]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-mq.c
Merge branch 'nvme-4.13' of git://git.infradead.org/nvme into for-linus
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static DEFINE_MUTEX(all_q_mutex);
41 static LIST_HEAD(all_q_list);
42
43 static void blk_mq_poll_stats_start(struct request_queue *q);
44 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
45
46 static int blk_mq_poll_stats_bkt(const struct request *rq)
47 {
48 int ddir, bytes, bucket;
49
50 ddir = rq_data_dir(rq);
51 bytes = blk_rq_bytes(rq);
52
53 bucket = ddir + 2*(ilog2(bytes) - 9);
54
55 if (bucket < 0)
56 return -1;
57 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
58 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
59
60 return bucket;
61 }
62
63 /*
64 * Check if any of the ctx's have pending work in this hardware queue
65 */
66 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
67 {
68 return sbitmap_any_bit_set(&hctx->ctx_map) ||
69 !list_empty_careful(&hctx->dispatch) ||
70 blk_mq_sched_has_work(hctx);
71 }
72
73 /*
74 * Mark this ctx as having pending work in this hardware queue
75 */
76 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
77 struct blk_mq_ctx *ctx)
78 {
79 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
80 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
81 }
82
83 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
84 struct blk_mq_ctx *ctx)
85 {
86 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
87 }
88
89 void blk_freeze_queue_start(struct request_queue *q)
90 {
91 int freeze_depth;
92
93 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
94 if (freeze_depth == 1) {
95 percpu_ref_kill(&q->q_usage_counter);
96 blk_mq_run_hw_queues(q, false);
97 }
98 }
99 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
100
101 void blk_mq_freeze_queue_wait(struct request_queue *q)
102 {
103 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
104 }
105 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
106
107 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
108 unsigned long timeout)
109 {
110 return wait_event_timeout(q->mq_freeze_wq,
111 percpu_ref_is_zero(&q->q_usage_counter),
112 timeout);
113 }
114 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
115
116 /*
117 * Guarantee no request is in use, so we can change any data structure of
118 * the queue afterward.
119 */
120 void blk_freeze_queue(struct request_queue *q)
121 {
122 /*
123 * In the !blk_mq case we are only calling this to kill the
124 * q_usage_counter, otherwise this increases the freeze depth
125 * and waits for it to return to zero. For this reason there is
126 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
127 * exported to drivers as the only user for unfreeze is blk_mq.
128 */
129 blk_freeze_queue_start(q);
130 blk_mq_freeze_queue_wait(q);
131 }
132
133 void blk_mq_freeze_queue(struct request_queue *q)
134 {
135 /*
136 * ...just an alias to keep freeze and unfreeze actions balanced
137 * in the blk_mq_* namespace
138 */
139 blk_freeze_queue(q);
140 }
141 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
142
143 void blk_mq_unfreeze_queue(struct request_queue *q)
144 {
145 int freeze_depth;
146
147 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
148 WARN_ON_ONCE(freeze_depth < 0);
149 if (!freeze_depth) {
150 percpu_ref_reinit(&q->q_usage_counter);
151 wake_up_all(&q->mq_freeze_wq);
152 }
153 }
154 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
155
156 /*
157 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
158 * mpt3sas driver such that this function can be removed.
159 */
160 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
161 {
162 unsigned long flags;
163
164 spin_lock_irqsave(q->queue_lock, flags);
165 queue_flag_set(QUEUE_FLAG_QUIESCED, q);
166 spin_unlock_irqrestore(q->queue_lock, flags);
167 }
168 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
169
170 /**
171 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
172 * @q: request queue.
173 *
174 * Note: this function does not prevent that the struct request end_io()
175 * callback function is invoked. Once this function is returned, we make
176 * sure no dispatch can happen until the queue is unquiesced via
177 * blk_mq_unquiesce_queue().
178 */
179 void blk_mq_quiesce_queue(struct request_queue *q)
180 {
181 struct blk_mq_hw_ctx *hctx;
182 unsigned int i;
183 bool rcu = false;
184
185 blk_mq_quiesce_queue_nowait(q);
186
187 queue_for_each_hw_ctx(q, hctx, i) {
188 if (hctx->flags & BLK_MQ_F_BLOCKING)
189 synchronize_srcu(hctx->queue_rq_srcu);
190 else
191 rcu = true;
192 }
193 if (rcu)
194 synchronize_rcu();
195 }
196 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
197
198 /*
199 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
200 * @q: request queue.
201 *
202 * This function recovers queue into the state before quiescing
203 * which is done by blk_mq_quiesce_queue.
204 */
205 void blk_mq_unquiesce_queue(struct request_queue *q)
206 {
207 unsigned long flags;
208
209 spin_lock_irqsave(q->queue_lock, flags);
210 queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
211 spin_unlock_irqrestore(q->queue_lock, flags);
212
213 /* dispatch requests which are inserted during quiescing */
214 blk_mq_run_hw_queues(q, true);
215 }
216 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
217
218 void blk_mq_wake_waiters(struct request_queue *q)
219 {
220 struct blk_mq_hw_ctx *hctx;
221 unsigned int i;
222
223 queue_for_each_hw_ctx(q, hctx, i)
224 if (blk_mq_hw_queue_mapped(hctx))
225 blk_mq_tag_wakeup_all(hctx->tags, true);
226
227 /*
228 * If we are called because the queue has now been marked as
229 * dying, we need to ensure that processes currently waiting on
230 * the queue are notified as well.
231 */
232 wake_up_all(&q->mq_freeze_wq);
233 }
234
235 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
236 {
237 return blk_mq_has_free_tags(hctx->tags);
238 }
239 EXPORT_SYMBOL(blk_mq_can_queue);
240
241 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
242 unsigned int tag, unsigned int op)
243 {
244 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
245 struct request *rq = tags->static_rqs[tag];
246
247 rq->rq_flags = 0;
248
249 if (data->flags & BLK_MQ_REQ_INTERNAL) {
250 rq->tag = -1;
251 rq->internal_tag = tag;
252 } else {
253 if (blk_mq_tag_busy(data->hctx)) {
254 rq->rq_flags = RQF_MQ_INFLIGHT;
255 atomic_inc(&data->hctx->nr_active);
256 }
257 rq->tag = tag;
258 rq->internal_tag = -1;
259 data->hctx->tags->rqs[rq->tag] = rq;
260 }
261
262 INIT_LIST_HEAD(&rq->queuelist);
263 /* csd/requeue_work/fifo_time is initialized before use */
264 rq->q = data->q;
265 rq->mq_ctx = data->ctx;
266 rq->cmd_flags = op;
267 if (blk_queue_io_stat(data->q))
268 rq->rq_flags |= RQF_IO_STAT;
269 /* do not touch atomic flags, it needs atomic ops against the timer */
270 rq->cpu = -1;
271 INIT_HLIST_NODE(&rq->hash);
272 RB_CLEAR_NODE(&rq->rb_node);
273 rq->rq_disk = NULL;
274 rq->part = NULL;
275 rq->start_time = jiffies;
276 #ifdef CONFIG_BLK_CGROUP
277 rq->rl = NULL;
278 set_start_time_ns(rq);
279 rq->io_start_time_ns = 0;
280 #endif
281 rq->nr_phys_segments = 0;
282 #if defined(CONFIG_BLK_DEV_INTEGRITY)
283 rq->nr_integrity_segments = 0;
284 #endif
285 rq->special = NULL;
286 /* tag was already set */
287 rq->extra_len = 0;
288
289 INIT_LIST_HEAD(&rq->timeout_list);
290 rq->timeout = 0;
291
292 rq->end_io = NULL;
293 rq->end_io_data = NULL;
294 rq->next_rq = NULL;
295
296 data->ctx->rq_dispatched[op_is_sync(op)]++;
297 return rq;
298 }
299
300 static struct request *blk_mq_get_request(struct request_queue *q,
301 struct bio *bio, unsigned int op,
302 struct blk_mq_alloc_data *data)
303 {
304 struct elevator_queue *e = q->elevator;
305 struct request *rq;
306 unsigned int tag;
307
308 blk_queue_enter_live(q);
309 data->q = q;
310 if (likely(!data->ctx))
311 data->ctx = blk_mq_get_ctx(q);
312 if (likely(!data->hctx))
313 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
314 if (op & REQ_NOWAIT)
315 data->flags |= BLK_MQ_REQ_NOWAIT;
316
317 if (e) {
318 data->flags |= BLK_MQ_REQ_INTERNAL;
319
320 /*
321 * Flush requests are special and go directly to the
322 * dispatch list.
323 */
324 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
325 e->type->ops.mq.limit_depth(op, data);
326 }
327
328 tag = blk_mq_get_tag(data);
329 if (tag == BLK_MQ_TAG_FAIL) {
330 blk_queue_exit(q);
331 return NULL;
332 }
333
334 rq = blk_mq_rq_ctx_init(data, tag, op);
335 if (!op_is_flush(op)) {
336 rq->elv.icq = NULL;
337 if (e && e->type->ops.mq.prepare_request) {
338 if (e->type->icq_cache && rq_ioc(bio))
339 blk_mq_sched_assign_ioc(rq, bio);
340
341 e->type->ops.mq.prepare_request(rq, bio);
342 rq->rq_flags |= RQF_ELVPRIV;
343 }
344 }
345 data->hctx->queued++;
346 return rq;
347 }
348
349 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
350 unsigned int flags)
351 {
352 struct blk_mq_alloc_data alloc_data = { .flags = flags };
353 struct request *rq;
354 int ret;
355
356 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
357 if (ret)
358 return ERR_PTR(ret);
359
360 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
361
362 blk_mq_put_ctx(alloc_data.ctx);
363 blk_queue_exit(q);
364
365 if (!rq)
366 return ERR_PTR(-EWOULDBLOCK);
367
368 rq->__data_len = 0;
369 rq->__sector = (sector_t) -1;
370 rq->bio = rq->biotail = NULL;
371 return rq;
372 }
373 EXPORT_SYMBOL(blk_mq_alloc_request);
374
375 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
376 unsigned int op, unsigned int flags, unsigned int hctx_idx)
377 {
378 struct blk_mq_alloc_data alloc_data = { .flags = flags };
379 struct request *rq;
380 unsigned int cpu;
381 int ret;
382
383 /*
384 * If the tag allocator sleeps we could get an allocation for a
385 * different hardware context. No need to complicate the low level
386 * allocator for this for the rare use case of a command tied to
387 * a specific queue.
388 */
389 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
390 return ERR_PTR(-EINVAL);
391
392 if (hctx_idx >= q->nr_hw_queues)
393 return ERR_PTR(-EIO);
394
395 ret = blk_queue_enter(q, true);
396 if (ret)
397 return ERR_PTR(ret);
398
399 /*
400 * Check if the hardware context is actually mapped to anything.
401 * If not tell the caller that it should skip this queue.
402 */
403 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
404 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
405 blk_queue_exit(q);
406 return ERR_PTR(-EXDEV);
407 }
408 cpu = cpumask_first(alloc_data.hctx->cpumask);
409 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
410
411 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
412
413 blk_queue_exit(q);
414
415 if (!rq)
416 return ERR_PTR(-EWOULDBLOCK);
417
418 return rq;
419 }
420 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
421
422 void blk_mq_free_request(struct request *rq)
423 {
424 struct request_queue *q = rq->q;
425 struct elevator_queue *e = q->elevator;
426 struct blk_mq_ctx *ctx = rq->mq_ctx;
427 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
428 const int sched_tag = rq->internal_tag;
429
430 if (rq->rq_flags & RQF_ELVPRIV) {
431 if (e && e->type->ops.mq.finish_request)
432 e->type->ops.mq.finish_request(rq);
433 if (rq->elv.icq) {
434 put_io_context(rq->elv.icq->ioc);
435 rq->elv.icq = NULL;
436 }
437 }
438
439 ctx->rq_completed[rq_is_sync(rq)]++;
440 if (rq->rq_flags & RQF_MQ_INFLIGHT)
441 atomic_dec(&hctx->nr_active);
442
443 wbt_done(q->rq_wb, &rq->issue_stat);
444
445 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
446 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
447 if (rq->tag != -1)
448 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
449 if (sched_tag != -1)
450 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
451 blk_mq_sched_restart(hctx);
452 blk_queue_exit(q);
453 }
454 EXPORT_SYMBOL_GPL(blk_mq_free_request);
455
456 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
457 {
458 blk_account_io_done(rq);
459
460 if (rq->end_io) {
461 wbt_done(rq->q->rq_wb, &rq->issue_stat);
462 rq->end_io(rq, error);
463 } else {
464 if (unlikely(blk_bidi_rq(rq)))
465 blk_mq_free_request(rq->next_rq);
466 blk_mq_free_request(rq);
467 }
468 }
469 EXPORT_SYMBOL(__blk_mq_end_request);
470
471 void blk_mq_end_request(struct request *rq, blk_status_t error)
472 {
473 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
474 BUG();
475 __blk_mq_end_request(rq, error);
476 }
477 EXPORT_SYMBOL(blk_mq_end_request);
478
479 static void __blk_mq_complete_request_remote(void *data)
480 {
481 struct request *rq = data;
482
483 rq->q->softirq_done_fn(rq);
484 }
485
486 static void __blk_mq_complete_request(struct request *rq)
487 {
488 struct blk_mq_ctx *ctx = rq->mq_ctx;
489 bool shared = false;
490 int cpu;
491
492 if (rq->internal_tag != -1)
493 blk_mq_sched_completed_request(rq);
494 if (rq->rq_flags & RQF_STATS) {
495 blk_mq_poll_stats_start(rq->q);
496 blk_stat_add(rq);
497 }
498
499 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
500 rq->q->softirq_done_fn(rq);
501 return;
502 }
503
504 cpu = get_cpu();
505 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
506 shared = cpus_share_cache(cpu, ctx->cpu);
507
508 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
509 rq->csd.func = __blk_mq_complete_request_remote;
510 rq->csd.info = rq;
511 rq->csd.flags = 0;
512 smp_call_function_single_async(ctx->cpu, &rq->csd);
513 } else {
514 rq->q->softirq_done_fn(rq);
515 }
516 put_cpu();
517 }
518
519 /**
520 * blk_mq_complete_request - end I/O on a request
521 * @rq: the request being processed
522 *
523 * Description:
524 * Ends all I/O on a request. It does not handle partial completions.
525 * The actual completion happens out-of-order, through a IPI handler.
526 **/
527 void blk_mq_complete_request(struct request *rq)
528 {
529 struct request_queue *q = rq->q;
530
531 if (unlikely(blk_should_fake_timeout(q)))
532 return;
533 if (!blk_mark_rq_complete(rq))
534 __blk_mq_complete_request(rq);
535 }
536 EXPORT_SYMBOL(blk_mq_complete_request);
537
538 int blk_mq_request_started(struct request *rq)
539 {
540 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
541 }
542 EXPORT_SYMBOL_GPL(blk_mq_request_started);
543
544 void blk_mq_start_request(struct request *rq)
545 {
546 struct request_queue *q = rq->q;
547
548 blk_mq_sched_started_request(rq);
549
550 trace_block_rq_issue(q, rq);
551
552 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
553 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
554 rq->rq_flags |= RQF_STATS;
555 wbt_issue(q->rq_wb, &rq->issue_stat);
556 }
557
558 blk_add_timer(rq);
559
560 /*
561 * Ensure that ->deadline is visible before set the started
562 * flag and clear the completed flag.
563 */
564 smp_mb__before_atomic();
565
566 /*
567 * Mark us as started and clear complete. Complete might have been
568 * set if requeue raced with timeout, which then marked it as
569 * complete. So be sure to clear complete again when we start
570 * the request, otherwise we'll ignore the completion event.
571 */
572 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
573 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
574 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
575 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
576
577 if (q->dma_drain_size && blk_rq_bytes(rq)) {
578 /*
579 * Make sure space for the drain appears. We know we can do
580 * this because max_hw_segments has been adjusted to be one
581 * fewer than the device can handle.
582 */
583 rq->nr_phys_segments++;
584 }
585 }
586 EXPORT_SYMBOL(blk_mq_start_request);
587
588 /*
589 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
590 * flag isn't set yet, so there may be race with timeout handler,
591 * but given rq->deadline is just set in .queue_rq() under
592 * this situation, the race won't be possible in reality because
593 * rq->timeout should be set as big enough to cover the window
594 * between blk_mq_start_request() called from .queue_rq() and
595 * clearing REQ_ATOM_STARTED here.
596 */
597 static void __blk_mq_requeue_request(struct request *rq)
598 {
599 struct request_queue *q = rq->q;
600
601 trace_block_rq_requeue(q, rq);
602 wbt_requeue(q->rq_wb, &rq->issue_stat);
603 blk_mq_sched_requeue_request(rq);
604
605 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
606 if (q->dma_drain_size && blk_rq_bytes(rq))
607 rq->nr_phys_segments--;
608 }
609 }
610
611 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
612 {
613 __blk_mq_requeue_request(rq);
614
615 BUG_ON(blk_queued_rq(rq));
616 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
617 }
618 EXPORT_SYMBOL(blk_mq_requeue_request);
619
620 static void blk_mq_requeue_work(struct work_struct *work)
621 {
622 struct request_queue *q =
623 container_of(work, struct request_queue, requeue_work.work);
624 LIST_HEAD(rq_list);
625 struct request *rq, *next;
626 unsigned long flags;
627
628 spin_lock_irqsave(&q->requeue_lock, flags);
629 list_splice_init(&q->requeue_list, &rq_list);
630 spin_unlock_irqrestore(&q->requeue_lock, flags);
631
632 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
633 if (!(rq->rq_flags & RQF_SOFTBARRIER))
634 continue;
635
636 rq->rq_flags &= ~RQF_SOFTBARRIER;
637 list_del_init(&rq->queuelist);
638 blk_mq_sched_insert_request(rq, true, false, false, true);
639 }
640
641 while (!list_empty(&rq_list)) {
642 rq = list_entry(rq_list.next, struct request, queuelist);
643 list_del_init(&rq->queuelist);
644 blk_mq_sched_insert_request(rq, false, false, false, true);
645 }
646
647 blk_mq_run_hw_queues(q, false);
648 }
649
650 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
651 bool kick_requeue_list)
652 {
653 struct request_queue *q = rq->q;
654 unsigned long flags;
655
656 /*
657 * We abuse this flag that is otherwise used by the I/O scheduler to
658 * request head insertation from the workqueue.
659 */
660 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
661
662 spin_lock_irqsave(&q->requeue_lock, flags);
663 if (at_head) {
664 rq->rq_flags |= RQF_SOFTBARRIER;
665 list_add(&rq->queuelist, &q->requeue_list);
666 } else {
667 list_add_tail(&rq->queuelist, &q->requeue_list);
668 }
669 spin_unlock_irqrestore(&q->requeue_lock, flags);
670
671 if (kick_requeue_list)
672 blk_mq_kick_requeue_list(q);
673 }
674 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
675
676 void blk_mq_kick_requeue_list(struct request_queue *q)
677 {
678 kblockd_schedule_delayed_work(&q->requeue_work, 0);
679 }
680 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
681
682 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
683 unsigned long msecs)
684 {
685 kblockd_schedule_delayed_work(&q->requeue_work,
686 msecs_to_jiffies(msecs));
687 }
688 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
689
690 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
691 {
692 if (tag < tags->nr_tags) {
693 prefetch(tags->rqs[tag]);
694 return tags->rqs[tag];
695 }
696
697 return NULL;
698 }
699 EXPORT_SYMBOL(blk_mq_tag_to_rq);
700
701 struct blk_mq_timeout_data {
702 unsigned long next;
703 unsigned int next_set;
704 };
705
706 void blk_mq_rq_timed_out(struct request *req, bool reserved)
707 {
708 const struct blk_mq_ops *ops = req->q->mq_ops;
709 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
710
711 /*
712 * We know that complete is set at this point. If STARTED isn't set
713 * anymore, then the request isn't active and the "timeout" should
714 * just be ignored. This can happen due to the bitflag ordering.
715 * Timeout first checks if STARTED is set, and if it is, assumes
716 * the request is active. But if we race with completion, then
717 * both flags will get cleared. So check here again, and ignore
718 * a timeout event with a request that isn't active.
719 */
720 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
721 return;
722
723 if (ops->timeout)
724 ret = ops->timeout(req, reserved);
725
726 switch (ret) {
727 case BLK_EH_HANDLED:
728 __blk_mq_complete_request(req);
729 break;
730 case BLK_EH_RESET_TIMER:
731 blk_add_timer(req);
732 blk_clear_rq_complete(req);
733 break;
734 case BLK_EH_NOT_HANDLED:
735 break;
736 default:
737 printk(KERN_ERR "block: bad eh return: %d\n", ret);
738 break;
739 }
740 }
741
742 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
743 struct request *rq, void *priv, bool reserved)
744 {
745 struct blk_mq_timeout_data *data = priv;
746
747 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
748 return;
749
750 /*
751 * The rq being checked may have been freed and reallocated
752 * out already here, we avoid this race by checking rq->deadline
753 * and REQ_ATOM_COMPLETE flag together:
754 *
755 * - if rq->deadline is observed as new value because of
756 * reusing, the rq won't be timed out because of timing.
757 * - if rq->deadline is observed as previous value,
758 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
759 * because we put a barrier between setting rq->deadline
760 * and clearing the flag in blk_mq_start_request(), so
761 * this rq won't be timed out too.
762 */
763 if (time_after_eq(jiffies, rq->deadline)) {
764 if (!blk_mark_rq_complete(rq))
765 blk_mq_rq_timed_out(rq, reserved);
766 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
767 data->next = rq->deadline;
768 data->next_set = 1;
769 }
770 }
771
772 static void blk_mq_timeout_work(struct work_struct *work)
773 {
774 struct request_queue *q =
775 container_of(work, struct request_queue, timeout_work);
776 struct blk_mq_timeout_data data = {
777 .next = 0,
778 .next_set = 0,
779 };
780 int i;
781
782 /* A deadlock might occur if a request is stuck requiring a
783 * timeout at the same time a queue freeze is waiting
784 * completion, since the timeout code would not be able to
785 * acquire the queue reference here.
786 *
787 * That's why we don't use blk_queue_enter here; instead, we use
788 * percpu_ref_tryget directly, because we need to be able to
789 * obtain a reference even in the short window between the queue
790 * starting to freeze, by dropping the first reference in
791 * blk_freeze_queue_start, and the moment the last request is
792 * consumed, marked by the instant q_usage_counter reaches
793 * zero.
794 */
795 if (!percpu_ref_tryget(&q->q_usage_counter))
796 return;
797
798 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
799
800 if (data.next_set) {
801 data.next = blk_rq_timeout(round_jiffies_up(data.next));
802 mod_timer(&q->timeout, data.next);
803 } else {
804 struct blk_mq_hw_ctx *hctx;
805
806 queue_for_each_hw_ctx(q, hctx, i) {
807 /* the hctx may be unmapped, so check it here */
808 if (blk_mq_hw_queue_mapped(hctx))
809 blk_mq_tag_idle(hctx);
810 }
811 }
812 blk_queue_exit(q);
813 }
814
815 struct flush_busy_ctx_data {
816 struct blk_mq_hw_ctx *hctx;
817 struct list_head *list;
818 };
819
820 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
821 {
822 struct flush_busy_ctx_data *flush_data = data;
823 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
824 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
825
826 sbitmap_clear_bit(sb, bitnr);
827 spin_lock(&ctx->lock);
828 list_splice_tail_init(&ctx->rq_list, flush_data->list);
829 spin_unlock(&ctx->lock);
830 return true;
831 }
832
833 /*
834 * Process software queues that have been marked busy, splicing them
835 * to the for-dispatch
836 */
837 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
838 {
839 struct flush_busy_ctx_data data = {
840 .hctx = hctx,
841 .list = list,
842 };
843
844 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
845 }
846 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
847
848 static inline unsigned int queued_to_index(unsigned int queued)
849 {
850 if (!queued)
851 return 0;
852
853 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
854 }
855
856 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
857 bool wait)
858 {
859 struct blk_mq_alloc_data data = {
860 .q = rq->q,
861 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
862 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
863 };
864
865 might_sleep_if(wait);
866
867 if (rq->tag != -1)
868 goto done;
869
870 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
871 data.flags |= BLK_MQ_REQ_RESERVED;
872
873 rq->tag = blk_mq_get_tag(&data);
874 if (rq->tag >= 0) {
875 if (blk_mq_tag_busy(data.hctx)) {
876 rq->rq_flags |= RQF_MQ_INFLIGHT;
877 atomic_inc(&data.hctx->nr_active);
878 }
879 data.hctx->tags->rqs[rq->tag] = rq;
880 }
881
882 done:
883 if (hctx)
884 *hctx = data.hctx;
885 return rq->tag != -1;
886 }
887
888 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
889 struct request *rq)
890 {
891 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
892 rq->tag = -1;
893
894 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
895 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
896 atomic_dec(&hctx->nr_active);
897 }
898 }
899
900 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
901 struct request *rq)
902 {
903 if (rq->tag == -1 || rq->internal_tag == -1)
904 return;
905
906 __blk_mq_put_driver_tag(hctx, rq);
907 }
908
909 static void blk_mq_put_driver_tag(struct request *rq)
910 {
911 struct blk_mq_hw_ctx *hctx;
912
913 if (rq->tag == -1 || rq->internal_tag == -1)
914 return;
915
916 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
917 __blk_mq_put_driver_tag(hctx, rq);
918 }
919
920 /*
921 * If we fail getting a driver tag because all the driver tags are already
922 * assigned and on the dispatch list, BUT the first entry does not have a
923 * tag, then we could deadlock. For that case, move entries with assigned
924 * driver tags to the front, leaving the set of tagged requests in the
925 * same order, and the untagged set in the same order.
926 */
927 static bool reorder_tags_to_front(struct list_head *list)
928 {
929 struct request *rq, *tmp, *first = NULL;
930
931 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
932 if (rq == first)
933 break;
934 if (rq->tag != -1) {
935 list_move(&rq->queuelist, list);
936 if (!first)
937 first = rq;
938 }
939 }
940
941 return first != NULL;
942 }
943
944 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
945 void *key)
946 {
947 struct blk_mq_hw_ctx *hctx;
948
949 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
950
951 list_del(&wait->entry);
952 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
953 blk_mq_run_hw_queue(hctx, true);
954 return 1;
955 }
956
957 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
958 {
959 struct sbq_wait_state *ws;
960
961 /*
962 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
963 * The thread which wins the race to grab this bit adds the hardware
964 * queue to the wait queue.
965 */
966 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
967 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
968 return false;
969
970 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
971 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
972
973 /*
974 * As soon as this returns, it's no longer safe to fiddle with
975 * hctx->dispatch_wait, since a completion can wake up the wait queue
976 * and unlock the bit.
977 */
978 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
979 return true;
980 }
981
982 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
983 {
984 struct blk_mq_hw_ctx *hctx;
985 struct request *rq;
986 int errors, queued;
987
988 if (list_empty(list))
989 return false;
990
991 /*
992 * Now process all the entries, sending them to the driver.
993 */
994 errors = queued = 0;
995 do {
996 struct blk_mq_queue_data bd;
997 blk_status_t ret;
998
999 rq = list_first_entry(list, struct request, queuelist);
1000 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1001 if (!queued && reorder_tags_to_front(list))
1002 continue;
1003
1004 /*
1005 * The initial allocation attempt failed, so we need to
1006 * rerun the hardware queue when a tag is freed.
1007 */
1008 if (!blk_mq_dispatch_wait_add(hctx))
1009 break;
1010
1011 /*
1012 * It's possible that a tag was freed in the window
1013 * between the allocation failure and adding the
1014 * hardware queue to the wait queue.
1015 */
1016 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1017 break;
1018 }
1019
1020 list_del_init(&rq->queuelist);
1021
1022 bd.rq = rq;
1023
1024 /*
1025 * Flag last if we have no more requests, or if we have more
1026 * but can't assign a driver tag to it.
1027 */
1028 if (list_empty(list))
1029 bd.last = true;
1030 else {
1031 struct request *nxt;
1032
1033 nxt = list_first_entry(list, struct request, queuelist);
1034 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1035 }
1036
1037 ret = q->mq_ops->queue_rq(hctx, &bd);
1038 if (ret == BLK_STS_RESOURCE) {
1039 blk_mq_put_driver_tag_hctx(hctx, rq);
1040 list_add(&rq->queuelist, list);
1041 __blk_mq_requeue_request(rq);
1042 break;
1043 }
1044
1045 if (unlikely(ret != BLK_STS_OK)) {
1046 errors++;
1047 blk_mq_end_request(rq, BLK_STS_IOERR);
1048 continue;
1049 }
1050
1051 queued++;
1052 } while (!list_empty(list));
1053
1054 hctx->dispatched[queued_to_index(queued)]++;
1055
1056 /*
1057 * Any items that need requeuing? Stuff them into hctx->dispatch,
1058 * that is where we will continue on next queue run.
1059 */
1060 if (!list_empty(list)) {
1061 /*
1062 * If an I/O scheduler has been configured and we got a driver
1063 * tag for the next request already, free it again.
1064 */
1065 rq = list_first_entry(list, struct request, queuelist);
1066 blk_mq_put_driver_tag(rq);
1067
1068 spin_lock(&hctx->lock);
1069 list_splice_init(list, &hctx->dispatch);
1070 spin_unlock(&hctx->lock);
1071
1072 /*
1073 * If SCHED_RESTART was set by the caller of this function and
1074 * it is no longer set that means that it was cleared by another
1075 * thread and hence that a queue rerun is needed.
1076 *
1077 * If TAG_WAITING is set that means that an I/O scheduler has
1078 * been configured and another thread is waiting for a driver
1079 * tag. To guarantee fairness, do not rerun this hardware queue
1080 * but let the other thread grab the driver tag.
1081 *
1082 * If no I/O scheduler has been configured it is possible that
1083 * the hardware queue got stopped and restarted before requests
1084 * were pushed back onto the dispatch list. Rerun the queue to
1085 * avoid starvation. Notes:
1086 * - blk_mq_run_hw_queue() checks whether or not a queue has
1087 * been stopped before rerunning a queue.
1088 * - Some but not all block drivers stop a queue before
1089 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1090 * and dm-rq.
1091 */
1092 if (!blk_mq_sched_needs_restart(hctx) &&
1093 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1094 blk_mq_run_hw_queue(hctx, true);
1095 }
1096
1097 return (queued + errors) != 0;
1098 }
1099
1100 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1101 {
1102 int srcu_idx;
1103
1104 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1105 cpu_online(hctx->next_cpu));
1106
1107 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1108 rcu_read_lock();
1109 blk_mq_sched_dispatch_requests(hctx);
1110 rcu_read_unlock();
1111 } else {
1112 might_sleep();
1113
1114 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1115 blk_mq_sched_dispatch_requests(hctx);
1116 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1117 }
1118 }
1119
1120 /*
1121 * It'd be great if the workqueue API had a way to pass
1122 * in a mask and had some smarts for more clever placement.
1123 * For now we just round-robin here, switching for every
1124 * BLK_MQ_CPU_WORK_BATCH queued items.
1125 */
1126 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1127 {
1128 if (hctx->queue->nr_hw_queues == 1)
1129 return WORK_CPU_UNBOUND;
1130
1131 if (--hctx->next_cpu_batch <= 0) {
1132 int next_cpu;
1133
1134 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1135 if (next_cpu >= nr_cpu_ids)
1136 next_cpu = cpumask_first(hctx->cpumask);
1137
1138 hctx->next_cpu = next_cpu;
1139 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1140 }
1141
1142 return hctx->next_cpu;
1143 }
1144
1145 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1146 unsigned long msecs)
1147 {
1148 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1149 return;
1150
1151 if (unlikely(blk_mq_hctx_stopped(hctx)))
1152 return;
1153
1154 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1155 int cpu = get_cpu();
1156 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1157 __blk_mq_run_hw_queue(hctx);
1158 put_cpu();
1159 return;
1160 }
1161
1162 put_cpu();
1163 }
1164
1165 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1166 &hctx->run_work,
1167 msecs_to_jiffies(msecs));
1168 }
1169
1170 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1171 {
1172 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1173 }
1174 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1175
1176 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1177 {
1178 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1179 }
1180 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1181
1182 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1183 {
1184 struct blk_mq_hw_ctx *hctx;
1185 int i;
1186
1187 queue_for_each_hw_ctx(q, hctx, i) {
1188 if (!blk_mq_hctx_has_pending(hctx) ||
1189 blk_mq_hctx_stopped(hctx))
1190 continue;
1191
1192 blk_mq_run_hw_queue(hctx, async);
1193 }
1194 }
1195 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1196
1197 /**
1198 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1199 * @q: request queue.
1200 *
1201 * The caller is responsible for serializing this function against
1202 * blk_mq_{start,stop}_hw_queue().
1203 */
1204 bool blk_mq_queue_stopped(struct request_queue *q)
1205 {
1206 struct blk_mq_hw_ctx *hctx;
1207 int i;
1208
1209 queue_for_each_hw_ctx(q, hctx, i)
1210 if (blk_mq_hctx_stopped(hctx))
1211 return true;
1212
1213 return false;
1214 }
1215 EXPORT_SYMBOL(blk_mq_queue_stopped);
1216
1217 /*
1218 * This function is often used for pausing .queue_rq() by driver when
1219 * there isn't enough resource or some conditions aren't satisfied, and
1220 * BLK_MQ_RQ_QUEUE_BUSY is usually returned.
1221 *
1222 * We do not guarantee that dispatch can be drained or blocked
1223 * after blk_mq_stop_hw_queue() returns. Please use
1224 * blk_mq_quiesce_queue() for that requirement.
1225 */
1226 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1227 {
1228 cancel_delayed_work(&hctx->run_work);
1229
1230 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1231 }
1232 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1233
1234 /*
1235 * This function is often used for pausing .queue_rq() by driver when
1236 * there isn't enough resource or some conditions aren't satisfied, and
1237 * BLK_MQ_RQ_QUEUE_BUSY is usually returned.
1238 *
1239 * We do not guarantee that dispatch can be drained or blocked
1240 * after blk_mq_stop_hw_queues() returns. Please use
1241 * blk_mq_quiesce_queue() for that requirement.
1242 */
1243 void blk_mq_stop_hw_queues(struct request_queue *q)
1244 {
1245 struct blk_mq_hw_ctx *hctx;
1246 int i;
1247
1248 queue_for_each_hw_ctx(q, hctx, i)
1249 blk_mq_stop_hw_queue(hctx);
1250 }
1251 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1252
1253 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1254 {
1255 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1256
1257 blk_mq_run_hw_queue(hctx, false);
1258 }
1259 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1260
1261 void blk_mq_start_hw_queues(struct request_queue *q)
1262 {
1263 struct blk_mq_hw_ctx *hctx;
1264 int i;
1265
1266 queue_for_each_hw_ctx(q, hctx, i)
1267 blk_mq_start_hw_queue(hctx);
1268 }
1269 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1270
1271 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1272 {
1273 if (!blk_mq_hctx_stopped(hctx))
1274 return;
1275
1276 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1277 blk_mq_run_hw_queue(hctx, async);
1278 }
1279 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1280
1281 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1282 {
1283 struct blk_mq_hw_ctx *hctx;
1284 int i;
1285
1286 queue_for_each_hw_ctx(q, hctx, i)
1287 blk_mq_start_stopped_hw_queue(hctx, async);
1288 }
1289 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1290
1291 static void blk_mq_run_work_fn(struct work_struct *work)
1292 {
1293 struct blk_mq_hw_ctx *hctx;
1294
1295 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1296
1297 /*
1298 * If we are stopped, don't run the queue. The exception is if
1299 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1300 * the STOPPED bit and run it.
1301 */
1302 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1303 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1304 return;
1305
1306 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1307 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1308 }
1309
1310 __blk_mq_run_hw_queue(hctx);
1311 }
1312
1313
1314 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1315 {
1316 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1317 return;
1318
1319 /*
1320 * Stop the hw queue, then modify currently delayed work.
1321 * This should prevent us from running the queue prematurely.
1322 * Mark the queue as auto-clearing STOPPED when it runs.
1323 */
1324 blk_mq_stop_hw_queue(hctx);
1325 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1326 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1327 &hctx->run_work,
1328 msecs_to_jiffies(msecs));
1329 }
1330 EXPORT_SYMBOL(blk_mq_delay_queue);
1331
1332 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1333 struct request *rq,
1334 bool at_head)
1335 {
1336 struct blk_mq_ctx *ctx = rq->mq_ctx;
1337
1338 lockdep_assert_held(&ctx->lock);
1339
1340 trace_block_rq_insert(hctx->queue, rq);
1341
1342 if (at_head)
1343 list_add(&rq->queuelist, &ctx->rq_list);
1344 else
1345 list_add_tail(&rq->queuelist, &ctx->rq_list);
1346 }
1347
1348 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1349 bool at_head)
1350 {
1351 struct blk_mq_ctx *ctx = rq->mq_ctx;
1352
1353 lockdep_assert_held(&ctx->lock);
1354
1355 __blk_mq_insert_req_list(hctx, rq, at_head);
1356 blk_mq_hctx_mark_pending(hctx, ctx);
1357 }
1358
1359 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1360 struct list_head *list)
1361
1362 {
1363 /*
1364 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1365 * offline now
1366 */
1367 spin_lock(&ctx->lock);
1368 while (!list_empty(list)) {
1369 struct request *rq;
1370
1371 rq = list_first_entry(list, struct request, queuelist);
1372 BUG_ON(rq->mq_ctx != ctx);
1373 list_del_init(&rq->queuelist);
1374 __blk_mq_insert_req_list(hctx, rq, false);
1375 }
1376 blk_mq_hctx_mark_pending(hctx, ctx);
1377 spin_unlock(&ctx->lock);
1378 }
1379
1380 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1381 {
1382 struct request *rqa = container_of(a, struct request, queuelist);
1383 struct request *rqb = container_of(b, struct request, queuelist);
1384
1385 return !(rqa->mq_ctx < rqb->mq_ctx ||
1386 (rqa->mq_ctx == rqb->mq_ctx &&
1387 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1388 }
1389
1390 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1391 {
1392 struct blk_mq_ctx *this_ctx;
1393 struct request_queue *this_q;
1394 struct request *rq;
1395 LIST_HEAD(list);
1396 LIST_HEAD(ctx_list);
1397 unsigned int depth;
1398
1399 list_splice_init(&plug->mq_list, &list);
1400
1401 list_sort(NULL, &list, plug_ctx_cmp);
1402
1403 this_q = NULL;
1404 this_ctx = NULL;
1405 depth = 0;
1406
1407 while (!list_empty(&list)) {
1408 rq = list_entry_rq(list.next);
1409 list_del_init(&rq->queuelist);
1410 BUG_ON(!rq->q);
1411 if (rq->mq_ctx != this_ctx) {
1412 if (this_ctx) {
1413 trace_block_unplug(this_q, depth, from_schedule);
1414 blk_mq_sched_insert_requests(this_q, this_ctx,
1415 &ctx_list,
1416 from_schedule);
1417 }
1418
1419 this_ctx = rq->mq_ctx;
1420 this_q = rq->q;
1421 depth = 0;
1422 }
1423
1424 depth++;
1425 list_add_tail(&rq->queuelist, &ctx_list);
1426 }
1427
1428 /*
1429 * If 'this_ctx' is set, we know we have entries to complete
1430 * on 'ctx_list'. Do those.
1431 */
1432 if (this_ctx) {
1433 trace_block_unplug(this_q, depth, from_schedule);
1434 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1435 from_schedule);
1436 }
1437 }
1438
1439 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1440 {
1441 blk_init_request_from_bio(rq, bio);
1442
1443 blk_account_io_start(rq, true);
1444 }
1445
1446 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1447 {
1448 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1449 !blk_queue_nomerges(hctx->queue);
1450 }
1451
1452 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1453 struct blk_mq_ctx *ctx,
1454 struct request *rq)
1455 {
1456 spin_lock(&ctx->lock);
1457 __blk_mq_insert_request(hctx, rq, false);
1458 spin_unlock(&ctx->lock);
1459 }
1460
1461 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1462 {
1463 if (rq->tag != -1)
1464 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1465
1466 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1467 }
1468
1469 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1470 struct request *rq,
1471 blk_qc_t *cookie, bool may_sleep)
1472 {
1473 struct request_queue *q = rq->q;
1474 struct blk_mq_queue_data bd = {
1475 .rq = rq,
1476 .last = true,
1477 };
1478 blk_qc_t new_cookie;
1479 blk_status_t ret;
1480 bool run_queue = true;
1481
1482 /* RCU or SRCU read lock is needed before checking quiesced flag */
1483 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1484 run_queue = false;
1485 goto insert;
1486 }
1487
1488 if (q->elevator)
1489 goto insert;
1490
1491 if (!blk_mq_get_driver_tag(rq, NULL, false))
1492 goto insert;
1493
1494 new_cookie = request_to_qc_t(hctx, rq);
1495
1496 /*
1497 * For OK queue, we are done. For error, kill it. Any other
1498 * error (busy), just add it to our list as we previously
1499 * would have done
1500 */
1501 ret = q->mq_ops->queue_rq(hctx, &bd);
1502 switch (ret) {
1503 case BLK_STS_OK:
1504 *cookie = new_cookie;
1505 return;
1506 case BLK_STS_RESOURCE:
1507 __blk_mq_requeue_request(rq);
1508 goto insert;
1509 default:
1510 *cookie = BLK_QC_T_NONE;
1511 blk_mq_end_request(rq, ret);
1512 return;
1513 }
1514
1515 insert:
1516 blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1517 }
1518
1519 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1520 struct request *rq, blk_qc_t *cookie)
1521 {
1522 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1523 rcu_read_lock();
1524 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1525 rcu_read_unlock();
1526 } else {
1527 unsigned int srcu_idx;
1528
1529 might_sleep();
1530
1531 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1532 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
1533 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1534 }
1535 }
1536
1537 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1538 {
1539 const int is_sync = op_is_sync(bio->bi_opf);
1540 const int is_flush_fua = op_is_flush(bio->bi_opf);
1541 struct blk_mq_alloc_data data = { .flags = 0 };
1542 struct request *rq;
1543 unsigned int request_count = 0;
1544 struct blk_plug *plug;
1545 struct request *same_queue_rq = NULL;
1546 blk_qc_t cookie;
1547 unsigned int wb_acct;
1548
1549 blk_queue_bounce(q, &bio);
1550
1551 blk_queue_split(q, &bio);
1552
1553 if (!bio_integrity_prep(bio))
1554 return BLK_QC_T_NONE;
1555
1556 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1557 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1558 return BLK_QC_T_NONE;
1559
1560 if (blk_mq_sched_bio_merge(q, bio))
1561 return BLK_QC_T_NONE;
1562
1563 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1564
1565 trace_block_getrq(q, bio, bio->bi_opf);
1566
1567 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1568 if (unlikely(!rq)) {
1569 __wbt_done(q->rq_wb, wb_acct);
1570 if (bio->bi_opf & REQ_NOWAIT)
1571 bio_wouldblock_error(bio);
1572 return BLK_QC_T_NONE;
1573 }
1574
1575 wbt_track(&rq->issue_stat, wb_acct);
1576
1577 cookie = request_to_qc_t(data.hctx, rq);
1578
1579 plug = current->plug;
1580 if (unlikely(is_flush_fua)) {
1581 blk_mq_put_ctx(data.ctx);
1582 blk_mq_bio_to_request(rq, bio);
1583 if (q->elevator) {
1584 blk_mq_sched_insert_request(rq, false, true, true,
1585 true);
1586 } else {
1587 blk_insert_flush(rq);
1588 blk_mq_run_hw_queue(data.hctx, true);
1589 }
1590 } else if (plug && q->nr_hw_queues == 1) {
1591 struct request *last = NULL;
1592
1593 blk_mq_put_ctx(data.ctx);
1594 blk_mq_bio_to_request(rq, bio);
1595
1596 /*
1597 * @request_count may become stale because of schedule
1598 * out, so check the list again.
1599 */
1600 if (list_empty(&plug->mq_list))
1601 request_count = 0;
1602 else if (blk_queue_nomerges(q))
1603 request_count = blk_plug_queued_count(q);
1604
1605 if (!request_count)
1606 trace_block_plug(q);
1607 else
1608 last = list_entry_rq(plug->mq_list.prev);
1609
1610 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1611 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1612 blk_flush_plug_list(plug, false);
1613 trace_block_plug(q);
1614 }
1615
1616 list_add_tail(&rq->queuelist, &plug->mq_list);
1617 } else if (plug && !blk_queue_nomerges(q)) {
1618 blk_mq_bio_to_request(rq, bio);
1619
1620 /*
1621 * We do limited plugging. If the bio can be merged, do that.
1622 * Otherwise the existing request in the plug list will be
1623 * issued. So the plug list will have one request at most
1624 * The plug list might get flushed before this. If that happens,
1625 * the plug list is empty, and same_queue_rq is invalid.
1626 */
1627 if (list_empty(&plug->mq_list))
1628 same_queue_rq = NULL;
1629 if (same_queue_rq)
1630 list_del_init(&same_queue_rq->queuelist);
1631 list_add_tail(&rq->queuelist, &plug->mq_list);
1632
1633 blk_mq_put_ctx(data.ctx);
1634
1635 if (same_queue_rq) {
1636 data.hctx = blk_mq_map_queue(q,
1637 same_queue_rq->mq_ctx->cpu);
1638 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1639 &cookie);
1640 }
1641 } else if (q->nr_hw_queues > 1 && is_sync) {
1642 blk_mq_put_ctx(data.ctx);
1643 blk_mq_bio_to_request(rq, bio);
1644 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1645 } else if (q->elevator) {
1646 blk_mq_put_ctx(data.ctx);
1647 blk_mq_bio_to_request(rq, bio);
1648 blk_mq_sched_insert_request(rq, false, true, true, true);
1649 } else {
1650 blk_mq_put_ctx(data.ctx);
1651 blk_mq_bio_to_request(rq, bio);
1652 blk_mq_queue_io(data.hctx, data.ctx, rq);
1653 blk_mq_run_hw_queue(data.hctx, true);
1654 }
1655
1656 return cookie;
1657 }
1658
1659 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1660 unsigned int hctx_idx)
1661 {
1662 struct page *page;
1663
1664 if (tags->rqs && set->ops->exit_request) {
1665 int i;
1666
1667 for (i = 0; i < tags->nr_tags; i++) {
1668 struct request *rq = tags->static_rqs[i];
1669
1670 if (!rq)
1671 continue;
1672 set->ops->exit_request(set, rq, hctx_idx);
1673 tags->static_rqs[i] = NULL;
1674 }
1675 }
1676
1677 while (!list_empty(&tags->page_list)) {
1678 page = list_first_entry(&tags->page_list, struct page, lru);
1679 list_del_init(&page->lru);
1680 /*
1681 * Remove kmemleak object previously allocated in
1682 * blk_mq_init_rq_map().
1683 */
1684 kmemleak_free(page_address(page));
1685 __free_pages(page, page->private);
1686 }
1687 }
1688
1689 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1690 {
1691 kfree(tags->rqs);
1692 tags->rqs = NULL;
1693 kfree(tags->static_rqs);
1694 tags->static_rqs = NULL;
1695
1696 blk_mq_free_tags(tags);
1697 }
1698
1699 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1700 unsigned int hctx_idx,
1701 unsigned int nr_tags,
1702 unsigned int reserved_tags)
1703 {
1704 struct blk_mq_tags *tags;
1705 int node;
1706
1707 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1708 if (node == NUMA_NO_NODE)
1709 node = set->numa_node;
1710
1711 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1712 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1713 if (!tags)
1714 return NULL;
1715
1716 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1717 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1718 node);
1719 if (!tags->rqs) {
1720 blk_mq_free_tags(tags);
1721 return NULL;
1722 }
1723
1724 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1725 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1726 node);
1727 if (!tags->static_rqs) {
1728 kfree(tags->rqs);
1729 blk_mq_free_tags(tags);
1730 return NULL;
1731 }
1732
1733 return tags;
1734 }
1735
1736 static size_t order_to_size(unsigned int order)
1737 {
1738 return (size_t)PAGE_SIZE << order;
1739 }
1740
1741 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1742 unsigned int hctx_idx, unsigned int depth)
1743 {
1744 unsigned int i, j, entries_per_page, max_order = 4;
1745 size_t rq_size, left;
1746 int node;
1747
1748 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1749 if (node == NUMA_NO_NODE)
1750 node = set->numa_node;
1751
1752 INIT_LIST_HEAD(&tags->page_list);
1753
1754 /*
1755 * rq_size is the size of the request plus driver payload, rounded
1756 * to the cacheline size
1757 */
1758 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1759 cache_line_size());
1760 left = rq_size * depth;
1761
1762 for (i = 0; i < depth; ) {
1763 int this_order = max_order;
1764 struct page *page;
1765 int to_do;
1766 void *p;
1767
1768 while (this_order && left < order_to_size(this_order - 1))
1769 this_order--;
1770
1771 do {
1772 page = alloc_pages_node(node,
1773 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1774 this_order);
1775 if (page)
1776 break;
1777 if (!this_order--)
1778 break;
1779 if (order_to_size(this_order) < rq_size)
1780 break;
1781 } while (1);
1782
1783 if (!page)
1784 goto fail;
1785
1786 page->private = this_order;
1787 list_add_tail(&page->lru, &tags->page_list);
1788
1789 p = page_address(page);
1790 /*
1791 * Allow kmemleak to scan these pages as they contain pointers
1792 * to additional allocations like via ops->init_request().
1793 */
1794 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1795 entries_per_page = order_to_size(this_order) / rq_size;
1796 to_do = min(entries_per_page, depth - i);
1797 left -= to_do * rq_size;
1798 for (j = 0; j < to_do; j++) {
1799 struct request *rq = p;
1800
1801 tags->static_rqs[i] = rq;
1802 if (set->ops->init_request) {
1803 if (set->ops->init_request(set, rq, hctx_idx,
1804 node)) {
1805 tags->static_rqs[i] = NULL;
1806 goto fail;
1807 }
1808 }
1809
1810 p += rq_size;
1811 i++;
1812 }
1813 }
1814 return 0;
1815
1816 fail:
1817 blk_mq_free_rqs(set, tags, hctx_idx);
1818 return -ENOMEM;
1819 }
1820
1821 /*
1822 * 'cpu' is going away. splice any existing rq_list entries from this
1823 * software queue to the hw queue dispatch list, and ensure that it
1824 * gets run.
1825 */
1826 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1827 {
1828 struct blk_mq_hw_ctx *hctx;
1829 struct blk_mq_ctx *ctx;
1830 LIST_HEAD(tmp);
1831
1832 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1833 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1834
1835 spin_lock(&ctx->lock);
1836 if (!list_empty(&ctx->rq_list)) {
1837 list_splice_init(&ctx->rq_list, &tmp);
1838 blk_mq_hctx_clear_pending(hctx, ctx);
1839 }
1840 spin_unlock(&ctx->lock);
1841
1842 if (list_empty(&tmp))
1843 return 0;
1844
1845 spin_lock(&hctx->lock);
1846 list_splice_tail_init(&tmp, &hctx->dispatch);
1847 spin_unlock(&hctx->lock);
1848
1849 blk_mq_run_hw_queue(hctx, true);
1850 return 0;
1851 }
1852
1853 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1854 {
1855 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1856 &hctx->cpuhp_dead);
1857 }
1858
1859 /* hctx->ctxs will be freed in queue's release handler */
1860 static void blk_mq_exit_hctx(struct request_queue *q,
1861 struct blk_mq_tag_set *set,
1862 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1863 {
1864 blk_mq_debugfs_unregister_hctx(hctx);
1865
1866 blk_mq_tag_idle(hctx);
1867
1868 if (set->ops->exit_request)
1869 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1870
1871 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1872
1873 if (set->ops->exit_hctx)
1874 set->ops->exit_hctx(hctx, hctx_idx);
1875
1876 if (hctx->flags & BLK_MQ_F_BLOCKING)
1877 cleanup_srcu_struct(hctx->queue_rq_srcu);
1878
1879 blk_mq_remove_cpuhp(hctx);
1880 blk_free_flush_queue(hctx->fq);
1881 sbitmap_free(&hctx->ctx_map);
1882 }
1883
1884 static void blk_mq_exit_hw_queues(struct request_queue *q,
1885 struct blk_mq_tag_set *set, int nr_queue)
1886 {
1887 struct blk_mq_hw_ctx *hctx;
1888 unsigned int i;
1889
1890 queue_for_each_hw_ctx(q, hctx, i) {
1891 if (i == nr_queue)
1892 break;
1893 blk_mq_exit_hctx(q, set, hctx, i);
1894 }
1895 }
1896
1897 static int blk_mq_init_hctx(struct request_queue *q,
1898 struct blk_mq_tag_set *set,
1899 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1900 {
1901 int node;
1902
1903 node = hctx->numa_node;
1904 if (node == NUMA_NO_NODE)
1905 node = hctx->numa_node = set->numa_node;
1906
1907 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1908 spin_lock_init(&hctx->lock);
1909 INIT_LIST_HEAD(&hctx->dispatch);
1910 hctx->queue = q;
1911 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1912
1913 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1914
1915 hctx->tags = set->tags[hctx_idx];
1916
1917 /*
1918 * Allocate space for all possible cpus to avoid allocation at
1919 * runtime
1920 */
1921 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1922 GFP_KERNEL, node);
1923 if (!hctx->ctxs)
1924 goto unregister_cpu_notifier;
1925
1926 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1927 node))
1928 goto free_ctxs;
1929
1930 hctx->nr_ctx = 0;
1931
1932 if (set->ops->init_hctx &&
1933 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1934 goto free_bitmap;
1935
1936 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
1937 goto exit_hctx;
1938
1939 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1940 if (!hctx->fq)
1941 goto sched_exit_hctx;
1942
1943 if (set->ops->init_request &&
1944 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
1945 node))
1946 goto free_fq;
1947
1948 if (hctx->flags & BLK_MQ_F_BLOCKING)
1949 init_srcu_struct(hctx->queue_rq_srcu);
1950
1951 blk_mq_debugfs_register_hctx(q, hctx);
1952
1953 return 0;
1954
1955 free_fq:
1956 kfree(hctx->fq);
1957 sched_exit_hctx:
1958 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1959 exit_hctx:
1960 if (set->ops->exit_hctx)
1961 set->ops->exit_hctx(hctx, hctx_idx);
1962 free_bitmap:
1963 sbitmap_free(&hctx->ctx_map);
1964 free_ctxs:
1965 kfree(hctx->ctxs);
1966 unregister_cpu_notifier:
1967 blk_mq_remove_cpuhp(hctx);
1968 return -1;
1969 }
1970
1971 static void blk_mq_init_cpu_queues(struct request_queue *q,
1972 unsigned int nr_hw_queues)
1973 {
1974 unsigned int i;
1975
1976 for_each_possible_cpu(i) {
1977 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1978 struct blk_mq_hw_ctx *hctx;
1979
1980 __ctx->cpu = i;
1981 spin_lock_init(&__ctx->lock);
1982 INIT_LIST_HEAD(&__ctx->rq_list);
1983 __ctx->queue = q;
1984
1985 /* If the cpu isn't online, the cpu is mapped to first hctx */
1986 if (!cpu_online(i))
1987 continue;
1988
1989 hctx = blk_mq_map_queue(q, i);
1990
1991 /*
1992 * Set local node, IFF we have more than one hw queue. If
1993 * not, we remain on the home node of the device
1994 */
1995 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1996 hctx->numa_node = local_memory_node(cpu_to_node(i));
1997 }
1998 }
1999
2000 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2001 {
2002 int ret = 0;
2003
2004 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2005 set->queue_depth, set->reserved_tags);
2006 if (!set->tags[hctx_idx])
2007 return false;
2008
2009 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2010 set->queue_depth);
2011 if (!ret)
2012 return true;
2013
2014 blk_mq_free_rq_map(set->tags[hctx_idx]);
2015 set->tags[hctx_idx] = NULL;
2016 return false;
2017 }
2018
2019 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2020 unsigned int hctx_idx)
2021 {
2022 if (set->tags[hctx_idx]) {
2023 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2024 blk_mq_free_rq_map(set->tags[hctx_idx]);
2025 set->tags[hctx_idx] = NULL;
2026 }
2027 }
2028
2029 static void blk_mq_map_swqueue(struct request_queue *q,
2030 const struct cpumask *online_mask)
2031 {
2032 unsigned int i, hctx_idx;
2033 struct blk_mq_hw_ctx *hctx;
2034 struct blk_mq_ctx *ctx;
2035 struct blk_mq_tag_set *set = q->tag_set;
2036
2037 /*
2038 * Avoid others reading imcomplete hctx->cpumask through sysfs
2039 */
2040 mutex_lock(&q->sysfs_lock);
2041
2042 queue_for_each_hw_ctx(q, hctx, i) {
2043 cpumask_clear(hctx->cpumask);
2044 hctx->nr_ctx = 0;
2045 }
2046
2047 /*
2048 * Map software to hardware queues
2049 */
2050 for_each_possible_cpu(i) {
2051 /* If the cpu isn't online, the cpu is mapped to first hctx */
2052 if (!cpumask_test_cpu(i, online_mask))
2053 continue;
2054
2055 hctx_idx = q->mq_map[i];
2056 /* unmapped hw queue can be remapped after CPU topo changed */
2057 if (!set->tags[hctx_idx] &&
2058 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2059 /*
2060 * If tags initialization fail for some hctx,
2061 * that hctx won't be brought online. In this
2062 * case, remap the current ctx to hctx[0] which
2063 * is guaranteed to always have tags allocated
2064 */
2065 q->mq_map[i] = 0;
2066 }
2067
2068 ctx = per_cpu_ptr(q->queue_ctx, i);
2069 hctx = blk_mq_map_queue(q, i);
2070
2071 cpumask_set_cpu(i, hctx->cpumask);
2072 ctx->index_hw = hctx->nr_ctx;
2073 hctx->ctxs[hctx->nr_ctx++] = ctx;
2074 }
2075
2076 mutex_unlock(&q->sysfs_lock);
2077
2078 queue_for_each_hw_ctx(q, hctx, i) {
2079 /*
2080 * If no software queues are mapped to this hardware queue,
2081 * disable it and free the request entries.
2082 */
2083 if (!hctx->nr_ctx) {
2084 /* Never unmap queue 0. We need it as a
2085 * fallback in case of a new remap fails
2086 * allocation
2087 */
2088 if (i && set->tags[i])
2089 blk_mq_free_map_and_requests(set, i);
2090
2091 hctx->tags = NULL;
2092 continue;
2093 }
2094
2095 hctx->tags = set->tags[i];
2096 WARN_ON(!hctx->tags);
2097
2098 /*
2099 * Set the map size to the number of mapped software queues.
2100 * This is more accurate and more efficient than looping
2101 * over all possibly mapped software queues.
2102 */
2103 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2104
2105 /*
2106 * Initialize batch roundrobin counts
2107 */
2108 hctx->next_cpu = cpumask_first(hctx->cpumask);
2109 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2110 }
2111 }
2112
2113 /*
2114 * Caller needs to ensure that we're either frozen/quiesced, or that
2115 * the queue isn't live yet.
2116 */
2117 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2118 {
2119 struct blk_mq_hw_ctx *hctx;
2120 int i;
2121
2122 queue_for_each_hw_ctx(q, hctx, i) {
2123 if (shared) {
2124 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2125 atomic_inc(&q->shared_hctx_restart);
2126 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2127 } else {
2128 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2129 atomic_dec(&q->shared_hctx_restart);
2130 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2131 }
2132 }
2133 }
2134
2135 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2136 bool shared)
2137 {
2138 struct request_queue *q;
2139
2140 lockdep_assert_held(&set->tag_list_lock);
2141
2142 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2143 blk_mq_freeze_queue(q);
2144 queue_set_hctx_shared(q, shared);
2145 blk_mq_unfreeze_queue(q);
2146 }
2147 }
2148
2149 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2150 {
2151 struct blk_mq_tag_set *set = q->tag_set;
2152
2153 mutex_lock(&set->tag_list_lock);
2154 list_del_rcu(&q->tag_set_list);
2155 INIT_LIST_HEAD(&q->tag_set_list);
2156 if (list_is_singular(&set->tag_list)) {
2157 /* just transitioned to unshared */
2158 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2159 /* update existing queue */
2160 blk_mq_update_tag_set_depth(set, false);
2161 }
2162 mutex_unlock(&set->tag_list_lock);
2163
2164 synchronize_rcu();
2165 }
2166
2167 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2168 struct request_queue *q)
2169 {
2170 q->tag_set = set;
2171
2172 mutex_lock(&set->tag_list_lock);
2173
2174 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2175 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2176 set->flags |= BLK_MQ_F_TAG_SHARED;
2177 /* update existing queue */
2178 blk_mq_update_tag_set_depth(set, true);
2179 }
2180 if (set->flags & BLK_MQ_F_TAG_SHARED)
2181 queue_set_hctx_shared(q, true);
2182 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2183
2184 mutex_unlock(&set->tag_list_lock);
2185 }
2186
2187 /*
2188 * It is the actual release handler for mq, but we do it from
2189 * request queue's release handler for avoiding use-after-free
2190 * and headache because q->mq_kobj shouldn't have been introduced,
2191 * but we can't group ctx/kctx kobj without it.
2192 */
2193 void blk_mq_release(struct request_queue *q)
2194 {
2195 struct blk_mq_hw_ctx *hctx;
2196 unsigned int i;
2197
2198 /* hctx kobj stays in hctx */
2199 queue_for_each_hw_ctx(q, hctx, i) {
2200 if (!hctx)
2201 continue;
2202 kobject_put(&hctx->kobj);
2203 }
2204
2205 q->mq_map = NULL;
2206
2207 kfree(q->queue_hw_ctx);
2208
2209 /*
2210 * release .mq_kobj and sw queue's kobject now because
2211 * both share lifetime with request queue.
2212 */
2213 blk_mq_sysfs_deinit(q);
2214
2215 free_percpu(q->queue_ctx);
2216 }
2217
2218 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2219 {
2220 struct request_queue *uninit_q, *q;
2221
2222 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2223 if (!uninit_q)
2224 return ERR_PTR(-ENOMEM);
2225
2226 q = blk_mq_init_allocated_queue(set, uninit_q);
2227 if (IS_ERR(q))
2228 blk_cleanup_queue(uninit_q);
2229
2230 return q;
2231 }
2232 EXPORT_SYMBOL(blk_mq_init_queue);
2233
2234 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2235 {
2236 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2237
2238 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
2239 __alignof__(struct blk_mq_hw_ctx)) !=
2240 sizeof(struct blk_mq_hw_ctx));
2241
2242 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2243 hw_ctx_size += sizeof(struct srcu_struct);
2244
2245 return hw_ctx_size;
2246 }
2247
2248 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2249 struct request_queue *q)
2250 {
2251 int i, j;
2252 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2253
2254 blk_mq_sysfs_unregister(q);
2255 for (i = 0; i < set->nr_hw_queues; i++) {
2256 int node;
2257
2258 if (hctxs[i])
2259 continue;
2260
2261 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2262 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2263 GFP_KERNEL, node);
2264 if (!hctxs[i])
2265 break;
2266
2267 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2268 node)) {
2269 kfree(hctxs[i]);
2270 hctxs[i] = NULL;
2271 break;
2272 }
2273
2274 atomic_set(&hctxs[i]->nr_active, 0);
2275 hctxs[i]->numa_node = node;
2276 hctxs[i]->queue_num = i;
2277
2278 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2279 free_cpumask_var(hctxs[i]->cpumask);
2280 kfree(hctxs[i]);
2281 hctxs[i] = NULL;
2282 break;
2283 }
2284 blk_mq_hctx_kobj_init(hctxs[i]);
2285 }
2286 for (j = i; j < q->nr_hw_queues; j++) {
2287 struct blk_mq_hw_ctx *hctx = hctxs[j];
2288
2289 if (hctx) {
2290 if (hctx->tags)
2291 blk_mq_free_map_and_requests(set, j);
2292 blk_mq_exit_hctx(q, set, hctx, j);
2293 kobject_put(&hctx->kobj);
2294 hctxs[j] = NULL;
2295
2296 }
2297 }
2298 q->nr_hw_queues = i;
2299 blk_mq_sysfs_register(q);
2300 }
2301
2302 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2303 struct request_queue *q)
2304 {
2305 /* mark the queue as mq asap */
2306 q->mq_ops = set->ops;
2307
2308 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2309 blk_mq_poll_stats_bkt,
2310 BLK_MQ_POLL_STATS_BKTS, q);
2311 if (!q->poll_cb)
2312 goto err_exit;
2313
2314 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2315 if (!q->queue_ctx)
2316 goto err_exit;
2317
2318 /* init q->mq_kobj and sw queues' kobjects */
2319 blk_mq_sysfs_init(q);
2320
2321 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2322 GFP_KERNEL, set->numa_node);
2323 if (!q->queue_hw_ctx)
2324 goto err_percpu;
2325
2326 q->mq_map = set->mq_map;
2327
2328 blk_mq_realloc_hw_ctxs(set, q);
2329 if (!q->nr_hw_queues)
2330 goto err_hctxs;
2331
2332 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2333 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2334
2335 q->nr_queues = nr_cpu_ids;
2336
2337 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2338
2339 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2340 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2341
2342 q->sg_reserved_size = INT_MAX;
2343
2344 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2345 INIT_LIST_HEAD(&q->requeue_list);
2346 spin_lock_init(&q->requeue_lock);
2347
2348 blk_queue_make_request(q, blk_mq_make_request);
2349
2350 /*
2351 * Do this after blk_queue_make_request() overrides it...
2352 */
2353 q->nr_requests = set->queue_depth;
2354
2355 /*
2356 * Default to classic polling
2357 */
2358 q->poll_nsec = -1;
2359
2360 if (set->ops->complete)
2361 blk_queue_softirq_done(q, set->ops->complete);
2362
2363 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2364
2365 get_online_cpus();
2366 mutex_lock(&all_q_mutex);
2367
2368 list_add_tail(&q->all_q_node, &all_q_list);
2369 blk_mq_add_queue_tag_set(set, q);
2370 blk_mq_map_swqueue(q, cpu_online_mask);
2371
2372 mutex_unlock(&all_q_mutex);
2373 put_online_cpus();
2374
2375 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2376 int ret;
2377
2378 ret = blk_mq_sched_init(q);
2379 if (ret)
2380 return ERR_PTR(ret);
2381 }
2382
2383 return q;
2384
2385 err_hctxs:
2386 kfree(q->queue_hw_ctx);
2387 err_percpu:
2388 free_percpu(q->queue_ctx);
2389 err_exit:
2390 q->mq_ops = NULL;
2391 return ERR_PTR(-ENOMEM);
2392 }
2393 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2394
2395 void blk_mq_free_queue(struct request_queue *q)
2396 {
2397 struct blk_mq_tag_set *set = q->tag_set;
2398
2399 mutex_lock(&all_q_mutex);
2400 list_del_init(&q->all_q_node);
2401 mutex_unlock(&all_q_mutex);
2402
2403 blk_mq_del_queue_tag_set(q);
2404
2405 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2406 }
2407
2408 /* Basically redo blk_mq_init_queue with queue frozen */
2409 static void blk_mq_queue_reinit(struct request_queue *q,
2410 const struct cpumask *online_mask)
2411 {
2412 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2413
2414 blk_mq_debugfs_unregister_hctxs(q);
2415 blk_mq_sysfs_unregister(q);
2416
2417 /*
2418 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2419 * we should change hctx numa_node according to new topology (this
2420 * involves free and re-allocate memory, worthy doing?)
2421 */
2422
2423 blk_mq_map_swqueue(q, online_mask);
2424
2425 blk_mq_sysfs_register(q);
2426 blk_mq_debugfs_register_hctxs(q);
2427 }
2428
2429 /*
2430 * New online cpumask which is going to be set in this hotplug event.
2431 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2432 * one-by-one and dynamically allocating this could result in a failure.
2433 */
2434 static struct cpumask cpuhp_online_new;
2435
2436 static void blk_mq_queue_reinit_work(void)
2437 {
2438 struct request_queue *q;
2439
2440 mutex_lock(&all_q_mutex);
2441 /*
2442 * We need to freeze and reinit all existing queues. Freezing
2443 * involves synchronous wait for an RCU grace period and doing it
2444 * one by one may take a long time. Start freezing all queues in
2445 * one swoop and then wait for the completions so that freezing can
2446 * take place in parallel.
2447 */
2448 list_for_each_entry(q, &all_q_list, all_q_node)
2449 blk_freeze_queue_start(q);
2450 list_for_each_entry(q, &all_q_list, all_q_node)
2451 blk_mq_freeze_queue_wait(q);
2452
2453 list_for_each_entry(q, &all_q_list, all_q_node)
2454 blk_mq_queue_reinit(q, &cpuhp_online_new);
2455
2456 list_for_each_entry(q, &all_q_list, all_q_node)
2457 blk_mq_unfreeze_queue(q);
2458
2459 mutex_unlock(&all_q_mutex);
2460 }
2461
2462 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2463 {
2464 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2465 blk_mq_queue_reinit_work();
2466 return 0;
2467 }
2468
2469 /*
2470 * Before hotadded cpu starts handling requests, new mappings must be
2471 * established. Otherwise, these requests in hw queue might never be
2472 * dispatched.
2473 *
2474 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2475 * for CPU0, and ctx1 for CPU1).
2476 *
2477 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2478 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2479 *
2480 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2481 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2482 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2483 * ignored.
2484 */
2485 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2486 {
2487 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2488 cpumask_set_cpu(cpu, &cpuhp_online_new);
2489 blk_mq_queue_reinit_work();
2490 return 0;
2491 }
2492
2493 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2494 {
2495 int i;
2496
2497 for (i = 0; i < set->nr_hw_queues; i++)
2498 if (!__blk_mq_alloc_rq_map(set, i))
2499 goto out_unwind;
2500
2501 return 0;
2502
2503 out_unwind:
2504 while (--i >= 0)
2505 blk_mq_free_rq_map(set->tags[i]);
2506
2507 return -ENOMEM;
2508 }
2509
2510 /*
2511 * Allocate the request maps associated with this tag_set. Note that this
2512 * may reduce the depth asked for, if memory is tight. set->queue_depth
2513 * will be updated to reflect the allocated depth.
2514 */
2515 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2516 {
2517 unsigned int depth;
2518 int err;
2519
2520 depth = set->queue_depth;
2521 do {
2522 err = __blk_mq_alloc_rq_maps(set);
2523 if (!err)
2524 break;
2525
2526 set->queue_depth >>= 1;
2527 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2528 err = -ENOMEM;
2529 break;
2530 }
2531 } while (set->queue_depth);
2532
2533 if (!set->queue_depth || err) {
2534 pr_err("blk-mq: failed to allocate request map\n");
2535 return -ENOMEM;
2536 }
2537
2538 if (depth != set->queue_depth)
2539 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2540 depth, set->queue_depth);
2541
2542 return 0;
2543 }
2544
2545 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2546 {
2547 if (set->ops->map_queues)
2548 return set->ops->map_queues(set);
2549 else
2550 return blk_mq_map_queues(set);
2551 }
2552
2553 /*
2554 * Alloc a tag set to be associated with one or more request queues.
2555 * May fail with EINVAL for various error conditions. May adjust the
2556 * requested depth down, if if it too large. In that case, the set
2557 * value will be stored in set->queue_depth.
2558 */
2559 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2560 {
2561 int ret;
2562
2563 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2564
2565 if (!set->nr_hw_queues)
2566 return -EINVAL;
2567 if (!set->queue_depth)
2568 return -EINVAL;
2569 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2570 return -EINVAL;
2571
2572 if (!set->ops->queue_rq)
2573 return -EINVAL;
2574
2575 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2576 pr_info("blk-mq: reduced tag depth to %u\n",
2577 BLK_MQ_MAX_DEPTH);
2578 set->queue_depth = BLK_MQ_MAX_DEPTH;
2579 }
2580
2581 /*
2582 * If a crashdump is active, then we are potentially in a very
2583 * memory constrained environment. Limit us to 1 queue and
2584 * 64 tags to prevent using too much memory.
2585 */
2586 if (is_kdump_kernel()) {
2587 set->nr_hw_queues = 1;
2588 set->queue_depth = min(64U, set->queue_depth);
2589 }
2590 /*
2591 * There is no use for more h/w queues than cpus.
2592 */
2593 if (set->nr_hw_queues > nr_cpu_ids)
2594 set->nr_hw_queues = nr_cpu_ids;
2595
2596 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2597 GFP_KERNEL, set->numa_node);
2598 if (!set->tags)
2599 return -ENOMEM;
2600
2601 ret = -ENOMEM;
2602 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2603 GFP_KERNEL, set->numa_node);
2604 if (!set->mq_map)
2605 goto out_free_tags;
2606
2607 ret = blk_mq_update_queue_map(set);
2608 if (ret)
2609 goto out_free_mq_map;
2610
2611 ret = blk_mq_alloc_rq_maps(set);
2612 if (ret)
2613 goto out_free_mq_map;
2614
2615 mutex_init(&set->tag_list_lock);
2616 INIT_LIST_HEAD(&set->tag_list);
2617
2618 return 0;
2619
2620 out_free_mq_map:
2621 kfree(set->mq_map);
2622 set->mq_map = NULL;
2623 out_free_tags:
2624 kfree(set->tags);
2625 set->tags = NULL;
2626 return ret;
2627 }
2628 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2629
2630 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2631 {
2632 int i;
2633
2634 for (i = 0; i < nr_cpu_ids; i++)
2635 blk_mq_free_map_and_requests(set, i);
2636
2637 kfree(set->mq_map);
2638 set->mq_map = NULL;
2639
2640 kfree(set->tags);
2641 set->tags = NULL;
2642 }
2643 EXPORT_SYMBOL(blk_mq_free_tag_set);
2644
2645 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2646 {
2647 struct blk_mq_tag_set *set = q->tag_set;
2648 struct blk_mq_hw_ctx *hctx;
2649 int i, ret;
2650
2651 if (!set)
2652 return -EINVAL;
2653
2654 blk_mq_freeze_queue(q);
2655
2656 ret = 0;
2657 queue_for_each_hw_ctx(q, hctx, i) {
2658 if (!hctx->tags)
2659 continue;
2660 /*
2661 * If we're using an MQ scheduler, just update the scheduler
2662 * queue depth. This is similar to what the old code would do.
2663 */
2664 if (!hctx->sched_tags) {
2665 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2666 min(nr, set->queue_depth),
2667 false);
2668 } else {
2669 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2670 nr, true);
2671 }
2672 if (ret)
2673 break;
2674 }
2675
2676 if (!ret)
2677 q->nr_requests = nr;
2678
2679 blk_mq_unfreeze_queue(q);
2680
2681 return ret;
2682 }
2683
2684 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2685 int nr_hw_queues)
2686 {
2687 struct request_queue *q;
2688
2689 lockdep_assert_held(&set->tag_list_lock);
2690
2691 if (nr_hw_queues > nr_cpu_ids)
2692 nr_hw_queues = nr_cpu_ids;
2693 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2694 return;
2695
2696 list_for_each_entry(q, &set->tag_list, tag_set_list)
2697 blk_mq_freeze_queue(q);
2698
2699 set->nr_hw_queues = nr_hw_queues;
2700 blk_mq_update_queue_map(set);
2701 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2702 blk_mq_realloc_hw_ctxs(set, q);
2703 blk_mq_queue_reinit(q, cpu_online_mask);
2704 }
2705
2706 list_for_each_entry(q, &set->tag_list, tag_set_list)
2707 blk_mq_unfreeze_queue(q);
2708 }
2709
2710 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2711 {
2712 mutex_lock(&set->tag_list_lock);
2713 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2714 mutex_unlock(&set->tag_list_lock);
2715 }
2716 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2717
2718 /* Enable polling stats and return whether they were already enabled. */
2719 static bool blk_poll_stats_enable(struct request_queue *q)
2720 {
2721 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2722 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2723 return true;
2724 blk_stat_add_callback(q, q->poll_cb);
2725 return false;
2726 }
2727
2728 static void blk_mq_poll_stats_start(struct request_queue *q)
2729 {
2730 /*
2731 * We don't arm the callback if polling stats are not enabled or the
2732 * callback is already active.
2733 */
2734 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2735 blk_stat_is_active(q->poll_cb))
2736 return;
2737
2738 blk_stat_activate_msecs(q->poll_cb, 100);
2739 }
2740
2741 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2742 {
2743 struct request_queue *q = cb->data;
2744 int bucket;
2745
2746 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2747 if (cb->stat[bucket].nr_samples)
2748 q->poll_stat[bucket] = cb->stat[bucket];
2749 }
2750 }
2751
2752 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2753 struct blk_mq_hw_ctx *hctx,
2754 struct request *rq)
2755 {
2756 unsigned long ret = 0;
2757 int bucket;
2758
2759 /*
2760 * If stats collection isn't on, don't sleep but turn it on for
2761 * future users
2762 */
2763 if (!blk_poll_stats_enable(q))
2764 return 0;
2765
2766 /*
2767 * As an optimistic guess, use half of the mean service time
2768 * for this type of request. We can (and should) make this smarter.
2769 * For instance, if the completion latencies are tight, we can
2770 * get closer than just half the mean. This is especially
2771 * important on devices where the completion latencies are longer
2772 * than ~10 usec. We do use the stats for the relevant IO size
2773 * if available which does lead to better estimates.
2774 */
2775 bucket = blk_mq_poll_stats_bkt(rq);
2776 if (bucket < 0)
2777 return ret;
2778
2779 if (q->poll_stat[bucket].nr_samples)
2780 ret = (q->poll_stat[bucket].mean + 1) / 2;
2781
2782 return ret;
2783 }
2784
2785 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2786 struct blk_mq_hw_ctx *hctx,
2787 struct request *rq)
2788 {
2789 struct hrtimer_sleeper hs;
2790 enum hrtimer_mode mode;
2791 unsigned int nsecs;
2792 ktime_t kt;
2793
2794 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2795 return false;
2796
2797 /*
2798 * poll_nsec can be:
2799 *
2800 * -1: don't ever hybrid sleep
2801 * 0: use half of prev avg
2802 * >0: use this specific value
2803 */
2804 if (q->poll_nsec == -1)
2805 return false;
2806 else if (q->poll_nsec > 0)
2807 nsecs = q->poll_nsec;
2808 else
2809 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2810
2811 if (!nsecs)
2812 return false;
2813
2814 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2815
2816 /*
2817 * This will be replaced with the stats tracking code, using
2818 * 'avg_completion_time / 2' as the pre-sleep target.
2819 */
2820 kt = nsecs;
2821
2822 mode = HRTIMER_MODE_REL;
2823 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2824 hrtimer_set_expires(&hs.timer, kt);
2825
2826 hrtimer_init_sleeper(&hs, current);
2827 do {
2828 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2829 break;
2830 set_current_state(TASK_UNINTERRUPTIBLE);
2831 hrtimer_start_expires(&hs.timer, mode);
2832 if (hs.task)
2833 io_schedule();
2834 hrtimer_cancel(&hs.timer);
2835 mode = HRTIMER_MODE_ABS;
2836 } while (hs.task && !signal_pending(current));
2837
2838 __set_current_state(TASK_RUNNING);
2839 destroy_hrtimer_on_stack(&hs.timer);
2840 return true;
2841 }
2842
2843 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2844 {
2845 struct request_queue *q = hctx->queue;
2846 long state;
2847
2848 /*
2849 * If we sleep, have the caller restart the poll loop to reset
2850 * the state. Like for the other success return cases, the
2851 * caller is responsible for checking if the IO completed. If
2852 * the IO isn't complete, we'll get called again and will go
2853 * straight to the busy poll loop.
2854 */
2855 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2856 return true;
2857
2858 hctx->poll_considered++;
2859
2860 state = current->state;
2861 while (!need_resched()) {
2862 int ret;
2863
2864 hctx->poll_invoked++;
2865
2866 ret = q->mq_ops->poll(hctx, rq->tag);
2867 if (ret > 0) {
2868 hctx->poll_success++;
2869 set_current_state(TASK_RUNNING);
2870 return true;
2871 }
2872
2873 if (signal_pending_state(state, current))
2874 set_current_state(TASK_RUNNING);
2875
2876 if (current->state == TASK_RUNNING)
2877 return true;
2878 if (ret < 0)
2879 break;
2880 cpu_relax();
2881 }
2882
2883 return false;
2884 }
2885
2886 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2887 {
2888 struct blk_mq_hw_ctx *hctx;
2889 struct blk_plug *plug;
2890 struct request *rq;
2891
2892 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2893 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2894 return false;
2895
2896 plug = current->plug;
2897 if (plug)
2898 blk_flush_plug_list(plug, false);
2899
2900 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2901 if (!blk_qc_t_is_internal(cookie))
2902 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2903 else {
2904 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2905 /*
2906 * With scheduling, if the request has completed, we'll
2907 * get a NULL return here, as we clear the sched tag when
2908 * that happens. The request still remains valid, like always,
2909 * so we should be safe with just the NULL check.
2910 */
2911 if (!rq)
2912 return false;
2913 }
2914
2915 return __blk_mq_poll(hctx, rq);
2916 }
2917 EXPORT_SYMBOL_GPL(blk_mq_poll);
2918
2919 void blk_mq_disable_hotplug(void)
2920 {
2921 mutex_lock(&all_q_mutex);
2922 }
2923
2924 void blk_mq_enable_hotplug(void)
2925 {
2926 mutex_unlock(&all_q_mutex);
2927 }
2928
2929 static int __init blk_mq_init(void)
2930 {
2931 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2932 blk_mq_hctx_notify_dead);
2933
2934 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2935 blk_mq_queue_reinit_prepare,
2936 blk_mq_queue_reinit_dead);
2937 return 0;
2938 }
2939 subsys_initcall(blk_mq_init);