]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - block/blk-mq.c
Merge remote-tracking branches 'asoc/topic/pistachio', 'asoc/topic/pxa', 'asoc/topic...
[mirror_ubuntu-jammy-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46 int ddir, bytes, bucket;
47
48 ddir = rq_data_dir(rq);
49 bytes = blk_rq_bytes(rq);
50
51 bucket = ddir + 2*(ilog2(bytes) - 9);
52
53 if (bucket < 0)
54 return -1;
55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58 return bucket;
59 }
60
61 /*
62 * Check if any of the ctx's have pending work in this hardware queue
63 */
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66 return !list_empty_careful(&hctx->dispatch) ||
67 sbitmap_any_bit_set(&hctx->ctx_map) ||
68 blk_mq_sched_has_work(hctx);
69 }
70
71 /*
72 * Mark this ctx as having pending work in this hardware queue
73 */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 struct blk_mq_ctx *ctx)
76 {
77 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 }
80
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 struct blk_mq_ctx *ctx)
83 {
84 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 }
86
87 struct mq_inflight {
88 struct hd_struct *part;
89 unsigned int *inflight;
90 };
91
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93 struct request *rq, void *priv,
94 bool reserved)
95 {
96 struct mq_inflight *mi = priv;
97
98 if (blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) {
99 /*
100 * index[0] counts the specific partition that was asked
101 * for. index[1] counts the ones that are active on the
102 * whole device, so increment that if mi->part is indeed
103 * a partition, and not a whole device.
104 */
105 if (rq->part == mi->part)
106 mi->inflight[0]++;
107 if (mi->part->partno)
108 mi->inflight[1]++;
109 }
110 }
111
112 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
113 unsigned int inflight[2])
114 {
115 struct mq_inflight mi = { .part = part, .inflight = inflight, };
116
117 inflight[0] = inflight[1] = 0;
118 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119 }
120
121 void blk_freeze_queue_start(struct request_queue *q)
122 {
123 int freeze_depth;
124
125 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
126 if (freeze_depth == 1) {
127 percpu_ref_kill(&q->q_usage_counter);
128 if (q->mq_ops)
129 blk_mq_run_hw_queues(q, false);
130 }
131 }
132 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
133
134 void blk_mq_freeze_queue_wait(struct request_queue *q)
135 {
136 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
137 }
138 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
139
140 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
141 unsigned long timeout)
142 {
143 return wait_event_timeout(q->mq_freeze_wq,
144 percpu_ref_is_zero(&q->q_usage_counter),
145 timeout);
146 }
147 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
148
149 /*
150 * Guarantee no request is in use, so we can change any data structure of
151 * the queue afterward.
152 */
153 void blk_freeze_queue(struct request_queue *q)
154 {
155 /*
156 * In the !blk_mq case we are only calling this to kill the
157 * q_usage_counter, otherwise this increases the freeze depth
158 * and waits for it to return to zero. For this reason there is
159 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
160 * exported to drivers as the only user for unfreeze is blk_mq.
161 */
162 blk_freeze_queue_start(q);
163 if (!q->mq_ops)
164 blk_drain_queue(q);
165 blk_mq_freeze_queue_wait(q);
166 }
167
168 void blk_mq_freeze_queue(struct request_queue *q)
169 {
170 /*
171 * ...just an alias to keep freeze and unfreeze actions balanced
172 * in the blk_mq_* namespace
173 */
174 blk_freeze_queue(q);
175 }
176 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
177
178 void blk_mq_unfreeze_queue(struct request_queue *q)
179 {
180 int freeze_depth;
181
182 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
183 WARN_ON_ONCE(freeze_depth < 0);
184 if (!freeze_depth) {
185 percpu_ref_reinit(&q->q_usage_counter);
186 wake_up_all(&q->mq_freeze_wq);
187 }
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
190
191 /*
192 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
193 * mpt3sas driver such that this function can be removed.
194 */
195 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
196 {
197 unsigned long flags;
198
199 spin_lock_irqsave(q->queue_lock, flags);
200 queue_flag_set(QUEUE_FLAG_QUIESCED, q);
201 spin_unlock_irqrestore(q->queue_lock, flags);
202 }
203 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
204
205 /**
206 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
207 * @q: request queue.
208 *
209 * Note: this function does not prevent that the struct request end_io()
210 * callback function is invoked. Once this function is returned, we make
211 * sure no dispatch can happen until the queue is unquiesced via
212 * blk_mq_unquiesce_queue().
213 */
214 void blk_mq_quiesce_queue(struct request_queue *q)
215 {
216 struct blk_mq_hw_ctx *hctx;
217 unsigned int i;
218 bool rcu = false;
219
220 blk_mq_quiesce_queue_nowait(q);
221
222 queue_for_each_hw_ctx(q, hctx, i) {
223 if (hctx->flags & BLK_MQ_F_BLOCKING)
224 synchronize_srcu(hctx->srcu);
225 else
226 rcu = true;
227 }
228 if (rcu)
229 synchronize_rcu();
230 }
231 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
232
233 /*
234 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
235 * @q: request queue.
236 *
237 * This function recovers queue into the state before quiescing
238 * which is done by blk_mq_quiesce_queue.
239 */
240 void blk_mq_unquiesce_queue(struct request_queue *q)
241 {
242 unsigned long flags;
243
244 spin_lock_irqsave(q->queue_lock, flags);
245 queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
246 spin_unlock_irqrestore(q->queue_lock, flags);
247
248 /* dispatch requests which are inserted during quiescing */
249 blk_mq_run_hw_queues(q, true);
250 }
251 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
252
253 void blk_mq_wake_waiters(struct request_queue *q)
254 {
255 struct blk_mq_hw_ctx *hctx;
256 unsigned int i;
257
258 queue_for_each_hw_ctx(q, hctx, i)
259 if (blk_mq_hw_queue_mapped(hctx))
260 blk_mq_tag_wakeup_all(hctx->tags, true);
261 }
262
263 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
264 {
265 return blk_mq_has_free_tags(hctx->tags);
266 }
267 EXPORT_SYMBOL(blk_mq_can_queue);
268
269 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
270 unsigned int tag, unsigned int op)
271 {
272 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
273 struct request *rq = tags->static_rqs[tag];
274 req_flags_t rq_flags = 0;
275
276 if (data->flags & BLK_MQ_REQ_INTERNAL) {
277 rq->tag = -1;
278 rq->internal_tag = tag;
279 } else {
280 if (blk_mq_tag_busy(data->hctx)) {
281 rq_flags = RQF_MQ_INFLIGHT;
282 atomic_inc(&data->hctx->nr_active);
283 }
284 rq->tag = tag;
285 rq->internal_tag = -1;
286 data->hctx->tags->rqs[rq->tag] = rq;
287 }
288
289 /* csd/requeue_work/fifo_time is initialized before use */
290 rq->q = data->q;
291 rq->mq_ctx = data->ctx;
292 rq->rq_flags = rq_flags;
293 rq->cpu = -1;
294 rq->cmd_flags = op;
295 if (data->flags & BLK_MQ_REQ_PREEMPT)
296 rq->rq_flags |= RQF_PREEMPT;
297 if (blk_queue_io_stat(data->q))
298 rq->rq_flags |= RQF_IO_STAT;
299 INIT_LIST_HEAD(&rq->queuelist);
300 INIT_HLIST_NODE(&rq->hash);
301 RB_CLEAR_NODE(&rq->rb_node);
302 rq->rq_disk = NULL;
303 rq->part = NULL;
304 rq->start_time = jiffies;
305 rq->nr_phys_segments = 0;
306 #if defined(CONFIG_BLK_DEV_INTEGRITY)
307 rq->nr_integrity_segments = 0;
308 #endif
309 rq->special = NULL;
310 /* tag was already set */
311 rq->extra_len = 0;
312 rq->__deadline = 0;
313
314 INIT_LIST_HEAD(&rq->timeout_list);
315 rq->timeout = 0;
316
317 rq->end_io = NULL;
318 rq->end_io_data = NULL;
319 rq->next_rq = NULL;
320
321 #ifdef CONFIG_BLK_CGROUP
322 rq->rl = NULL;
323 set_start_time_ns(rq);
324 rq->io_start_time_ns = 0;
325 #endif
326
327 data->ctx->rq_dispatched[op_is_sync(op)]++;
328 return rq;
329 }
330
331 static struct request *blk_mq_get_request(struct request_queue *q,
332 struct bio *bio, unsigned int op,
333 struct blk_mq_alloc_data *data)
334 {
335 struct elevator_queue *e = q->elevator;
336 struct request *rq;
337 unsigned int tag;
338 bool put_ctx_on_error = false;
339
340 blk_queue_enter_live(q);
341 data->q = q;
342 if (likely(!data->ctx)) {
343 data->ctx = blk_mq_get_ctx(q);
344 put_ctx_on_error = true;
345 }
346 if (likely(!data->hctx))
347 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
348 if (op & REQ_NOWAIT)
349 data->flags |= BLK_MQ_REQ_NOWAIT;
350
351 if (e) {
352 data->flags |= BLK_MQ_REQ_INTERNAL;
353
354 /*
355 * Flush requests are special and go directly to the
356 * dispatch list.
357 */
358 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
359 e->type->ops.mq.limit_depth(op, data);
360 }
361
362 tag = blk_mq_get_tag(data);
363 if (tag == BLK_MQ_TAG_FAIL) {
364 if (put_ctx_on_error) {
365 blk_mq_put_ctx(data->ctx);
366 data->ctx = NULL;
367 }
368 blk_queue_exit(q);
369 return NULL;
370 }
371
372 rq = blk_mq_rq_ctx_init(data, tag, op);
373 if (!op_is_flush(op)) {
374 rq->elv.icq = NULL;
375 if (e && e->type->ops.mq.prepare_request) {
376 if (e->type->icq_cache && rq_ioc(bio))
377 blk_mq_sched_assign_ioc(rq, bio);
378
379 e->type->ops.mq.prepare_request(rq, bio);
380 rq->rq_flags |= RQF_ELVPRIV;
381 }
382 }
383 data->hctx->queued++;
384 return rq;
385 }
386
387 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
388 blk_mq_req_flags_t flags)
389 {
390 struct blk_mq_alloc_data alloc_data = { .flags = flags };
391 struct request *rq;
392 int ret;
393
394 ret = blk_queue_enter(q, flags);
395 if (ret)
396 return ERR_PTR(ret);
397
398 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
399 blk_queue_exit(q);
400
401 if (!rq)
402 return ERR_PTR(-EWOULDBLOCK);
403
404 blk_mq_put_ctx(alloc_data.ctx);
405
406 rq->__data_len = 0;
407 rq->__sector = (sector_t) -1;
408 rq->bio = rq->biotail = NULL;
409 return rq;
410 }
411 EXPORT_SYMBOL(blk_mq_alloc_request);
412
413 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
414 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
415 {
416 struct blk_mq_alloc_data alloc_data = { .flags = flags };
417 struct request *rq;
418 unsigned int cpu;
419 int ret;
420
421 /*
422 * If the tag allocator sleeps we could get an allocation for a
423 * different hardware context. No need to complicate the low level
424 * allocator for this for the rare use case of a command tied to
425 * a specific queue.
426 */
427 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
428 return ERR_PTR(-EINVAL);
429
430 if (hctx_idx >= q->nr_hw_queues)
431 return ERR_PTR(-EIO);
432
433 ret = blk_queue_enter(q, flags);
434 if (ret)
435 return ERR_PTR(ret);
436
437 /*
438 * Check if the hardware context is actually mapped to anything.
439 * If not tell the caller that it should skip this queue.
440 */
441 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
442 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
443 blk_queue_exit(q);
444 return ERR_PTR(-EXDEV);
445 }
446 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
447 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
448
449 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
450 blk_queue_exit(q);
451
452 if (!rq)
453 return ERR_PTR(-EWOULDBLOCK);
454
455 return rq;
456 }
457 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
458
459 void blk_mq_free_request(struct request *rq)
460 {
461 struct request_queue *q = rq->q;
462 struct elevator_queue *e = q->elevator;
463 struct blk_mq_ctx *ctx = rq->mq_ctx;
464 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
465 const int sched_tag = rq->internal_tag;
466
467 if (rq->rq_flags & RQF_ELVPRIV) {
468 if (e && e->type->ops.mq.finish_request)
469 e->type->ops.mq.finish_request(rq);
470 if (rq->elv.icq) {
471 put_io_context(rq->elv.icq->ioc);
472 rq->elv.icq = NULL;
473 }
474 }
475
476 ctx->rq_completed[rq_is_sync(rq)]++;
477 if (rq->rq_flags & RQF_MQ_INFLIGHT)
478 atomic_dec(&hctx->nr_active);
479
480 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
481 laptop_io_completion(q->backing_dev_info);
482
483 wbt_done(q->rq_wb, &rq->issue_stat);
484
485 if (blk_rq_rl(rq))
486 blk_put_rl(blk_rq_rl(rq));
487
488 blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
489 if (rq->tag != -1)
490 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
491 if (sched_tag != -1)
492 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
493 blk_mq_sched_restart(hctx);
494 blk_queue_exit(q);
495 }
496 EXPORT_SYMBOL_GPL(blk_mq_free_request);
497
498 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
499 {
500 blk_account_io_done(rq);
501
502 if (rq->end_io) {
503 wbt_done(rq->q->rq_wb, &rq->issue_stat);
504 rq->end_io(rq, error);
505 } else {
506 if (unlikely(blk_bidi_rq(rq)))
507 blk_mq_free_request(rq->next_rq);
508 blk_mq_free_request(rq);
509 }
510 }
511 EXPORT_SYMBOL(__blk_mq_end_request);
512
513 void blk_mq_end_request(struct request *rq, blk_status_t error)
514 {
515 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
516 BUG();
517 __blk_mq_end_request(rq, error);
518 }
519 EXPORT_SYMBOL(blk_mq_end_request);
520
521 static void __blk_mq_complete_request_remote(void *data)
522 {
523 struct request *rq = data;
524
525 rq->q->softirq_done_fn(rq);
526 }
527
528 static void __blk_mq_complete_request(struct request *rq)
529 {
530 struct blk_mq_ctx *ctx = rq->mq_ctx;
531 bool shared = false;
532 int cpu;
533
534 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT);
535 blk_mq_rq_update_state(rq, MQ_RQ_COMPLETE);
536
537 if (rq->internal_tag != -1)
538 blk_mq_sched_completed_request(rq);
539 if (rq->rq_flags & RQF_STATS) {
540 blk_mq_poll_stats_start(rq->q);
541 blk_stat_add(rq);
542 }
543
544 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
545 rq->q->softirq_done_fn(rq);
546 return;
547 }
548
549 cpu = get_cpu();
550 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
551 shared = cpus_share_cache(cpu, ctx->cpu);
552
553 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
554 rq->csd.func = __blk_mq_complete_request_remote;
555 rq->csd.info = rq;
556 rq->csd.flags = 0;
557 smp_call_function_single_async(ctx->cpu, &rq->csd);
558 } else {
559 rq->q->softirq_done_fn(rq);
560 }
561 put_cpu();
562 }
563
564 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
565 __releases(hctx->srcu)
566 {
567 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
568 rcu_read_unlock();
569 else
570 srcu_read_unlock(hctx->srcu, srcu_idx);
571 }
572
573 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
574 __acquires(hctx->srcu)
575 {
576 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
577 /* shut up gcc false positive */
578 *srcu_idx = 0;
579 rcu_read_lock();
580 } else
581 *srcu_idx = srcu_read_lock(hctx->srcu);
582 }
583
584 static void blk_mq_rq_update_aborted_gstate(struct request *rq, u64 gstate)
585 {
586 unsigned long flags;
587
588 /*
589 * blk_mq_rq_aborted_gstate() is used from the completion path and
590 * can thus be called from irq context. u64_stats_fetch in the
591 * middle of update on the same CPU leads to lockup. Disable irq
592 * while updating.
593 */
594 local_irq_save(flags);
595 u64_stats_update_begin(&rq->aborted_gstate_sync);
596 rq->aborted_gstate = gstate;
597 u64_stats_update_end(&rq->aborted_gstate_sync);
598 local_irq_restore(flags);
599 }
600
601 static u64 blk_mq_rq_aborted_gstate(struct request *rq)
602 {
603 unsigned int start;
604 u64 aborted_gstate;
605
606 do {
607 start = u64_stats_fetch_begin(&rq->aborted_gstate_sync);
608 aborted_gstate = rq->aborted_gstate;
609 } while (u64_stats_fetch_retry(&rq->aborted_gstate_sync, start));
610
611 return aborted_gstate;
612 }
613
614 /**
615 * blk_mq_complete_request - end I/O on a request
616 * @rq: the request being processed
617 *
618 * Description:
619 * Ends all I/O on a request. It does not handle partial completions.
620 * The actual completion happens out-of-order, through a IPI handler.
621 **/
622 void blk_mq_complete_request(struct request *rq)
623 {
624 struct request_queue *q = rq->q;
625 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
626 int srcu_idx;
627
628 if (unlikely(blk_should_fake_timeout(q)))
629 return;
630
631 /*
632 * If @rq->aborted_gstate equals the current instance, timeout is
633 * claiming @rq and we lost. This is synchronized through
634 * hctx_lock(). See blk_mq_timeout_work() for details.
635 *
636 * Completion path never blocks and we can directly use RCU here
637 * instead of hctx_lock() which can be either RCU or SRCU.
638 * However, that would complicate paths which want to synchronize
639 * against us. Let stay in sync with the issue path so that
640 * hctx_lock() covers both issue and completion paths.
641 */
642 hctx_lock(hctx, &srcu_idx);
643 if (blk_mq_rq_aborted_gstate(rq) != rq->gstate)
644 __blk_mq_complete_request(rq);
645 hctx_unlock(hctx, srcu_idx);
646 }
647 EXPORT_SYMBOL(blk_mq_complete_request);
648
649 int blk_mq_request_started(struct request *rq)
650 {
651 return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
652 }
653 EXPORT_SYMBOL_GPL(blk_mq_request_started);
654
655 void blk_mq_start_request(struct request *rq)
656 {
657 struct request_queue *q = rq->q;
658
659 blk_mq_sched_started_request(rq);
660
661 trace_block_rq_issue(q, rq);
662
663 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
664 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
665 rq->rq_flags |= RQF_STATS;
666 wbt_issue(q->rq_wb, &rq->issue_stat);
667 }
668
669 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
670
671 /*
672 * Mark @rq in-flight which also advances the generation number,
673 * and register for timeout. Protect with a seqcount to allow the
674 * timeout path to read both @rq->gstate and @rq->deadline
675 * coherently.
676 *
677 * This is the only place where a request is marked in-flight. If
678 * the timeout path reads an in-flight @rq->gstate, the
679 * @rq->deadline it reads together under @rq->gstate_seq is
680 * guaranteed to be the matching one.
681 */
682 preempt_disable();
683 write_seqcount_begin(&rq->gstate_seq);
684
685 blk_mq_rq_update_state(rq, MQ_RQ_IN_FLIGHT);
686 blk_add_timer(rq);
687
688 write_seqcount_end(&rq->gstate_seq);
689 preempt_enable();
690
691 if (q->dma_drain_size && blk_rq_bytes(rq)) {
692 /*
693 * Make sure space for the drain appears. We know we can do
694 * this because max_hw_segments has been adjusted to be one
695 * fewer than the device can handle.
696 */
697 rq->nr_phys_segments++;
698 }
699 }
700 EXPORT_SYMBOL(blk_mq_start_request);
701
702 /*
703 * When we reach here because queue is busy, it's safe to change the state
704 * to IDLE without checking @rq->aborted_gstate because we should still be
705 * holding the RCU read lock and thus protected against timeout.
706 */
707 static void __blk_mq_requeue_request(struct request *rq)
708 {
709 struct request_queue *q = rq->q;
710
711 blk_mq_put_driver_tag(rq);
712
713 trace_block_rq_requeue(q, rq);
714 wbt_requeue(q->rq_wb, &rq->issue_stat);
715
716 if (blk_mq_rq_state(rq) != MQ_RQ_IDLE) {
717 blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
718 if (q->dma_drain_size && blk_rq_bytes(rq))
719 rq->nr_phys_segments--;
720 }
721 }
722
723 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
724 {
725 __blk_mq_requeue_request(rq);
726
727 /* this request will be re-inserted to io scheduler queue */
728 blk_mq_sched_requeue_request(rq);
729
730 BUG_ON(blk_queued_rq(rq));
731 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
732 }
733 EXPORT_SYMBOL(blk_mq_requeue_request);
734
735 static void blk_mq_requeue_work(struct work_struct *work)
736 {
737 struct request_queue *q =
738 container_of(work, struct request_queue, requeue_work.work);
739 LIST_HEAD(rq_list);
740 struct request *rq, *next;
741
742 spin_lock_irq(&q->requeue_lock);
743 list_splice_init(&q->requeue_list, &rq_list);
744 spin_unlock_irq(&q->requeue_lock);
745
746 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
747 if (!(rq->rq_flags & RQF_SOFTBARRIER))
748 continue;
749
750 rq->rq_flags &= ~RQF_SOFTBARRIER;
751 list_del_init(&rq->queuelist);
752 blk_mq_sched_insert_request(rq, true, false, false);
753 }
754
755 while (!list_empty(&rq_list)) {
756 rq = list_entry(rq_list.next, struct request, queuelist);
757 list_del_init(&rq->queuelist);
758 blk_mq_sched_insert_request(rq, false, false, false);
759 }
760
761 blk_mq_run_hw_queues(q, false);
762 }
763
764 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
765 bool kick_requeue_list)
766 {
767 struct request_queue *q = rq->q;
768 unsigned long flags;
769
770 /*
771 * We abuse this flag that is otherwise used by the I/O scheduler to
772 * request head insertion from the workqueue.
773 */
774 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
775
776 spin_lock_irqsave(&q->requeue_lock, flags);
777 if (at_head) {
778 rq->rq_flags |= RQF_SOFTBARRIER;
779 list_add(&rq->queuelist, &q->requeue_list);
780 } else {
781 list_add_tail(&rq->queuelist, &q->requeue_list);
782 }
783 spin_unlock_irqrestore(&q->requeue_lock, flags);
784
785 if (kick_requeue_list)
786 blk_mq_kick_requeue_list(q);
787 }
788 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
789
790 void blk_mq_kick_requeue_list(struct request_queue *q)
791 {
792 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
793 }
794 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
795
796 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
797 unsigned long msecs)
798 {
799 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
800 msecs_to_jiffies(msecs));
801 }
802 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
803
804 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
805 {
806 if (tag < tags->nr_tags) {
807 prefetch(tags->rqs[tag]);
808 return tags->rqs[tag];
809 }
810
811 return NULL;
812 }
813 EXPORT_SYMBOL(blk_mq_tag_to_rq);
814
815 struct blk_mq_timeout_data {
816 unsigned long next;
817 unsigned int next_set;
818 unsigned int nr_expired;
819 };
820
821 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
822 {
823 const struct blk_mq_ops *ops = req->q->mq_ops;
824 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
825
826 req->rq_flags |= RQF_MQ_TIMEOUT_EXPIRED;
827
828 if (ops->timeout)
829 ret = ops->timeout(req, reserved);
830
831 switch (ret) {
832 case BLK_EH_HANDLED:
833 __blk_mq_complete_request(req);
834 break;
835 case BLK_EH_RESET_TIMER:
836 /*
837 * As nothing prevents from completion happening while
838 * ->aborted_gstate is set, this may lead to ignored
839 * completions and further spurious timeouts.
840 */
841 blk_mq_rq_update_aborted_gstate(req, 0);
842 blk_add_timer(req);
843 break;
844 case BLK_EH_NOT_HANDLED:
845 break;
846 default:
847 printk(KERN_ERR "block: bad eh return: %d\n", ret);
848 break;
849 }
850 }
851
852 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
853 struct request *rq, void *priv, bool reserved)
854 {
855 struct blk_mq_timeout_data *data = priv;
856 unsigned long gstate, deadline;
857 int start;
858
859 might_sleep();
860
861 if (rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED)
862 return;
863
864 /* read coherent snapshots of @rq->state_gen and @rq->deadline */
865 while (true) {
866 start = read_seqcount_begin(&rq->gstate_seq);
867 gstate = READ_ONCE(rq->gstate);
868 deadline = blk_rq_deadline(rq);
869 if (!read_seqcount_retry(&rq->gstate_seq, start))
870 break;
871 cond_resched();
872 }
873
874 /* if in-flight && overdue, mark for abortion */
875 if ((gstate & MQ_RQ_STATE_MASK) == MQ_RQ_IN_FLIGHT &&
876 time_after_eq(jiffies, deadline)) {
877 blk_mq_rq_update_aborted_gstate(rq, gstate);
878 data->nr_expired++;
879 hctx->nr_expired++;
880 } else if (!data->next_set || time_after(data->next, deadline)) {
881 data->next = deadline;
882 data->next_set = 1;
883 }
884 }
885
886 static void blk_mq_terminate_expired(struct blk_mq_hw_ctx *hctx,
887 struct request *rq, void *priv, bool reserved)
888 {
889 /*
890 * We marked @rq->aborted_gstate and waited for RCU. If there were
891 * completions that we lost to, they would have finished and
892 * updated @rq->gstate by now; otherwise, the completion path is
893 * now guaranteed to see @rq->aborted_gstate and yield. If
894 * @rq->aborted_gstate still matches @rq->gstate, @rq is ours.
895 */
896 if (!(rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED) &&
897 READ_ONCE(rq->gstate) == rq->aborted_gstate)
898 blk_mq_rq_timed_out(rq, reserved);
899 }
900
901 static void blk_mq_timeout_work(struct work_struct *work)
902 {
903 struct request_queue *q =
904 container_of(work, struct request_queue, timeout_work);
905 struct blk_mq_timeout_data data = {
906 .next = 0,
907 .next_set = 0,
908 .nr_expired = 0,
909 };
910 struct blk_mq_hw_ctx *hctx;
911 int i;
912
913 /* A deadlock might occur if a request is stuck requiring a
914 * timeout at the same time a queue freeze is waiting
915 * completion, since the timeout code would not be able to
916 * acquire the queue reference here.
917 *
918 * That's why we don't use blk_queue_enter here; instead, we use
919 * percpu_ref_tryget directly, because we need to be able to
920 * obtain a reference even in the short window between the queue
921 * starting to freeze, by dropping the first reference in
922 * blk_freeze_queue_start, and the moment the last request is
923 * consumed, marked by the instant q_usage_counter reaches
924 * zero.
925 */
926 if (!percpu_ref_tryget(&q->q_usage_counter))
927 return;
928
929 /* scan for the expired ones and set their ->aborted_gstate */
930 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
931
932 if (data.nr_expired) {
933 bool has_rcu = false;
934
935 /*
936 * Wait till everyone sees ->aborted_gstate. The
937 * sequential waits for SRCUs aren't ideal. If this ever
938 * becomes a problem, we can add per-hw_ctx rcu_head and
939 * wait in parallel.
940 */
941 queue_for_each_hw_ctx(q, hctx, i) {
942 if (!hctx->nr_expired)
943 continue;
944
945 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
946 has_rcu = true;
947 else
948 synchronize_srcu(hctx->srcu);
949
950 hctx->nr_expired = 0;
951 }
952 if (has_rcu)
953 synchronize_rcu();
954
955 /* terminate the ones we won */
956 blk_mq_queue_tag_busy_iter(q, blk_mq_terminate_expired, NULL);
957 }
958
959 if (data.next_set) {
960 data.next = blk_rq_timeout(round_jiffies_up(data.next));
961 mod_timer(&q->timeout, data.next);
962 } else {
963 /*
964 * Request timeouts are handled as a forward rolling timer. If
965 * we end up here it means that no requests are pending and
966 * also that no request has been pending for a while. Mark
967 * each hctx as idle.
968 */
969 queue_for_each_hw_ctx(q, hctx, i) {
970 /* the hctx may be unmapped, so check it here */
971 if (blk_mq_hw_queue_mapped(hctx))
972 blk_mq_tag_idle(hctx);
973 }
974 }
975 blk_queue_exit(q);
976 }
977
978 struct flush_busy_ctx_data {
979 struct blk_mq_hw_ctx *hctx;
980 struct list_head *list;
981 };
982
983 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
984 {
985 struct flush_busy_ctx_data *flush_data = data;
986 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
987 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
988
989 sbitmap_clear_bit(sb, bitnr);
990 spin_lock(&ctx->lock);
991 list_splice_tail_init(&ctx->rq_list, flush_data->list);
992 spin_unlock(&ctx->lock);
993 return true;
994 }
995
996 /*
997 * Process software queues that have been marked busy, splicing them
998 * to the for-dispatch
999 */
1000 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1001 {
1002 struct flush_busy_ctx_data data = {
1003 .hctx = hctx,
1004 .list = list,
1005 };
1006
1007 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1008 }
1009 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1010
1011 struct dispatch_rq_data {
1012 struct blk_mq_hw_ctx *hctx;
1013 struct request *rq;
1014 };
1015
1016 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1017 void *data)
1018 {
1019 struct dispatch_rq_data *dispatch_data = data;
1020 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1021 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1022
1023 spin_lock(&ctx->lock);
1024 if (unlikely(!list_empty(&ctx->rq_list))) {
1025 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
1026 list_del_init(&dispatch_data->rq->queuelist);
1027 if (list_empty(&ctx->rq_list))
1028 sbitmap_clear_bit(sb, bitnr);
1029 }
1030 spin_unlock(&ctx->lock);
1031
1032 return !dispatch_data->rq;
1033 }
1034
1035 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1036 struct blk_mq_ctx *start)
1037 {
1038 unsigned off = start ? start->index_hw : 0;
1039 struct dispatch_rq_data data = {
1040 .hctx = hctx,
1041 .rq = NULL,
1042 };
1043
1044 __sbitmap_for_each_set(&hctx->ctx_map, off,
1045 dispatch_rq_from_ctx, &data);
1046
1047 return data.rq;
1048 }
1049
1050 static inline unsigned int queued_to_index(unsigned int queued)
1051 {
1052 if (!queued)
1053 return 0;
1054
1055 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1056 }
1057
1058 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
1059 bool wait)
1060 {
1061 struct blk_mq_alloc_data data = {
1062 .q = rq->q,
1063 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
1064 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
1065 };
1066
1067 might_sleep_if(wait);
1068
1069 if (rq->tag != -1)
1070 goto done;
1071
1072 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1073 data.flags |= BLK_MQ_REQ_RESERVED;
1074
1075 rq->tag = blk_mq_get_tag(&data);
1076 if (rq->tag >= 0) {
1077 if (blk_mq_tag_busy(data.hctx)) {
1078 rq->rq_flags |= RQF_MQ_INFLIGHT;
1079 atomic_inc(&data.hctx->nr_active);
1080 }
1081 data.hctx->tags->rqs[rq->tag] = rq;
1082 }
1083
1084 done:
1085 if (hctx)
1086 *hctx = data.hctx;
1087 return rq->tag != -1;
1088 }
1089
1090 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1091 int flags, void *key)
1092 {
1093 struct blk_mq_hw_ctx *hctx;
1094
1095 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1096
1097 list_del_init(&wait->entry);
1098 blk_mq_run_hw_queue(hctx, true);
1099 return 1;
1100 }
1101
1102 /*
1103 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1104 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1105 * restart. For both cases, take care to check the condition again after
1106 * marking us as waiting.
1107 */
1108 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
1109 struct request *rq)
1110 {
1111 struct blk_mq_hw_ctx *this_hctx = *hctx;
1112 struct sbq_wait_state *ws;
1113 wait_queue_entry_t *wait;
1114 bool ret;
1115
1116 if (!(this_hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1117 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
1118 set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
1119
1120 /*
1121 * It's possible that a tag was freed in the window between the
1122 * allocation failure and adding the hardware queue to the wait
1123 * queue.
1124 *
1125 * Don't clear RESTART here, someone else could have set it.
1126 * At most this will cost an extra queue run.
1127 */
1128 return blk_mq_get_driver_tag(rq, hctx, false);
1129 }
1130
1131 wait = &this_hctx->dispatch_wait;
1132 if (!list_empty_careful(&wait->entry))
1133 return false;
1134
1135 spin_lock(&this_hctx->lock);
1136 if (!list_empty(&wait->entry)) {
1137 spin_unlock(&this_hctx->lock);
1138 return false;
1139 }
1140
1141 ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
1142 add_wait_queue(&ws->wait, wait);
1143
1144 /*
1145 * It's possible that a tag was freed in the window between the
1146 * allocation failure and adding the hardware queue to the wait
1147 * queue.
1148 */
1149 ret = blk_mq_get_driver_tag(rq, hctx, false);
1150 if (!ret) {
1151 spin_unlock(&this_hctx->lock);
1152 return false;
1153 }
1154
1155 /*
1156 * We got a tag, remove ourselves from the wait queue to ensure
1157 * someone else gets the wakeup.
1158 */
1159 spin_lock_irq(&ws->wait.lock);
1160 list_del_init(&wait->entry);
1161 spin_unlock_irq(&ws->wait.lock);
1162 spin_unlock(&this_hctx->lock);
1163
1164 return true;
1165 }
1166
1167 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1168
1169 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1170 bool got_budget)
1171 {
1172 struct blk_mq_hw_ctx *hctx;
1173 struct request *rq, *nxt;
1174 bool no_tag = false;
1175 int errors, queued;
1176 blk_status_t ret = BLK_STS_OK;
1177
1178 if (list_empty(list))
1179 return false;
1180
1181 WARN_ON(!list_is_singular(list) && got_budget);
1182
1183 /*
1184 * Now process all the entries, sending them to the driver.
1185 */
1186 errors = queued = 0;
1187 do {
1188 struct blk_mq_queue_data bd;
1189
1190 rq = list_first_entry(list, struct request, queuelist);
1191 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1192 /*
1193 * The initial allocation attempt failed, so we need to
1194 * rerun the hardware queue when a tag is freed. The
1195 * waitqueue takes care of that. If the queue is run
1196 * before we add this entry back on the dispatch list,
1197 * we'll re-run it below.
1198 */
1199 if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1200 if (got_budget)
1201 blk_mq_put_dispatch_budget(hctx);
1202 /*
1203 * For non-shared tags, the RESTART check
1204 * will suffice.
1205 */
1206 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1207 no_tag = true;
1208 break;
1209 }
1210 }
1211
1212 if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) {
1213 blk_mq_put_driver_tag(rq);
1214 break;
1215 }
1216
1217 list_del_init(&rq->queuelist);
1218
1219 bd.rq = rq;
1220
1221 /*
1222 * Flag last if we have no more requests, or if we have more
1223 * but can't assign a driver tag to it.
1224 */
1225 if (list_empty(list))
1226 bd.last = true;
1227 else {
1228 nxt = list_first_entry(list, struct request, queuelist);
1229 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1230 }
1231
1232 ret = q->mq_ops->queue_rq(hctx, &bd);
1233 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1234 /*
1235 * If an I/O scheduler has been configured and we got a
1236 * driver tag for the next request already, free it
1237 * again.
1238 */
1239 if (!list_empty(list)) {
1240 nxt = list_first_entry(list, struct request, queuelist);
1241 blk_mq_put_driver_tag(nxt);
1242 }
1243 list_add(&rq->queuelist, list);
1244 __blk_mq_requeue_request(rq);
1245 break;
1246 }
1247
1248 if (unlikely(ret != BLK_STS_OK)) {
1249 errors++;
1250 blk_mq_end_request(rq, BLK_STS_IOERR);
1251 continue;
1252 }
1253
1254 queued++;
1255 } while (!list_empty(list));
1256
1257 hctx->dispatched[queued_to_index(queued)]++;
1258
1259 /*
1260 * Any items that need requeuing? Stuff them into hctx->dispatch,
1261 * that is where we will continue on next queue run.
1262 */
1263 if (!list_empty(list)) {
1264 bool needs_restart;
1265
1266 spin_lock(&hctx->lock);
1267 list_splice_init(list, &hctx->dispatch);
1268 spin_unlock(&hctx->lock);
1269
1270 /*
1271 * If SCHED_RESTART was set by the caller of this function and
1272 * it is no longer set that means that it was cleared by another
1273 * thread and hence that a queue rerun is needed.
1274 *
1275 * If 'no_tag' is set, that means that we failed getting
1276 * a driver tag with an I/O scheduler attached. If our dispatch
1277 * waitqueue is no longer active, ensure that we run the queue
1278 * AFTER adding our entries back to the list.
1279 *
1280 * If no I/O scheduler has been configured it is possible that
1281 * the hardware queue got stopped and restarted before requests
1282 * were pushed back onto the dispatch list. Rerun the queue to
1283 * avoid starvation. Notes:
1284 * - blk_mq_run_hw_queue() checks whether or not a queue has
1285 * been stopped before rerunning a queue.
1286 * - Some but not all block drivers stop a queue before
1287 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1288 * and dm-rq.
1289 *
1290 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1291 * bit is set, run queue after a delay to avoid IO stalls
1292 * that could otherwise occur if the queue is idle.
1293 */
1294 needs_restart = blk_mq_sched_needs_restart(hctx);
1295 if (!needs_restart ||
1296 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1297 blk_mq_run_hw_queue(hctx, true);
1298 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1299 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1300 }
1301
1302 return (queued + errors) != 0;
1303 }
1304
1305 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1306 {
1307 int srcu_idx;
1308
1309 /*
1310 * We should be running this queue from one of the CPUs that
1311 * are mapped to it.
1312 *
1313 * There are at least two related races now between setting
1314 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1315 * __blk_mq_run_hw_queue():
1316 *
1317 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1318 * but later it becomes online, then this warning is harmless
1319 * at all
1320 *
1321 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1322 * but later it becomes offline, then the warning can't be
1323 * triggered, and we depend on blk-mq timeout handler to
1324 * handle dispatched requests to this hctx
1325 */
1326 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1327 cpu_online(hctx->next_cpu)) {
1328 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1329 raw_smp_processor_id(),
1330 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1331 dump_stack();
1332 }
1333
1334 /*
1335 * We can't run the queue inline with ints disabled. Ensure that
1336 * we catch bad users of this early.
1337 */
1338 WARN_ON_ONCE(in_interrupt());
1339
1340 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1341
1342 hctx_lock(hctx, &srcu_idx);
1343 blk_mq_sched_dispatch_requests(hctx);
1344 hctx_unlock(hctx, srcu_idx);
1345 }
1346
1347 /*
1348 * It'd be great if the workqueue API had a way to pass
1349 * in a mask and had some smarts for more clever placement.
1350 * For now we just round-robin here, switching for every
1351 * BLK_MQ_CPU_WORK_BATCH queued items.
1352 */
1353 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1354 {
1355 bool tried = false;
1356
1357 if (hctx->queue->nr_hw_queues == 1)
1358 return WORK_CPU_UNBOUND;
1359
1360 if (--hctx->next_cpu_batch <= 0) {
1361 int next_cpu;
1362 select_cpu:
1363 next_cpu = cpumask_next_and(hctx->next_cpu, hctx->cpumask,
1364 cpu_online_mask);
1365 if (next_cpu >= nr_cpu_ids)
1366 next_cpu = cpumask_first_and(hctx->cpumask,cpu_online_mask);
1367
1368 /*
1369 * No online CPU is found, so have to make sure hctx->next_cpu
1370 * is set correctly for not breaking workqueue.
1371 */
1372 if (next_cpu >= nr_cpu_ids)
1373 hctx->next_cpu = cpumask_first(hctx->cpumask);
1374 else
1375 hctx->next_cpu = next_cpu;
1376 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1377 }
1378
1379 /*
1380 * Do unbound schedule if we can't find a online CPU for this hctx,
1381 * and it should only happen in the path of handling CPU DEAD.
1382 */
1383 if (!cpu_online(hctx->next_cpu)) {
1384 if (!tried) {
1385 tried = true;
1386 goto select_cpu;
1387 }
1388
1389 /*
1390 * Make sure to re-select CPU next time once after CPUs
1391 * in hctx->cpumask become online again.
1392 */
1393 hctx->next_cpu_batch = 1;
1394 return WORK_CPU_UNBOUND;
1395 }
1396 return hctx->next_cpu;
1397 }
1398
1399 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1400 unsigned long msecs)
1401 {
1402 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1403 return;
1404
1405 if (unlikely(blk_mq_hctx_stopped(hctx)))
1406 return;
1407
1408 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1409 int cpu = get_cpu();
1410 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1411 __blk_mq_run_hw_queue(hctx);
1412 put_cpu();
1413 return;
1414 }
1415
1416 put_cpu();
1417 }
1418
1419 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1420 msecs_to_jiffies(msecs));
1421 }
1422
1423 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1424 {
1425 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1426 }
1427 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1428
1429 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1430 {
1431 int srcu_idx;
1432 bool need_run;
1433
1434 /*
1435 * When queue is quiesced, we may be switching io scheduler, or
1436 * updating nr_hw_queues, or other things, and we can't run queue
1437 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1438 *
1439 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1440 * quiesced.
1441 */
1442 hctx_lock(hctx, &srcu_idx);
1443 need_run = !blk_queue_quiesced(hctx->queue) &&
1444 blk_mq_hctx_has_pending(hctx);
1445 hctx_unlock(hctx, srcu_idx);
1446
1447 if (need_run) {
1448 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1449 return true;
1450 }
1451
1452 return false;
1453 }
1454 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1455
1456 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1457 {
1458 struct blk_mq_hw_ctx *hctx;
1459 int i;
1460
1461 queue_for_each_hw_ctx(q, hctx, i) {
1462 if (blk_mq_hctx_stopped(hctx))
1463 continue;
1464
1465 blk_mq_run_hw_queue(hctx, async);
1466 }
1467 }
1468 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1469
1470 /**
1471 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1472 * @q: request queue.
1473 *
1474 * The caller is responsible for serializing this function against
1475 * blk_mq_{start,stop}_hw_queue().
1476 */
1477 bool blk_mq_queue_stopped(struct request_queue *q)
1478 {
1479 struct blk_mq_hw_ctx *hctx;
1480 int i;
1481
1482 queue_for_each_hw_ctx(q, hctx, i)
1483 if (blk_mq_hctx_stopped(hctx))
1484 return true;
1485
1486 return false;
1487 }
1488 EXPORT_SYMBOL(blk_mq_queue_stopped);
1489
1490 /*
1491 * This function is often used for pausing .queue_rq() by driver when
1492 * there isn't enough resource or some conditions aren't satisfied, and
1493 * BLK_STS_RESOURCE is usually returned.
1494 *
1495 * We do not guarantee that dispatch can be drained or blocked
1496 * after blk_mq_stop_hw_queue() returns. Please use
1497 * blk_mq_quiesce_queue() for that requirement.
1498 */
1499 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1500 {
1501 cancel_delayed_work(&hctx->run_work);
1502
1503 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1504 }
1505 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1506
1507 /*
1508 * This function is often used for pausing .queue_rq() by driver when
1509 * there isn't enough resource or some conditions aren't satisfied, and
1510 * BLK_STS_RESOURCE is usually returned.
1511 *
1512 * We do not guarantee that dispatch can be drained or blocked
1513 * after blk_mq_stop_hw_queues() returns. Please use
1514 * blk_mq_quiesce_queue() for that requirement.
1515 */
1516 void blk_mq_stop_hw_queues(struct request_queue *q)
1517 {
1518 struct blk_mq_hw_ctx *hctx;
1519 int i;
1520
1521 queue_for_each_hw_ctx(q, hctx, i)
1522 blk_mq_stop_hw_queue(hctx);
1523 }
1524 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1525
1526 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1527 {
1528 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1529
1530 blk_mq_run_hw_queue(hctx, false);
1531 }
1532 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1533
1534 void blk_mq_start_hw_queues(struct request_queue *q)
1535 {
1536 struct blk_mq_hw_ctx *hctx;
1537 int i;
1538
1539 queue_for_each_hw_ctx(q, hctx, i)
1540 blk_mq_start_hw_queue(hctx);
1541 }
1542 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1543
1544 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1545 {
1546 if (!blk_mq_hctx_stopped(hctx))
1547 return;
1548
1549 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1550 blk_mq_run_hw_queue(hctx, async);
1551 }
1552 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1553
1554 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1555 {
1556 struct blk_mq_hw_ctx *hctx;
1557 int i;
1558
1559 queue_for_each_hw_ctx(q, hctx, i)
1560 blk_mq_start_stopped_hw_queue(hctx, async);
1561 }
1562 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1563
1564 static void blk_mq_run_work_fn(struct work_struct *work)
1565 {
1566 struct blk_mq_hw_ctx *hctx;
1567
1568 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1569
1570 /*
1571 * If we are stopped, don't run the queue. The exception is if
1572 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1573 * the STOPPED bit and run it.
1574 */
1575 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1576 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1577 return;
1578
1579 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1580 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1581 }
1582
1583 __blk_mq_run_hw_queue(hctx);
1584 }
1585
1586
1587 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1588 {
1589 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1590 return;
1591
1592 /*
1593 * Stop the hw queue, then modify currently delayed work.
1594 * This should prevent us from running the queue prematurely.
1595 * Mark the queue as auto-clearing STOPPED when it runs.
1596 */
1597 blk_mq_stop_hw_queue(hctx);
1598 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1599 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1600 &hctx->run_work,
1601 msecs_to_jiffies(msecs));
1602 }
1603 EXPORT_SYMBOL(blk_mq_delay_queue);
1604
1605 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1606 struct request *rq,
1607 bool at_head)
1608 {
1609 struct blk_mq_ctx *ctx = rq->mq_ctx;
1610
1611 lockdep_assert_held(&ctx->lock);
1612
1613 trace_block_rq_insert(hctx->queue, rq);
1614
1615 if (at_head)
1616 list_add(&rq->queuelist, &ctx->rq_list);
1617 else
1618 list_add_tail(&rq->queuelist, &ctx->rq_list);
1619 }
1620
1621 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1622 bool at_head)
1623 {
1624 struct blk_mq_ctx *ctx = rq->mq_ctx;
1625
1626 lockdep_assert_held(&ctx->lock);
1627
1628 __blk_mq_insert_req_list(hctx, rq, at_head);
1629 blk_mq_hctx_mark_pending(hctx, ctx);
1630 }
1631
1632 /*
1633 * Should only be used carefully, when the caller knows we want to
1634 * bypass a potential IO scheduler on the target device.
1635 */
1636 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1637 {
1638 struct blk_mq_ctx *ctx = rq->mq_ctx;
1639 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1640
1641 spin_lock(&hctx->lock);
1642 list_add_tail(&rq->queuelist, &hctx->dispatch);
1643 spin_unlock(&hctx->lock);
1644
1645 if (run_queue)
1646 blk_mq_run_hw_queue(hctx, false);
1647 }
1648
1649 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1650 struct list_head *list)
1651
1652 {
1653 /*
1654 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1655 * offline now
1656 */
1657 spin_lock(&ctx->lock);
1658 while (!list_empty(list)) {
1659 struct request *rq;
1660
1661 rq = list_first_entry(list, struct request, queuelist);
1662 BUG_ON(rq->mq_ctx != ctx);
1663 list_del_init(&rq->queuelist);
1664 __blk_mq_insert_req_list(hctx, rq, false);
1665 }
1666 blk_mq_hctx_mark_pending(hctx, ctx);
1667 spin_unlock(&ctx->lock);
1668 }
1669
1670 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1671 {
1672 struct request *rqa = container_of(a, struct request, queuelist);
1673 struct request *rqb = container_of(b, struct request, queuelist);
1674
1675 return !(rqa->mq_ctx < rqb->mq_ctx ||
1676 (rqa->mq_ctx == rqb->mq_ctx &&
1677 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1678 }
1679
1680 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1681 {
1682 struct blk_mq_ctx *this_ctx;
1683 struct request_queue *this_q;
1684 struct request *rq;
1685 LIST_HEAD(list);
1686 LIST_HEAD(ctx_list);
1687 unsigned int depth;
1688
1689 list_splice_init(&plug->mq_list, &list);
1690
1691 list_sort(NULL, &list, plug_ctx_cmp);
1692
1693 this_q = NULL;
1694 this_ctx = NULL;
1695 depth = 0;
1696
1697 while (!list_empty(&list)) {
1698 rq = list_entry_rq(list.next);
1699 list_del_init(&rq->queuelist);
1700 BUG_ON(!rq->q);
1701 if (rq->mq_ctx != this_ctx) {
1702 if (this_ctx) {
1703 trace_block_unplug(this_q, depth, from_schedule);
1704 blk_mq_sched_insert_requests(this_q, this_ctx,
1705 &ctx_list,
1706 from_schedule);
1707 }
1708
1709 this_ctx = rq->mq_ctx;
1710 this_q = rq->q;
1711 depth = 0;
1712 }
1713
1714 depth++;
1715 list_add_tail(&rq->queuelist, &ctx_list);
1716 }
1717
1718 /*
1719 * If 'this_ctx' is set, we know we have entries to complete
1720 * on 'ctx_list'. Do those.
1721 */
1722 if (this_ctx) {
1723 trace_block_unplug(this_q, depth, from_schedule);
1724 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1725 from_schedule);
1726 }
1727 }
1728
1729 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1730 {
1731 blk_init_request_from_bio(rq, bio);
1732
1733 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1734
1735 blk_account_io_start(rq, true);
1736 }
1737
1738 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1739 struct blk_mq_ctx *ctx,
1740 struct request *rq)
1741 {
1742 spin_lock(&ctx->lock);
1743 __blk_mq_insert_request(hctx, rq, false);
1744 spin_unlock(&ctx->lock);
1745 }
1746
1747 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1748 {
1749 if (rq->tag != -1)
1750 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1751
1752 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1753 }
1754
1755 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1756 struct request *rq,
1757 blk_qc_t *cookie)
1758 {
1759 struct request_queue *q = rq->q;
1760 struct blk_mq_queue_data bd = {
1761 .rq = rq,
1762 .last = true,
1763 };
1764 blk_qc_t new_cookie;
1765 blk_status_t ret;
1766
1767 new_cookie = request_to_qc_t(hctx, rq);
1768
1769 /*
1770 * For OK queue, we are done. For error, caller may kill it.
1771 * Any other error (busy), just add it to our list as we
1772 * previously would have done.
1773 */
1774 ret = q->mq_ops->queue_rq(hctx, &bd);
1775 switch (ret) {
1776 case BLK_STS_OK:
1777 *cookie = new_cookie;
1778 break;
1779 case BLK_STS_RESOURCE:
1780 case BLK_STS_DEV_RESOURCE:
1781 __blk_mq_requeue_request(rq);
1782 break;
1783 default:
1784 *cookie = BLK_QC_T_NONE;
1785 break;
1786 }
1787
1788 return ret;
1789 }
1790
1791 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1792 struct request *rq,
1793 blk_qc_t *cookie,
1794 bool bypass_insert)
1795 {
1796 struct request_queue *q = rq->q;
1797 bool run_queue = true;
1798
1799 /*
1800 * RCU or SRCU read lock is needed before checking quiesced flag.
1801 *
1802 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1803 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1804 * and avoid driver to try to dispatch again.
1805 */
1806 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1807 run_queue = false;
1808 bypass_insert = false;
1809 goto insert;
1810 }
1811
1812 if (q->elevator && !bypass_insert)
1813 goto insert;
1814
1815 if (!blk_mq_get_driver_tag(rq, NULL, false))
1816 goto insert;
1817
1818 if (!blk_mq_get_dispatch_budget(hctx)) {
1819 blk_mq_put_driver_tag(rq);
1820 goto insert;
1821 }
1822
1823 return __blk_mq_issue_directly(hctx, rq, cookie);
1824 insert:
1825 if (bypass_insert)
1826 return BLK_STS_RESOURCE;
1827
1828 blk_mq_sched_insert_request(rq, false, run_queue, false);
1829 return BLK_STS_OK;
1830 }
1831
1832 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1833 struct request *rq, blk_qc_t *cookie)
1834 {
1835 blk_status_t ret;
1836 int srcu_idx;
1837
1838 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1839
1840 hctx_lock(hctx, &srcu_idx);
1841
1842 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1843 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1844 blk_mq_sched_insert_request(rq, false, true, false);
1845 else if (ret != BLK_STS_OK)
1846 blk_mq_end_request(rq, ret);
1847
1848 hctx_unlock(hctx, srcu_idx);
1849 }
1850
1851 blk_status_t blk_mq_request_issue_directly(struct request *rq)
1852 {
1853 blk_status_t ret;
1854 int srcu_idx;
1855 blk_qc_t unused_cookie;
1856 struct blk_mq_ctx *ctx = rq->mq_ctx;
1857 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1858
1859 hctx_lock(hctx, &srcu_idx);
1860 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
1861 hctx_unlock(hctx, srcu_idx);
1862
1863 return ret;
1864 }
1865
1866 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1867 {
1868 const int is_sync = op_is_sync(bio->bi_opf);
1869 const int is_flush_fua = op_is_flush(bio->bi_opf);
1870 struct blk_mq_alloc_data data = { .flags = 0 };
1871 struct request *rq;
1872 unsigned int request_count = 0;
1873 struct blk_plug *plug;
1874 struct request *same_queue_rq = NULL;
1875 blk_qc_t cookie;
1876 unsigned int wb_acct;
1877
1878 blk_queue_bounce(q, &bio);
1879
1880 blk_queue_split(q, &bio);
1881
1882 if (!bio_integrity_prep(bio))
1883 return BLK_QC_T_NONE;
1884
1885 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1886 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1887 return BLK_QC_T_NONE;
1888
1889 if (blk_mq_sched_bio_merge(q, bio))
1890 return BLK_QC_T_NONE;
1891
1892 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1893
1894 trace_block_getrq(q, bio, bio->bi_opf);
1895
1896 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1897 if (unlikely(!rq)) {
1898 __wbt_done(q->rq_wb, wb_acct);
1899 if (bio->bi_opf & REQ_NOWAIT)
1900 bio_wouldblock_error(bio);
1901 return BLK_QC_T_NONE;
1902 }
1903
1904 wbt_track(&rq->issue_stat, wb_acct);
1905
1906 cookie = request_to_qc_t(data.hctx, rq);
1907
1908 plug = current->plug;
1909 if (unlikely(is_flush_fua)) {
1910 blk_mq_put_ctx(data.ctx);
1911 blk_mq_bio_to_request(rq, bio);
1912
1913 /* bypass scheduler for flush rq */
1914 blk_insert_flush(rq);
1915 blk_mq_run_hw_queue(data.hctx, true);
1916 } else if (plug && q->nr_hw_queues == 1) {
1917 struct request *last = NULL;
1918
1919 blk_mq_put_ctx(data.ctx);
1920 blk_mq_bio_to_request(rq, bio);
1921
1922 /*
1923 * @request_count may become stale because of schedule
1924 * out, so check the list again.
1925 */
1926 if (list_empty(&plug->mq_list))
1927 request_count = 0;
1928 else if (blk_queue_nomerges(q))
1929 request_count = blk_plug_queued_count(q);
1930
1931 if (!request_count)
1932 trace_block_plug(q);
1933 else
1934 last = list_entry_rq(plug->mq_list.prev);
1935
1936 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1937 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1938 blk_flush_plug_list(plug, false);
1939 trace_block_plug(q);
1940 }
1941
1942 list_add_tail(&rq->queuelist, &plug->mq_list);
1943 } else if (plug && !blk_queue_nomerges(q)) {
1944 blk_mq_bio_to_request(rq, bio);
1945
1946 /*
1947 * We do limited plugging. If the bio can be merged, do that.
1948 * Otherwise the existing request in the plug list will be
1949 * issued. So the plug list will have one request at most
1950 * The plug list might get flushed before this. If that happens,
1951 * the plug list is empty, and same_queue_rq is invalid.
1952 */
1953 if (list_empty(&plug->mq_list))
1954 same_queue_rq = NULL;
1955 if (same_queue_rq)
1956 list_del_init(&same_queue_rq->queuelist);
1957 list_add_tail(&rq->queuelist, &plug->mq_list);
1958
1959 blk_mq_put_ctx(data.ctx);
1960
1961 if (same_queue_rq) {
1962 data.hctx = blk_mq_map_queue(q,
1963 same_queue_rq->mq_ctx->cpu);
1964 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1965 &cookie);
1966 }
1967 } else if (q->nr_hw_queues > 1 && is_sync) {
1968 blk_mq_put_ctx(data.ctx);
1969 blk_mq_bio_to_request(rq, bio);
1970 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1971 } else if (q->elevator) {
1972 blk_mq_put_ctx(data.ctx);
1973 blk_mq_bio_to_request(rq, bio);
1974 blk_mq_sched_insert_request(rq, false, true, true);
1975 } else {
1976 blk_mq_put_ctx(data.ctx);
1977 blk_mq_bio_to_request(rq, bio);
1978 blk_mq_queue_io(data.hctx, data.ctx, rq);
1979 blk_mq_run_hw_queue(data.hctx, true);
1980 }
1981
1982 return cookie;
1983 }
1984
1985 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1986 unsigned int hctx_idx)
1987 {
1988 struct page *page;
1989
1990 if (tags->rqs && set->ops->exit_request) {
1991 int i;
1992
1993 for (i = 0; i < tags->nr_tags; i++) {
1994 struct request *rq = tags->static_rqs[i];
1995
1996 if (!rq)
1997 continue;
1998 set->ops->exit_request(set, rq, hctx_idx);
1999 tags->static_rqs[i] = NULL;
2000 }
2001 }
2002
2003 while (!list_empty(&tags->page_list)) {
2004 page = list_first_entry(&tags->page_list, struct page, lru);
2005 list_del_init(&page->lru);
2006 /*
2007 * Remove kmemleak object previously allocated in
2008 * blk_mq_init_rq_map().
2009 */
2010 kmemleak_free(page_address(page));
2011 __free_pages(page, page->private);
2012 }
2013 }
2014
2015 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2016 {
2017 kfree(tags->rqs);
2018 tags->rqs = NULL;
2019 kfree(tags->static_rqs);
2020 tags->static_rqs = NULL;
2021
2022 blk_mq_free_tags(tags);
2023 }
2024
2025 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2026 unsigned int hctx_idx,
2027 unsigned int nr_tags,
2028 unsigned int reserved_tags)
2029 {
2030 struct blk_mq_tags *tags;
2031 int node;
2032
2033 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2034 if (node == NUMA_NO_NODE)
2035 node = set->numa_node;
2036
2037 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2038 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2039 if (!tags)
2040 return NULL;
2041
2042 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
2043 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2044 node);
2045 if (!tags->rqs) {
2046 blk_mq_free_tags(tags);
2047 return NULL;
2048 }
2049
2050 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
2051 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2052 node);
2053 if (!tags->static_rqs) {
2054 kfree(tags->rqs);
2055 blk_mq_free_tags(tags);
2056 return NULL;
2057 }
2058
2059 return tags;
2060 }
2061
2062 static size_t order_to_size(unsigned int order)
2063 {
2064 return (size_t)PAGE_SIZE << order;
2065 }
2066
2067 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2068 unsigned int hctx_idx, int node)
2069 {
2070 int ret;
2071
2072 if (set->ops->init_request) {
2073 ret = set->ops->init_request(set, rq, hctx_idx, node);
2074 if (ret)
2075 return ret;
2076 }
2077
2078 seqcount_init(&rq->gstate_seq);
2079 u64_stats_init(&rq->aborted_gstate_sync);
2080 return 0;
2081 }
2082
2083 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2084 unsigned int hctx_idx, unsigned int depth)
2085 {
2086 unsigned int i, j, entries_per_page, max_order = 4;
2087 size_t rq_size, left;
2088 int node;
2089
2090 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2091 if (node == NUMA_NO_NODE)
2092 node = set->numa_node;
2093
2094 INIT_LIST_HEAD(&tags->page_list);
2095
2096 /*
2097 * rq_size is the size of the request plus driver payload, rounded
2098 * to the cacheline size
2099 */
2100 rq_size = round_up(sizeof(struct request) + set->cmd_size,
2101 cache_line_size());
2102 left = rq_size * depth;
2103
2104 for (i = 0; i < depth; ) {
2105 int this_order = max_order;
2106 struct page *page;
2107 int to_do;
2108 void *p;
2109
2110 while (this_order && left < order_to_size(this_order - 1))
2111 this_order--;
2112
2113 do {
2114 page = alloc_pages_node(node,
2115 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2116 this_order);
2117 if (page)
2118 break;
2119 if (!this_order--)
2120 break;
2121 if (order_to_size(this_order) < rq_size)
2122 break;
2123 } while (1);
2124
2125 if (!page)
2126 goto fail;
2127
2128 page->private = this_order;
2129 list_add_tail(&page->lru, &tags->page_list);
2130
2131 p = page_address(page);
2132 /*
2133 * Allow kmemleak to scan these pages as they contain pointers
2134 * to additional allocations like via ops->init_request().
2135 */
2136 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2137 entries_per_page = order_to_size(this_order) / rq_size;
2138 to_do = min(entries_per_page, depth - i);
2139 left -= to_do * rq_size;
2140 for (j = 0; j < to_do; j++) {
2141 struct request *rq = p;
2142
2143 tags->static_rqs[i] = rq;
2144 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2145 tags->static_rqs[i] = NULL;
2146 goto fail;
2147 }
2148
2149 p += rq_size;
2150 i++;
2151 }
2152 }
2153 return 0;
2154
2155 fail:
2156 blk_mq_free_rqs(set, tags, hctx_idx);
2157 return -ENOMEM;
2158 }
2159
2160 /*
2161 * 'cpu' is going away. splice any existing rq_list entries from this
2162 * software queue to the hw queue dispatch list, and ensure that it
2163 * gets run.
2164 */
2165 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2166 {
2167 struct blk_mq_hw_ctx *hctx;
2168 struct blk_mq_ctx *ctx;
2169 LIST_HEAD(tmp);
2170
2171 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2172 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2173
2174 spin_lock(&ctx->lock);
2175 if (!list_empty(&ctx->rq_list)) {
2176 list_splice_init(&ctx->rq_list, &tmp);
2177 blk_mq_hctx_clear_pending(hctx, ctx);
2178 }
2179 spin_unlock(&ctx->lock);
2180
2181 if (list_empty(&tmp))
2182 return 0;
2183
2184 spin_lock(&hctx->lock);
2185 list_splice_tail_init(&tmp, &hctx->dispatch);
2186 spin_unlock(&hctx->lock);
2187
2188 blk_mq_run_hw_queue(hctx, true);
2189 return 0;
2190 }
2191
2192 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2193 {
2194 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2195 &hctx->cpuhp_dead);
2196 }
2197
2198 /* hctx->ctxs will be freed in queue's release handler */
2199 static void blk_mq_exit_hctx(struct request_queue *q,
2200 struct blk_mq_tag_set *set,
2201 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2202 {
2203 blk_mq_debugfs_unregister_hctx(hctx);
2204
2205 if (blk_mq_hw_queue_mapped(hctx))
2206 blk_mq_tag_idle(hctx);
2207
2208 if (set->ops->exit_request)
2209 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2210
2211 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2212
2213 if (set->ops->exit_hctx)
2214 set->ops->exit_hctx(hctx, hctx_idx);
2215
2216 if (hctx->flags & BLK_MQ_F_BLOCKING)
2217 cleanup_srcu_struct(hctx->srcu);
2218
2219 blk_mq_remove_cpuhp(hctx);
2220 blk_free_flush_queue(hctx->fq);
2221 sbitmap_free(&hctx->ctx_map);
2222 }
2223
2224 static void blk_mq_exit_hw_queues(struct request_queue *q,
2225 struct blk_mq_tag_set *set, int nr_queue)
2226 {
2227 struct blk_mq_hw_ctx *hctx;
2228 unsigned int i;
2229
2230 queue_for_each_hw_ctx(q, hctx, i) {
2231 if (i == nr_queue)
2232 break;
2233 blk_mq_exit_hctx(q, set, hctx, i);
2234 }
2235 }
2236
2237 static int blk_mq_init_hctx(struct request_queue *q,
2238 struct blk_mq_tag_set *set,
2239 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2240 {
2241 int node;
2242
2243 node = hctx->numa_node;
2244 if (node == NUMA_NO_NODE)
2245 node = hctx->numa_node = set->numa_node;
2246
2247 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2248 spin_lock_init(&hctx->lock);
2249 INIT_LIST_HEAD(&hctx->dispatch);
2250 hctx->queue = q;
2251 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2252
2253 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2254
2255 hctx->tags = set->tags[hctx_idx];
2256
2257 /*
2258 * Allocate space for all possible cpus to avoid allocation at
2259 * runtime
2260 */
2261 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2262 GFP_KERNEL, node);
2263 if (!hctx->ctxs)
2264 goto unregister_cpu_notifier;
2265
2266 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2267 node))
2268 goto free_ctxs;
2269
2270 hctx->nr_ctx = 0;
2271
2272 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2273 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2274
2275 if (set->ops->init_hctx &&
2276 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2277 goto free_bitmap;
2278
2279 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2280 goto exit_hctx;
2281
2282 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2283 if (!hctx->fq)
2284 goto sched_exit_hctx;
2285
2286 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2287 goto free_fq;
2288
2289 if (hctx->flags & BLK_MQ_F_BLOCKING)
2290 init_srcu_struct(hctx->srcu);
2291
2292 blk_mq_debugfs_register_hctx(q, hctx);
2293
2294 return 0;
2295
2296 free_fq:
2297 kfree(hctx->fq);
2298 sched_exit_hctx:
2299 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2300 exit_hctx:
2301 if (set->ops->exit_hctx)
2302 set->ops->exit_hctx(hctx, hctx_idx);
2303 free_bitmap:
2304 sbitmap_free(&hctx->ctx_map);
2305 free_ctxs:
2306 kfree(hctx->ctxs);
2307 unregister_cpu_notifier:
2308 blk_mq_remove_cpuhp(hctx);
2309 return -1;
2310 }
2311
2312 static void blk_mq_init_cpu_queues(struct request_queue *q,
2313 unsigned int nr_hw_queues)
2314 {
2315 unsigned int i;
2316
2317 for_each_possible_cpu(i) {
2318 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2319 struct blk_mq_hw_ctx *hctx;
2320
2321 __ctx->cpu = i;
2322 spin_lock_init(&__ctx->lock);
2323 INIT_LIST_HEAD(&__ctx->rq_list);
2324 __ctx->queue = q;
2325
2326 /*
2327 * Set local node, IFF we have more than one hw queue. If
2328 * not, we remain on the home node of the device
2329 */
2330 hctx = blk_mq_map_queue(q, i);
2331 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2332 hctx->numa_node = local_memory_node(cpu_to_node(i));
2333 }
2334 }
2335
2336 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2337 {
2338 int ret = 0;
2339
2340 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2341 set->queue_depth, set->reserved_tags);
2342 if (!set->tags[hctx_idx])
2343 return false;
2344
2345 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2346 set->queue_depth);
2347 if (!ret)
2348 return true;
2349
2350 blk_mq_free_rq_map(set->tags[hctx_idx]);
2351 set->tags[hctx_idx] = NULL;
2352 return false;
2353 }
2354
2355 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2356 unsigned int hctx_idx)
2357 {
2358 if (set->tags[hctx_idx]) {
2359 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2360 blk_mq_free_rq_map(set->tags[hctx_idx]);
2361 set->tags[hctx_idx] = NULL;
2362 }
2363 }
2364
2365 static void blk_mq_map_swqueue(struct request_queue *q)
2366 {
2367 unsigned int i, hctx_idx;
2368 struct blk_mq_hw_ctx *hctx;
2369 struct blk_mq_ctx *ctx;
2370 struct blk_mq_tag_set *set = q->tag_set;
2371
2372 /*
2373 * Avoid others reading imcomplete hctx->cpumask through sysfs
2374 */
2375 mutex_lock(&q->sysfs_lock);
2376
2377 queue_for_each_hw_ctx(q, hctx, i) {
2378 cpumask_clear(hctx->cpumask);
2379 hctx->nr_ctx = 0;
2380 }
2381
2382 /*
2383 * Map software to hardware queues.
2384 *
2385 * If the cpu isn't present, the cpu is mapped to first hctx.
2386 */
2387 for_each_possible_cpu(i) {
2388 hctx_idx = q->mq_map[i];
2389 /* unmapped hw queue can be remapped after CPU topo changed */
2390 if (!set->tags[hctx_idx] &&
2391 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2392 /*
2393 * If tags initialization fail for some hctx,
2394 * that hctx won't be brought online. In this
2395 * case, remap the current ctx to hctx[0] which
2396 * is guaranteed to always have tags allocated
2397 */
2398 q->mq_map[i] = 0;
2399 }
2400
2401 ctx = per_cpu_ptr(q->queue_ctx, i);
2402 hctx = blk_mq_map_queue(q, i);
2403
2404 cpumask_set_cpu(i, hctx->cpumask);
2405 ctx->index_hw = hctx->nr_ctx;
2406 hctx->ctxs[hctx->nr_ctx++] = ctx;
2407 }
2408
2409 mutex_unlock(&q->sysfs_lock);
2410
2411 queue_for_each_hw_ctx(q, hctx, i) {
2412 /*
2413 * If no software queues are mapped to this hardware queue,
2414 * disable it and free the request entries.
2415 */
2416 if (!hctx->nr_ctx) {
2417 /* Never unmap queue 0. We need it as a
2418 * fallback in case of a new remap fails
2419 * allocation
2420 */
2421 if (i && set->tags[i])
2422 blk_mq_free_map_and_requests(set, i);
2423
2424 hctx->tags = NULL;
2425 continue;
2426 }
2427
2428 hctx->tags = set->tags[i];
2429 WARN_ON(!hctx->tags);
2430
2431 /*
2432 * Set the map size to the number of mapped software queues.
2433 * This is more accurate and more efficient than looping
2434 * over all possibly mapped software queues.
2435 */
2436 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2437
2438 /*
2439 * Initialize batch roundrobin counts
2440 */
2441 hctx->next_cpu = cpumask_first_and(hctx->cpumask,
2442 cpu_online_mask);
2443 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2444 }
2445 }
2446
2447 /*
2448 * Caller needs to ensure that we're either frozen/quiesced, or that
2449 * the queue isn't live yet.
2450 */
2451 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2452 {
2453 struct blk_mq_hw_ctx *hctx;
2454 int i;
2455
2456 queue_for_each_hw_ctx(q, hctx, i) {
2457 if (shared) {
2458 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2459 atomic_inc(&q->shared_hctx_restart);
2460 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2461 } else {
2462 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2463 atomic_dec(&q->shared_hctx_restart);
2464 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2465 }
2466 }
2467 }
2468
2469 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2470 bool shared)
2471 {
2472 struct request_queue *q;
2473
2474 lockdep_assert_held(&set->tag_list_lock);
2475
2476 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2477 blk_mq_freeze_queue(q);
2478 queue_set_hctx_shared(q, shared);
2479 blk_mq_unfreeze_queue(q);
2480 }
2481 }
2482
2483 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2484 {
2485 struct blk_mq_tag_set *set = q->tag_set;
2486
2487 mutex_lock(&set->tag_list_lock);
2488 list_del_rcu(&q->tag_set_list);
2489 INIT_LIST_HEAD(&q->tag_set_list);
2490 if (list_is_singular(&set->tag_list)) {
2491 /* just transitioned to unshared */
2492 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2493 /* update existing queue */
2494 blk_mq_update_tag_set_depth(set, false);
2495 }
2496 mutex_unlock(&set->tag_list_lock);
2497
2498 synchronize_rcu();
2499 }
2500
2501 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2502 struct request_queue *q)
2503 {
2504 q->tag_set = set;
2505
2506 mutex_lock(&set->tag_list_lock);
2507
2508 /*
2509 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2510 */
2511 if (!list_empty(&set->tag_list) &&
2512 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2513 set->flags |= BLK_MQ_F_TAG_SHARED;
2514 /* update existing queue */
2515 blk_mq_update_tag_set_depth(set, true);
2516 }
2517 if (set->flags & BLK_MQ_F_TAG_SHARED)
2518 queue_set_hctx_shared(q, true);
2519 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2520
2521 mutex_unlock(&set->tag_list_lock);
2522 }
2523
2524 /*
2525 * It is the actual release handler for mq, but we do it from
2526 * request queue's release handler for avoiding use-after-free
2527 * and headache because q->mq_kobj shouldn't have been introduced,
2528 * but we can't group ctx/kctx kobj without it.
2529 */
2530 void blk_mq_release(struct request_queue *q)
2531 {
2532 struct blk_mq_hw_ctx *hctx;
2533 unsigned int i;
2534
2535 /* hctx kobj stays in hctx */
2536 queue_for_each_hw_ctx(q, hctx, i) {
2537 if (!hctx)
2538 continue;
2539 kobject_put(&hctx->kobj);
2540 }
2541
2542 q->mq_map = NULL;
2543
2544 kfree(q->queue_hw_ctx);
2545
2546 /*
2547 * release .mq_kobj and sw queue's kobject now because
2548 * both share lifetime with request queue.
2549 */
2550 blk_mq_sysfs_deinit(q);
2551
2552 free_percpu(q->queue_ctx);
2553 }
2554
2555 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2556 {
2557 struct request_queue *uninit_q, *q;
2558
2559 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2560 if (!uninit_q)
2561 return ERR_PTR(-ENOMEM);
2562
2563 q = blk_mq_init_allocated_queue(set, uninit_q);
2564 if (IS_ERR(q))
2565 blk_cleanup_queue(uninit_q);
2566
2567 return q;
2568 }
2569 EXPORT_SYMBOL(blk_mq_init_queue);
2570
2571 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2572 {
2573 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2574
2575 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2576 __alignof__(struct blk_mq_hw_ctx)) !=
2577 sizeof(struct blk_mq_hw_ctx));
2578
2579 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2580 hw_ctx_size += sizeof(struct srcu_struct);
2581
2582 return hw_ctx_size;
2583 }
2584
2585 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2586 struct request_queue *q)
2587 {
2588 int i, j;
2589 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2590
2591 blk_mq_sysfs_unregister(q);
2592
2593 /* protect against switching io scheduler */
2594 mutex_lock(&q->sysfs_lock);
2595 for (i = 0; i < set->nr_hw_queues; i++) {
2596 int node;
2597
2598 if (hctxs[i])
2599 continue;
2600
2601 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2602 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2603 GFP_KERNEL, node);
2604 if (!hctxs[i])
2605 break;
2606
2607 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2608 node)) {
2609 kfree(hctxs[i]);
2610 hctxs[i] = NULL;
2611 break;
2612 }
2613
2614 atomic_set(&hctxs[i]->nr_active, 0);
2615 hctxs[i]->numa_node = node;
2616 hctxs[i]->queue_num = i;
2617
2618 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2619 free_cpumask_var(hctxs[i]->cpumask);
2620 kfree(hctxs[i]);
2621 hctxs[i] = NULL;
2622 break;
2623 }
2624 blk_mq_hctx_kobj_init(hctxs[i]);
2625 }
2626 for (j = i; j < q->nr_hw_queues; j++) {
2627 struct blk_mq_hw_ctx *hctx = hctxs[j];
2628
2629 if (hctx) {
2630 if (hctx->tags)
2631 blk_mq_free_map_and_requests(set, j);
2632 blk_mq_exit_hctx(q, set, hctx, j);
2633 kobject_put(&hctx->kobj);
2634 hctxs[j] = NULL;
2635
2636 }
2637 }
2638 q->nr_hw_queues = i;
2639 mutex_unlock(&q->sysfs_lock);
2640 blk_mq_sysfs_register(q);
2641 }
2642
2643 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2644 struct request_queue *q)
2645 {
2646 /* mark the queue as mq asap */
2647 q->mq_ops = set->ops;
2648
2649 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2650 blk_mq_poll_stats_bkt,
2651 BLK_MQ_POLL_STATS_BKTS, q);
2652 if (!q->poll_cb)
2653 goto err_exit;
2654
2655 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2656 if (!q->queue_ctx)
2657 goto err_exit;
2658
2659 /* init q->mq_kobj and sw queues' kobjects */
2660 blk_mq_sysfs_init(q);
2661
2662 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2663 GFP_KERNEL, set->numa_node);
2664 if (!q->queue_hw_ctx)
2665 goto err_percpu;
2666
2667 q->mq_map = set->mq_map;
2668
2669 blk_mq_realloc_hw_ctxs(set, q);
2670 if (!q->nr_hw_queues)
2671 goto err_hctxs;
2672
2673 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2674 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2675
2676 q->nr_queues = nr_cpu_ids;
2677
2678 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2679
2680 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2681 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2682
2683 q->sg_reserved_size = INT_MAX;
2684
2685 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2686 INIT_LIST_HEAD(&q->requeue_list);
2687 spin_lock_init(&q->requeue_lock);
2688
2689 blk_queue_make_request(q, blk_mq_make_request);
2690 if (q->mq_ops->poll)
2691 q->poll_fn = blk_mq_poll;
2692
2693 /*
2694 * Do this after blk_queue_make_request() overrides it...
2695 */
2696 q->nr_requests = set->queue_depth;
2697
2698 /*
2699 * Default to classic polling
2700 */
2701 q->poll_nsec = -1;
2702
2703 if (set->ops->complete)
2704 blk_queue_softirq_done(q, set->ops->complete);
2705
2706 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2707 blk_mq_add_queue_tag_set(set, q);
2708 blk_mq_map_swqueue(q);
2709
2710 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2711 int ret;
2712
2713 ret = blk_mq_sched_init(q);
2714 if (ret)
2715 return ERR_PTR(ret);
2716 }
2717
2718 return q;
2719
2720 err_hctxs:
2721 kfree(q->queue_hw_ctx);
2722 err_percpu:
2723 free_percpu(q->queue_ctx);
2724 err_exit:
2725 q->mq_ops = NULL;
2726 return ERR_PTR(-ENOMEM);
2727 }
2728 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2729
2730 void blk_mq_free_queue(struct request_queue *q)
2731 {
2732 struct blk_mq_tag_set *set = q->tag_set;
2733
2734 blk_mq_del_queue_tag_set(q);
2735 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2736 }
2737
2738 /* Basically redo blk_mq_init_queue with queue frozen */
2739 static void blk_mq_queue_reinit(struct request_queue *q)
2740 {
2741 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2742
2743 blk_mq_debugfs_unregister_hctxs(q);
2744 blk_mq_sysfs_unregister(q);
2745
2746 /*
2747 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2748 * we should change hctx numa_node according to the new topology (this
2749 * involves freeing and re-allocating memory, worth doing?)
2750 */
2751 blk_mq_map_swqueue(q);
2752
2753 blk_mq_sysfs_register(q);
2754 blk_mq_debugfs_register_hctxs(q);
2755 }
2756
2757 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2758 {
2759 int i;
2760
2761 for (i = 0; i < set->nr_hw_queues; i++)
2762 if (!__blk_mq_alloc_rq_map(set, i))
2763 goto out_unwind;
2764
2765 return 0;
2766
2767 out_unwind:
2768 while (--i >= 0)
2769 blk_mq_free_rq_map(set->tags[i]);
2770
2771 return -ENOMEM;
2772 }
2773
2774 /*
2775 * Allocate the request maps associated with this tag_set. Note that this
2776 * may reduce the depth asked for, if memory is tight. set->queue_depth
2777 * will be updated to reflect the allocated depth.
2778 */
2779 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2780 {
2781 unsigned int depth;
2782 int err;
2783
2784 depth = set->queue_depth;
2785 do {
2786 err = __blk_mq_alloc_rq_maps(set);
2787 if (!err)
2788 break;
2789
2790 set->queue_depth >>= 1;
2791 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2792 err = -ENOMEM;
2793 break;
2794 }
2795 } while (set->queue_depth);
2796
2797 if (!set->queue_depth || err) {
2798 pr_err("blk-mq: failed to allocate request map\n");
2799 return -ENOMEM;
2800 }
2801
2802 if (depth != set->queue_depth)
2803 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2804 depth, set->queue_depth);
2805
2806 return 0;
2807 }
2808
2809 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2810 {
2811 if (set->ops->map_queues) {
2812 int cpu;
2813 /*
2814 * transport .map_queues is usually done in the following
2815 * way:
2816 *
2817 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2818 * mask = get_cpu_mask(queue)
2819 * for_each_cpu(cpu, mask)
2820 * set->mq_map[cpu] = queue;
2821 * }
2822 *
2823 * When we need to remap, the table has to be cleared for
2824 * killing stale mapping since one CPU may not be mapped
2825 * to any hw queue.
2826 */
2827 for_each_possible_cpu(cpu)
2828 set->mq_map[cpu] = 0;
2829
2830 return set->ops->map_queues(set);
2831 } else
2832 return blk_mq_map_queues(set);
2833 }
2834
2835 /*
2836 * Alloc a tag set to be associated with one or more request queues.
2837 * May fail with EINVAL for various error conditions. May adjust the
2838 * requested depth down, if if it too large. In that case, the set
2839 * value will be stored in set->queue_depth.
2840 */
2841 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2842 {
2843 int ret;
2844
2845 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2846
2847 if (!set->nr_hw_queues)
2848 return -EINVAL;
2849 if (!set->queue_depth)
2850 return -EINVAL;
2851 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2852 return -EINVAL;
2853
2854 if (!set->ops->queue_rq)
2855 return -EINVAL;
2856
2857 if (!set->ops->get_budget ^ !set->ops->put_budget)
2858 return -EINVAL;
2859
2860 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2861 pr_info("blk-mq: reduced tag depth to %u\n",
2862 BLK_MQ_MAX_DEPTH);
2863 set->queue_depth = BLK_MQ_MAX_DEPTH;
2864 }
2865
2866 /*
2867 * If a crashdump is active, then we are potentially in a very
2868 * memory constrained environment. Limit us to 1 queue and
2869 * 64 tags to prevent using too much memory.
2870 */
2871 if (is_kdump_kernel()) {
2872 set->nr_hw_queues = 1;
2873 set->queue_depth = min(64U, set->queue_depth);
2874 }
2875 /*
2876 * There is no use for more h/w queues than cpus.
2877 */
2878 if (set->nr_hw_queues > nr_cpu_ids)
2879 set->nr_hw_queues = nr_cpu_ids;
2880
2881 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2882 GFP_KERNEL, set->numa_node);
2883 if (!set->tags)
2884 return -ENOMEM;
2885
2886 ret = -ENOMEM;
2887 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2888 GFP_KERNEL, set->numa_node);
2889 if (!set->mq_map)
2890 goto out_free_tags;
2891
2892 ret = blk_mq_update_queue_map(set);
2893 if (ret)
2894 goto out_free_mq_map;
2895
2896 ret = blk_mq_alloc_rq_maps(set);
2897 if (ret)
2898 goto out_free_mq_map;
2899
2900 mutex_init(&set->tag_list_lock);
2901 INIT_LIST_HEAD(&set->tag_list);
2902
2903 return 0;
2904
2905 out_free_mq_map:
2906 kfree(set->mq_map);
2907 set->mq_map = NULL;
2908 out_free_tags:
2909 kfree(set->tags);
2910 set->tags = NULL;
2911 return ret;
2912 }
2913 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2914
2915 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2916 {
2917 int i;
2918
2919 for (i = 0; i < nr_cpu_ids; i++)
2920 blk_mq_free_map_and_requests(set, i);
2921
2922 kfree(set->mq_map);
2923 set->mq_map = NULL;
2924
2925 kfree(set->tags);
2926 set->tags = NULL;
2927 }
2928 EXPORT_SYMBOL(blk_mq_free_tag_set);
2929
2930 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2931 {
2932 struct blk_mq_tag_set *set = q->tag_set;
2933 struct blk_mq_hw_ctx *hctx;
2934 int i, ret;
2935
2936 if (!set)
2937 return -EINVAL;
2938
2939 blk_mq_freeze_queue(q);
2940 blk_mq_quiesce_queue(q);
2941
2942 ret = 0;
2943 queue_for_each_hw_ctx(q, hctx, i) {
2944 if (!hctx->tags)
2945 continue;
2946 /*
2947 * If we're using an MQ scheduler, just update the scheduler
2948 * queue depth. This is similar to what the old code would do.
2949 */
2950 if (!hctx->sched_tags) {
2951 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2952 false);
2953 } else {
2954 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2955 nr, true);
2956 }
2957 if (ret)
2958 break;
2959 }
2960
2961 if (!ret)
2962 q->nr_requests = nr;
2963
2964 blk_mq_unquiesce_queue(q);
2965 blk_mq_unfreeze_queue(q);
2966
2967 return ret;
2968 }
2969
2970 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2971 int nr_hw_queues)
2972 {
2973 struct request_queue *q;
2974
2975 lockdep_assert_held(&set->tag_list_lock);
2976
2977 if (nr_hw_queues > nr_cpu_ids)
2978 nr_hw_queues = nr_cpu_ids;
2979 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2980 return;
2981
2982 list_for_each_entry(q, &set->tag_list, tag_set_list)
2983 blk_mq_freeze_queue(q);
2984
2985 set->nr_hw_queues = nr_hw_queues;
2986 blk_mq_update_queue_map(set);
2987 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2988 blk_mq_realloc_hw_ctxs(set, q);
2989 blk_mq_queue_reinit(q);
2990 }
2991
2992 list_for_each_entry(q, &set->tag_list, tag_set_list)
2993 blk_mq_unfreeze_queue(q);
2994 }
2995
2996 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2997 {
2998 mutex_lock(&set->tag_list_lock);
2999 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3000 mutex_unlock(&set->tag_list_lock);
3001 }
3002 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3003
3004 /* Enable polling stats and return whether they were already enabled. */
3005 static bool blk_poll_stats_enable(struct request_queue *q)
3006 {
3007 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3008 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
3009 return true;
3010 blk_stat_add_callback(q, q->poll_cb);
3011 return false;
3012 }
3013
3014 static void blk_mq_poll_stats_start(struct request_queue *q)
3015 {
3016 /*
3017 * We don't arm the callback if polling stats are not enabled or the
3018 * callback is already active.
3019 */
3020 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3021 blk_stat_is_active(q->poll_cb))
3022 return;
3023
3024 blk_stat_activate_msecs(q->poll_cb, 100);
3025 }
3026
3027 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3028 {
3029 struct request_queue *q = cb->data;
3030 int bucket;
3031
3032 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3033 if (cb->stat[bucket].nr_samples)
3034 q->poll_stat[bucket] = cb->stat[bucket];
3035 }
3036 }
3037
3038 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3039 struct blk_mq_hw_ctx *hctx,
3040 struct request *rq)
3041 {
3042 unsigned long ret = 0;
3043 int bucket;
3044
3045 /*
3046 * If stats collection isn't on, don't sleep but turn it on for
3047 * future users
3048 */
3049 if (!blk_poll_stats_enable(q))
3050 return 0;
3051
3052 /*
3053 * As an optimistic guess, use half of the mean service time
3054 * for this type of request. We can (and should) make this smarter.
3055 * For instance, if the completion latencies are tight, we can
3056 * get closer than just half the mean. This is especially
3057 * important on devices where the completion latencies are longer
3058 * than ~10 usec. We do use the stats for the relevant IO size
3059 * if available which does lead to better estimates.
3060 */
3061 bucket = blk_mq_poll_stats_bkt(rq);
3062 if (bucket < 0)
3063 return ret;
3064
3065 if (q->poll_stat[bucket].nr_samples)
3066 ret = (q->poll_stat[bucket].mean + 1) / 2;
3067
3068 return ret;
3069 }
3070
3071 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3072 struct blk_mq_hw_ctx *hctx,
3073 struct request *rq)
3074 {
3075 struct hrtimer_sleeper hs;
3076 enum hrtimer_mode mode;
3077 unsigned int nsecs;
3078 ktime_t kt;
3079
3080 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3081 return false;
3082
3083 /*
3084 * poll_nsec can be:
3085 *
3086 * -1: don't ever hybrid sleep
3087 * 0: use half of prev avg
3088 * >0: use this specific value
3089 */
3090 if (q->poll_nsec == -1)
3091 return false;
3092 else if (q->poll_nsec > 0)
3093 nsecs = q->poll_nsec;
3094 else
3095 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3096
3097 if (!nsecs)
3098 return false;
3099
3100 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3101
3102 /*
3103 * This will be replaced with the stats tracking code, using
3104 * 'avg_completion_time / 2' as the pre-sleep target.
3105 */
3106 kt = nsecs;
3107
3108 mode = HRTIMER_MODE_REL;
3109 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3110 hrtimer_set_expires(&hs.timer, kt);
3111
3112 hrtimer_init_sleeper(&hs, current);
3113 do {
3114 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3115 break;
3116 set_current_state(TASK_UNINTERRUPTIBLE);
3117 hrtimer_start_expires(&hs.timer, mode);
3118 if (hs.task)
3119 io_schedule();
3120 hrtimer_cancel(&hs.timer);
3121 mode = HRTIMER_MODE_ABS;
3122 } while (hs.task && !signal_pending(current));
3123
3124 __set_current_state(TASK_RUNNING);
3125 destroy_hrtimer_on_stack(&hs.timer);
3126 return true;
3127 }
3128
3129 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
3130 {
3131 struct request_queue *q = hctx->queue;
3132 long state;
3133
3134 /*
3135 * If we sleep, have the caller restart the poll loop to reset
3136 * the state. Like for the other success return cases, the
3137 * caller is responsible for checking if the IO completed. If
3138 * the IO isn't complete, we'll get called again and will go
3139 * straight to the busy poll loop.
3140 */
3141 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3142 return true;
3143
3144 hctx->poll_considered++;
3145
3146 state = current->state;
3147 while (!need_resched()) {
3148 int ret;
3149
3150 hctx->poll_invoked++;
3151
3152 ret = q->mq_ops->poll(hctx, rq->tag);
3153 if (ret > 0) {
3154 hctx->poll_success++;
3155 set_current_state(TASK_RUNNING);
3156 return true;
3157 }
3158
3159 if (signal_pending_state(state, current))
3160 set_current_state(TASK_RUNNING);
3161
3162 if (current->state == TASK_RUNNING)
3163 return true;
3164 if (ret < 0)
3165 break;
3166 cpu_relax();
3167 }
3168
3169 __set_current_state(TASK_RUNNING);
3170 return false;
3171 }
3172
3173 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3174 {
3175 struct blk_mq_hw_ctx *hctx;
3176 struct request *rq;
3177
3178 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3179 return false;
3180
3181 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3182 if (!blk_qc_t_is_internal(cookie))
3183 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3184 else {
3185 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3186 /*
3187 * With scheduling, if the request has completed, we'll
3188 * get a NULL return here, as we clear the sched tag when
3189 * that happens. The request still remains valid, like always,
3190 * so we should be safe with just the NULL check.
3191 */
3192 if (!rq)
3193 return false;
3194 }
3195
3196 return __blk_mq_poll(hctx, rq);
3197 }
3198
3199 static int __init blk_mq_init(void)
3200 {
3201 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3202 blk_mq_hctx_notify_dead);
3203 return 0;
3204 }
3205 subsys_initcall(blk_mq_init);