
1085 BUG_ON(!rq->q);
1086 if (rq->mq_ctx != this_ctx) {
1087 if (this_ctx) {
1088 blk_mq_insert_requests(this_q, this_ctx,
1089 &ctx_list, depth,
1090 from_schedule);
1091 }
1092
1093 this_ctx = rq->mq_ctx;
1094 this_q = rq->q;
1095 depth = 0;
1096 }
1097
1098 depth++;
1099 list_add_tail(&rq->queuelist, &ctx_list);
1100 }
1101
1102 /*
1103 * If 'this_ctx' is set, we know we have entries to complete
1104 * on 'ctx_list'. Do those.
1105 */
1106 if (this_ctx) {
1107 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1108 from_schedule);
1109 }
1110 }
1111
1112 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1113 {
1114 init_request_from_bio(rq, bio);
1115
1116 if (blk_do_io_stat(rq)) {
1117 rq->start_time = jiffies;
1118 blk_account_io_start(rq, 1);
1119 }
1120 }
1121
1122 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1123 struct blk_mq_ctx *ctx,
1124 struct request *rq, struct bio *bio)
1125 {
1126 struct request_queue *q = hctx->queue;
1127
1128 if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE)) {
1129 blk_mq_bio_to_request(rq, bio);
1130 spin_lock(&ctx->lock);
1131 insert_rq:
1132 __blk_mq_insert_request(hctx, rq, false);
1133 spin_unlock(&ctx->lock);
1134 return false;
1135 } else {
1136 spin_lock(&ctx->lock);
1137 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1138 blk_mq_bio_to_request(rq, bio);
1139 goto insert_rq;
1140 }
1141
1142 spin_unlock(&ctx->lock);
1143 __blk_mq_free_request(hctx, ctx, rq);
1144 return true;
1145 }
1146 }
1147
1148 struct blk_map_ctx {
1149 struct blk_mq_hw_ctx *hctx;
1150 struct blk_mq_ctx *ctx;
1151 };
1152
1153 static struct request *blk_mq_map_request(struct request_queue *q,
1154 struct bio *bio,
1155 struct blk_map_ctx *data)
1156 {
1157 struct blk_mq_hw_ctx *hctx;
1158 struct blk_mq_ctx *ctx;
1159 struct request *rq;
1160 int rw = bio_data_dir(bio);
1161
1162 if (unlikely(blk_mq_queue_enter(q))) {
1163 bio_endio(bio, -EIO);
1164 return NULL;
1165 }
1166
1167 ctx = blk_mq_get_ctx(q);
1168 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1169
1170 if (rw_is_sync(bio->bi_rw))
1171 rw |= REQ_SYNC;
1172
1173 trace_block_getrq(q, bio, rw);
1174 rq = __blk_mq_alloc_request(q, hctx, ctx, rw, GFP_ATOMIC, false);
1175 if (unlikely(!rq)) {
1176 __blk_mq_run_hw_queue(hctx);
1177 blk_mq_put_ctx(ctx);
1178 trace_block_sleeprq(q, bio, rw);
1179
1180 ctx = blk_mq_get_ctx(q);
1181 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1182 rq = __blk_mq_alloc_request(q, hctx, ctx, rw,
1183 __GFP_WAIT|GFP_ATOMIC, false);
1184 }
1185
1186 hctx->queued++;
1187 data->hctx = hctx;
1188 data->ctx = ctx;
1189 return rq;
1190 }
1191
1192 /*
1193 * Multiple hardware queue variant. This will not use per-process plugs,
1194 * but will attempt to bypass the hctx queueing if we can go straight to
1195 * hardware for SYNC IO.
1196 */
1197 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1198 {
1199 const int is_sync = rw_is_sync(bio->bi_rw);
1200 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1201 struct blk_map_ctx data;
1202 struct request *rq;
1203
1204 blk_queue_bounce(q, &bio);
1205
1206 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1207 bio_endio(bio, -EIO);
1208 return;
1209 }
1210
1211 rq = blk_mq_map_request(q, bio, &data);
1212 if (unlikely(!rq))
1213 return;
1214
1215 if (unlikely(is_flush_fua)) {
1216 blk_mq_bio_to_request(rq, bio);
1217 blk_insert_flush(rq);
1218 goto run_queue;
1219 }
1220
1221 if (is_sync) {
1222 int ret;
1223
1224 blk_mq_bio_to_request(rq, bio);
1225 blk_mq_start_request(rq, true);
1226 blk_add_timer(rq);
1227
1228 /*
1229 * For OK queue, we are done. For error, kill it. Any other
1230 * error (busy), just add it to our list as we previously
1231 * would have done
1232 */
1233 ret = q->mq_ops->queue_rq(data.hctx, rq);
1234 if (ret == BLK_MQ_RQ_QUEUE_OK)
1235 goto done;
1236 else {
1237 __blk_mq_requeue_request(rq);
1238
1239 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1240 rq->errors = -EIO;
1241 blk_mq_end_io(rq, rq->errors);
1242 goto done;
1243 }
1244 }
1245 }
1246
1247 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1248 /*
1249 * For a SYNC request, send it to the hardware immediately. For
1250 * an ASYNC request, just ensure that we run it later on. The
1251 * latter allows for merging opportunities and more efficient
1252 * dispatching.
1253 */
1254 run_queue:
1255 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1256 }
1257 done:
1258 blk_mq_put_ctx(data.ctx);
1259 }
1260
1261 /*
1262 * Single hardware queue variant. This will attempt to use any per-process
1263 * plug for merging and IO deferral.
1264 */
1265 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1266 {
1267 const int is_sync = rw_is_sync(bio->bi_rw);
1268 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1269 unsigned int use_plug, request_count = 0;
1270 struct blk_map_ctx data;
1271 struct request *rq;
1272
1273 /*
1274 * If we have multiple hardware queues, just go directly to
1275 * one of those for sync IO.
1276 */
1277 use_plug = !is_flush_fua && !is_sync;
1278
1279 blk_queue_bounce(q, &bio);
1280
1281 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1282 bio_endio(bio, -EIO);
1283 return;
1284 }
1285
1286 if (use_plug && !blk_queue_nomerges(q) &&
1287 blk_attempt_plug_merge(q, bio, &request_count))
1288 return;
1289
1290 rq = blk_mq_map_request(q, bio, &data);
1291
1292 if (unlikely(is_flush_fua)) {
1293 blk_mq_bio_to_request(rq, bio);
1294 blk_insert_flush(rq);
1295 goto run_queue;
1296 }
1297
1298 /*
1299 * A task plug currently exists. Since this is completely lockless,
1300 * utilize that to temporarily store requests until the task is
1301 * either done or scheduled away.
1302 */
1303 if (use_plug) {
1304 struct blk_plug *plug = current->plug;
1305
1306 if (plug) {
1307 blk_mq_bio_to_request(rq, bio);
1308 if (list_empty(&plug->mq_list))
1309 trace_block_plug(q);
1310 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1311 blk_flush_plug_list(plug, false);
1312 trace_block_plug(q);
1313 }
1314 list_add_tail(&rq->queuelist, &plug->mq_list);
1315 blk_mq_put_ctx(data.ctx);
1316 return;
1317 }
1318 }
1319
1320 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1321 /*
1322 * For a SYNC request, send it to the hardware immediately. For
1323 * an ASYNC request, just ensure that we run it later on. The
1324 * latter allows for merging opportunities and more efficient
1325 * dispatching.
1326 */
1327 run_queue:
1328 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1329 }
1330
1331 blk_mq_put_ctx(data.ctx);
1332 }
1333
1334 /*
1335 * Default mapping to a software queue, since we use one per CPU.
1336 */
1337 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1338 {
1339 return q->queue_hw_ctx[q->mq_map[cpu]];
1340 }
1341 EXPORT_SYMBOL(blk_mq_map_queue);
1342
1343 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1344 struct blk_mq_tags *tags, unsigned int hctx_idx)
1345 {
1346 struct page *page;
1347
1348 if (tags->rqs && set->ops->exit_request) {
1349 int i;
1350
1351 for (i = 0; i < tags->nr_tags; i++) {
1352 if (!tags->rqs[i])
1353 continue;
1354 set->ops->exit_request(set->driver_data, tags->rqs[i],
1355 hctx_idx, i);
1356 }
1357 }
1358
1359 while (!list_empty(&tags->page_list)) {
1360 page = list_first_entry(&tags->page_list, struct page, lru);
1361 list_del_init(&page->lru);
1362 __free_pages(page, page->private);
1363 }
1364
1365 kfree(tags->rqs);
1366
1367 blk_mq_free_tags(tags);
1368 }
1369
1370 static size_t order_to_size(unsigned int order)
1371 {
1372 return (size_t)PAGE_SIZE << order;
1373 }
1374
1375 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1376 unsigned int hctx_idx)
1377 {
1378 struct blk_mq_tags *tags;
1379 unsigned int i, j, entries_per_page, max_order = 4;
1380 size_t rq_size, left;
1381
1382 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1383 set->numa_node);
1384 if (!tags)
1385 return NULL;
1386
1387 INIT_LIST_HEAD(&tags->page_list);
1388
1389 tags->rqs = kmalloc_node(set->queue_depth * sizeof(struct request *),
1390 GFP_KERNEL, set->numa_node);
1391 if (!tags->rqs) {
1392 blk_mq_free_tags(tags);
1393 return NULL;
1394 }
1395
1396 /*
1397 * rq_size is the size of the request plus driver payload, rounded
1398 * to the cacheline size
1399 */
1400 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1401 cache_line_size());
1402 left = rq_size * set->queue_depth;
1403
1404 for (i = 0; i < set->queue_depth; ) {
1405 int this_order = max_order;
1406 struct page *page;
1407 int to_do;
1408 void *p;
1409
1410 while (left < order_to_size(this_order - 1) && this_order)
1411 this_order--;
1412
1413 do {
1414 page = alloc_pages_node(set->numa_node, GFP_KERNEL,
1415 this_order);
1416 if (page)
1417 break;
1418 if (!this_order--)
1419 break;
1420 if (order_to_size(this_order) < rq_size)
1421 break;
1422 } while (1);
1423
1424 if (!page)
1425 goto fail;
1426
1427 page->private = this_order;
1428 list_add_tail(&page->lru, &tags->page_list);
1429
1430 p = page_address(page);
1431 entries_per_page = order_to_size(this_order) / rq_size;
1432 to_do = min(entries_per_page, set->queue_depth - i);
1433 left -= to_do * rq_size;
1434 for (j = 0; j < to_do; j++) {
1435 tags->rqs[i] = p;
1436 if (set->ops->init_request) {
1437 if (set->ops->init_request(set->driver_data,
1438 tags->rqs[i], hctx_idx, i,
1439 set->numa_node))
1440 goto fail;
1441 }
1442
1443 p += rq_size;
1444 i++;
1445 }
1446 }
1447
1448 return tags;
1449
1450 fail:
1451 pr_warn("%s: failed to allocate requests\n", __func__);
1452 blk_mq_free_rq_map(set, tags, hctx_idx);
1453 return NULL;
1454 }
1455
1456 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1457 {
1458 kfree(bitmap->map);
1459 }
1460
1461 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1462 {
1463 unsigned int bpw = 8, total, num_maps, i;
1464
1465 bitmap->bits_per_word = bpw;
1466
1467 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1468 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1469 GFP_KERNEL, node);
1470 if (!bitmap->map)
1471 return -ENOMEM;
1472
1473 bitmap->map_size = num_maps;
1474
1475 total = nr_cpu_ids;
1476 for (i = 0; i < num_maps; i++) {
1477 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1478 total -= bitmap->map[i].depth;
1479 }
1480
1481 return 0;
1482 }
1483
1484 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1485 {
1486 struct request_queue *q = hctx->queue;
1487 struct blk_mq_ctx *ctx;
1488 LIST_HEAD(tmp);
1489
1490 /*
1491 * Move ctx entries to new CPU, if this one is going away.
1492 */
1493 ctx = __blk_mq_get_ctx(q, cpu);
1494
1495 spin_lock(&ctx->lock);
1496 if (!list_empty(&ctx->rq_list)) {
1497 list_splice_init(&ctx->rq_list, &tmp);
1498 blk_mq_hctx_clear_pending(hctx, ctx);
1499 }
1500 spin_unlock(&ctx->lock);
1501
1502 if (list_empty(&tmp))
1503 return NOTIFY_OK;
1504
1505 ctx = blk_mq_get_ctx(q);
1506 spin_lock(&ctx->lock);
1507
1508 while (!list_empty(&tmp)) {
1509 struct request *rq;
1510
1511 rq = list_first_entry(&tmp, struct request, queuelist);
1512 rq->mq_ctx = ctx;
1513 list_move_tail(&rq->queuelist, &ctx->rq_list);
1514 }
1515
1516 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1517 blk_mq_hctx_mark_pending(hctx, ctx);
1518
1519 spin_unlock(&ctx->lock);
1520
1521 blk_mq_run_hw_queue(hctx, true);
1522 blk_mq_put_ctx(ctx);
1523 return NOTIFY_OK;
1524 }
1525
1526 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1527 {
1528 struct request_queue *q = hctx->queue;
1529 struct blk_mq_tag_set *set = q->tag_set;
1530
1531 if (set->tags[hctx->queue_num])
1532 return NOTIFY_OK;
1533
1534 set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1535 if (!set->tags[hctx->queue_num])
1536 return NOTIFY_STOP;
1537
1538 hctx->tags = set->tags[hctx->queue_num];
1539 return NOTIFY_OK;
1540 }
1541
1542 static int blk_mq_hctx_notify(void *data, unsigned long action,
1543 unsigned int cpu)
1544 {
1545 struct blk_mq_hw_ctx *hctx = data;
1546
1547 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1548 return blk_mq_hctx_cpu_offline(hctx, cpu);
1549 else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1550 return blk_mq_hctx_cpu_online(hctx, cpu);
1551
1552 return NOTIFY_OK;
1553 }
1554
1555 static void blk_mq_exit_hw_queues(struct request_queue *q,
1556 struct blk_mq_tag_set *set, int nr_queue)
1557 {
1558 struct blk_mq_hw_ctx *hctx;
1559 unsigned int i;
1560
1561 queue_for_each_hw_ctx(q, hctx, i) {
1562 if (i == nr_queue)
1563 break;
1564
1565 if (set->ops->exit_hctx)
1566 set->ops->exit_hctx(hctx, i);
1567
1568 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1569 kfree(hctx->ctxs);
1570 blk_mq_free_bitmap(&hctx->ctx_map);
1571 }
1572
1573 }
1574
1575 static void blk_mq_free_hw_queues(struct request_queue *q,
1576 struct blk_mq_tag_set *set)
1577 {
1578 struct blk_mq_hw_ctx *hctx;
1579 unsigned int i;
1580
1581 queue_for_each_hw_ctx(q, hctx, i) {
1582 free_cpumask_var(hctx->cpumask);
1583 kfree(hctx);
1584 }
1585 }
1586
1587 static int blk_mq_init_hw_queues(struct request_queue *q,
1588 struct blk_mq_tag_set *set)
1589 {
1590 struct blk_mq_hw_ctx *hctx;
1591 unsigned int i;
1592
1593 /*
1594 * Initialize hardware queues
1595 */
1596 queue_for_each_hw_ctx(q, hctx, i) {
1597 int node;
1598
1599 node = hctx->numa_node;
1600 if (node == NUMA_NO_NODE)
1601 node = hctx->numa_node = set->numa_node;
1602
1603 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1604 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1605 spin_lock_init(&hctx->lock);
1606 INIT_LIST_HEAD(&hctx->dispatch);
1607 hctx->queue = q;
1608 hctx->queue_num = i;
1609 hctx->flags = set->flags;
1610 hctx->cmd_size = set->cmd_size;
1611
1612 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1613 blk_mq_hctx_notify, hctx);
1614 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1615
1616 hctx->tags = set->tags[i];
1617
1618 /*
1619 * Allocate space for all possible cpus to avoid allocation in
1620 * runtime
1621 */
1622 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1623 GFP_KERNEL, node);
1624 if (!hctx->ctxs)
1625 break;
1626
1627 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1628 break;
1629
1630 hctx->nr_ctx = 0;
1631
1632 if (set->ops->init_hctx &&
1633 set->ops->init_hctx(hctx, set->driver_data, i))
1634 break;
1635 }
1636
1637 if (i == q->nr_hw_queues)
1638 return 0;
1639
1640 /*
1641 * Init failed
1642 */
1643 blk_mq_exit_hw_queues(q, set, i);
1644
1645 return 1;
1646 }
1647
1648 static void blk_mq_init_cpu_queues(struct request_queue *q,
1649 unsigned int nr_hw_queues)
1650 {
1651 unsigned int i;
1652
1653 for_each_possible_cpu(i) {
1654 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1655 struct blk_mq_hw_ctx *hctx;
1656
1657 memset(__ctx, 0, sizeof(*__ctx));
1658 __ctx->cpu = i;
1659 spin_lock_init(&__ctx->lock);
1660 INIT_LIST_HEAD(&__ctx->rq_list);
1661 __ctx->queue = q;
1662
1663 /* If the cpu isn't online, the cpu is mapped to first hctx */
1664 if (!cpu_online(i))
1665 continue;
1666
1667 hctx = q->mq_ops->map_queue(q, i);
1668 cpumask_set_cpu(i, hctx->cpumask);
1669 hctx->nr_ctx++;
1670
1671 /*
1672 * Set local node, IFF we have more than one hw queue. If
1673 * not, we remain on the home node of the device
1674 */
1675 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1676 hctx->numa_node = cpu_to_node(i);
1677 }
1678 }
1679
1680 static void blk_mq_map_swqueue(struct request_queue *q)
1681 {
1682 unsigned int i;
1683 struct blk_mq_hw_ctx *hctx;
1684 struct blk_mq_ctx *ctx;
1685
1686 queue_for_each_hw_ctx(q, hctx, i) {
1687 cpumask_clear(hctx->cpumask);
1688 hctx->nr_ctx = 0;
1689 }
1690
1691 /*
1692 * Map software to hardware queues
1693 */
1694 queue_for_each_ctx(q, ctx, i) {
1695 /* If the cpu isn't online, the cpu is mapped to first hctx */
1696 if (!cpu_online(i))
1697 continue;
1698
1699 hctx = q->mq_ops->map_queue(q, i);
1700 cpumask_set_cpu(i, hctx->cpumask);
1701 ctx->index_hw = hctx->nr_ctx;
1702 hctx->ctxs[hctx->nr_ctx++] = ctx;
1703 }
1704
1705 queue_for_each_hw_ctx(q, hctx, i) {
1706 /*
1707 * If not software queues are mapped to this hardware queue,
1708 * disable it and free the request entries
1709 */
1710 if (!hctx->nr_ctx) {
1711 struct blk_mq_tag_set *set = q->tag_set;
1712
1713 if (set->tags[i]) {
1714 blk_mq_free_rq_map(set, set->tags[i], i);
1715 set->tags[i] = NULL;
1716 hctx->tags = NULL;
1717 }
1718 continue;
1719 }
1720
1721 /*
1722 * Initialize batch roundrobin counts
1723 */
1724 hctx->next_cpu = cpumask_first(hctx->cpumask);
1725 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1726 }
1727 }
1728
1729 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1730 {
1731 struct blk_mq_hw_ctx *hctx;
1732 struct request_queue *q;
1733 bool shared;
1734 int i;
1735
1736 if (set->tag_list.next == set->tag_list.prev)
1737 shared = false;
1738 else
1739 shared = true;
1740
1741 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1742 blk_mq_freeze_queue(q);
1743
1744 queue_for_each_hw_ctx(q, hctx, i) {
1745 if (shared)
1746 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1747 else
1748 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1749 }
1750 blk_mq_unfreeze_queue(q);
1751 }
1752 }
1753
1754 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1755 {
1756 struct blk_mq_tag_set *set = q->tag_set;
1757
1758 blk_mq_freeze_queue(q);
1759
1760 mutex_lock(&set->tag_list_lock);
1761 list_del_init(&q->tag_set_list);
1762 blk_mq_update_tag_set_depth(set);
1763 mutex_unlock(&set->tag_list_lock);
1764
1765 blk_mq_unfreeze_queue(q);
1766 }
1767
1768 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1769 struct request_queue *q)
1770 {
1771 q->tag_set = set;
1772
1773 mutex_lock(&set->tag_list_lock);
1774 list_add_tail(&q->tag_set_list, &set->tag_list);
1775 blk_mq_update_tag_set_depth(set);
1776 mutex_unlock(&set->tag_list_lock);
1777 }
1778
1779 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1780 {
1781 struct blk_mq_hw_ctx **hctxs;
1782 struct blk_mq_ctx *ctx;
1783 struct request_queue *q;
1784 unsigned int *map;
1785 int i;
1786
1787 ctx = alloc_percpu(struct blk_mq_ctx);
1788 if (!ctx)
1789 return ERR_PTR(-ENOMEM);
1790
1791 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1792 set->numa_node);
1793
1794 if (!hctxs)
1795 goto err_percpu;
1796
1797 map = blk_mq_make_queue_map(set);
1798 if (!map)
1799 goto err_map;
1800
1801 for (i = 0; i < set->nr_hw_queues; i++) {
1802 int node = blk_mq_hw_queue_to_node(map, i);
1803
1804 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1805 GFP_KERNEL, node);
1806 if (!hctxs[i])
1807 goto err_hctxs;
1808
1809 if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
1810 goto err_hctxs;
1811
1812 atomic_set(&hctxs[i]->nr_active, 0);
1813 hctxs[i]->numa_node = node;
1814 hctxs[i]->queue_num = i;
1815 }
1816
1817 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1818 if (!q)
1819 goto err_hctxs;
1820
1821 if (percpu_counter_init(&q->mq_usage_counter, 0))
1822 goto err_map;
1823
1824 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1825 blk_queue_rq_timeout(q, 30000);
1826
1827 q->nr_queues = nr_cpu_ids;
1828 q->nr_hw_queues = set->nr_hw_queues;
1829 q->mq_map = map;
1830
1831 q->queue_ctx = ctx;
1832 q->queue_hw_ctx = hctxs;
1833
1834 q->mq_ops = set->ops;
1835 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1836
1837 if (!(set->flags & BLK_MQ_F_SG_MERGE))
1838 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1839
1840 q->sg_reserved_size = INT_MAX;
1841
1842 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1843 INIT_LIST_HEAD(&q->requeue_list);
1844 spin_lock_init(&q->requeue_lock);
1845
1846 if (q->nr_hw_queues > 1)
1847 blk_queue_make_request(q, blk_mq_make_request);
1848 else
1849 blk_queue_make_request(q, blk_sq_make_request);
1850
1851 blk_queue_rq_timed_out(q, blk_mq_rq_timed_out);
1852 if (set->timeout)
1853 blk_queue_rq_timeout(q, set->timeout);
1854
1855 /*
1856 * Do this after blk_queue_make_request() overrides it...
1857 */
1858 q->nr_requests = set->queue_depth;
1859
1860 if (set->ops->complete)
1861 blk_queue_softirq_done(q, set->ops->complete);
1862
1863 blk_mq_init_flush(q);
1864 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1865
1866 q->flush_rq = kzalloc(round_up(sizeof(struct request) +
1867 set->cmd_size, cache_line_size()),
1868 GFP_KERNEL);
1869 if (!q->flush_rq)
1870 goto err_hw;
1871
1872 if (blk_mq_init_hw_queues(q, set))
1873 goto err_flush_rq;
1874
1875 mutex_lock(&all_q_mutex);
1876 list_add_tail(&q->all_q_node, &all_q_list);
1877 mutex_unlock(&all_q_mutex);
1878
1879 blk_mq_add_queue_tag_set(set, q);
1880
1881 blk_mq_map_swqueue(q);
1882
1883 return q;
1884
1885 err_flush_rq:
1886 kfree(q->flush_rq);
1887 err_hw:
1888 blk_cleanup_queue(q);
1889 err_hctxs:
1890 kfree(map);
1891 for (i = 0; i < set->nr_hw_queues; i++) {
1892 if (!hctxs[i])
1893 break;
1894 free_cpumask_var(hctxs[i]->cpumask);
1895 kfree(hctxs[i]);
1896 }
1897 err_map:
1898 kfree(hctxs);
1899 err_percpu:
1900 free_percpu(ctx);
1901 return ERR_PTR(-ENOMEM);
1902 }
1903 EXPORT_SYMBOL(blk_mq_init_queue);
1904
1905 void blk_mq_free_queue(struct request_queue *q)
1906 {
1907 struct blk_mq_tag_set *set = q->tag_set;
1908
1909 blk_mq_del_queue_tag_set(q);
1910
1911 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
1912 blk_mq_free_hw_queues(q, set);
1913
1914 percpu_counter_destroy(&q->mq_usage_counter);
1915
1916 free_percpu(q->queue_ctx);
1917 kfree(q->queue_hw_ctx);
1918 kfree(q->mq_map);
1919
1920 q->queue_ctx = NULL;
1921 q->queue_hw_ctx = NULL;
1922 q->mq_map = NULL;
1923
1924 mutex_lock(&all_q_mutex);
1925 list_del_init(&q->all_q_node);
1926 mutex_unlock(&all_q_mutex);
1927 }
1928
1929 /* Basically redo blk_mq_init_queue with queue frozen */
1930 static void blk_mq_queue_reinit(struct request_queue *q)
1931 {
1932 blk_mq_freeze_queue(q);
1933
1934 blk_mq_sysfs_unregister(q);
1935
1936 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1937
1938 /*
1939 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1940 * we should change hctx numa_node according to new topology (this
1941 * involves free and re-allocate memory, worthy doing?)
1942 */
1943
1944 blk_mq_map_swqueue(q);
1945
1946 blk_mq_sysfs_register(q);
1947
1948 blk_mq_unfreeze_queue(q);
1949 }
1950
1951 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1952 unsigned long action, void *hcpu)
1953 {
1954 struct request_queue *q;
1955
1956 /*
1957 * Before new mappings are established, hotadded cpu might already
1958 * start handling requests. This doesn't break anything as we map
1959 * offline CPUs to first hardware queue. We will re-init the queue
1960 * below to get optimal settings.
1961 */
1962 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1963 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1964 return NOTIFY_OK;
1965
1966 mutex_lock(&all_q_mutex);
1967 list_for_each_entry(q, &all_q_list, all_q_node)
1968 blk_mq_queue_reinit(q);
1969 mutex_unlock(&all_q_mutex);
1970 return NOTIFY_OK;
1971 }
1972
1973 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
1974 {
1975 int i;
1976
1977 if (!set->nr_hw_queues)
1978 return -EINVAL;
1979 if (!set->queue_depth || set->queue_depth > BLK_MQ_MAX_DEPTH)
1980 return -EINVAL;
1981 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
1982 return -EINVAL;
1983
1984 if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
1985 return -EINVAL;
1986
1987
1988 set->tags = kmalloc_node(set->nr_hw_queues *
1989 sizeof(struct blk_mq_tags *),
1990 GFP_KERNEL, set->numa_node);
1991 if (!set->tags)
1992 goto out;
1993
1994 for (i = 0; i < set->nr_hw_queues; i++) {
1995 set->tags[i] = blk_mq_init_rq_map(set, i);
1996 if (!set->tags[i])
1997 goto out_unwind;
1998 }
1999
2000 mutex_init(&set->tag_list_lock);
2001 INIT_LIST_HEAD(&set->tag_list);
2002
2003 return 0;
2004
2005 out_unwind:
2006 while (--i >= 0)
2007 blk_mq_free_rq_map(set, set->tags[i], i);
2008 out:
2009 return -ENOMEM;
2010 }
2011 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2012
2013 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2014 {
2015 int i;
2016
2017 for (i = 0; i < set->nr_hw_queues; i++) {
2018 if (set->tags[i])
2019 blk_mq_free_rq_map(set, set->tags[i], i);
2020 }
2021
2022 kfree(set->tags);
2023 }
2024 EXPORT_SYMBOL(blk_mq_free_tag_set);
2025
2026 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2027 {
2028 struct blk_mq_tag_set *set = q->tag_set;
2029 struct blk_mq_hw_ctx *hctx;
2030 int i, ret;
2031
2032 if (!set || nr > set->queue_depth)
2033 return -EINVAL;
2034
2035 ret = 0;
2036 queue_for_each_hw_ctx(q, hctx, i) {
2037 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2038 if (ret)
2039 break;
2040 }
2041
2042 if (!ret)
2043 q->nr_requests = nr;
2044
2045 return ret;
2046 }
2047
2048 void blk_mq_disable_hotplug(void)
2049 {
2050 mutex_lock(&all_q_mutex);
2051 }
2052
2053 void blk_mq_enable_hotplug(void)
2054 {
2055 mutex_unlock(&all_q_mutex);
2056 }
2057
2058 static int __init blk_mq_init(void)
2059 {
2060 blk_mq_cpu_init();
2061
2062 /* Must be called after percpu_counter_hotcpu_callback() */
2063 hotcpu_notifier(blk_mq_queue_reinit_notify, -10);
2064
2065 return 0;
2066 }
2067 subsys_initcall(blk_mq_init);