]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - block/blk-mq.c
Merge tag 'armsoc-cleanup' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[mirror_ubuntu-zesty-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
25
26 #include <trace/events/block.h>
27
28 #include <linux/blk-mq.h>
29 #include "blk.h"
30 #include "blk-mq.h"
31 #include "blk-mq-tag.h"
32
33 static DEFINE_MUTEX(all_q_mutex);
34 static LIST_HEAD(all_q_list);
35
36 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
37
38 /*
39 * Check if any of the ctx's have pending work in this hardware queue
40 */
41 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
42 {
43 unsigned int i;
44
45 for (i = 0; i < hctx->ctx_map.size; i++)
46 if (hctx->ctx_map.map[i].word)
47 return true;
48
49 return false;
50 }
51
52 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
53 struct blk_mq_ctx *ctx)
54 {
55 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
56 }
57
58 #define CTX_TO_BIT(hctx, ctx) \
59 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
60
61 /*
62 * Mark this ctx as having pending work in this hardware queue
63 */
64 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
65 struct blk_mq_ctx *ctx)
66 {
67 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
68
69 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
70 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
71 }
72
73 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
74 struct blk_mq_ctx *ctx)
75 {
76 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
77
78 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
79 }
80
81 void blk_mq_freeze_queue_start(struct request_queue *q)
82 {
83 int freeze_depth;
84
85 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
86 if (freeze_depth == 1) {
87 percpu_ref_kill(&q->q_usage_counter);
88 blk_mq_run_hw_queues(q, false);
89 }
90 }
91 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
92
93 static void blk_mq_freeze_queue_wait(struct request_queue *q)
94 {
95 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
96 }
97
98 /*
99 * Guarantee no request is in use, so we can change any data structure of
100 * the queue afterward.
101 */
102 void blk_freeze_queue(struct request_queue *q)
103 {
104 /*
105 * In the !blk_mq case we are only calling this to kill the
106 * q_usage_counter, otherwise this increases the freeze depth
107 * and waits for it to return to zero. For this reason there is
108 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
109 * exported to drivers as the only user for unfreeze is blk_mq.
110 */
111 blk_mq_freeze_queue_start(q);
112 blk_mq_freeze_queue_wait(q);
113 }
114
115 void blk_mq_freeze_queue(struct request_queue *q)
116 {
117 /*
118 * ...just an alias to keep freeze and unfreeze actions balanced
119 * in the blk_mq_* namespace
120 */
121 blk_freeze_queue(q);
122 }
123 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
124
125 void blk_mq_unfreeze_queue(struct request_queue *q)
126 {
127 int freeze_depth;
128
129 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
130 WARN_ON_ONCE(freeze_depth < 0);
131 if (!freeze_depth) {
132 percpu_ref_reinit(&q->q_usage_counter);
133 wake_up_all(&q->mq_freeze_wq);
134 }
135 }
136 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
137
138 void blk_mq_wake_waiters(struct request_queue *q)
139 {
140 struct blk_mq_hw_ctx *hctx;
141 unsigned int i;
142
143 queue_for_each_hw_ctx(q, hctx, i)
144 if (blk_mq_hw_queue_mapped(hctx))
145 blk_mq_tag_wakeup_all(hctx->tags, true);
146
147 /*
148 * If we are called because the queue has now been marked as
149 * dying, we need to ensure that processes currently waiting on
150 * the queue are notified as well.
151 */
152 wake_up_all(&q->mq_freeze_wq);
153 }
154
155 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
156 {
157 return blk_mq_has_free_tags(hctx->tags);
158 }
159 EXPORT_SYMBOL(blk_mq_can_queue);
160
161 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
162 struct request *rq, unsigned int rw_flags)
163 {
164 if (blk_queue_io_stat(q))
165 rw_flags |= REQ_IO_STAT;
166
167 INIT_LIST_HEAD(&rq->queuelist);
168 /* csd/requeue_work/fifo_time is initialized before use */
169 rq->q = q;
170 rq->mq_ctx = ctx;
171 rq->cmd_flags |= rw_flags;
172 /* do not touch atomic flags, it needs atomic ops against the timer */
173 rq->cpu = -1;
174 INIT_HLIST_NODE(&rq->hash);
175 RB_CLEAR_NODE(&rq->rb_node);
176 rq->rq_disk = NULL;
177 rq->part = NULL;
178 rq->start_time = jiffies;
179 #ifdef CONFIG_BLK_CGROUP
180 rq->rl = NULL;
181 set_start_time_ns(rq);
182 rq->io_start_time_ns = 0;
183 #endif
184 rq->nr_phys_segments = 0;
185 #if defined(CONFIG_BLK_DEV_INTEGRITY)
186 rq->nr_integrity_segments = 0;
187 #endif
188 rq->special = NULL;
189 /* tag was already set */
190 rq->errors = 0;
191
192 rq->cmd = rq->__cmd;
193
194 rq->extra_len = 0;
195 rq->sense_len = 0;
196 rq->resid_len = 0;
197 rq->sense = NULL;
198
199 INIT_LIST_HEAD(&rq->timeout_list);
200 rq->timeout = 0;
201
202 rq->end_io = NULL;
203 rq->end_io_data = NULL;
204 rq->next_rq = NULL;
205
206 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
207 }
208
209 static struct request *
210 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
211 {
212 struct request *rq;
213 unsigned int tag;
214
215 tag = blk_mq_get_tag(data);
216 if (tag != BLK_MQ_TAG_FAIL) {
217 rq = data->hctx->tags->rqs[tag];
218
219 if (blk_mq_tag_busy(data->hctx)) {
220 rq->cmd_flags = REQ_MQ_INFLIGHT;
221 atomic_inc(&data->hctx->nr_active);
222 }
223
224 rq->tag = tag;
225 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
226 return rq;
227 }
228
229 return NULL;
230 }
231
232 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
233 unsigned int flags)
234 {
235 struct blk_mq_ctx *ctx;
236 struct blk_mq_hw_ctx *hctx;
237 struct request *rq;
238 struct blk_mq_alloc_data alloc_data;
239 int ret;
240
241 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
242 if (ret)
243 return ERR_PTR(ret);
244
245 ctx = blk_mq_get_ctx(q);
246 hctx = q->mq_ops->map_queue(q, ctx->cpu);
247 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
248
249 rq = __blk_mq_alloc_request(&alloc_data, rw);
250 if (!rq && !(flags & BLK_MQ_REQ_NOWAIT)) {
251 __blk_mq_run_hw_queue(hctx);
252 blk_mq_put_ctx(ctx);
253
254 ctx = blk_mq_get_ctx(q);
255 hctx = q->mq_ops->map_queue(q, ctx->cpu);
256 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
257 rq = __blk_mq_alloc_request(&alloc_data, rw);
258 ctx = alloc_data.ctx;
259 }
260 blk_mq_put_ctx(ctx);
261 if (!rq) {
262 blk_queue_exit(q);
263 return ERR_PTR(-EWOULDBLOCK);
264 }
265 return rq;
266 }
267 EXPORT_SYMBOL(blk_mq_alloc_request);
268
269 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
270 struct blk_mq_ctx *ctx, struct request *rq)
271 {
272 const int tag = rq->tag;
273 struct request_queue *q = rq->q;
274
275 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
276 atomic_dec(&hctx->nr_active);
277 rq->cmd_flags = 0;
278
279 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
280 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
281 blk_queue_exit(q);
282 }
283
284 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
285 {
286 struct blk_mq_ctx *ctx = rq->mq_ctx;
287
288 ctx->rq_completed[rq_is_sync(rq)]++;
289 __blk_mq_free_request(hctx, ctx, rq);
290
291 }
292 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
293
294 void blk_mq_free_request(struct request *rq)
295 {
296 struct blk_mq_hw_ctx *hctx;
297 struct request_queue *q = rq->q;
298
299 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
300 blk_mq_free_hctx_request(hctx, rq);
301 }
302 EXPORT_SYMBOL_GPL(blk_mq_free_request);
303
304 inline void __blk_mq_end_request(struct request *rq, int error)
305 {
306 blk_account_io_done(rq);
307
308 if (rq->end_io) {
309 rq->end_io(rq, error);
310 } else {
311 if (unlikely(blk_bidi_rq(rq)))
312 blk_mq_free_request(rq->next_rq);
313 blk_mq_free_request(rq);
314 }
315 }
316 EXPORT_SYMBOL(__blk_mq_end_request);
317
318 void blk_mq_end_request(struct request *rq, int error)
319 {
320 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
321 BUG();
322 __blk_mq_end_request(rq, error);
323 }
324 EXPORT_SYMBOL(blk_mq_end_request);
325
326 static void __blk_mq_complete_request_remote(void *data)
327 {
328 struct request *rq = data;
329
330 rq->q->softirq_done_fn(rq);
331 }
332
333 static void blk_mq_ipi_complete_request(struct request *rq)
334 {
335 struct blk_mq_ctx *ctx = rq->mq_ctx;
336 bool shared = false;
337 int cpu;
338
339 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
340 rq->q->softirq_done_fn(rq);
341 return;
342 }
343
344 cpu = get_cpu();
345 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
346 shared = cpus_share_cache(cpu, ctx->cpu);
347
348 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
349 rq->csd.func = __blk_mq_complete_request_remote;
350 rq->csd.info = rq;
351 rq->csd.flags = 0;
352 smp_call_function_single_async(ctx->cpu, &rq->csd);
353 } else {
354 rq->q->softirq_done_fn(rq);
355 }
356 put_cpu();
357 }
358
359 static void __blk_mq_complete_request(struct request *rq)
360 {
361 struct request_queue *q = rq->q;
362
363 if (!q->softirq_done_fn)
364 blk_mq_end_request(rq, rq->errors);
365 else
366 blk_mq_ipi_complete_request(rq);
367 }
368
369 /**
370 * blk_mq_complete_request - end I/O on a request
371 * @rq: the request being processed
372 *
373 * Description:
374 * Ends all I/O on a request. It does not handle partial completions.
375 * The actual completion happens out-of-order, through a IPI handler.
376 **/
377 void blk_mq_complete_request(struct request *rq, int error)
378 {
379 struct request_queue *q = rq->q;
380
381 if (unlikely(blk_should_fake_timeout(q)))
382 return;
383 if (!blk_mark_rq_complete(rq)) {
384 rq->errors = error;
385 __blk_mq_complete_request(rq);
386 }
387 }
388 EXPORT_SYMBOL(blk_mq_complete_request);
389
390 int blk_mq_request_started(struct request *rq)
391 {
392 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
393 }
394 EXPORT_SYMBOL_GPL(blk_mq_request_started);
395
396 void blk_mq_start_request(struct request *rq)
397 {
398 struct request_queue *q = rq->q;
399
400 trace_block_rq_issue(q, rq);
401
402 rq->resid_len = blk_rq_bytes(rq);
403 if (unlikely(blk_bidi_rq(rq)))
404 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
405
406 blk_add_timer(rq);
407
408 /*
409 * Ensure that ->deadline is visible before set the started
410 * flag and clear the completed flag.
411 */
412 smp_mb__before_atomic();
413
414 /*
415 * Mark us as started and clear complete. Complete might have been
416 * set if requeue raced with timeout, which then marked it as
417 * complete. So be sure to clear complete again when we start
418 * the request, otherwise we'll ignore the completion event.
419 */
420 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
421 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
422 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
423 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
424
425 if (q->dma_drain_size && blk_rq_bytes(rq)) {
426 /*
427 * Make sure space for the drain appears. We know we can do
428 * this because max_hw_segments has been adjusted to be one
429 * fewer than the device can handle.
430 */
431 rq->nr_phys_segments++;
432 }
433 }
434 EXPORT_SYMBOL(blk_mq_start_request);
435
436 static void __blk_mq_requeue_request(struct request *rq)
437 {
438 struct request_queue *q = rq->q;
439
440 trace_block_rq_requeue(q, rq);
441
442 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
443 if (q->dma_drain_size && blk_rq_bytes(rq))
444 rq->nr_phys_segments--;
445 }
446 }
447
448 void blk_mq_requeue_request(struct request *rq)
449 {
450 __blk_mq_requeue_request(rq);
451
452 BUG_ON(blk_queued_rq(rq));
453 blk_mq_add_to_requeue_list(rq, true);
454 }
455 EXPORT_SYMBOL(blk_mq_requeue_request);
456
457 static void blk_mq_requeue_work(struct work_struct *work)
458 {
459 struct request_queue *q =
460 container_of(work, struct request_queue, requeue_work);
461 LIST_HEAD(rq_list);
462 struct request *rq, *next;
463 unsigned long flags;
464
465 spin_lock_irqsave(&q->requeue_lock, flags);
466 list_splice_init(&q->requeue_list, &rq_list);
467 spin_unlock_irqrestore(&q->requeue_lock, flags);
468
469 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
470 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
471 continue;
472
473 rq->cmd_flags &= ~REQ_SOFTBARRIER;
474 list_del_init(&rq->queuelist);
475 blk_mq_insert_request(rq, true, false, false);
476 }
477
478 while (!list_empty(&rq_list)) {
479 rq = list_entry(rq_list.next, struct request, queuelist);
480 list_del_init(&rq->queuelist);
481 blk_mq_insert_request(rq, false, false, false);
482 }
483
484 /*
485 * Use the start variant of queue running here, so that running
486 * the requeue work will kick stopped queues.
487 */
488 blk_mq_start_hw_queues(q);
489 }
490
491 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
492 {
493 struct request_queue *q = rq->q;
494 unsigned long flags;
495
496 /*
497 * We abuse this flag that is otherwise used by the I/O scheduler to
498 * request head insertation from the workqueue.
499 */
500 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
501
502 spin_lock_irqsave(&q->requeue_lock, flags);
503 if (at_head) {
504 rq->cmd_flags |= REQ_SOFTBARRIER;
505 list_add(&rq->queuelist, &q->requeue_list);
506 } else {
507 list_add_tail(&rq->queuelist, &q->requeue_list);
508 }
509 spin_unlock_irqrestore(&q->requeue_lock, flags);
510 }
511 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
512
513 void blk_mq_cancel_requeue_work(struct request_queue *q)
514 {
515 cancel_work_sync(&q->requeue_work);
516 }
517 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
518
519 void blk_mq_kick_requeue_list(struct request_queue *q)
520 {
521 kblockd_schedule_work(&q->requeue_work);
522 }
523 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
524
525 void blk_mq_abort_requeue_list(struct request_queue *q)
526 {
527 unsigned long flags;
528 LIST_HEAD(rq_list);
529
530 spin_lock_irqsave(&q->requeue_lock, flags);
531 list_splice_init(&q->requeue_list, &rq_list);
532 spin_unlock_irqrestore(&q->requeue_lock, flags);
533
534 while (!list_empty(&rq_list)) {
535 struct request *rq;
536
537 rq = list_first_entry(&rq_list, struct request, queuelist);
538 list_del_init(&rq->queuelist);
539 rq->errors = -EIO;
540 blk_mq_end_request(rq, rq->errors);
541 }
542 }
543 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
544
545 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
546 {
547 return tags->rqs[tag];
548 }
549 EXPORT_SYMBOL(blk_mq_tag_to_rq);
550
551 struct blk_mq_timeout_data {
552 unsigned long next;
553 unsigned int next_set;
554 };
555
556 void blk_mq_rq_timed_out(struct request *req, bool reserved)
557 {
558 struct blk_mq_ops *ops = req->q->mq_ops;
559 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
560
561 /*
562 * We know that complete is set at this point. If STARTED isn't set
563 * anymore, then the request isn't active and the "timeout" should
564 * just be ignored. This can happen due to the bitflag ordering.
565 * Timeout first checks if STARTED is set, and if it is, assumes
566 * the request is active. But if we race with completion, then
567 * we both flags will get cleared. So check here again, and ignore
568 * a timeout event with a request that isn't active.
569 */
570 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
571 return;
572
573 if (ops->timeout)
574 ret = ops->timeout(req, reserved);
575
576 switch (ret) {
577 case BLK_EH_HANDLED:
578 __blk_mq_complete_request(req);
579 break;
580 case BLK_EH_RESET_TIMER:
581 blk_add_timer(req);
582 blk_clear_rq_complete(req);
583 break;
584 case BLK_EH_NOT_HANDLED:
585 break;
586 default:
587 printk(KERN_ERR "block: bad eh return: %d\n", ret);
588 break;
589 }
590 }
591
592 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
593 struct request *rq, void *priv, bool reserved)
594 {
595 struct blk_mq_timeout_data *data = priv;
596
597 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
598 /*
599 * If a request wasn't started before the queue was
600 * marked dying, kill it here or it'll go unnoticed.
601 */
602 if (unlikely(blk_queue_dying(rq->q)))
603 blk_mq_complete_request(rq, -EIO);
604 return;
605 }
606 if (rq->cmd_flags & REQ_NO_TIMEOUT)
607 return;
608
609 if (time_after_eq(jiffies, rq->deadline)) {
610 if (!blk_mark_rq_complete(rq))
611 blk_mq_rq_timed_out(rq, reserved);
612 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
613 data->next = rq->deadline;
614 data->next_set = 1;
615 }
616 }
617
618 static void blk_mq_rq_timer(unsigned long priv)
619 {
620 struct request_queue *q = (struct request_queue *)priv;
621 struct blk_mq_timeout_data data = {
622 .next = 0,
623 .next_set = 0,
624 };
625 int i;
626
627 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
628
629 if (data.next_set) {
630 data.next = blk_rq_timeout(round_jiffies_up(data.next));
631 mod_timer(&q->timeout, data.next);
632 } else {
633 struct blk_mq_hw_ctx *hctx;
634
635 queue_for_each_hw_ctx(q, hctx, i) {
636 /* the hctx may be unmapped, so check it here */
637 if (blk_mq_hw_queue_mapped(hctx))
638 blk_mq_tag_idle(hctx);
639 }
640 }
641 }
642
643 /*
644 * Reverse check our software queue for entries that we could potentially
645 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
646 * too much time checking for merges.
647 */
648 static bool blk_mq_attempt_merge(struct request_queue *q,
649 struct blk_mq_ctx *ctx, struct bio *bio)
650 {
651 struct request *rq;
652 int checked = 8;
653
654 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
655 int el_ret;
656
657 if (!checked--)
658 break;
659
660 if (!blk_rq_merge_ok(rq, bio))
661 continue;
662
663 el_ret = blk_try_merge(rq, bio);
664 if (el_ret == ELEVATOR_BACK_MERGE) {
665 if (bio_attempt_back_merge(q, rq, bio)) {
666 ctx->rq_merged++;
667 return true;
668 }
669 break;
670 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
671 if (bio_attempt_front_merge(q, rq, bio)) {
672 ctx->rq_merged++;
673 return true;
674 }
675 break;
676 }
677 }
678
679 return false;
680 }
681
682 /*
683 * Process software queues that have been marked busy, splicing them
684 * to the for-dispatch
685 */
686 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
687 {
688 struct blk_mq_ctx *ctx;
689 int i;
690
691 for (i = 0; i < hctx->ctx_map.size; i++) {
692 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
693 unsigned int off, bit;
694
695 if (!bm->word)
696 continue;
697
698 bit = 0;
699 off = i * hctx->ctx_map.bits_per_word;
700 do {
701 bit = find_next_bit(&bm->word, bm->depth, bit);
702 if (bit >= bm->depth)
703 break;
704
705 ctx = hctx->ctxs[bit + off];
706 clear_bit(bit, &bm->word);
707 spin_lock(&ctx->lock);
708 list_splice_tail_init(&ctx->rq_list, list);
709 spin_unlock(&ctx->lock);
710
711 bit++;
712 } while (1);
713 }
714 }
715
716 /*
717 * Run this hardware queue, pulling any software queues mapped to it in.
718 * Note that this function currently has various problems around ordering
719 * of IO. In particular, we'd like FIFO behaviour on handling existing
720 * items on the hctx->dispatch list. Ignore that for now.
721 */
722 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
723 {
724 struct request_queue *q = hctx->queue;
725 struct request *rq;
726 LIST_HEAD(rq_list);
727 LIST_HEAD(driver_list);
728 struct list_head *dptr;
729 int queued;
730
731 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
732
733 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
734 return;
735
736 hctx->run++;
737
738 /*
739 * Touch any software queue that has pending entries.
740 */
741 flush_busy_ctxs(hctx, &rq_list);
742
743 /*
744 * If we have previous entries on our dispatch list, grab them
745 * and stuff them at the front for more fair dispatch.
746 */
747 if (!list_empty_careful(&hctx->dispatch)) {
748 spin_lock(&hctx->lock);
749 if (!list_empty(&hctx->dispatch))
750 list_splice_init(&hctx->dispatch, &rq_list);
751 spin_unlock(&hctx->lock);
752 }
753
754 /*
755 * Start off with dptr being NULL, so we start the first request
756 * immediately, even if we have more pending.
757 */
758 dptr = NULL;
759
760 /*
761 * Now process all the entries, sending them to the driver.
762 */
763 queued = 0;
764 while (!list_empty(&rq_list)) {
765 struct blk_mq_queue_data bd;
766 int ret;
767
768 rq = list_first_entry(&rq_list, struct request, queuelist);
769 list_del_init(&rq->queuelist);
770
771 bd.rq = rq;
772 bd.list = dptr;
773 bd.last = list_empty(&rq_list);
774
775 ret = q->mq_ops->queue_rq(hctx, &bd);
776 switch (ret) {
777 case BLK_MQ_RQ_QUEUE_OK:
778 queued++;
779 continue;
780 case BLK_MQ_RQ_QUEUE_BUSY:
781 list_add(&rq->queuelist, &rq_list);
782 __blk_mq_requeue_request(rq);
783 break;
784 default:
785 pr_err("blk-mq: bad return on queue: %d\n", ret);
786 case BLK_MQ_RQ_QUEUE_ERROR:
787 rq->errors = -EIO;
788 blk_mq_end_request(rq, rq->errors);
789 break;
790 }
791
792 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
793 break;
794
795 /*
796 * We've done the first request. If we have more than 1
797 * left in the list, set dptr to defer issue.
798 */
799 if (!dptr && rq_list.next != rq_list.prev)
800 dptr = &driver_list;
801 }
802
803 if (!queued)
804 hctx->dispatched[0]++;
805 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
806 hctx->dispatched[ilog2(queued) + 1]++;
807
808 /*
809 * Any items that need requeuing? Stuff them into hctx->dispatch,
810 * that is where we will continue on next queue run.
811 */
812 if (!list_empty(&rq_list)) {
813 spin_lock(&hctx->lock);
814 list_splice(&rq_list, &hctx->dispatch);
815 spin_unlock(&hctx->lock);
816 /*
817 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
818 * it's possible the queue is stopped and restarted again
819 * before this. Queue restart will dispatch requests. And since
820 * requests in rq_list aren't added into hctx->dispatch yet,
821 * the requests in rq_list might get lost.
822 *
823 * blk_mq_run_hw_queue() already checks the STOPPED bit
824 **/
825 blk_mq_run_hw_queue(hctx, true);
826 }
827 }
828
829 /*
830 * It'd be great if the workqueue API had a way to pass
831 * in a mask and had some smarts for more clever placement.
832 * For now we just round-robin here, switching for every
833 * BLK_MQ_CPU_WORK_BATCH queued items.
834 */
835 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
836 {
837 if (hctx->queue->nr_hw_queues == 1)
838 return WORK_CPU_UNBOUND;
839
840 if (--hctx->next_cpu_batch <= 0) {
841 int cpu = hctx->next_cpu, next_cpu;
842
843 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
844 if (next_cpu >= nr_cpu_ids)
845 next_cpu = cpumask_first(hctx->cpumask);
846
847 hctx->next_cpu = next_cpu;
848 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
849
850 return cpu;
851 }
852
853 return hctx->next_cpu;
854 }
855
856 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
857 {
858 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
859 !blk_mq_hw_queue_mapped(hctx)))
860 return;
861
862 if (!async) {
863 int cpu = get_cpu();
864 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
865 __blk_mq_run_hw_queue(hctx);
866 put_cpu();
867 return;
868 }
869
870 put_cpu();
871 }
872
873 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
874 &hctx->run_work, 0);
875 }
876
877 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
878 {
879 struct blk_mq_hw_ctx *hctx;
880 int i;
881
882 queue_for_each_hw_ctx(q, hctx, i) {
883 if ((!blk_mq_hctx_has_pending(hctx) &&
884 list_empty_careful(&hctx->dispatch)) ||
885 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
886 continue;
887
888 blk_mq_run_hw_queue(hctx, async);
889 }
890 }
891 EXPORT_SYMBOL(blk_mq_run_hw_queues);
892
893 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
894 {
895 cancel_delayed_work(&hctx->run_work);
896 cancel_delayed_work(&hctx->delay_work);
897 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
898 }
899 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
900
901 void blk_mq_stop_hw_queues(struct request_queue *q)
902 {
903 struct blk_mq_hw_ctx *hctx;
904 int i;
905
906 queue_for_each_hw_ctx(q, hctx, i)
907 blk_mq_stop_hw_queue(hctx);
908 }
909 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
910
911 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
912 {
913 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
914
915 blk_mq_run_hw_queue(hctx, false);
916 }
917 EXPORT_SYMBOL(blk_mq_start_hw_queue);
918
919 void blk_mq_start_hw_queues(struct request_queue *q)
920 {
921 struct blk_mq_hw_ctx *hctx;
922 int i;
923
924 queue_for_each_hw_ctx(q, hctx, i)
925 blk_mq_start_hw_queue(hctx);
926 }
927 EXPORT_SYMBOL(blk_mq_start_hw_queues);
928
929 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
930 {
931 struct blk_mq_hw_ctx *hctx;
932 int i;
933
934 queue_for_each_hw_ctx(q, hctx, i) {
935 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
936 continue;
937
938 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
939 blk_mq_run_hw_queue(hctx, async);
940 }
941 }
942 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
943
944 static void blk_mq_run_work_fn(struct work_struct *work)
945 {
946 struct blk_mq_hw_ctx *hctx;
947
948 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
949
950 __blk_mq_run_hw_queue(hctx);
951 }
952
953 static void blk_mq_delay_work_fn(struct work_struct *work)
954 {
955 struct blk_mq_hw_ctx *hctx;
956
957 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
958
959 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
960 __blk_mq_run_hw_queue(hctx);
961 }
962
963 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
964 {
965 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
966 return;
967
968 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
969 &hctx->delay_work, msecs_to_jiffies(msecs));
970 }
971 EXPORT_SYMBOL(blk_mq_delay_queue);
972
973 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
974 struct blk_mq_ctx *ctx,
975 struct request *rq,
976 bool at_head)
977 {
978 trace_block_rq_insert(hctx->queue, rq);
979
980 if (at_head)
981 list_add(&rq->queuelist, &ctx->rq_list);
982 else
983 list_add_tail(&rq->queuelist, &ctx->rq_list);
984 }
985
986 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
987 struct request *rq, bool at_head)
988 {
989 struct blk_mq_ctx *ctx = rq->mq_ctx;
990
991 __blk_mq_insert_req_list(hctx, ctx, rq, at_head);
992 blk_mq_hctx_mark_pending(hctx, ctx);
993 }
994
995 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
996 bool async)
997 {
998 struct request_queue *q = rq->q;
999 struct blk_mq_hw_ctx *hctx;
1000 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
1001
1002 current_ctx = blk_mq_get_ctx(q);
1003 if (!cpu_online(ctx->cpu))
1004 rq->mq_ctx = ctx = current_ctx;
1005
1006 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1007
1008 spin_lock(&ctx->lock);
1009 __blk_mq_insert_request(hctx, rq, at_head);
1010 spin_unlock(&ctx->lock);
1011
1012 if (run_queue)
1013 blk_mq_run_hw_queue(hctx, async);
1014
1015 blk_mq_put_ctx(current_ctx);
1016 }
1017
1018 static void blk_mq_insert_requests(struct request_queue *q,
1019 struct blk_mq_ctx *ctx,
1020 struct list_head *list,
1021 int depth,
1022 bool from_schedule)
1023
1024 {
1025 struct blk_mq_hw_ctx *hctx;
1026 struct blk_mq_ctx *current_ctx;
1027
1028 trace_block_unplug(q, depth, !from_schedule);
1029
1030 current_ctx = blk_mq_get_ctx(q);
1031
1032 if (!cpu_online(ctx->cpu))
1033 ctx = current_ctx;
1034 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1035
1036 /*
1037 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1038 * offline now
1039 */
1040 spin_lock(&ctx->lock);
1041 while (!list_empty(list)) {
1042 struct request *rq;
1043
1044 rq = list_first_entry(list, struct request, queuelist);
1045 list_del_init(&rq->queuelist);
1046 rq->mq_ctx = ctx;
1047 __blk_mq_insert_req_list(hctx, ctx, rq, false);
1048 }
1049 blk_mq_hctx_mark_pending(hctx, ctx);
1050 spin_unlock(&ctx->lock);
1051
1052 blk_mq_run_hw_queue(hctx, from_schedule);
1053 blk_mq_put_ctx(current_ctx);
1054 }
1055
1056 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1057 {
1058 struct request *rqa = container_of(a, struct request, queuelist);
1059 struct request *rqb = container_of(b, struct request, queuelist);
1060
1061 return !(rqa->mq_ctx < rqb->mq_ctx ||
1062 (rqa->mq_ctx == rqb->mq_ctx &&
1063 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1064 }
1065
1066 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1067 {
1068 struct blk_mq_ctx *this_ctx;
1069 struct request_queue *this_q;
1070 struct request *rq;
1071 LIST_HEAD(list);
1072 LIST_HEAD(ctx_list);
1073 unsigned int depth;
1074
1075 list_splice_init(&plug->mq_list, &list);
1076
1077 list_sort(NULL, &list, plug_ctx_cmp);
1078
1079 this_q = NULL;
1080 this_ctx = NULL;
1081 depth = 0;
1082
1083 while (!list_empty(&list)) {
1084 rq = list_entry_rq(list.next);
1085 list_del_init(&rq->queuelist);
1086 BUG_ON(!rq->q);
1087 if (rq->mq_ctx != this_ctx) {
1088 if (this_ctx) {
1089 blk_mq_insert_requests(this_q, this_ctx,
1090 &ctx_list, depth,
1091 from_schedule);
1092 }
1093
1094 this_ctx = rq->mq_ctx;
1095 this_q = rq->q;
1096 depth = 0;
1097 }
1098
1099 depth++;
1100 list_add_tail(&rq->queuelist, &ctx_list);
1101 }
1102
1103 /*
1104 * If 'this_ctx' is set, we know we have entries to complete
1105 * on 'ctx_list'. Do those.
1106 */
1107 if (this_ctx) {
1108 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1109 from_schedule);
1110 }
1111 }
1112
1113 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1114 {
1115 init_request_from_bio(rq, bio);
1116
1117 if (blk_do_io_stat(rq))
1118 blk_account_io_start(rq, 1);
1119 }
1120
1121 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1122 {
1123 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1124 !blk_queue_nomerges(hctx->queue);
1125 }
1126
1127 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1128 struct blk_mq_ctx *ctx,
1129 struct request *rq, struct bio *bio)
1130 {
1131 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1132 blk_mq_bio_to_request(rq, bio);
1133 spin_lock(&ctx->lock);
1134 insert_rq:
1135 __blk_mq_insert_request(hctx, rq, false);
1136 spin_unlock(&ctx->lock);
1137 return false;
1138 } else {
1139 struct request_queue *q = hctx->queue;
1140
1141 spin_lock(&ctx->lock);
1142 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1143 blk_mq_bio_to_request(rq, bio);
1144 goto insert_rq;
1145 }
1146
1147 spin_unlock(&ctx->lock);
1148 __blk_mq_free_request(hctx, ctx, rq);
1149 return true;
1150 }
1151 }
1152
1153 struct blk_map_ctx {
1154 struct blk_mq_hw_ctx *hctx;
1155 struct blk_mq_ctx *ctx;
1156 };
1157
1158 static struct request *blk_mq_map_request(struct request_queue *q,
1159 struct bio *bio,
1160 struct blk_map_ctx *data)
1161 {
1162 struct blk_mq_hw_ctx *hctx;
1163 struct blk_mq_ctx *ctx;
1164 struct request *rq;
1165 int rw = bio_data_dir(bio);
1166 struct blk_mq_alloc_data alloc_data;
1167
1168 blk_queue_enter_live(q);
1169 ctx = blk_mq_get_ctx(q);
1170 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1171
1172 if (rw_is_sync(bio->bi_rw))
1173 rw |= REQ_SYNC;
1174
1175 trace_block_getrq(q, bio, rw);
1176 blk_mq_set_alloc_data(&alloc_data, q, BLK_MQ_REQ_NOWAIT, ctx, hctx);
1177 rq = __blk_mq_alloc_request(&alloc_data, rw);
1178 if (unlikely(!rq)) {
1179 __blk_mq_run_hw_queue(hctx);
1180 blk_mq_put_ctx(ctx);
1181 trace_block_sleeprq(q, bio, rw);
1182
1183 ctx = blk_mq_get_ctx(q);
1184 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1185 blk_mq_set_alloc_data(&alloc_data, q, 0, ctx, hctx);
1186 rq = __blk_mq_alloc_request(&alloc_data, rw);
1187 ctx = alloc_data.ctx;
1188 hctx = alloc_data.hctx;
1189 }
1190
1191 hctx->queued++;
1192 data->hctx = hctx;
1193 data->ctx = ctx;
1194 return rq;
1195 }
1196
1197 static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie)
1198 {
1199 int ret;
1200 struct request_queue *q = rq->q;
1201 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
1202 rq->mq_ctx->cpu);
1203 struct blk_mq_queue_data bd = {
1204 .rq = rq,
1205 .list = NULL,
1206 .last = 1
1207 };
1208 blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1209
1210 /*
1211 * For OK queue, we are done. For error, kill it. Any other
1212 * error (busy), just add it to our list as we previously
1213 * would have done
1214 */
1215 ret = q->mq_ops->queue_rq(hctx, &bd);
1216 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1217 *cookie = new_cookie;
1218 return 0;
1219 }
1220
1221 __blk_mq_requeue_request(rq);
1222
1223 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1224 *cookie = BLK_QC_T_NONE;
1225 rq->errors = -EIO;
1226 blk_mq_end_request(rq, rq->errors);
1227 return 0;
1228 }
1229
1230 return -1;
1231 }
1232
1233 /*
1234 * Multiple hardware queue variant. This will not use per-process plugs,
1235 * but will attempt to bypass the hctx queueing if we can go straight to
1236 * hardware for SYNC IO.
1237 */
1238 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1239 {
1240 const int is_sync = rw_is_sync(bio->bi_rw);
1241 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1242 struct blk_map_ctx data;
1243 struct request *rq;
1244 unsigned int request_count = 0;
1245 struct blk_plug *plug;
1246 struct request *same_queue_rq = NULL;
1247 blk_qc_t cookie;
1248
1249 blk_queue_bounce(q, &bio);
1250
1251 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1252 bio_io_error(bio);
1253 return BLK_QC_T_NONE;
1254 }
1255
1256 blk_queue_split(q, &bio, q->bio_split);
1257
1258 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1259 if (blk_attempt_plug_merge(q, bio, &request_count,
1260 &same_queue_rq))
1261 return BLK_QC_T_NONE;
1262 } else
1263 request_count = blk_plug_queued_count(q);
1264
1265 rq = blk_mq_map_request(q, bio, &data);
1266 if (unlikely(!rq))
1267 return BLK_QC_T_NONE;
1268
1269 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1270
1271 if (unlikely(is_flush_fua)) {
1272 blk_mq_bio_to_request(rq, bio);
1273 blk_insert_flush(rq);
1274 goto run_queue;
1275 }
1276
1277 plug = current->plug;
1278 /*
1279 * If the driver supports defer issued based on 'last', then
1280 * queue it up like normal since we can potentially save some
1281 * CPU this way.
1282 */
1283 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1284 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1285 struct request *old_rq = NULL;
1286
1287 blk_mq_bio_to_request(rq, bio);
1288
1289 /*
1290 * We do limited pluging. If the bio can be merged, do that.
1291 * Otherwise the existing request in the plug list will be
1292 * issued. So the plug list will have one request at most
1293 */
1294 if (plug) {
1295 /*
1296 * The plug list might get flushed before this. If that
1297 * happens, same_queue_rq is invalid and plug list is
1298 * empty
1299 */
1300 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1301 old_rq = same_queue_rq;
1302 list_del_init(&old_rq->queuelist);
1303 }
1304 list_add_tail(&rq->queuelist, &plug->mq_list);
1305 } else /* is_sync */
1306 old_rq = rq;
1307 blk_mq_put_ctx(data.ctx);
1308 if (!old_rq)
1309 goto done;
1310 if (!blk_mq_direct_issue_request(old_rq, &cookie))
1311 goto done;
1312 blk_mq_insert_request(old_rq, false, true, true);
1313 goto done;
1314 }
1315
1316 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1317 /*
1318 * For a SYNC request, send it to the hardware immediately. For
1319 * an ASYNC request, just ensure that we run it later on. The
1320 * latter allows for merging opportunities and more efficient
1321 * dispatching.
1322 */
1323 run_queue:
1324 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1325 }
1326 blk_mq_put_ctx(data.ctx);
1327 done:
1328 return cookie;
1329 }
1330
1331 /*
1332 * Single hardware queue variant. This will attempt to use any per-process
1333 * plug for merging and IO deferral.
1334 */
1335 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1336 {
1337 const int is_sync = rw_is_sync(bio->bi_rw);
1338 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1339 struct blk_plug *plug;
1340 unsigned int request_count = 0;
1341 struct blk_map_ctx data;
1342 struct request *rq;
1343 blk_qc_t cookie;
1344
1345 blk_queue_bounce(q, &bio);
1346
1347 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1348 bio_io_error(bio);
1349 return BLK_QC_T_NONE;
1350 }
1351
1352 blk_queue_split(q, &bio, q->bio_split);
1353
1354 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1355 blk_attempt_plug_merge(q, bio, &request_count, NULL))
1356 return BLK_QC_T_NONE;
1357
1358 rq = blk_mq_map_request(q, bio, &data);
1359 if (unlikely(!rq))
1360 return BLK_QC_T_NONE;
1361
1362 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1363
1364 if (unlikely(is_flush_fua)) {
1365 blk_mq_bio_to_request(rq, bio);
1366 blk_insert_flush(rq);
1367 goto run_queue;
1368 }
1369
1370 /*
1371 * A task plug currently exists. Since this is completely lockless,
1372 * utilize that to temporarily store requests until the task is
1373 * either done or scheduled away.
1374 */
1375 plug = current->plug;
1376 if (plug) {
1377 blk_mq_bio_to_request(rq, bio);
1378 if (!request_count)
1379 trace_block_plug(q);
1380
1381 blk_mq_put_ctx(data.ctx);
1382
1383 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1384 blk_flush_plug_list(plug, false);
1385 trace_block_plug(q);
1386 }
1387
1388 list_add_tail(&rq->queuelist, &plug->mq_list);
1389 return cookie;
1390 }
1391
1392 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1393 /*
1394 * For a SYNC request, send it to the hardware immediately. For
1395 * an ASYNC request, just ensure that we run it later on. The
1396 * latter allows for merging opportunities and more efficient
1397 * dispatching.
1398 */
1399 run_queue:
1400 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1401 }
1402
1403 blk_mq_put_ctx(data.ctx);
1404 return cookie;
1405 }
1406
1407 /*
1408 * Default mapping to a software queue, since we use one per CPU.
1409 */
1410 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1411 {
1412 return q->queue_hw_ctx[q->mq_map[cpu]];
1413 }
1414 EXPORT_SYMBOL(blk_mq_map_queue);
1415
1416 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1417 struct blk_mq_tags *tags, unsigned int hctx_idx)
1418 {
1419 struct page *page;
1420
1421 if (tags->rqs && set->ops->exit_request) {
1422 int i;
1423
1424 for (i = 0; i < tags->nr_tags; i++) {
1425 if (!tags->rqs[i])
1426 continue;
1427 set->ops->exit_request(set->driver_data, tags->rqs[i],
1428 hctx_idx, i);
1429 tags->rqs[i] = NULL;
1430 }
1431 }
1432
1433 while (!list_empty(&tags->page_list)) {
1434 page = list_first_entry(&tags->page_list, struct page, lru);
1435 list_del_init(&page->lru);
1436 /*
1437 * Remove kmemleak object previously allocated in
1438 * blk_mq_init_rq_map().
1439 */
1440 kmemleak_free(page_address(page));
1441 __free_pages(page, page->private);
1442 }
1443
1444 kfree(tags->rqs);
1445
1446 blk_mq_free_tags(tags);
1447 }
1448
1449 static size_t order_to_size(unsigned int order)
1450 {
1451 return (size_t)PAGE_SIZE << order;
1452 }
1453
1454 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1455 unsigned int hctx_idx)
1456 {
1457 struct blk_mq_tags *tags;
1458 unsigned int i, j, entries_per_page, max_order = 4;
1459 size_t rq_size, left;
1460
1461 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1462 set->numa_node,
1463 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1464 if (!tags)
1465 return NULL;
1466
1467 INIT_LIST_HEAD(&tags->page_list);
1468
1469 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1470 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1471 set->numa_node);
1472 if (!tags->rqs) {
1473 blk_mq_free_tags(tags);
1474 return NULL;
1475 }
1476
1477 /*
1478 * rq_size is the size of the request plus driver payload, rounded
1479 * to the cacheline size
1480 */
1481 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1482 cache_line_size());
1483 left = rq_size * set->queue_depth;
1484
1485 for (i = 0; i < set->queue_depth; ) {
1486 int this_order = max_order;
1487 struct page *page;
1488 int to_do;
1489 void *p;
1490
1491 while (left < order_to_size(this_order - 1) && this_order)
1492 this_order--;
1493
1494 do {
1495 page = alloc_pages_node(set->numa_node,
1496 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1497 this_order);
1498 if (page)
1499 break;
1500 if (!this_order--)
1501 break;
1502 if (order_to_size(this_order) < rq_size)
1503 break;
1504 } while (1);
1505
1506 if (!page)
1507 goto fail;
1508
1509 page->private = this_order;
1510 list_add_tail(&page->lru, &tags->page_list);
1511
1512 p = page_address(page);
1513 /*
1514 * Allow kmemleak to scan these pages as they contain pointers
1515 * to additional allocations like via ops->init_request().
1516 */
1517 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1518 entries_per_page = order_to_size(this_order) / rq_size;
1519 to_do = min(entries_per_page, set->queue_depth - i);
1520 left -= to_do * rq_size;
1521 for (j = 0; j < to_do; j++) {
1522 tags->rqs[i] = p;
1523 if (set->ops->init_request) {
1524 if (set->ops->init_request(set->driver_data,
1525 tags->rqs[i], hctx_idx, i,
1526 set->numa_node)) {
1527 tags->rqs[i] = NULL;
1528 goto fail;
1529 }
1530 }
1531
1532 p += rq_size;
1533 i++;
1534 }
1535 }
1536 return tags;
1537
1538 fail:
1539 blk_mq_free_rq_map(set, tags, hctx_idx);
1540 return NULL;
1541 }
1542
1543 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1544 {
1545 kfree(bitmap->map);
1546 }
1547
1548 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1549 {
1550 unsigned int bpw = 8, total, num_maps, i;
1551
1552 bitmap->bits_per_word = bpw;
1553
1554 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1555 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1556 GFP_KERNEL, node);
1557 if (!bitmap->map)
1558 return -ENOMEM;
1559
1560 total = nr_cpu_ids;
1561 for (i = 0; i < num_maps; i++) {
1562 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1563 total -= bitmap->map[i].depth;
1564 }
1565
1566 return 0;
1567 }
1568
1569 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1570 {
1571 struct request_queue *q = hctx->queue;
1572 struct blk_mq_ctx *ctx;
1573 LIST_HEAD(tmp);
1574
1575 /*
1576 * Move ctx entries to new CPU, if this one is going away.
1577 */
1578 ctx = __blk_mq_get_ctx(q, cpu);
1579
1580 spin_lock(&ctx->lock);
1581 if (!list_empty(&ctx->rq_list)) {
1582 list_splice_init(&ctx->rq_list, &tmp);
1583 blk_mq_hctx_clear_pending(hctx, ctx);
1584 }
1585 spin_unlock(&ctx->lock);
1586
1587 if (list_empty(&tmp))
1588 return NOTIFY_OK;
1589
1590 ctx = blk_mq_get_ctx(q);
1591 spin_lock(&ctx->lock);
1592
1593 while (!list_empty(&tmp)) {
1594 struct request *rq;
1595
1596 rq = list_first_entry(&tmp, struct request, queuelist);
1597 rq->mq_ctx = ctx;
1598 list_move_tail(&rq->queuelist, &ctx->rq_list);
1599 }
1600
1601 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1602 blk_mq_hctx_mark_pending(hctx, ctx);
1603
1604 spin_unlock(&ctx->lock);
1605
1606 blk_mq_run_hw_queue(hctx, true);
1607 blk_mq_put_ctx(ctx);
1608 return NOTIFY_OK;
1609 }
1610
1611 static int blk_mq_hctx_notify(void *data, unsigned long action,
1612 unsigned int cpu)
1613 {
1614 struct blk_mq_hw_ctx *hctx = data;
1615
1616 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1617 return blk_mq_hctx_cpu_offline(hctx, cpu);
1618
1619 /*
1620 * In case of CPU online, tags may be reallocated
1621 * in blk_mq_map_swqueue() after mapping is updated.
1622 */
1623
1624 return NOTIFY_OK;
1625 }
1626
1627 /* hctx->ctxs will be freed in queue's release handler */
1628 static void blk_mq_exit_hctx(struct request_queue *q,
1629 struct blk_mq_tag_set *set,
1630 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1631 {
1632 unsigned flush_start_tag = set->queue_depth;
1633
1634 blk_mq_tag_idle(hctx);
1635
1636 if (set->ops->exit_request)
1637 set->ops->exit_request(set->driver_data,
1638 hctx->fq->flush_rq, hctx_idx,
1639 flush_start_tag + hctx_idx);
1640
1641 if (set->ops->exit_hctx)
1642 set->ops->exit_hctx(hctx, hctx_idx);
1643
1644 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1645 blk_free_flush_queue(hctx->fq);
1646 blk_mq_free_bitmap(&hctx->ctx_map);
1647 }
1648
1649 static void blk_mq_exit_hw_queues(struct request_queue *q,
1650 struct blk_mq_tag_set *set, int nr_queue)
1651 {
1652 struct blk_mq_hw_ctx *hctx;
1653 unsigned int i;
1654
1655 queue_for_each_hw_ctx(q, hctx, i) {
1656 if (i == nr_queue)
1657 break;
1658 blk_mq_exit_hctx(q, set, hctx, i);
1659 }
1660 }
1661
1662 static void blk_mq_free_hw_queues(struct request_queue *q,
1663 struct blk_mq_tag_set *set)
1664 {
1665 struct blk_mq_hw_ctx *hctx;
1666 unsigned int i;
1667
1668 queue_for_each_hw_ctx(q, hctx, i)
1669 free_cpumask_var(hctx->cpumask);
1670 }
1671
1672 static int blk_mq_init_hctx(struct request_queue *q,
1673 struct blk_mq_tag_set *set,
1674 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1675 {
1676 int node;
1677 unsigned flush_start_tag = set->queue_depth;
1678
1679 node = hctx->numa_node;
1680 if (node == NUMA_NO_NODE)
1681 node = hctx->numa_node = set->numa_node;
1682
1683 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1684 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1685 spin_lock_init(&hctx->lock);
1686 INIT_LIST_HEAD(&hctx->dispatch);
1687 hctx->queue = q;
1688 hctx->queue_num = hctx_idx;
1689 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1690
1691 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1692 blk_mq_hctx_notify, hctx);
1693 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1694
1695 hctx->tags = set->tags[hctx_idx];
1696
1697 /*
1698 * Allocate space for all possible cpus to avoid allocation at
1699 * runtime
1700 */
1701 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1702 GFP_KERNEL, node);
1703 if (!hctx->ctxs)
1704 goto unregister_cpu_notifier;
1705
1706 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1707 goto free_ctxs;
1708
1709 hctx->nr_ctx = 0;
1710
1711 if (set->ops->init_hctx &&
1712 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1713 goto free_bitmap;
1714
1715 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1716 if (!hctx->fq)
1717 goto exit_hctx;
1718
1719 if (set->ops->init_request &&
1720 set->ops->init_request(set->driver_data,
1721 hctx->fq->flush_rq, hctx_idx,
1722 flush_start_tag + hctx_idx, node))
1723 goto free_fq;
1724
1725 return 0;
1726
1727 free_fq:
1728 kfree(hctx->fq);
1729 exit_hctx:
1730 if (set->ops->exit_hctx)
1731 set->ops->exit_hctx(hctx, hctx_idx);
1732 free_bitmap:
1733 blk_mq_free_bitmap(&hctx->ctx_map);
1734 free_ctxs:
1735 kfree(hctx->ctxs);
1736 unregister_cpu_notifier:
1737 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1738
1739 return -1;
1740 }
1741
1742 static int blk_mq_init_hw_queues(struct request_queue *q,
1743 struct blk_mq_tag_set *set)
1744 {
1745 struct blk_mq_hw_ctx *hctx;
1746 unsigned int i;
1747
1748 /*
1749 * Initialize hardware queues
1750 */
1751 queue_for_each_hw_ctx(q, hctx, i) {
1752 if (blk_mq_init_hctx(q, set, hctx, i))
1753 break;
1754 }
1755
1756 if (i == q->nr_hw_queues)
1757 return 0;
1758
1759 /*
1760 * Init failed
1761 */
1762 blk_mq_exit_hw_queues(q, set, i);
1763
1764 return 1;
1765 }
1766
1767 static void blk_mq_init_cpu_queues(struct request_queue *q,
1768 unsigned int nr_hw_queues)
1769 {
1770 unsigned int i;
1771
1772 for_each_possible_cpu(i) {
1773 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1774 struct blk_mq_hw_ctx *hctx;
1775
1776 memset(__ctx, 0, sizeof(*__ctx));
1777 __ctx->cpu = i;
1778 spin_lock_init(&__ctx->lock);
1779 INIT_LIST_HEAD(&__ctx->rq_list);
1780 __ctx->queue = q;
1781
1782 /* If the cpu isn't online, the cpu is mapped to first hctx */
1783 if (!cpu_online(i))
1784 continue;
1785
1786 hctx = q->mq_ops->map_queue(q, i);
1787
1788 /*
1789 * Set local node, IFF we have more than one hw queue. If
1790 * not, we remain on the home node of the device
1791 */
1792 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1793 hctx->numa_node = local_memory_node(cpu_to_node(i));
1794 }
1795 }
1796
1797 static void blk_mq_map_swqueue(struct request_queue *q,
1798 const struct cpumask *online_mask)
1799 {
1800 unsigned int i;
1801 struct blk_mq_hw_ctx *hctx;
1802 struct blk_mq_ctx *ctx;
1803 struct blk_mq_tag_set *set = q->tag_set;
1804
1805 /*
1806 * Avoid others reading imcomplete hctx->cpumask through sysfs
1807 */
1808 mutex_lock(&q->sysfs_lock);
1809
1810 queue_for_each_hw_ctx(q, hctx, i) {
1811 cpumask_clear(hctx->cpumask);
1812 hctx->nr_ctx = 0;
1813 }
1814
1815 /*
1816 * Map software to hardware queues
1817 */
1818 queue_for_each_ctx(q, ctx, i) {
1819 /* If the cpu isn't online, the cpu is mapped to first hctx */
1820 if (!cpumask_test_cpu(i, online_mask))
1821 continue;
1822
1823 hctx = q->mq_ops->map_queue(q, i);
1824 cpumask_set_cpu(i, hctx->cpumask);
1825 ctx->index_hw = hctx->nr_ctx;
1826 hctx->ctxs[hctx->nr_ctx++] = ctx;
1827 }
1828
1829 mutex_unlock(&q->sysfs_lock);
1830
1831 queue_for_each_hw_ctx(q, hctx, i) {
1832 struct blk_mq_ctxmap *map = &hctx->ctx_map;
1833
1834 /*
1835 * If no software queues are mapped to this hardware queue,
1836 * disable it and free the request entries.
1837 */
1838 if (!hctx->nr_ctx) {
1839 if (set->tags[i]) {
1840 blk_mq_free_rq_map(set, set->tags[i], i);
1841 set->tags[i] = NULL;
1842 }
1843 hctx->tags = NULL;
1844 continue;
1845 }
1846
1847 /* unmapped hw queue can be remapped after CPU topo changed */
1848 if (!set->tags[i])
1849 set->tags[i] = blk_mq_init_rq_map(set, i);
1850 hctx->tags = set->tags[i];
1851 WARN_ON(!hctx->tags);
1852
1853 cpumask_copy(hctx->tags->cpumask, hctx->cpumask);
1854 /*
1855 * Set the map size to the number of mapped software queues.
1856 * This is more accurate and more efficient than looping
1857 * over all possibly mapped software queues.
1858 */
1859 map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1860
1861 /*
1862 * Initialize batch roundrobin counts
1863 */
1864 hctx->next_cpu = cpumask_first(hctx->cpumask);
1865 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1866 }
1867 }
1868
1869 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1870 {
1871 struct blk_mq_hw_ctx *hctx;
1872 int i;
1873
1874 queue_for_each_hw_ctx(q, hctx, i) {
1875 if (shared)
1876 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1877 else
1878 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1879 }
1880 }
1881
1882 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
1883 {
1884 struct request_queue *q;
1885
1886 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1887 blk_mq_freeze_queue(q);
1888 queue_set_hctx_shared(q, shared);
1889 blk_mq_unfreeze_queue(q);
1890 }
1891 }
1892
1893 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1894 {
1895 struct blk_mq_tag_set *set = q->tag_set;
1896
1897 mutex_lock(&set->tag_list_lock);
1898 list_del_init(&q->tag_set_list);
1899 if (list_is_singular(&set->tag_list)) {
1900 /* just transitioned to unshared */
1901 set->flags &= ~BLK_MQ_F_TAG_SHARED;
1902 /* update existing queue */
1903 blk_mq_update_tag_set_depth(set, false);
1904 }
1905 mutex_unlock(&set->tag_list_lock);
1906 }
1907
1908 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1909 struct request_queue *q)
1910 {
1911 q->tag_set = set;
1912
1913 mutex_lock(&set->tag_list_lock);
1914
1915 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
1916 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
1917 set->flags |= BLK_MQ_F_TAG_SHARED;
1918 /* update existing queue */
1919 blk_mq_update_tag_set_depth(set, true);
1920 }
1921 if (set->flags & BLK_MQ_F_TAG_SHARED)
1922 queue_set_hctx_shared(q, true);
1923 list_add_tail(&q->tag_set_list, &set->tag_list);
1924
1925 mutex_unlock(&set->tag_list_lock);
1926 }
1927
1928 /*
1929 * It is the actual release handler for mq, but we do it from
1930 * request queue's release handler for avoiding use-after-free
1931 * and headache because q->mq_kobj shouldn't have been introduced,
1932 * but we can't group ctx/kctx kobj without it.
1933 */
1934 void blk_mq_release(struct request_queue *q)
1935 {
1936 struct blk_mq_hw_ctx *hctx;
1937 unsigned int i;
1938
1939 /* hctx kobj stays in hctx */
1940 queue_for_each_hw_ctx(q, hctx, i) {
1941 if (!hctx)
1942 continue;
1943 kfree(hctx->ctxs);
1944 kfree(hctx);
1945 }
1946
1947 kfree(q->mq_map);
1948 q->mq_map = NULL;
1949
1950 kfree(q->queue_hw_ctx);
1951
1952 /* ctx kobj stays in queue_ctx */
1953 free_percpu(q->queue_ctx);
1954 }
1955
1956 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1957 {
1958 struct request_queue *uninit_q, *q;
1959
1960 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1961 if (!uninit_q)
1962 return ERR_PTR(-ENOMEM);
1963
1964 q = blk_mq_init_allocated_queue(set, uninit_q);
1965 if (IS_ERR(q))
1966 blk_cleanup_queue(uninit_q);
1967
1968 return q;
1969 }
1970 EXPORT_SYMBOL(blk_mq_init_queue);
1971
1972 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
1973 struct request_queue *q)
1974 {
1975 struct blk_mq_hw_ctx **hctxs;
1976 struct blk_mq_ctx __percpu *ctx;
1977 unsigned int *map;
1978 int i;
1979
1980 ctx = alloc_percpu(struct blk_mq_ctx);
1981 if (!ctx)
1982 return ERR_PTR(-ENOMEM);
1983
1984 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1985 set->numa_node);
1986
1987 if (!hctxs)
1988 goto err_percpu;
1989
1990 map = blk_mq_make_queue_map(set);
1991 if (!map)
1992 goto err_map;
1993
1994 for (i = 0; i < set->nr_hw_queues; i++) {
1995 int node = blk_mq_hw_queue_to_node(map, i);
1996
1997 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1998 GFP_KERNEL, node);
1999 if (!hctxs[i])
2000 goto err_hctxs;
2001
2002 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2003 node))
2004 goto err_hctxs;
2005
2006 atomic_set(&hctxs[i]->nr_active, 0);
2007 hctxs[i]->numa_node = node;
2008 hctxs[i]->queue_num = i;
2009 }
2010
2011 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
2012 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2013
2014 q->nr_queues = nr_cpu_ids;
2015 q->nr_hw_queues = set->nr_hw_queues;
2016 q->mq_map = map;
2017
2018 q->queue_ctx = ctx;
2019 q->queue_hw_ctx = hctxs;
2020
2021 q->mq_ops = set->ops;
2022 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2023
2024 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2025 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2026
2027 q->sg_reserved_size = INT_MAX;
2028
2029 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
2030 INIT_LIST_HEAD(&q->requeue_list);
2031 spin_lock_init(&q->requeue_lock);
2032
2033 if (q->nr_hw_queues > 1)
2034 blk_queue_make_request(q, blk_mq_make_request);
2035 else
2036 blk_queue_make_request(q, blk_sq_make_request);
2037
2038 /*
2039 * Do this after blk_queue_make_request() overrides it...
2040 */
2041 q->nr_requests = set->queue_depth;
2042
2043 if (set->ops->complete)
2044 blk_queue_softirq_done(q, set->ops->complete);
2045
2046 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2047
2048 if (blk_mq_init_hw_queues(q, set))
2049 goto err_hctxs;
2050
2051 get_online_cpus();
2052 mutex_lock(&all_q_mutex);
2053
2054 list_add_tail(&q->all_q_node, &all_q_list);
2055 blk_mq_add_queue_tag_set(set, q);
2056 blk_mq_map_swqueue(q, cpu_online_mask);
2057
2058 mutex_unlock(&all_q_mutex);
2059 put_online_cpus();
2060
2061 return q;
2062
2063 err_hctxs:
2064 kfree(map);
2065 for (i = 0; i < set->nr_hw_queues; i++) {
2066 if (!hctxs[i])
2067 break;
2068 free_cpumask_var(hctxs[i]->cpumask);
2069 kfree(hctxs[i]);
2070 }
2071 err_map:
2072 kfree(hctxs);
2073 err_percpu:
2074 free_percpu(ctx);
2075 return ERR_PTR(-ENOMEM);
2076 }
2077 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2078
2079 void blk_mq_free_queue(struct request_queue *q)
2080 {
2081 struct blk_mq_tag_set *set = q->tag_set;
2082
2083 mutex_lock(&all_q_mutex);
2084 list_del_init(&q->all_q_node);
2085 mutex_unlock(&all_q_mutex);
2086
2087 blk_mq_del_queue_tag_set(q);
2088
2089 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2090 blk_mq_free_hw_queues(q, set);
2091 }
2092
2093 /* Basically redo blk_mq_init_queue with queue frozen */
2094 static void blk_mq_queue_reinit(struct request_queue *q,
2095 const struct cpumask *online_mask)
2096 {
2097 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2098
2099 blk_mq_sysfs_unregister(q);
2100
2101 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask);
2102
2103 /*
2104 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2105 * we should change hctx numa_node according to new topology (this
2106 * involves free and re-allocate memory, worthy doing?)
2107 */
2108
2109 blk_mq_map_swqueue(q, online_mask);
2110
2111 blk_mq_sysfs_register(q);
2112 }
2113
2114 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2115 unsigned long action, void *hcpu)
2116 {
2117 struct request_queue *q;
2118 int cpu = (unsigned long)hcpu;
2119 /*
2120 * New online cpumask which is going to be set in this hotplug event.
2121 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2122 * one-by-one and dynamically allocating this could result in a failure.
2123 */
2124 static struct cpumask online_new;
2125
2126 /*
2127 * Before hotadded cpu starts handling requests, new mappings must
2128 * be established. Otherwise, these requests in hw queue might
2129 * never be dispatched.
2130 *
2131 * For example, there is a single hw queue (hctx) and two CPU queues
2132 * (ctx0 for CPU0, and ctx1 for CPU1).
2133 *
2134 * Now CPU1 is just onlined and a request is inserted into
2135 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
2136 * still zero.
2137 *
2138 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
2139 * set in pending bitmap and tries to retrieve requests in
2140 * hctx->ctxs[0]->rq_list. But htx->ctxs[0] is a pointer to ctx0,
2141 * so the request in ctx1->rq_list is ignored.
2142 */
2143 switch (action & ~CPU_TASKS_FROZEN) {
2144 case CPU_DEAD:
2145 case CPU_UP_CANCELED:
2146 cpumask_copy(&online_new, cpu_online_mask);
2147 break;
2148 case CPU_UP_PREPARE:
2149 cpumask_copy(&online_new, cpu_online_mask);
2150 cpumask_set_cpu(cpu, &online_new);
2151 break;
2152 default:
2153 return NOTIFY_OK;
2154 }
2155
2156 mutex_lock(&all_q_mutex);
2157
2158 /*
2159 * We need to freeze and reinit all existing queues. Freezing
2160 * involves synchronous wait for an RCU grace period and doing it
2161 * one by one may take a long time. Start freezing all queues in
2162 * one swoop and then wait for the completions so that freezing can
2163 * take place in parallel.
2164 */
2165 list_for_each_entry(q, &all_q_list, all_q_node)
2166 blk_mq_freeze_queue_start(q);
2167 list_for_each_entry(q, &all_q_list, all_q_node) {
2168 blk_mq_freeze_queue_wait(q);
2169
2170 /*
2171 * timeout handler can't touch hw queue during the
2172 * reinitialization
2173 */
2174 del_timer_sync(&q->timeout);
2175 }
2176
2177 list_for_each_entry(q, &all_q_list, all_q_node)
2178 blk_mq_queue_reinit(q, &online_new);
2179
2180 list_for_each_entry(q, &all_q_list, all_q_node)
2181 blk_mq_unfreeze_queue(q);
2182
2183 mutex_unlock(&all_q_mutex);
2184 return NOTIFY_OK;
2185 }
2186
2187 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2188 {
2189 int i;
2190
2191 for (i = 0; i < set->nr_hw_queues; i++) {
2192 set->tags[i] = blk_mq_init_rq_map(set, i);
2193 if (!set->tags[i])
2194 goto out_unwind;
2195 }
2196
2197 return 0;
2198
2199 out_unwind:
2200 while (--i >= 0)
2201 blk_mq_free_rq_map(set, set->tags[i], i);
2202
2203 return -ENOMEM;
2204 }
2205
2206 /*
2207 * Allocate the request maps associated with this tag_set. Note that this
2208 * may reduce the depth asked for, if memory is tight. set->queue_depth
2209 * will be updated to reflect the allocated depth.
2210 */
2211 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2212 {
2213 unsigned int depth;
2214 int err;
2215
2216 depth = set->queue_depth;
2217 do {
2218 err = __blk_mq_alloc_rq_maps(set);
2219 if (!err)
2220 break;
2221
2222 set->queue_depth >>= 1;
2223 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2224 err = -ENOMEM;
2225 break;
2226 }
2227 } while (set->queue_depth);
2228
2229 if (!set->queue_depth || err) {
2230 pr_err("blk-mq: failed to allocate request map\n");
2231 return -ENOMEM;
2232 }
2233
2234 if (depth != set->queue_depth)
2235 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2236 depth, set->queue_depth);
2237
2238 return 0;
2239 }
2240
2241 struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
2242 {
2243 return tags->cpumask;
2244 }
2245 EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);
2246
2247 /*
2248 * Alloc a tag set to be associated with one or more request queues.
2249 * May fail with EINVAL for various error conditions. May adjust the
2250 * requested depth down, if if it too large. In that case, the set
2251 * value will be stored in set->queue_depth.
2252 */
2253 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2254 {
2255 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2256
2257 if (!set->nr_hw_queues)
2258 return -EINVAL;
2259 if (!set->queue_depth)
2260 return -EINVAL;
2261 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2262 return -EINVAL;
2263
2264 if (!set->ops->queue_rq || !set->ops->map_queue)
2265 return -EINVAL;
2266
2267 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2268 pr_info("blk-mq: reduced tag depth to %u\n",
2269 BLK_MQ_MAX_DEPTH);
2270 set->queue_depth = BLK_MQ_MAX_DEPTH;
2271 }
2272
2273 /*
2274 * If a crashdump is active, then we are potentially in a very
2275 * memory constrained environment. Limit us to 1 queue and
2276 * 64 tags to prevent using too much memory.
2277 */
2278 if (is_kdump_kernel()) {
2279 set->nr_hw_queues = 1;
2280 set->queue_depth = min(64U, set->queue_depth);
2281 }
2282
2283 set->tags = kmalloc_node(set->nr_hw_queues *
2284 sizeof(struct blk_mq_tags *),
2285 GFP_KERNEL, set->numa_node);
2286 if (!set->tags)
2287 return -ENOMEM;
2288
2289 if (blk_mq_alloc_rq_maps(set))
2290 goto enomem;
2291
2292 mutex_init(&set->tag_list_lock);
2293 INIT_LIST_HEAD(&set->tag_list);
2294
2295 return 0;
2296 enomem:
2297 kfree(set->tags);
2298 set->tags = NULL;
2299 return -ENOMEM;
2300 }
2301 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2302
2303 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2304 {
2305 int i;
2306
2307 for (i = 0; i < set->nr_hw_queues; i++) {
2308 if (set->tags[i])
2309 blk_mq_free_rq_map(set, set->tags[i], i);
2310 }
2311
2312 kfree(set->tags);
2313 set->tags = NULL;
2314 }
2315 EXPORT_SYMBOL(blk_mq_free_tag_set);
2316
2317 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2318 {
2319 struct blk_mq_tag_set *set = q->tag_set;
2320 struct blk_mq_hw_ctx *hctx;
2321 int i, ret;
2322
2323 if (!set || nr > set->queue_depth)
2324 return -EINVAL;
2325
2326 ret = 0;
2327 queue_for_each_hw_ctx(q, hctx, i) {
2328 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2329 if (ret)
2330 break;
2331 }
2332
2333 if (!ret)
2334 q->nr_requests = nr;
2335
2336 return ret;
2337 }
2338
2339 void blk_mq_disable_hotplug(void)
2340 {
2341 mutex_lock(&all_q_mutex);
2342 }
2343
2344 void blk_mq_enable_hotplug(void)
2345 {
2346 mutex_unlock(&all_q_mutex);
2347 }
2348
2349 static int __init blk_mq_init(void)
2350 {
2351 blk_mq_cpu_init();
2352
2353 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2354
2355 return 0;
2356 }
2357 subsys_initcall(blk_mq_init);