]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-mq.c
blk-mq: count the hctx as active before allocating tag
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46 int ddir, bytes, bucket;
47
48 ddir = rq_data_dir(rq);
49 bytes = blk_rq_bytes(rq);
50
51 bucket = ddir + 2*(ilog2(bytes) - 9);
52
53 if (bucket < 0)
54 return -1;
55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58 return bucket;
59 }
60
61 /*
62 * Check if any of the ctx's have pending work in this hardware queue
63 */
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66 return !list_empty_careful(&hctx->dispatch) ||
67 sbitmap_any_bit_set(&hctx->ctx_map) ||
68 blk_mq_sched_has_work(hctx);
69 }
70
71 /*
72 * Mark this ctx as having pending work in this hardware queue
73 */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 struct blk_mq_ctx *ctx)
76 {
77 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 }
80
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 struct blk_mq_ctx *ctx)
83 {
84 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 }
86
87 struct mq_inflight {
88 struct hd_struct *part;
89 unsigned int *inflight;
90 };
91
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93 struct request *rq, void *priv,
94 bool reserved)
95 {
96 struct mq_inflight *mi = priv;
97
98 if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
99 !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
100 /*
101 * index[0] counts the specific partition that was asked
102 * for. index[1] counts the ones that are active on the
103 * whole device, so increment that if mi->part is indeed
104 * a partition, and not a whole device.
105 */
106 if (rq->part == mi->part)
107 mi->inflight[0]++;
108 if (mi->part->partno)
109 mi->inflight[1]++;
110 }
111 }
112
113 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
114 unsigned int inflight[2])
115 {
116 struct mq_inflight mi = { .part = part, .inflight = inflight, };
117
118 inflight[0] = inflight[1] = 0;
119 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120 }
121
122 static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
123 struct request *rq, void *priv,
124 bool reserved)
125 {
126 struct mq_inflight *mi = priv;
127
128 if (rq->part == mi->part)
129 mi->inflight[rq_data_dir(rq)]++;
130 }
131
132 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
133 unsigned int inflight[2])
134 {
135 struct mq_inflight mi = { .part = part, .inflight = inflight, };
136
137 inflight[0] = inflight[1] = 0;
138 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
139 }
140
141 void blk_freeze_queue_start(struct request_queue *q)
142 {
143 int freeze_depth;
144
145 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
146 if (freeze_depth == 1) {
147 percpu_ref_kill(&q->q_usage_counter);
148 if (q->mq_ops)
149 blk_mq_run_hw_queues(q, false);
150 }
151 }
152 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
153
154 void blk_mq_freeze_queue_wait(struct request_queue *q)
155 {
156 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
157 }
158 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
159
160 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
161 unsigned long timeout)
162 {
163 return wait_event_timeout(q->mq_freeze_wq,
164 percpu_ref_is_zero(&q->q_usage_counter),
165 timeout);
166 }
167 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
168
169 /*
170 * Guarantee no request is in use, so we can change any data structure of
171 * the queue afterward.
172 */
173 void blk_freeze_queue(struct request_queue *q)
174 {
175 /*
176 * In the !blk_mq case we are only calling this to kill the
177 * q_usage_counter, otherwise this increases the freeze depth
178 * and waits for it to return to zero. For this reason there is
179 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
180 * exported to drivers as the only user for unfreeze is blk_mq.
181 */
182 blk_freeze_queue_start(q);
183 if (!q->mq_ops)
184 blk_drain_queue(q);
185 blk_mq_freeze_queue_wait(q);
186 }
187
188 void blk_mq_freeze_queue(struct request_queue *q)
189 {
190 /*
191 * ...just an alias to keep freeze and unfreeze actions balanced
192 * in the blk_mq_* namespace
193 */
194 blk_freeze_queue(q);
195 }
196 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
197
198 void blk_mq_unfreeze_queue(struct request_queue *q)
199 {
200 int freeze_depth;
201
202 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
203 WARN_ON_ONCE(freeze_depth < 0);
204 if (!freeze_depth) {
205 percpu_ref_reinit(&q->q_usage_counter);
206 wake_up_all(&q->mq_freeze_wq);
207 }
208 }
209 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
210
211 /*
212 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
213 * mpt3sas driver such that this function can be removed.
214 */
215 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
216 {
217 unsigned long flags;
218
219 spin_lock_irqsave(q->queue_lock, flags);
220 queue_flag_set(QUEUE_FLAG_QUIESCED, q);
221 spin_unlock_irqrestore(q->queue_lock, flags);
222 }
223 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
224
225 /**
226 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
227 * @q: request queue.
228 *
229 * Note: this function does not prevent that the struct request end_io()
230 * callback function is invoked. Once this function is returned, we make
231 * sure no dispatch can happen until the queue is unquiesced via
232 * blk_mq_unquiesce_queue().
233 */
234 void blk_mq_quiesce_queue(struct request_queue *q)
235 {
236 struct blk_mq_hw_ctx *hctx;
237 unsigned int i;
238 bool rcu = false;
239
240 blk_mq_quiesce_queue_nowait(q);
241
242 queue_for_each_hw_ctx(q, hctx, i) {
243 if (hctx->flags & BLK_MQ_F_BLOCKING)
244 synchronize_srcu(hctx->queue_rq_srcu);
245 else
246 rcu = true;
247 }
248 if (rcu)
249 synchronize_rcu();
250 }
251 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
252
253 /*
254 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
255 * @q: request queue.
256 *
257 * This function recovers queue into the state before quiescing
258 * which is done by blk_mq_quiesce_queue.
259 */
260 void blk_mq_unquiesce_queue(struct request_queue *q)
261 {
262 unsigned long flags;
263
264 spin_lock_irqsave(q->queue_lock, flags);
265 queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
266 spin_unlock_irqrestore(q->queue_lock, flags);
267
268 /* dispatch requests which are inserted during quiescing */
269 blk_mq_run_hw_queues(q, true);
270 }
271 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
272
273 void blk_mq_wake_waiters(struct request_queue *q)
274 {
275 struct blk_mq_hw_ctx *hctx;
276 unsigned int i;
277
278 queue_for_each_hw_ctx(q, hctx, i)
279 if (blk_mq_hw_queue_mapped(hctx))
280 blk_mq_tag_wakeup_all(hctx->tags, true);
281 }
282
283 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
284 {
285 return blk_mq_has_free_tags(hctx->tags);
286 }
287 EXPORT_SYMBOL(blk_mq_can_queue);
288
289 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
290 unsigned int tag, unsigned int op)
291 {
292 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
293 struct request *rq = tags->static_rqs[tag];
294
295 rq->rq_flags = 0;
296
297 if (data->flags & BLK_MQ_REQ_INTERNAL) {
298 rq->tag = -1;
299 rq->internal_tag = tag;
300 } else {
301 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
302 rq->rq_flags = RQF_MQ_INFLIGHT;
303 atomic_inc(&data->hctx->nr_active);
304 }
305 rq->tag = tag;
306 rq->internal_tag = -1;
307 data->hctx->tags->rqs[rq->tag] = rq;
308 }
309
310 INIT_LIST_HEAD(&rq->queuelist);
311 /* csd/requeue_work/fifo_time is initialized before use */
312 rq->q = data->q;
313 rq->mq_ctx = data->ctx;
314 rq->cmd_flags = op;
315 if (data->flags & BLK_MQ_REQ_PREEMPT)
316 rq->rq_flags |= RQF_PREEMPT;
317 if (blk_queue_io_stat(data->q))
318 rq->rq_flags |= RQF_IO_STAT;
319 /* do not touch atomic flags, it needs atomic ops against the timer */
320 rq->cpu = -1;
321 INIT_HLIST_NODE(&rq->hash);
322 RB_CLEAR_NODE(&rq->rb_node);
323 rq->rq_disk = NULL;
324 rq->part = NULL;
325 rq->start_time = jiffies;
326 #ifdef CONFIG_BLK_CGROUP
327 rq->rl = NULL;
328 set_start_time_ns(rq);
329 rq->io_start_time_ns = 0;
330 #endif
331 rq->nr_phys_segments = 0;
332 #if defined(CONFIG_BLK_DEV_INTEGRITY)
333 rq->nr_integrity_segments = 0;
334 #endif
335 rq->special = NULL;
336 /* tag was already set */
337 rq->extra_len = 0;
338
339 INIT_LIST_HEAD(&rq->timeout_list);
340 rq->timeout = 0;
341
342 rq->end_io = NULL;
343 rq->end_io_data = NULL;
344 rq->next_rq = NULL;
345
346 data->ctx->rq_dispatched[op_is_sync(op)]++;
347 return rq;
348 }
349
350 static struct request *blk_mq_get_request(struct request_queue *q,
351 struct bio *bio, unsigned int op,
352 struct blk_mq_alloc_data *data)
353 {
354 struct elevator_queue *e = q->elevator;
355 struct request *rq;
356 unsigned int tag;
357 bool put_ctx_on_error = false;
358
359 blk_queue_enter_live(q);
360 data->q = q;
361 if (likely(!data->ctx)) {
362 data->ctx = blk_mq_get_ctx(q);
363 put_ctx_on_error = true;
364 }
365 if (likely(!data->hctx))
366 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
367 if (op & REQ_NOWAIT)
368 data->flags |= BLK_MQ_REQ_NOWAIT;
369
370 if (e) {
371 data->flags |= BLK_MQ_REQ_INTERNAL;
372
373 /*
374 * Flush requests are special and go directly to the
375 * dispatch list.
376 */
377 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
378 e->type->ops.mq.limit_depth(op, data);
379 } else {
380 blk_mq_tag_busy(data->hctx);
381 }
382
383 tag = blk_mq_get_tag(data);
384 if (tag == BLK_MQ_TAG_FAIL) {
385 if (put_ctx_on_error) {
386 blk_mq_put_ctx(data->ctx);
387 data->ctx = NULL;
388 }
389 blk_queue_exit(q);
390 return NULL;
391 }
392
393 rq = blk_mq_rq_ctx_init(data, tag, op);
394 if (!op_is_flush(op)) {
395 rq->elv.icq = NULL;
396 if (e && e->type->ops.mq.prepare_request) {
397 if (e->type->icq_cache && rq_ioc(bio))
398 blk_mq_sched_assign_ioc(rq, bio);
399
400 e->type->ops.mq.prepare_request(rq, bio);
401 rq->rq_flags |= RQF_ELVPRIV;
402 }
403 }
404 data->hctx->queued++;
405 return rq;
406 }
407
408 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
409 blk_mq_req_flags_t flags)
410 {
411 struct blk_mq_alloc_data alloc_data = { .flags = flags };
412 struct request *rq;
413 int ret;
414
415 ret = blk_queue_enter(q, flags);
416 if (ret)
417 return ERR_PTR(ret);
418
419 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
420 blk_queue_exit(q);
421
422 if (!rq)
423 return ERR_PTR(-EWOULDBLOCK);
424
425 blk_mq_put_ctx(alloc_data.ctx);
426
427 rq->__data_len = 0;
428 rq->__sector = (sector_t) -1;
429 rq->bio = rq->biotail = NULL;
430 return rq;
431 }
432 EXPORT_SYMBOL(blk_mq_alloc_request);
433
434 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
435 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
436 {
437 struct blk_mq_alloc_data alloc_data = { .flags = flags };
438 struct request *rq;
439 unsigned int cpu;
440 int ret;
441
442 /*
443 * If the tag allocator sleeps we could get an allocation for a
444 * different hardware context. No need to complicate the low level
445 * allocator for this for the rare use case of a command tied to
446 * a specific queue.
447 */
448 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
449 return ERR_PTR(-EINVAL);
450
451 if (hctx_idx >= q->nr_hw_queues)
452 return ERR_PTR(-EIO);
453
454 ret = blk_queue_enter(q, flags);
455 if (ret)
456 return ERR_PTR(ret);
457
458 /*
459 * Check if the hardware context is actually mapped to anything.
460 * If not tell the caller that it should skip this queue.
461 */
462 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
463 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
464 blk_queue_exit(q);
465 return ERR_PTR(-EXDEV);
466 }
467 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
468 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
469
470 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
471 blk_queue_exit(q);
472
473 if (!rq)
474 return ERR_PTR(-EWOULDBLOCK);
475
476 return rq;
477 }
478 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
479
480 void blk_mq_free_request(struct request *rq)
481 {
482 struct request_queue *q = rq->q;
483 struct elevator_queue *e = q->elevator;
484 struct blk_mq_ctx *ctx = rq->mq_ctx;
485 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
486 const int sched_tag = rq->internal_tag;
487
488 if (rq->rq_flags & RQF_ELVPRIV) {
489 if (e && e->type->ops.mq.finish_request)
490 e->type->ops.mq.finish_request(rq);
491 if (rq->elv.icq) {
492 put_io_context(rq->elv.icq->ioc);
493 rq->elv.icq = NULL;
494 }
495 }
496
497 ctx->rq_completed[rq_is_sync(rq)]++;
498 if (rq->rq_flags & RQF_MQ_INFLIGHT)
499 atomic_dec(&hctx->nr_active);
500
501 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
502 laptop_io_completion(q->backing_dev_info);
503
504 wbt_done(q->rq_wb, &rq->issue_stat);
505
506 if (blk_rq_rl(rq))
507 blk_put_rl(blk_rq_rl(rq));
508
509 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
510 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
511 if (rq->tag != -1)
512 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
513 if (sched_tag != -1)
514 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
515 blk_mq_sched_restart(hctx);
516 blk_queue_exit(q);
517 }
518 EXPORT_SYMBOL_GPL(blk_mq_free_request);
519
520 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
521 {
522 blk_account_io_done(rq);
523
524 if (rq->end_io) {
525 wbt_done(rq->q->rq_wb, &rq->issue_stat);
526 rq->end_io(rq, error);
527 } else {
528 if (unlikely(blk_bidi_rq(rq)))
529 blk_mq_free_request(rq->next_rq);
530 blk_mq_free_request(rq);
531 }
532 }
533 EXPORT_SYMBOL(__blk_mq_end_request);
534
535 void blk_mq_end_request(struct request *rq, blk_status_t error)
536 {
537 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
538 BUG();
539 __blk_mq_end_request(rq, error);
540 }
541 EXPORT_SYMBOL(blk_mq_end_request);
542
543 static void __blk_mq_complete_request_remote(void *data)
544 {
545 struct request *rq = data;
546
547 rq->q->softirq_done_fn(rq);
548 }
549
550 static void __blk_mq_complete_request(struct request *rq)
551 {
552 struct blk_mq_ctx *ctx = rq->mq_ctx;
553 bool shared = false;
554 int cpu;
555
556 if (rq->internal_tag != -1)
557 blk_mq_sched_completed_request(rq);
558 if (rq->rq_flags & RQF_STATS) {
559 blk_mq_poll_stats_start(rq->q);
560 blk_stat_add(rq);
561 }
562
563 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
564 rq->q->softirq_done_fn(rq);
565 return;
566 }
567
568 cpu = get_cpu();
569 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
570 shared = cpus_share_cache(cpu, ctx->cpu);
571
572 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
573 rq->csd.func = __blk_mq_complete_request_remote;
574 rq->csd.info = rq;
575 rq->csd.flags = 0;
576 smp_call_function_single_async(ctx->cpu, &rq->csd);
577 } else {
578 rq->q->softirq_done_fn(rq);
579 }
580 put_cpu();
581 }
582
583 /**
584 * blk_mq_complete_request - end I/O on a request
585 * @rq: the request being processed
586 *
587 * Description:
588 * Ends all I/O on a request. It does not handle partial completions.
589 * The actual completion happens out-of-order, through a IPI handler.
590 **/
591 void blk_mq_complete_request(struct request *rq)
592 {
593 struct request_queue *q = rq->q;
594
595 if (unlikely(blk_should_fake_timeout(q)))
596 return;
597 if (!blk_mark_rq_complete(rq))
598 __blk_mq_complete_request(rq);
599 }
600 EXPORT_SYMBOL(blk_mq_complete_request);
601
602 int blk_mq_request_started(struct request *rq)
603 {
604 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
605 }
606 EXPORT_SYMBOL_GPL(blk_mq_request_started);
607
608 void blk_mq_start_request(struct request *rq)
609 {
610 struct request_queue *q = rq->q;
611
612 blk_mq_sched_started_request(rq);
613
614 trace_block_rq_issue(q, rq);
615
616 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
617 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
618 rq->rq_flags |= RQF_STATS;
619 wbt_issue(q->rq_wb, &rq->issue_stat);
620 }
621
622 blk_add_timer(rq);
623
624 WARN_ON_ONCE(test_bit(REQ_ATOM_STARTED, &rq->atomic_flags));
625
626 /*
627 * Mark us as started and clear complete. Complete might have been
628 * set if requeue raced with timeout, which then marked it as
629 * complete. So be sure to clear complete again when we start
630 * the request, otherwise we'll ignore the completion event.
631 *
632 * Ensure that ->deadline is visible before we set STARTED, such that
633 * blk_mq_check_expired() is guaranteed to observe our ->deadline when
634 * it observes STARTED.
635 */
636 smp_wmb();
637 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
638 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
639 /*
640 * Coherence order guarantees these consecutive stores to a
641 * single variable propagate in the specified order. Thus the
642 * clear_bit() is ordered _after_ the set bit. See
643 * blk_mq_check_expired().
644 *
645 * (the bits must be part of the same byte for this to be
646 * true).
647 */
648 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
649 }
650
651 if (q->dma_drain_size && blk_rq_bytes(rq)) {
652 /*
653 * Make sure space for the drain appears. We know we can do
654 * this because max_hw_segments has been adjusted to be one
655 * fewer than the device can handle.
656 */
657 rq->nr_phys_segments++;
658 }
659 }
660 EXPORT_SYMBOL(blk_mq_start_request);
661
662 /*
663 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
664 * flag isn't set yet, so there may be race with timeout handler,
665 * but given rq->deadline is just set in .queue_rq() under
666 * this situation, the race won't be possible in reality because
667 * rq->timeout should be set as big enough to cover the window
668 * between blk_mq_start_request() called from .queue_rq() and
669 * clearing REQ_ATOM_STARTED here.
670 */
671 static void __blk_mq_requeue_request(struct request *rq)
672 {
673 struct request_queue *q = rq->q;
674
675 blk_mq_put_driver_tag(rq);
676
677 trace_block_rq_requeue(q, rq);
678 wbt_requeue(q->rq_wb, &rq->issue_stat);
679
680 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
681 if (q->dma_drain_size && blk_rq_bytes(rq))
682 rq->nr_phys_segments--;
683 }
684 }
685
686 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
687 {
688 __blk_mq_requeue_request(rq);
689
690 /* this request will be re-inserted to io scheduler queue */
691 blk_mq_sched_requeue_request(rq);
692
693 BUG_ON(blk_queued_rq(rq));
694 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
695 }
696 EXPORT_SYMBOL(blk_mq_requeue_request);
697
698 static void blk_mq_requeue_work(struct work_struct *work)
699 {
700 struct request_queue *q =
701 container_of(work, struct request_queue, requeue_work.work);
702 LIST_HEAD(rq_list);
703 struct request *rq, *next;
704
705 spin_lock_irq(&q->requeue_lock);
706 list_splice_init(&q->requeue_list, &rq_list);
707 spin_unlock_irq(&q->requeue_lock);
708
709 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
710 if (!(rq->rq_flags & RQF_SOFTBARRIER))
711 continue;
712
713 rq->rq_flags &= ~RQF_SOFTBARRIER;
714 list_del_init(&rq->queuelist);
715 blk_mq_sched_insert_request(rq, true, false, false, true);
716 }
717
718 while (!list_empty(&rq_list)) {
719 rq = list_entry(rq_list.next, struct request, queuelist);
720 list_del_init(&rq->queuelist);
721 blk_mq_sched_insert_request(rq, false, false, false, true);
722 }
723
724 blk_mq_run_hw_queues(q, false);
725 }
726
727 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
728 bool kick_requeue_list)
729 {
730 struct request_queue *q = rq->q;
731 unsigned long flags;
732
733 /*
734 * We abuse this flag that is otherwise used by the I/O scheduler to
735 * request head insertion from the workqueue.
736 */
737 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
738
739 spin_lock_irqsave(&q->requeue_lock, flags);
740 if (at_head) {
741 rq->rq_flags |= RQF_SOFTBARRIER;
742 list_add(&rq->queuelist, &q->requeue_list);
743 } else {
744 list_add_tail(&rq->queuelist, &q->requeue_list);
745 }
746 spin_unlock_irqrestore(&q->requeue_lock, flags);
747
748 if (kick_requeue_list)
749 blk_mq_kick_requeue_list(q);
750 }
751 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
752
753 void blk_mq_kick_requeue_list(struct request_queue *q)
754 {
755 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
756 }
757 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
758
759 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
760 unsigned long msecs)
761 {
762 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
763 msecs_to_jiffies(msecs));
764 }
765 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
766
767 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
768 {
769 if (tag < tags->nr_tags) {
770 prefetch(tags->rqs[tag]);
771 return tags->rqs[tag];
772 }
773
774 return NULL;
775 }
776 EXPORT_SYMBOL(blk_mq_tag_to_rq);
777
778 struct blk_mq_timeout_data {
779 unsigned long next;
780 unsigned int next_set;
781 };
782
783 void blk_mq_rq_timed_out(struct request *req, bool reserved)
784 {
785 const struct blk_mq_ops *ops = req->q->mq_ops;
786 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
787
788 /*
789 * We know that complete is set at this point. If STARTED isn't set
790 * anymore, then the request isn't active and the "timeout" should
791 * just be ignored. This can happen due to the bitflag ordering.
792 * Timeout first checks if STARTED is set, and if it is, assumes
793 * the request is active. But if we race with completion, then
794 * both flags will get cleared. So check here again, and ignore
795 * a timeout event with a request that isn't active.
796 */
797 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
798 return;
799
800 if (ops->timeout)
801 ret = ops->timeout(req, reserved);
802
803 switch (ret) {
804 case BLK_EH_HANDLED:
805 __blk_mq_complete_request(req);
806 break;
807 case BLK_EH_RESET_TIMER:
808 blk_add_timer(req);
809 blk_clear_rq_complete(req);
810 break;
811 case BLK_EH_NOT_HANDLED:
812 break;
813 default:
814 printk(KERN_ERR "block: bad eh return: %d\n", ret);
815 break;
816 }
817 }
818
819 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
820 struct request *rq, void *priv, bool reserved)
821 {
822 struct blk_mq_timeout_data *data = priv;
823 unsigned long deadline;
824
825 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
826 return;
827
828 /*
829 * Ensures that if we see STARTED we must also see our
830 * up-to-date deadline, see blk_mq_start_request().
831 */
832 smp_rmb();
833
834 deadline = READ_ONCE(rq->deadline);
835
836 /*
837 * The rq being checked may have been freed and reallocated
838 * out already here, we avoid this race by checking rq->deadline
839 * and REQ_ATOM_COMPLETE flag together:
840 *
841 * - if rq->deadline is observed as new value because of
842 * reusing, the rq won't be timed out because of timing.
843 * - if rq->deadline is observed as previous value,
844 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
845 * because we put a barrier between setting rq->deadline
846 * and clearing the flag in blk_mq_start_request(), so
847 * this rq won't be timed out too.
848 */
849 if (time_after_eq(jiffies, deadline)) {
850 if (!blk_mark_rq_complete(rq)) {
851 /*
852 * Again coherence order ensures that consecutive reads
853 * from the same variable must be in that order. This
854 * ensures that if we see COMPLETE clear, we must then
855 * see STARTED set and we'll ignore this timeout.
856 *
857 * (There's also the MB implied by the test_and_clear())
858 */
859 blk_mq_rq_timed_out(rq, reserved);
860 }
861 } else if (!data->next_set || time_after(data->next, deadline)) {
862 data->next = deadline;
863 data->next_set = 1;
864 }
865 }
866
867 static void blk_mq_timeout_work(struct work_struct *work)
868 {
869 struct request_queue *q =
870 container_of(work, struct request_queue, timeout_work);
871 struct blk_mq_timeout_data data = {
872 .next = 0,
873 .next_set = 0,
874 };
875 int i;
876
877 /* A deadlock might occur if a request is stuck requiring a
878 * timeout at the same time a queue freeze is waiting
879 * completion, since the timeout code would not be able to
880 * acquire the queue reference here.
881 *
882 * That's why we don't use blk_queue_enter here; instead, we use
883 * percpu_ref_tryget directly, because we need to be able to
884 * obtain a reference even in the short window between the queue
885 * starting to freeze, by dropping the first reference in
886 * blk_freeze_queue_start, and the moment the last request is
887 * consumed, marked by the instant q_usage_counter reaches
888 * zero.
889 */
890 if (!percpu_ref_tryget(&q->q_usage_counter))
891 return;
892
893 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
894
895 if (data.next_set) {
896 data.next = blk_rq_timeout(round_jiffies_up(data.next));
897 mod_timer(&q->timeout, data.next);
898 } else {
899 struct blk_mq_hw_ctx *hctx;
900
901 queue_for_each_hw_ctx(q, hctx, i) {
902 /* the hctx may be unmapped, so check it here */
903 if (blk_mq_hw_queue_mapped(hctx))
904 blk_mq_tag_idle(hctx);
905 }
906 }
907 blk_queue_exit(q);
908 }
909
910 struct flush_busy_ctx_data {
911 struct blk_mq_hw_ctx *hctx;
912 struct list_head *list;
913 };
914
915 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
916 {
917 struct flush_busy_ctx_data *flush_data = data;
918 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
919 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
920
921 sbitmap_clear_bit(sb, bitnr);
922 spin_lock(&ctx->lock);
923 list_splice_tail_init(&ctx->rq_list, flush_data->list);
924 spin_unlock(&ctx->lock);
925 return true;
926 }
927
928 /*
929 * Process software queues that have been marked busy, splicing them
930 * to the for-dispatch
931 */
932 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
933 {
934 struct flush_busy_ctx_data data = {
935 .hctx = hctx,
936 .list = list,
937 };
938
939 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
940 }
941 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
942
943 struct dispatch_rq_data {
944 struct blk_mq_hw_ctx *hctx;
945 struct request *rq;
946 };
947
948 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
949 void *data)
950 {
951 struct dispatch_rq_data *dispatch_data = data;
952 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
953 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
954
955 spin_lock(&ctx->lock);
956 if (unlikely(!list_empty(&ctx->rq_list))) {
957 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
958 list_del_init(&dispatch_data->rq->queuelist);
959 if (list_empty(&ctx->rq_list))
960 sbitmap_clear_bit(sb, bitnr);
961 }
962 spin_unlock(&ctx->lock);
963
964 return !dispatch_data->rq;
965 }
966
967 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
968 struct blk_mq_ctx *start)
969 {
970 unsigned off = start ? start->index_hw : 0;
971 struct dispatch_rq_data data = {
972 .hctx = hctx,
973 .rq = NULL,
974 };
975
976 __sbitmap_for_each_set(&hctx->ctx_map, off,
977 dispatch_rq_from_ctx, &data);
978
979 return data.rq;
980 }
981
982 static inline unsigned int queued_to_index(unsigned int queued)
983 {
984 if (!queued)
985 return 0;
986
987 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
988 }
989
990 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
991 bool wait)
992 {
993 struct blk_mq_alloc_data data = {
994 .q = rq->q,
995 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
996 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
997 };
998 bool shared;
999
1000 might_sleep_if(wait);
1001
1002 if (rq->tag != -1)
1003 goto done;
1004
1005 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1006 data.flags |= BLK_MQ_REQ_RESERVED;
1007
1008 shared = blk_mq_tag_busy(data.hctx);
1009 rq->tag = blk_mq_get_tag(&data);
1010 if (rq->tag >= 0) {
1011 if (shared) {
1012 rq->rq_flags |= RQF_MQ_INFLIGHT;
1013 atomic_inc(&data.hctx->nr_active);
1014 }
1015 data.hctx->tags->rqs[rq->tag] = rq;
1016 }
1017
1018 done:
1019 if (hctx)
1020 *hctx = data.hctx;
1021 return rq->tag != -1;
1022 }
1023
1024 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1025 int flags, void *key)
1026 {
1027 struct blk_mq_hw_ctx *hctx;
1028
1029 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1030
1031 list_del_init(&wait->entry);
1032 blk_mq_run_hw_queue(hctx, true);
1033 return 1;
1034 }
1035
1036 /*
1037 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1038 * the tag wakeups. For non-shared tags, we can simply mark us nedeing a
1039 * restart. For both caes, take care to check the condition again after
1040 * marking us as waiting.
1041 */
1042 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
1043 struct request *rq)
1044 {
1045 struct blk_mq_hw_ctx *this_hctx = *hctx;
1046 bool shared_tags = (this_hctx->flags & BLK_MQ_F_TAG_SHARED) != 0;
1047 struct sbq_wait_state *ws;
1048 wait_queue_entry_t *wait;
1049 bool ret;
1050
1051 if (!shared_tags) {
1052 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
1053 set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
1054 } else {
1055 wait = &this_hctx->dispatch_wait;
1056 if (!list_empty_careful(&wait->entry))
1057 return false;
1058
1059 spin_lock(&this_hctx->lock);
1060 if (!list_empty(&wait->entry)) {
1061 spin_unlock(&this_hctx->lock);
1062 return false;
1063 }
1064
1065 ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
1066 add_wait_queue(&ws->wait, wait);
1067 }
1068
1069 /*
1070 * It's possible that a tag was freed in the window between the
1071 * allocation failure and adding the hardware queue to the wait
1072 * queue.
1073 */
1074 ret = blk_mq_get_driver_tag(rq, hctx, false);
1075
1076 if (!shared_tags) {
1077 /*
1078 * Don't clear RESTART here, someone else could have set it.
1079 * At most this will cost an extra queue run.
1080 */
1081 return ret;
1082 } else {
1083 if (!ret) {
1084 spin_unlock(&this_hctx->lock);
1085 return false;
1086 }
1087
1088 /*
1089 * We got a tag, remove ourselves from the wait queue to ensure
1090 * someone else gets the wakeup.
1091 */
1092 spin_lock_irq(&ws->wait.lock);
1093 list_del_init(&wait->entry);
1094 spin_unlock_irq(&ws->wait.lock);
1095 spin_unlock(&this_hctx->lock);
1096 return true;
1097 }
1098 }
1099
1100 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1101 bool got_budget)
1102 {
1103 struct blk_mq_hw_ctx *hctx;
1104 struct request *rq, *nxt;
1105 bool no_tag = false;
1106 int errors, queued;
1107
1108 if (list_empty(list))
1109 return false;
1110
1111 WARN_ON(!list_is_singular(list) && got_budget);
1112
1113 /*
1114 * Now process all the entries, sending them to the driver.
1115 */
1116 errors = queued = 0;
1117 do {
1118 struct blk_mq_queue_data bd;
1119 blk_status_t ret;
1120
1121 rq = list_first_entry(list, struct request, queuelist);
1122
1123 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1124 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1125 break;
1126
1127 if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1128 /*
1129 * The initial allocation attempt failed, so we need to
1130 * rerun the hardware queue when a tag is freed. The
1131 * waitqueue takes care of that. If the queue is run
1132 * before we add this entry back on the dispatch list,
1133 * we'll re-run it below.
1134 */
1135 if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1136 blk_mq_put_dispatch_budget(hctx);
1137 /*
1138 * For non-shared tags, the RESTART check
1139 * will suffice.
1140 */
1141 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1142 no_tag = true;
1143 break;
1144 }
1145 }
1146
1147 list_del_init(&rq->queuelist);
1148
1149 bd.rq = rq;
1150
1151 /*
1152 * Flag last if we have no more requests, or if we have more
1153 * but can't assign a driver tag to it.
1154 */
1155 if (list_empty(list))
1156 bd.last = true;
1157 else {
1158 nxt = list_first_entry(list, struct request, queuelist);
1159 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1160 }
1161
1162 ret = q->mq_ops->queue_rq(hctx, &bd);
1163 if (ret == BLK_STS_RESOURCE) {
1164 /*
1165 * If an I/O scheduler has been configured and we got a
1166 * driver tag for the next request already, free it
1167 * again.
1168 */
1169 if (!list_empty(list)) {
1170 nxt = list_first_entry(list, struct request, queuelist);
1171 blk_mq_put_driver_tag(nxt);
1172 }
1173 list_add(&rq->queuelist, list);
1174 __blk_mq_requeue_request(rq);
1175 break;
1176 }
1177
1178 if (unlikely(ret != BLK_STS_OK)) {
1179 errors++;
1180 blk_mq_end_request(rq, BLK_STS_IOERR);
1181 continue;
1182 }
1183
1184 queued++;
1185 } while (!list_empty(list));
1186
1187 hctx->dispatched[queued_to_index(queued)]++;
1188
1189 /*
1190 * Any items that need requeuing? Stuff them into hctx->dispatch,
1191 * that is where we will continue on next queue run.
1192 */
1193 if (!list_empty(list)) {
1194 spin_lock(&hctx->lock);
1195 list_splice_init(list, &hctx->dispatch);
1196 spin_unlock(&hctx->lock);
1197
1198 /*
1199 * If SCHED_RESTART was set by the caller of this function and
1200 * it is no longer set that means that it was cleared by another
1201 * thread and hence that a queue rerun is needed.
1202 *
1203 * If 'no_tag' is set, that means that we failed getting
1204 * a driver tag with an I/O scheduler attached. If our dispatch
1205 * waitqueue is no longer active, ensure that we run the queue
1206 * AFTER adding our entries back to the list.
1207 *
1208 * If no I/O scheduler has been configured it is possible that
1209 * the hardware queue got stopped and restarted before requests
1210 * were pushed back onto the dispatch list. Rerun the queue to
1211 * avoid starvation. Notes:
1212 * - blk_mq_run_hw_queue() checks whether or not a queue has
1213 * been stopped before rerunning a queue.
1214 * - Some but not all block drivers stop a queue before
1215 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1216 * and dm-rq.
1217 */
1218 if (!blk_mq_sched_needs_restart(hctx) ||
1219 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1220 blk_mq_run_hw_queue(hctx, true);
1221 }
1222
1223 return (queued + errors) != 0;
1224 }
1225
1226 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1227 {
1228 int srcu_idx;
1229
1230 /*
1231 * We should be running this queue from one of the CPUs that
1232 * are mapped to it.
1233 *
1234 * There are at least two related races now between setting
1235 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1236 * __blk_mq_run_hw_queue():
1237 *
1238 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1239 * but later it becomes online, then this warning is harmless
1240 * at all
1241 *
1242 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1243 * but later it becomes offline, then the warning can't be
1244 * triggered, and we depend on blk-mq timeout handler to
1245 * handle dispatched requests to this hctx
1246 */
1247 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1248 cpu_online(hctx->next_cpu)) {
1249 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1250 raw_smp_processor_id(),
1251 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1252 dump_stack();
1253 }
1254
1255 /*
1256 * We can't run the queue inline with ints disabled. Ensure that
1257 * we catch bad users of this early.
1258 */
1259 WARN_ON_ONCE(in_interrupt());
1260
1261 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1262 rcu_read_lock();
1263 blk_mq_sched_dispatch_requests(hctx);
1264 rcu_read_unlock();
1265 } else {
1266 might_sleep();
1267
1268 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1269 blk_mq_sched_dispatch_requests(hctx);
1270 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1271 }
1272 }
1273
1274 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1275 {
1276 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1277
1278 if (cpu >= nr_cpu_ids)
1279 cpu = cpumask_first(hctx->cpumask);
1280 return cpu;
1281 }
1282
1283 /*
1284 * It'd be great if the workqueue API had a way to pass
1285 * in a mask and had some smarts for more clever placement.
1286 * For now we just round-robin here, switching for every
1287 * BLK_MQ_CPU_WORK_BATCH queued items.
1288 */
1289 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1290 {
1291 bool tried = false;
1292 int next_cpu = hctx->next_cpu;
1293
1294 if (hctx->queue->nr_hw_queues == 1)
1295 return WORK_CPU_UNBOUND;
1296
1297 if (--hctx->next_cpu_batch <= 0) {
1298 select_cpu:
1299 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1300 cpu_online_mask);
1301 if (next_cpu >= nr_cpu_ids)
1302 next_cpu = blk_mq_first_mapped_cpu(hctx);
1303 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1304 }
1305
1306 /*
1307 * Do unbound schedule if we can't find a online CPU for this hctx,
1308 * and it should only happen in the path of handling CPU DEAD.
1309 */
1310 if (!cpu_online(next_cpu)) {
1311 if (!tried) {
1312 tried = true;
1313 goto select_cpu;
1314 }
1315
1316 /*
1317 * Make sure to re-select CPU next time once after CPUs
1318 * in hctx->cpumask become online again.
1319 */
1320 hctx->next_cpu = next_cpu;
1321 hctx->next_cpu_batch = 1;
1322 return WORK_CPU_UNBOUND;
1323 }
1324
1325 hctx->next_cpu = next_cpu;
1326 return next_cpu;
1327 }
1328
1329 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1330 unsigned long msecs)
1331 {
1332 if (unlikely(blk_mq_hctx_stopped(hctx)))
1333 return;
1334
1335 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1336 int cpu = get_cpu();
1337 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1338 __blk_mq_run_hw_queue(hctx);
1339 put_cpu();
1340 return;
1341 }
1342
1343 put_cpu();
1344 }
1345
1346 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1347 msecs_to_jiffies(msecs));
1348 }
1349
1350 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1351 {
1352 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1353 }
1354 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1355
1356 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1357 {
1358 if (blk_mq_hctx_has_pending(hctx)) {
1359 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1360 return true;
1361 }
1362
1363 return false;
1364 }
1365 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1366
1367 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1368 {
1369 struct blk_mq_hw_ctx *hctx;
1370 int i;
1371
1372 queue_for_each_hw_ctx(q, hctx, i) {
1373 if (blk_mq_hctx_stopped(hctx))
1374 continue;
1375
1376 blk_mq_run_hw_queue(hctx, async);
1377 }
1378 }
1379 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1380
1381 /**
1382 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1383 * @q: request queue.
1384 *
1385 * The caller is responsible for serializing this function against
1386 * blk_mq_{start,stop}_hw_queue().
1387 */
1388 bool blk_mq_queue_stopped(struct request_queue *q)
1389 {
1390 struct blk_mq_hw_ctx *hctx;
1391 int i;
1392
1393 queue_for_each_hw_ctx(q, hctx, i)
1394 if (blk_mq_hctx_stopped(hctx))
1395 return true;
1396
1397 return false;
1398 }
1399 EXPORT_SYMBOL(blk_mq_queue_stopped);
1400
1401 /*
1402 * This function is often used for pausing .queue_rq() by driver when
1403 * there isn't enough resource or some conditions aren't satisfied, and
1404 * BLK_STS_RESOURCE is usually returned.
1405 *
1406 * We do not guarantee that dispatch can be drained or blocked
1407 * after blk_mq_stop_hw_queue() returns. Please use
1408 * blk_mq_quiesce_queue() for that requirement.
1409 */
1410 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1411 {
1412 cancel_delayed_work(&hctx->run_work);
1413
1414 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1415 }
1416 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1417
1418 /*
1419 * This function is often used for pausing .queue_rq() by driver when
1420 * there isn't enough resource or some conditions aren't satisfied, and
1421 * BLK_STS_RESOURCE is usually returned.
1422 *
1423 * We do not guarantee that dispatch can be drained or blocked
1424 * after blk_mq_stop_hw_queues() returns. Please use
1425 * blk_mq_quiesce_queue() for that requirement.
1426 */
1427 void blk_mq_stop_hw_queues(struct request_queue *q)
1428 {
1429 struct blk_mq_hw_ctx *hctx;
1430 int i;
1431
1432 queue_for_each_hw_ctx(q, hctx, i)
1433 blk_mq_stop_hw_queue(hctx);
1434 }
1435 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1436
1437 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1438 {
1439 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1440
1441 blk_mq_run_hw_queue(hctx, false);
1442 }
1443 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1444
1445 void blk_mq_start_hw_queues(struct request_queue *q)
1446 {
1447 struct blk_mq_hw_ctx *hctx;
1448 int i;
1449
1450 queue_for_each_hw_ctx(q, hctx, i)
1451 blk_mq_start_hw_queue(hctx);
1452 }
1453 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1454
1455 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1456 {
1457 if (!blk_mq_hctx_stopped(hctx))
1458 return;
1459
1460 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1461 blk_mq_run_hw_queue(hctx, async);
1462 }
1463 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1464
1465 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1466 {
1467 struct blk_mq_hw_ctx *hctx;
1468 int i;
1469
1470 queue_for_each_hw_ctx(q, hctx, i)
1471 blk_mq_start_stopped_hw_queue(hctx, async);
1472 }
1473 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1474
1475 static void blk_mq_run_work_fn(struct work_struct *work)
1476 {
1477 struct blk_mq_hw_ctx *hctx;
1478
1479 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1480
1481 /*
1482 * If we are stopped, don't run the queue. The exception is if
1483 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1484 * the STOPPED bit and run it.
1485 */
1486 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1487 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1488 return;
1489
1490 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1491 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1492 }
1493
1494 __blk_mq_run_hw_queue(hctx);
1495 }
1496
1497
1498 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1499 {
1500 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1501 return;
1502
1503 /*
1504 * Stop the hw queue, then modify currently delayed work.
1505 * This should prevent us from running the queue prematurely.
1506 * Mark the queue as auto-clearing STOPPED when it runs.
1507 */
1508 blk_mq_stop_hw_queue(hctx);
1509 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1510 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1511 &hctx->run_work,
1512 msecs_to_jiffies(msecs));
1513 }
1514 EXPORT_SYMBOL(blk_mq_delay_queue);
1515
1516 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1517 struct request *rq,
1518 bool at_head)
1519 {
1520 struct blk_mq_ctx *ctx = rq->mq_ctx;
1521
1522 lockdep_assert_held(&ctx->lock);
1523
1524 trace_block_rq_insert(hctx->queue, rq);
1525
1526 if (at_head)
1527 list_add(&rq->queuelist, &ctx->rq_list);
1528 else
1529 list_add_tail(&rq->queuelist, &ctx->rq_list);
1530 }
1531
1532 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1533 bool at_head)
1534 {
1535 struct blk_mq_ctx *ctx = rq->mq_ctx;
1536
1537 lockdep_assert_held(&ctx->lock);
1538
1539 __blk_mq_insert_req_list(hctx, rq, at_head);
1540 blk_mq_hctx_mark_pending(hctx, ctx);
1541 }
1542
1543 /*
1544 * Should only be used carefully, when the caller knows we want to
1545 * bypass a potential IO scheduler on the target device.
1546 */
1547 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1548 {
1549 struct blk_mq_ctx *ctx = rq->mq_ctx;
1550 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1551
1552 spin_lock(&hctx->lock);
1553 list_add_tail(&rq->queuelist, &hctx->dispatch);
1554 spin_unlock(&hctx->lock);
1555
1556 if (run_queue)
1557 blk_mq_run_hw_queue(hctx, false);
1558 }
1559
1560 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1561 struct list_head *list)
1562
1563 {
1564 /*
1565 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1566 * offline now
1567 */
1568 spin_lock(&ctx->lock);
1569 while (!list_empty(list)) {
1570 struct request *rq;
1571
1572 rq = list_first_entry(list, struct request, queuelist);
1573 BUG_ON(rq->mq_ctx != ctx);
1574 list_del_init(&rq->queuelist);
1575 __blk_mq_insert_req_list(hctx, rq, false);
1576 }
1577 blk_mq_hctx_mark_pending(hctx, ctx);
1578 spin_unlock(&ctx->lock);
1579 }
1580
1581 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1582 {
1583 struct request *rqa = container_of(a, struct request, queuelist);
1584 struct request *rqb = container_of(b, struct request, queuelist);
1585
1586 return !(rqa->mq_ctx < rqb->mq_ctx ||
1587 (rqa->mq_ctx == rqb->mq_ctx &&
1588 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1589 }
1590
1591 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1592 {
1593 struct blk_mq_ctx *this_ctx;
1594 struct request_queue *this_q;
1595 struct request *rq;
1596 LIST_HEAD(list);
1597 LIST_HEAD(ctx_list);
1598 unsigned int depth;
1599
1600 list_splice_init(&plug->mq_list, &list);
1601
1602 list_sort(NULL, &list, plug_ctx_cmp);
1603
1604 this_q = NULL;
1605 this_ctx = NULL;
1606 depth = 0;
1607
1608 while (!list_empty(&list)) {
1609 rq = list_entry_rq(list.next);
1610 list_del_init(&rq->queuelist);
1611 BUG_ON(!rq->q);
1612 if (rq->mq_ctx != this_ctx) {
1613 if (this_ctx) {
1614 trace_block_unplug(this_q, depth, from_schedule);
1615 blk_mq_sched_insert_requests(this_q, this_ctx,
1616 &ctx_list,
1617 from_schedule);
1618 }
1619
1620 this_ctx = rq->mq_ctx;
1621 this_q = rq->q;
1622 depth = 0;
1623 }
1624
1625 depth++;
1626 list_add_tail(&rq->queuelist, &ctx_list);
1627 }
1628
1629 /*
1630 * If 'this_ctx' is set, we know we have entries to complete
1631 * on 'ctx_list'. Do those.
1632 */
1633 if (this_ctx) {
1634 trace_block_unplug(this_q, depth, from_schedule);
1635 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1636 from_schedule);
1637 }
1638 }
1639
1640 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1641 {
1642 blk_init_request_from_bio(rq, bio);
1643
1644 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1645
1646 blk_account_io_start(rq, true);
1647 }
1648
1649 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1650 struct blk_mq_ctx *ctx,
1651 struct request *rq)
1652 {
1653 spin_lock(&ctx->lock);
1654 __blk_mq_insert_request(hctx, rq, false);
1655 spin_unlock(&ctx->lock);
1656 }
1657
1658 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1659 {
1660 if (rq->tag != -1)
1661 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1662
1663 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1664 }
1665
1666 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1667 struct request *rq,
1668 blk_qc_t *cookie, bool may_sleep)
1669 {
1670 struct request_queue *q = rq->q;
1671 struct blk_mq_queue_data bd = {
1672 .rq = rq,
1673 .last = true,
1674 };
1675 blk_qc_t new_cookie;
1676 blk_status_t ret;
1677 bool run_queue = true;
1678
1679 /* RCU or SRCU read lock is needed before checking quiesced flag */
1680 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1681 run_queue = false;
1682 goto insert;
1683 }
1684
1685 if (q->elevator)
1686 goto insert;
1687
1688 if (!blk_mq_get_dispatch_budget(hctx))
1689 goto insert;
1690
1691 if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1692 blk_mq_put_dispatch_budget(hctx);
1693 goto insert;
1694 }
1695
1696 new_cookie = request_to_qc_t(hctx, rq);
1697
1698 /*
1699 * For OK queue, we are done. For error, kill it. Any other
1700 * error (busy), just add it to our list as we previously
1701 * would have done
1702 */
1703 ret = q->mq_ops->queue_rq(hctx, &bd);
1704 switch (ret) {
1705 case BLK_STS_OK:
1706 *cookie = new_cookie;
1707 return;
1708 case BLK_STS_RESOURCE:
1709 __blk_mq_requeue_request(rq);
1710 goto insert;
1711 default:
1712 *cookie = BLK_QC_T_NONE;
1713 blk_mq_end_request(rq, ret);
1714 return;
1715 }
1716
1717 insert:
1718 blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1719 }
1720
1721 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1722 struct request *rq, blk_qc_t *cookie)
1723 {
1724 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1725 rcu_read_lock();
1726 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1727 rcu_read_unlock();
1728 } else {
1729 unsigned int srcu_idx;
1730
1731 might_sleep();
1732
1733 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1734 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
1735 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1736 }
1737 }
1738
1739 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1740 {
1741 const int is_sync = op_is_sync(bio->bi_opf);
1742 const int is_flush_fua = op_is_flush(bio->bi_opf);
1743 struct blk_mq_alloc_data data = { .flags = 0 };
1744 struct request *rq;
1745 unsigned int request_count = 0;
1746 struct blk_plug *plug;
1747 struct request *same_queue_rq = NULL;
1748 blk_qc_t cookie;
1749 unsigned int wb_acct;
1750
1751 blk_queue_bounce(q, &bio);
1752
1753 blk_queue_split(q, &bio);
1754
1755 if (!bio_integrity_prep(bio))
1756 return BLK_QC_T_NONE;
1757
1758 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1759 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1760 return BLK_QC_T_NONE;
1761
1762 if (blk_mq_sched_bio_merge(q, bio))
1763 return BLK_QC_T_NONE;
1764
1765 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1766
1767 trace_block_getrq(q, bio, bio->bi_opf);
1768
1769 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1770 if (unlikely(!rq)) {
1771 __wbt_done(q->rq_wb, wb_acct);
1772 if (bio->bi_opf & REQ_NOWAIT)
1773 bio_wouldblock_error(bio);
1774 return BLK_QC_T_NONE;
1775 }
1776
1777 wbt_track(&rq->issue_stat, wb_acct);
1778
1779 cookie = request_to_qc_t(data.hctx, rq);
1780
1781 plug = current->plug;
1782 if (unlikely(is_flush_fua)) {
1783 blk_mq_put_ctx(data.ctx);
1784 blk_mq_bio_to_request(rq, bio);
1785
1786 /* bypass scheduler for flush rq */
1787 blk_insert_flush(rq);
1788 blk_mq_run_hw_queue(data.hctx, true);
1789 } else if (plug && q->nr_hw_queues == 1) {
1790 struct request *last = NULL;
1791
1792 blk_mq_put_ctx(data.ctx);
1793 blk_mq_bio_to_request(rq, bio);
1794
1795 /*
1796 * @request_count may become stale because of schedule
1797 * out, so check the list again.
1798 */
1799 if (list_empty(&plug->mq_list))
1800 request_count = 0;
1801 else if (blk_queue_nomerges(q))
1802 request_count = blk_plug_queued_count(q);
1803
1804 if (!request_count)
1805 trace_block_plug(q);
1806 else
1807 last = list_entry_rq(plug->mq_list.prev);
1808
1809 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1810 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1811 blk_flush_plug_list(plug, false);
1812 trace_block_plug(q);
1813 }
1814
1815 list_add_tail(&rq->queuelist, &plug->mq_list);
1816 } else if (plug && !blk_queue_nomerges(q)) {
1817 blk_mq_bio_to_request(rq, bio);
1818
1819 /*
1820 * We do limited plugging. If the bio can be merged, do that.
1821 * Otherwise the existing request in the plug list will be
1822 * issued. So the plug list will have one request at most
1823 * The plug list might get flushed before this. If that happens,
1824 * the plug list is empty, and same_queue_rq is invalid.
1825 */
1826 if (list_empty(&plug->mq_list))
1827 same_queue_rq = NULL;
1828 if (same_queue_rq)
1829 list_del_init(&same_queue_rq->queuelist);
1830 list_add_tail(&rq->queuelist, &plug->mq_list);
1831
1832 blk_mq_put_ctx(data.ctx);
1833
1834 if (same_queue_rq) {
1835 data.hctx = blk_mq_map_queue(q,
1836 same_queue_rq->mq_ctx->cpu);
1837 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1838 &cookie);
1839 }
1840 } else if (q->nr_hw_queues > 1 && is_sync) {
1841 blk_mq_put_ctx(data.ctx);
1842 blk_mq_bio_to_request(rq, bio);
1843 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1844 } else if (q->elevator) {
1845 blk_mq_put_ctx(data.ctx);
1846 blk_mq_bio_to_request(rq, bio);
1847 blk_mq_sched_insert_request(rq, false, true, true, true);
1848 } else {
1849 blk_mq_put_ctx(data.ctx);
1850 blk_mq_bio_to_request(rq, bio);
1851 blk_mq_queue_io(data.hctx, data.ctx, rq);
1852 blk_mq_run_hw_queue(data.hctx, true);
1853 }
1854
1855 return cookie;
1856 }
1857
1858 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1859 unsigned int hctx_idx)
1860 {
1861 struct page *page;
1862
1863 if (tags->rqs && set->ops->exit_request) {
1864 int i;
1865
1866 for (i = 0; i < tags->nr_tags; i++) {
1867 struct request *rq = tags->static_rqs[i];
1868
1869 if (!rq)
1870 continue;
1871 set->ops->exit_request(set, rq, hctx_idx);
1872 tags->static_rqs[i] = NULL;
1873 }
1874 }
1875
1876 while (!list_empty(&tags->page_list)) {
1877 page = list_first_entry(&tags->page_list, struct page, lru);
1878 list_del_init(&page->lru);
1879 /*
1880 * Remove kmemleak object previously allocated in
1881 * blk_mq_init_rq_map().
1882 */
1883 kmemleak_free(page_address(page));
1884 __free_pages(page, page->private);
1885 }
1886 }
1887
1888 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1889 {
1890 kfree(tags->rqs);
1891 tags->rqs = NULL;
1892 kfree(tags->static_rqs);
1893 tags->static_rqs = NULL;
1894
1895 blk_mq_free_tags(tags);
1896 }
1897
1898 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1899 unsigned int hctx_idx,
1900 unsigned int nr_tags,
1901 unsigned int reserved_tags)
1902 {
1903 struct blk_mq_tags *tags;
1904 int node;
1905
1906 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1907 if (node == NUMA_NO_NODE)
1908 node = set->numa_node;
1909
1910 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1911 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1912 if (!tags)
1913 return NULL;
1914
1915 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1916 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1917 node);
1918 if (!tags->rqs) {
1919 blk_mq_free_tags(tags);
1920 return NULL;
1921 }
1922
1923 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1924 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1925 node);
1926 if (!tags->static_rqs) {
1927 kfree(tags->rqs);
1928 blk_mq_free_tags(tags);
1929 return NULL;
1930 }
1931
1932 return tags;
1933 }
1934
1935 static size_t order_to_size(unsigned int order)
1936 {
1937 return (size_t)PAGE_SIZE << order;
1938 }
1939
1940 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1941 unsigned int hctx_idx, unsigned int depth)
1942 {
1943 unsigned int i, j, entries_per_page, max_order = 4;
1944 size_t rq_size, left;
1945 int node;
1946
1947 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1948 if (node == NUMA_NO_NODE)
1949 node = set->numa_node;
1950
1951 INIT_LIST_HEAD(&tags->page_list);
1952
1953 /*
1954 * rq_size is the size of the request plus driver payload, rounded
1955 * to the cacheline size
1956 */
1957 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1958 cache_line_size());
1959 left = rq_size * depth;
1960
1961 for (i = 0; i < depth; ) {
1962 int this_order = max_order;
1963 struct page *page;
1964 int to_do;
1965 void *p;
1966
1967 while (this_order && left < order_to_size(this_order - 1))
1968 this_order--;
1969
1970 do {
1971 page = alloc_pages_node(node,
1972 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1973 this_order);
1974 if (page)
1975 break;
1976 if (!this_order--)
1977 break;
1978 if (order_to_size(this_order) < rq_size)
1979 break;
1980 } while (1);
1981
1982 if (!page)
1983 goto fail;
1984
1985 page->private = this_order;
1986 list_add_tail(&page->lru, &tags->page_list);
1987
1988 p = page_address(page);
1989 /*
1990 * Allow kmemleak to scan these pages as they contain pointers
1991 * to additional allocations like via ops->init_request().
1992 */
1993 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1994 entries_per_page = order_to_size(this_order) / rq_size;
1995 to_do = min(entries_per_page, depth - i);
1996 left -= to_do * rq_size;
1997 for (j = 0; j < to_do; j++) {
1998 struct request *rq = p;
1999
2000 tags->static_rqs[i] = rq;
2001 if (set->ops->init_request) {
2002 if (set->ops->init_request(set, rq, hctx_idx,
2003 node)) {
2004 tags->static_rqs[i] = NULL;
2005 goto fail;
2006 }
2007 }
2008
2009 p += rq_size;
2010 i++;
2011 }
2012 }
2013 return 0;
2014
2015 fail:
2016 blk_mq_free_rqs(set, tags, hctx_idx);
2017 return -ENOMEM;
2018 }
2019
2020 /*
2021 * 'cpu' is going away. splice any existing rq_list entries from this
2022 * software queue to the hw queue dispatch list, and ensure that it
2023 * gets run.
2024 */
2025 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2026 {
2027 struct blk_mq_hw_ctx *hctx;
2028 struct blk_mq_ctx *ctx;
2029 LIST_HEAD(tmp);
2030
2031 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2032 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2033
2034 spin_lock(&ctx->lock);
2035 if (!list_empty(&ctx->rq_list)) {
2036 list_splice_init(&ctx->rq_list, &tmp);
2037 blk_mq_hctx_clear_pending(hctx, ctx);
2038 }
2039 spin_unlock(&ctx->lock);
2040
2041 if (list_empty(&tmp))
2042 return 0;
2043
2044 spin_lock(&hctx->lock);
2045 list_splice_tail_init(&tmp, &hctx->dispatch);
2046 spin_unlock(&hctx->lock);
2047
2048 blk_mq_run_hw_queue(hctx, true);
2049 return 0;
2050 }
2051
2052 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2053 {
2054 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2055 &hctx->cpuhp_dead);
2056 }
2057
2058 /* hctx->ctxs will be freed in queue's release handler */
2059 static void blk_mq_exit_hctx(struct request_queue *q,
2060 struct blk_mq_tag_set *set,
2061 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2062 {
2063 blk_mq_debugfs_unregister_hctx(hctx);
2064
2065 if (blk_mq_hw_queue_mapped(hctx))
2066 blk_mq_tag_idle(hctx);
2067
2068 if (set->ops->exit_request)
2069 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2070
2071 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2072
2073 if (set->ops->exit_hctx)
2074 set->ops->exit_hctx(hctx, hctx_idx);
2075
2076 if (hctx->flags & BLK_MQ_F_BLOCKING)
2077 cleanup_srcu_struct(hctx->queue_rq_srcu);
2078
2079 blk_mq_remove_cpuhp(hctx);
2080 blk_free_flush_queue(hctx->fq);
2081 sbitmap_free(&hctx->ctx_map);
2082 }
2083
2084 static void blk_mq_exit_hw_queues(struct request_queue *q,
2085 struct blk_mq_tag_set *set, int nr_queue)
2086 {
2087 struct blk_mq_hw_ctx *hctx;
2088 unsigned int i;
2089
2090 queue_for_each_hw_ctx(q, hctx, i) {
2091 if (i == nr_queue)
2092 break;
2093 blk_mq_exit_hctx(q, set, hctx, i);
2094 }
2095 }
2096
2097 static int blk_mq_init_hctx(struct request_queue *q,
2098 struct blk_mq_tag_set *set,
2099 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2100 {
2101 int node;
2102
2103 node = hctx->numa_node;
2104 if (node == NUMA_NO_NODE)
2105 node = hctx->numa_node = set->numa_node;
2106
2107 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2108 spin_lock_init(&hctx->lock);
2109 INIT_LIST_HEAD(&hctx->dispatch);
2110 hctx->queue = q;
2111 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2112
2113 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2114
2115 hctx->tags = set->tags[hctx_idx];
2116
2117 /*
2118 * Allocate space for all possible cpus to avoid allocation at
2119 * runtime
2120 */
2121 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2122 GFP_KERNEL, node);
2123 if (!hctx->ctxs)
2124 goto unregister_cpu_notifier;
2125
2126 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2127 node))
2128 goto free_ctxs;
2129
2130 hctx->nr_ctx = 0;
2131
2132 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2133 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2134
2135 if (set->ops->init_hctx &&
2136 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2137 goto free_bitmap;
2138
2139 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2140 goto exit_hctx;
2141
2142 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2143 if (!hctx->fq)
2144 goto sched_exit_hctx;
2145
2146 if (set->ops->init_request &&
2147 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
2148 node))
2149 goto free_fq;
2150
2151 if (hctx->flags & BLK_MQ_F_BLOCKING)
2152 init_srcu_struct(hctx->queue_rq_srcu);
2153
2154 blk_mq_debugfs_register_hctx(q, hctx);
2155
2156 return 0;
2157
2158 free_fq:
2159 kfree(hctx->fq);
2160 sched_exit_hctx:
2161 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2162 exit_hctx:
2163 if (set->ops->exit_hctx)
2164 set->ops->exit_hctx(hctx, hctx_idx);
2165 free_bitmap:
2166 sbitmap_free(&hctx->ctx_map);
2167 free_ctxs:
2168 kfree(hctx->ctxs);
2169 unregister_cpu_notifier:
2170 blk_mq_remove_cpuhp(hctx);
2171 return -1;
2172 }
2173
2174 static void blk_mq_init_cpu_queues(struct request_queue *q,
2175 unsigned int nr_hw_queues)
2176 {
2177 unsigned int i;
2178
2179 for_each_possible_cpu(i) {
2180 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2181 struct blk_mq_hw_ctx *hctx;
2182
2183 __ctx->cpu = i;
2184 spin_lock_init(&__ctx->lock);
2185 INIT_LIST_HEAD(&__ctx->rq_list);
2186 __ctx->queue = q;
2187
2188 /*
2189 * Set local node, IFF we have more than one hw queue. If
2190 * not, we remain on the home node of the device
2191 */
2192 hctx = blk_mq_map_queue(q, i);
2193 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2194 hctx->numa_node = local_memory_node(cpu_to_node(i));
2195 }
2196 }
2197
2198 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2199 {
2200 int ret = 0;
2201
2202 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2203 set->queue_depth, set->reserved_tags);
2204 if (!set->tags[hctx_idx])
2205 return false;
2206
2207 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2208 set->queue_depth);
2209 if (!ret)
2210 return true;
2211
2212 blk_mq_free_rq_map(set->tags[hctx_idx]);
2213 set->tags[hctx_idx] = NULL;
2214 return false;
2215 }
2216
2217 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2218 unsigned int hctx_idx)
2219 {
2220 if (set->tags[hctx_idx]) {
2221 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2222 blk_mq_free_rq_map(set->tags[hctx_idx]);
2223 set->tags[hctx_idx] = NULL;
2224 }
2225 }
2226
2227 static void blk_mq_map_swqueue(struct request_queue *q)
2228 {
2229 unsigned int i, hctx_idx;
2230 struct blk_mq_hw_ctx *hctx;
2231 struct blk_mq_ctx *ctx;
2232 struct blk_mq_tag_set *set = q->tag_set;
2233
2234 /*
2235 * Avoid others reading imcomplete hctx->cpumask through sysfs
2236 */
2237 mutex_lock(&q->sysfs_lock);
2238
2239 queue_for_each_hw_ctx(q, hctx, i) {
2240 cpumask_clear(hctx->cpumask);
2241 hctx->nr_ctx = 0;
2242 }
2243
2244 /*
2245 * Map software to hardware queues.
2246 *
2247 * If the cpu isn't present, the cpu is mapped to first hctx.
2248 */
2249 for_each_possible_cpu(i) {
2250 hctx_idx = q->mq_map[i];
2251 /* unmapped hw queue can be remapped after CPU topo changed */
2252 if (!set->tags[hctx_idx] &&
2253 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2254 /*
2255 * If tags initialization fail for some hctx,
2256 * that hctx won't be brought online. In this
2257 * case, remap the current ctx to hctx[0] which
2258 * is guaranteed to always have tags allocated
2259 */
2260 q->mq_map[i] = 0;
2261 }
2262
2263 ctx = per_cpu_ptr(q->queue_ctx, i);
2264 hctx = blk_mq_map_queue(q, i);
2265
2266 cpumask_set_cpu(i, hctx->cpumask);
2267 ctx->index_hw = hctx->nr_ctx;
2268 hctx->ctxs[hctx->nr_ctx++] = ctx;
2269 }
2270
2271 mutex_unlock(&q->sysfs_lock);
2272
2273 queue_for_each_hw_ctx(q, hctx, i) {
2274 /*
2275 * If no software queues are mapped to this hardware queue,
2276 * disable it and free the request entries.
2277 */
2278 if (!hctx->nr_ctx) {
2279 /* Never unmap queue 0. We need it as a
2280 * fallback in case of a new remap fails
2281 * allocation
2282 */
2283 if (i && set->tags[i])
2284 blk_mq_free_map_and_requests(set, i);
2285
2286 hctx->tags = NULL;
2287 continue;
2288 }
2289
2290 hctx->tags = set->tags[i];
2291 WARN_ON(!hctx->tags);
2292
2293 /*
2294 * Set the map size to the number of mapped software queues.
2295 * This is more accurate and more efficient than looping
2296 * over all possibly mapped software queues.
2297 */
2298 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2299
2300 /*
2301 * Initialize batch roundrobin counts
2302 */
2303 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2304 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2305 }
2306 }
2307
2308 /*
2309 * Caller needs to ensure that we're either frozen/quiesced, or that
2310 * the queue isn't live yet.
2311 */
2312 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2313 {
2314 struct blk_mq_hw_ctx *hctx;
2315 int i;
2316
2317 queue_for_each_hw_ctx(q, hctx, i) {
2318 if (shared) {
2319 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2320 atomic_inc(&q->shared_hctx_restart);
2321 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2322 } else {
2323 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2324 atomic_dec(&q->shared_hctx_restart);
2325 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2326 }
2327 }
2328 }
2329
2330 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2331 bool shared)
2332 {
2333 struct request_queue *q;
2334
2335 lockdep_assert_held(&set->tag_list_lock);
2336
2337 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2338 blk_mq_freeze_queue(q);
2339 queue_set_hctx_shared(q, shared);
2340 blk_mq_unfreeze_queue(q);
2341 }
2342 }
2343
2344 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2345 {
2346 struct blk_mq_tag_set *set = q->tag_set;
2347
2348 mutex_lock(&set->tag_list_lock);
2349 list_del_rcu(&q->tag_set_list);
2350 if (list_is_singular(&set->tag_list)) {
2351 /* just transitioned to unshared */
2352 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2353 /* update existing queue */
2354 blk_mq_update_tag_set_depth(set, false);
2355 }
2356 mutex_unlock(&set->tag_list_lock);
2357 synchronize_rcu();
2358 INIT_LIST_HEAD(&q->tag_set_list);
2359 }
2360
2361 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2362 struct request_queue *q)
2363 {
2364 q->tag_set = set;
2365
2366 mutex_lock(&set->tag_list_lock);
2367
2368 /*
2369 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2370 */
2371 if (!list_empty(&set->tag_list) &&
2372 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2373 set->flags |= BLK_MQ_F_TAG_SHARED;
2374 /* update existing queue */
2375 blk_mq_update_tag_set_depth(set, true);
2376 }
2377 if (set->flags & BLK_MQ_F_TAG_SHARED)
2378 queue_set_hctx_shared(q, true);
2379 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2380
2381 mutex_unlock(&set->tag_list_lock);
2382 }
2383
2384 /*
2385 * It is the actual release handler for mq, but we do it from
2386 * request queue's release handler for avoiding use-after-free
2387 * and headache because q->mq_kobj shouldn't have been introduced,
2388 * but we can't group ctx/kctx kobj without it.
2389 */
2390 void blk_mq_release(struct request_queue *q)
2391 {
2392 struct blk_mq_hw_ctx *hctx;
2393 unsigned int i;
2394
2395 /* hctx kobj stays in hctx */
2396 queue_for_each_hw_ctx(q, hctx, i) {
2397 if (!hctx)
2398 continue;
2399 kobject_put(&hctx->kobj);
2400 }
2401
2402 q->mq_map = NULL;
2403
2404 kfree(q->queue_hw_ctx);
2405
2406 /*
2407 * release .mq_kobj and sw queue's kobject now because
2408 * both share lifetime with request queue.
2409 */
2410 blk_mq_sysfs_deinit(q);
2411
2412 free_percpu(q->queue_ctx);
2413 }
2414
2415 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2416 {
2417 struct request_queue *uninit_q, *q;
2418
2419 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2420 if (!uninit_q)
2421 return ERR_PTR(-ENOMEM);
2422
2423 q = blk_mq_init_allocated_queue(set, uninit_q);
2424 if (IS_ERR(q))
2425 blk_cleanup_queue(uninit_q);
2426
2427 return q;
2428 }
2429 EXPORT_SYMBOL(blk_mq_init_queue);
2430
2431 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2432 {
2433 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2434
2435 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
2436 __alignof__(struct blk_mq_hw_ctx)) !=
2437 sizeof(struct blk_mq_hw_ctx));
2438
2439 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2440 hw_ctx_size += sizeof(struct srcu_struct);
2441
2442 return hw_ctx_size;
2443 }
2444
2445 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2446 struct request_queue *q)
2447 {
2448 int i, j;
2449 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2450
2451 blk_mq_sysfs_unregister(q);
2452
2453 /* protect against switching io scheduler */
2454 mutex_lock(&q->sysfs_lock);
2455 for (i = 0; i < set->nr_hw_queues; i++) {
2456 int node;
2457
2458 if (hctxs[i])
2459 continue;
2460
2461 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2462 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2463 GFP_KERNEL, node);
2464 if (!hctxs[i])
2465 break;
2466
2467 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2468 node)) {
2469 kfree(hctxs[i]);
2470 hctxs[i] = NULL;
2471 break;
2472 }
2473
2474 atomic_set(&hctxs[i]->nr_active, 0);
2475 hctxs[i]->numa_node = node;
2476 hctxs[i]->queue_num = i;
2477
2478 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2479 free_cpumask_var(hctxs[i]->cpumask);
2480 kfree(hctxs[i]);
2481 hctxs[i] = NULL;
2482 break;
2483 }
2484 blk_mq_hctx_kobj_init(hctxs[i]);
2485 }
2486 for (j = i; j < q->nr_hw_queues; j++) {
2487 struct blk_mq_hw_ctx *hctx = hctxs[j];
2488
2489 if (hctx) {
2490 if (hctx->tags)
2491 blk_mq_free_map_and_requests(set, j);
2492 blk_mq_exit_hctx(q, set, hctx, j);
2493 kobject_put(&hctx->kobj);
2494 hctxs[j] = NULL;
2495
2496 }
2497 }
2498 q->nr_hw_queues = i;
2499 mutex_unlock(&q->sysfs_lock);
2500 blk_mq_sysfs_register(q);
2501 }
2502
2503 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2504 struct request_queue *q)
2505 {
2506 /* mark the queue as mq asap */
2507 q->mq_ops = set->ops;
2508
2509 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2510 blk_mq_poll_stats_bkt,
2511 BLK_MQ_POLL_STATS_BKTS, q);
2512 if (!q->poll_cb)
2513 goto err_exit;
2514
2515 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2516 if (!q->queue_ctx)
2517 goto err_exit;
2518
2519 /* init q->mq_kobj and sw queues' kobjects */
2520 blk_mq_sysfs_init(q);
2521
2522 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2523 GFP_KERNEL, set->numa_node);
2524 if (!q->queue_hw_ctx)
2525 goto err_percpu;
2526
2527 q->mq_map = set->mq_map;
2528
2529 blk_mq_realloc_hw_ctxs(set, q);
2530 if (!q->nr_hw_queues)
2531 goto err_hctxs;
2532
2533 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2534 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2535
2536 q->nr_queues = nr_cpu_ids;
2537
2538 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2539
2540 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2541 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2542
2543 q->sg_reserved_size = INT_MAX;
2544
2545 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2546 INIT_LIST_HEAD(&q->requeue_list);
2547 spin_lock_init(&q->requeue_lock);
2548
2549 blk_queue_make_request(q, blk_mq_make_request);
2550 if (q->mq_ops->poll)
2551 q->poll_fn = blk_mq_poll;
2552
2553 /*
2554 * Do this after blk_queue_make_request() overrides it...
2555 */
2556 q->nr_requests = set->queue_depth;
2557
2558 /*
2559 * Default to classic polling
2560 */
2561 q->poll_nsec = -1;
2562
2563 if (set->ops->complete)
2564 blk_queue_softirq_done(q, set->ops->complete);
2565
2566 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2567 blk_mq_add_queue_tag_set(set, q);
2568 blk_mq_map_swqueue(q);
2569
2570 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2571 int ret;
2572
2573 ret = blk_mq_sched_init(q);
2574 if (ret)
2575 return ERR_PTR(ret);
2576 }
2577
2578 return q;
2579
2580 err_hctxs:
2581 kfree(q->queue_hw_ctx);
2582 err_percpu:
2583 free_percpu(q->queue_ctx);
2584 err_exit:
2585 q->mq_ops = NULL;
2586 return ERR_PTR(-ENOMEM);
2587 }
2588 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2589
2590 void blk_mq_free_queue(struct request_queue *q)
2591 {
2592 struct blk_mq_tag_set *set = q->tag_set;
2593
2594 blk_mq_del_queue_tag_set(q);
2595 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2596 }
2597
2598 /* Basically redo blk_mq_init_queue with queue frozen */
2599 static void blk_mq_queue_reinit(struct request_queue *q)
2600 {
2601 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2602
2603 blk_mq_debugfs_unregister_hctxs(q);
2604 blk_mq_sysfs_unregister(q);
2605
2606 /*
2607 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2608 * we should change hctx numa_node according to the new topology (this
2609 * involves freeing and re-allocating memory, worth doing?)
2610 */
2611 blk_mq_map_swqueue(q);
2612
2613 blk_mq_sysfs_register(q);
2614 blk_mq_debugfs_register_hctxs(q);
2615 }
2616
2617 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2618 {
2619 int i;
2620
2621 for (i = 0; i < set->nr_hw_queues; i++)
2622 if (!__blk_mq_alloc_rq_map(set, i))
2623 goto out_unwind;
2624
2625 return 0;
2626
2627 out_unwind:
2628 while (--i >= 0)
2629 blk_mq_free_rq_map(set->tags[i]);
2630
2631 return -ENOMEM;
2632 }
2633
2634 /*
2635 * Allocate the request maps associated with this tag_set. Note that this
2636 * may reduce the depth asked for, if memory is tight. set->queue_depth
2637 * will be updated to reflect the allocated depth.
2638 */
2639 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2640 {
2641 unsigned int depth;
2642 int err;
2643
2644 depth = set->queue_depth;
2645 do {
2646 err = __blk_mq_alloc_rq_maps(set);
2647 if (!err)
2648 break;
2649
2650 set->queue_depth >>= 1;
2651 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2652 err = -ENOMEM;
2653 break;
2654 }
2655 } while (set->queue_depth);
2656
2657 if (!set->queue_depth || err) {
2658 pr_err("blk-mq: failed to allocate request map\n");
2659 return -ENOMEM;
2660 }
2661
2662 if (depth != set->queue_depth)
2663 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2664 depth, set->queue_depth);
2665
2666 return 0;
2667 }
2668
2669 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2670 {
2671 if (set->ops->map_queues) {
2672 int cpu;
2673 /*
2674 * transport .map_queues is usually done in the following
2675 * way:
2676 *
2677 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2678 * mask = get_cpu_mask(queue)
2679 * for_each_cpu(cpu, mask)
2680 * set->mq_map[cpu] = queue;
2681 * }
2682 *
2683 * When we need to remap, the table has to be cleared for
2684 * killing stale mapping since one CPU may not be mapped
2685 * to any hw queue.
2686 */
2687 for_each_possible_cpu(cpu)
2688 set->mq_map[cpu] = 0;
2689
2690 return set->ops->map_queues(set);
2691 } else
2692 return blk_mq_map_queues(set);
2693 }
2694
2695 /*
2696 * Alloc a tag set to be associated with one or more request queues.
2697 * May fail with EINVAL for various error conditions. May adjust the
2698 * requested depth down, if if it too large. In that case, the set
2699 * value will be stored in set->queue_depth.
2700 */
2701 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2702 {
2703 int ret;
2704
2705 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2706
2707 if (!set->nr_hw_queues)
2708 return -EINVAL;
2709 if (!set->queue_depth)
2710 return -EINVAL;
2711 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2712 return -EINVAL;
2713
2714 if (!set->ops->queue_rq)
2715 return -EINVAL;
2716
2717 if (!set->ops->get_budget ^ !set->ops->put_budget)
2718 return -EINVAL;
2719
2720 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2721 pr_info("blk-mq: reduced tag depth to %u\n",
2722 BLK_MQ_MAX_DEPTH);
2723 set->queue_depth = BLK_MQ_MAX_DEPTH;
2724 }
2725
2726 /*
2727 * If a crashdump is active, then we are potentially in a very
2728 * memory constrained environment. Limit us to 1 queue and
2729 * 64 tags to prevent using too much memory.
2730 */
2731 if (is_kdump_kernel()) {
2732 set->nr_hw_queues = 1;
2733 set->queue_depth = min(64U, set->queue_depth);
2734 }
2735 /*
2736 * There is no use for more h/w queues than cpus.
2737 */
2738 if (set->nr_hw_queues > nr_cpu_ids)
2739 set->nr_hw_queues = nr_cpu_ids;
2740
2741 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2742 GFP_KERNEL, set->numa_node);
2743 if (!set->tags)
2744 return -ENOMEM;
2745
2746 ret = -ENOMEM;
2747 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2748 GFP_KERNEL, set->numa_node);
2749 if (!set->mq_map)
2750 goto out_free_tags;
2751
2752 ret = blk_mq_update_queue_map(set);
2753 if (ret)
2754 goto out_free_mq_map;
2755
2756 ret = blk_mq_alloc_rq_maps(set);
2757 if (ret)
2758 goto out_free_mq_map;
2759
2760 mutex_init(&set->tag_list_lock);
2761 INIT_LIST_HEAD(&set->tag_list);
2762
2763 return 0;
2764
2765 out_free_mq_map:
2766 kfree(set->mq_map);
2767 set->mq_map = NULL;
2768 out_free_tags:
2769 kfree(set->tags);
2770 set->tags = NULL;
2771 return ret;
2772 }
2773 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2774
2775 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2776 {
2777 int i;
2778
2779 for (i = 0; i < nr_cpu_ids; i++)
2780 blk_mq_free_map_and_requests(set, i);
2781
2782 kfree(set->mq_map);
2783 set->mq_map = NULL;
2784
2785 kfree(set->tags);
2786 set->tags = NULL;
2787 }
2788 EXPORT_SYMBOL(blk_mq_free_tag_set);
2789
2790 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2791 {
2792 struct blk_mq_tag_set *set = q->tag_set;
2793 struct blk_mq_hw_ctx *hctx;
2794 int i, ret;
2795
2796 if (!set)
2797 return -EINVAL;
2798
2799 if (q->nr_requests == nr)
2800 return 0;
2801
2802 blk_mq_freeze_queue(q);
2803
2804 ret = 0;
2805 queue_for_each_hw_ctx(q, hctx, i) {
2806 if (!hctx->tags)
2807 continue;
2808 /*
2809 * If we're using an MQ scheduler, just update the scheduler
2810 * queue depth. This is similar to what the old code would do.
2811 */
2812 if (!hctx->sched_tags) {
2813 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2814 false);
2815 } else {
2816 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2817 nr, true);
2818 }
2819 if (ret)
2820 break;
2821 }
2822
2823 if (!ret)
2824 q->nr_requests = nr;
2825
2826 blk_mq_unfreeze_queue(q);
2827
2828 return ret;
2829 }
2830
2831 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2832 int nr_hw_queues)
2833 {
2834 struct request_queue *q;
2835
2836 lockdep_assert_held(&set->tag_list_lock);
2837
2838 if (nr_hw_queues > nr_cpu_ids)
2839 nr_hw_queues = nr_cpu_ids;
2840 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2841 return;
2842
2843 list_for_each_entry(q, &set->tag_list, tag_set_list)
2844 blk_mq_freeze_queue(q);
2845
2846 set->nr_hw_queues = nr_hw_queues;
2847 blk_mq_update_queue_map(set);
2848 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2849 blk_mq_realloc_hw_ctxs(set, q);
2850 blk_mq_queue_reinit(q);
2851 }
2852
2853 list_for_each_entry(q, &set->tag_list, tag_set_list)
2854 blk_mq_unfreeze_queue(q);
2855 }
2856
2857 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2858 {
2859 mutex_lock(&set->tag_list_lock);
2860 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2861 mutex_unlock(&set->tag_list_lock);
2862 }
2863 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2864
2865 /* Enable polling stats and return whether they were already enabled. */
2866 static bool blk_poll_stats_enable(struct request_queue *q)
2867 {
2868 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2869 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2870 return true;
2871 blk_stat_add_callback(q, q->poll_cb);
2872 return false;
2873 }
2874
2875 static void blk_mq_poll_stats_start(struct request_queue *q)
2876 {
2877 /*
2878 * We don't arm the callback if polling stats are not enabled or the
2879 * callback is already active.
2880 */
2881 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2882 blk_stat_is_active(q->poll_cb))
2883 return;
2884
2885 blk_stat_activate_msecs(q->poll_cb, 100);
2886 }
2887
2888 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2889 {
2890 struct request_queue *q = cb->data;
2891 int bucket;
2892
2893 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2894 if (cb->stat[bucket].nr_samples)
2895 q->poll_stat[bucket] = cb->stat[bucket];
2896 }
2897 }
2898
2899 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2900 struct blk_mq_hw_ctx *hctx,
2901 struct request *rq)
2902 {
2903 unsigned long ret = 0;
2904 int bucket;
2905
2906 /*
2907 * If stats collection isn't on, don't sleep but turn it on for
2908 * future users
2909 */
2910 if (!blk_poll_stats_enable(q))
2911 return 0;
2912
2913 /*
2914 * As an optimistic guess, use half of the mean service time
2915 * for this type of request. We can (and should) make this smarter.
2916 * For instance, if the completion latencies are tight, we can
2917 * get closer than just half the mean. This is especially
2918 * important on devices where the completion latencies are longer
2919 * than ~10 usec. We do use the stats for the relevant IO size
2920 * if available which does lead to better estimates.
2921 */
2922 bucket = blk_mq_poll_stats_bkt(rq);
2923 if (bucket < 0)
2924 return ret;
2925
2926 if (q->poll_stat[bucket].nr_samples)
2927 ret = (q->poll_stat[bucket].mean + 1) / 2;
2928
2929 return ret;
2930 }
2931
2932 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2933 struct blk_mq_hw_ctx *hctx,
2934 struct request *rq)
2935 {
2936 struct hrtimer_sleeper hs;
2937 enum hrtimer_mode mode;
2938 unsigned int nsecs;
2939 ktime_t kt;
2940
2941 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2942 return false;
2943
2944 /*
2945 * poll_nsec can be:
2946 *
2947 * -1: don't ever hybrid sleep
2948 * 0: use half of prev avg
2949 * >0: use this specific value
2950 */
2951 if (q->poll_nsec == -1)
2952 return false;
2953 else if (q->poll_nsec > 0)
2954 nsecs = q->poll_nsec;
2955 else
2956 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2957
2958 if (!nsecs)
2959 return false;
2960
2961 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2962
2963 /*
2964 * This will be replaced with the stats tracking code, using
2965 * 'avg_completion_time / 2' as the pre-sleep target.
2966 */
2967 kt = nsecs;
2968
2969 mode = HRTIMER_MODE_REL;
2970 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2971 hrtimer_set_expires(&hs.timer, kt);
2972
2973 hrtimer_init_sleeper(&hs, current);
2974 do {
2975 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2976 break;
2977 set_current_state(TASK_UNINTERRUPTIBLE);
2978 hrtimer_start_expires(&hs.timer, mode);
2979 if (hs.task)
2980 io_schedule();
2981 hrtimer_cancel(&hs.timer);
2982 mode = HRTIMER_MODE_ABS;
2983 } while (hs.task && !signal_pending(current));
2984
2985 __set_current_state(TASK_RUNNING);
2986 destroy_hrtimer_on_stack(&hs.timer);
2987 return true;
2988 }
2989
2990 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2991 {
2992 struct request_queue *q = hctx->queue;
2993 long state;
2994
2995 /*
2996 * If we sleep, have the caller restart the poll loop to reset
2997 * the state. Like for the other success return cases, the
2998 * caller is responsible for checking if the IO completed. If
2999 * the IO isn't complete, we'll get called again and will go
3000 * straight to the busy poll loop.
3001 */
3002 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3003 return true;
3004
3005 hctx->poll_considered++;
3006
3007 state = current->state;
3008 while (!need_resched()) {
3009 int ret;
3010
3011 hctx->poll_invoked++;
3012
3013 ret = q->mq_ops->poll(hctx, rq->tag);
3014 if (ret > 0) {
3015 hctx->poll_success++;
3016 set_current_state(TASK_RUNNING);
3017 return true;
3018 }
3019
3020 if (signal_pending_state(state, current))
3021 set_current_state(TASK_RUNNING);
3022
3023 if (current->state == TASK_RUNNING)
3024 return true;
3025 if (ret < 0)
3026 break;
3027 cpu_relax();
3028 }
3029
3030 return false;
3031 }
3032
3033 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3034 {
3035 struct blk_mq_hw_ctx *hctx;
3036 struct request *rq;
3037
3038 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3039 return false;
3040
3041 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3042 if (!blk_qc_t_is_internal(cookie))
3043 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3044 else {
3045 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3046 /*
3047 * With scheduling, if the request has completed, we'll
3048 * get a NULL return here, as we clear the sched tag when
3049 * that happens. The request still remains valid, like always,
3050 * so we should be safe with just the NULL check.
3051 */
3052 if (!rq)
3053 return false;
3054 }
3055
3056 return __blk_mq_poll(hctx, rq);
3057 }
3058
3059 static int __init blk_mq_init(void)
3060 {
3061 /*
3062 * See comment in block/blk.h rq_atomic_flags enum
3063 */
3064 BUILD_BUG_ON((REQ_ATOM_STARTED / BITS_PER_BYTE) !=
3065 (REQ_ATOM_COMPLETE / BITS_PER_BYTE));
3066
3067 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3068 blk_mq_hctx_notify_dead);
3069 return 0;
3070 }
3071 subsys_initcall(blk_mq_init);