]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-mq.c
blk-mq: avoid to map CPU into stale hw queue
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46 int ddir, bytes, bucket;
47
48 ddir = rq_data_dir(rq);
49 bytes = blk_rq_bytes(rq);
50
51 bucket = ddir + 2*(ilog2(bytes) - 9);
52
53 if (bucket < 0)
54 return -1;
55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58 return bucket;
59 }
60
61 /*
62 * Check if any of the ctx's have pending work in this hardware queue
63 */
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66 return !list_empty_careful(&hctx->dispatch) ||
67 sbitmap_any_bit_set(&hctx->ctx_map) ||
68 blk_mq_sched_has_work(hctx);
69 }
70
71 /*
72 * Mark this ctx as having pending work in this hardware queue
73 */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 struct blk_mq_ctx *ctx)
76 {
77 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 }
80
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 struct blk_mq_ctx *ctx)
83 {
84 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 }
86
87 struct mq_inflight {
88 struct hd_struct *part;
89 unsigned int *inflight;
90 };
91
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93 struct request *rq, void *priv,
94 bool reserved)
95 {
96 struct mq_inflight *mi = priv;
97
98 if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
99 !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
100 /*
101 * index[0] counts the specific partition that was asked
102 * for. index[1] counts the ones that are active on the
103 * whole device, so increment that if mi->part is indeed
104 * a partition, and not a whole device.
105 */
106 if (rq->part == mi->part)
107 mi->inflight[0]++;
108 if (mi->part->partno)
109 mi->inflight[1]++;
110 }
111 }
112
113 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
114 unsigned int inflight[2])
115 {
116 struct mq_inflight mi = { .part = part, .inflight = inflight, };
117
118 inflight[0] = inflight[1] = 0;
119 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120 }
121
122 void blk_freeze_queue_start(struct request_queue *q)
123 {
124 int freeze_depth;
125
126 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
127 if (freeze_depth == 1) {
128 percpu_ref_kill(&q->q_usage_counter);
129 if (q->mq_ops)
130 blk_mq_run_hw_queues(q, false);
131 }
132 }
133 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
134
135 void blk_mq_freeze_queue_wait(struct request_queue *q)
136 {
137 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
138 }
139 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
140
141 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
142 unsigned long timeout)
143 {
144 return wait_event_timeout(q->mq_freeze_wq,
145 percpu_ref_is_zero(&q->q_usage_counter),
146 timeout);
147 }
148 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
149
150 /*
151 * Guarantee no request is in use, so we can change any data structure of
152 * the queue afterward.
153 */
154 void blk_freeze_queue(struct request_queue *q)
155 {
156 /*
157 * In the !blk_mq case we are only calling this to kill the
158 * q_usage_counter, otherwise this increases the freeze depth
159 * and waits for it to return to zero. For this reason there is
160 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
161 * exported to drivers as the only user for unfreeze is blk_mq.
162 */
163 blk_freeze_queue_start(q);
164 if (!q->mq_ops)
165 blk_drain_queue(q);
166 blk_mq_freeze_queue_wait(q);
167 }
168
169 void blk_mq_freeze_queue(struct request_queue *q)
170 {
171 /*
172 * ...just an alias to keep freeze and unfreeze actions balanced
173 * in the blk_mq_* namespace
174 */
175 blk_freeze_queue(q);
176 }
177 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
178
179 void blk_mq_unfreeze_queue(struct request_queue *q)
180 {
181 int freeze_depth;
182
183 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
184 WARN_ON_ONCE(freeze_depth < 0);
185 if (!freeze_depth) {
186 percpu_ref_reinit(&q->q_usage_counter);
187 wake_up_all(&q->mq_freeze_wq);
188 }
189 }
190 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
191
192 /*
193 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
194 * mpt3sas driver such that this function can be removed.
195 */
196 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
197 {
198 unsigned long flags;
199
200 spin_lock_irqsave(q->queue_lock, flags);
201 queue_flag_set(QUEUE_FLAG_QUIESCED, q);
202 spin_unlock_irqrestore(q->queue_lock, flags);
203 }
204 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
205
206 /**
207 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
208 * @q: request queue.
209 *
210 * Note: this function does not prevent that the struct request end_io()
211 * callback function is invoked. Once this function is returned, we make
212 * sure no dispatch can happen until the queue is unquiesced via
213 * blk_mq_unquiesce_queue().
214 */
215 void blk_mq_quiesce_queue(struct request_queue *q)
216 {
217 struct blk_mq_hw_ctx *hctx;
218 unsigned int i;
219 bool rcu = false;
220
221 blk_mq_quiesce_queue_nowait(q);
222
223 queue_for_each_hw_ctx(q, hctx, i) {
224 if (hctx->flags & BLK_MQ_F_BLOCKING)
225 synchronize_srcu(hctx->queue_rq_srcu);
226 else
227 rcu = true;
228 }
229 if (rcu)
230 synchronize_rcu();
231 }
232 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
233
234 /*
235 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
236 * @q: request queue.
237 *
238 * This function recovers queue into the state before quiescing
239 * which is done by blk_mq_quiesce_queue.
240 */
241 void blk_mq_unquiesce_queue(struct request_queue *q)
242 {
243 unsigned long flags;
244
245 spin_lock_irqsave(q->queue_lock, flags);
246 queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
247 spin_unlock_irqrestore(q->queue_lock, flags);
248
249 /* dispatch requests which are inserted during quiescing */
250 blk_mq_run_hw_queues(q, true);
251 }
252 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
253
254 void blk_mq_wake_waiters(struct request_queue *q)
255 {
256 struct blk_mq_hw_ctx *hctx;
257 unsigned int i;
258
259 queue_for_each_hw_ctx(q, hctx, i)
260 if (blk_mq_hw_queue_mapped(hctx))
261 blk_mq_tag_wakeup_all(hctx->tags, true);
262 }
263
264 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
265 {
266 return blk_mq_has_free_tags(hctx->tags);
267 }
268 EXPORT_SYMBOL(blk_mq_can_queue);
269
270 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
271 unsigned int tag, unsigned int op)
272 {
273 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
274 struct request *rq = tags->static_rqs[tag];
275
276 rq->rq_flags = 0;
277
278 if (data->flags & BLK_MQ_REQ_INTERNAL) {
279 rq->tag = -1;
280 rq->internal_tag = tag;
281 } else {
282 if (blk_mq_tag_busy(data->hctx)) {
283 rq->rq_flags = RQF_MQ_INFLIGHT;
284 atomic_inc(&data->hctx->nr_active);
285 }
286 rq->tag = tag;
287 rq->internal_tag = -1;
288 data->hctx->tags->rqs[rq->tag] = rq;
289 }
290
291 INIT_LIST_HEAD(&rq->queuelist);
292 /* csd/requeue_work/fifo_time is initialized before use */
293 rq->q = data->q;
294 rq->mq_ctx = data->ctx;
295 rq->cmd_flags = op;
296 if (data->flags & BLK_MQ_REQ_PREEMPT)
297 rq->rq_flags |= RQF_PREEMPT;
298 if (blk_queue_io_stat(data->q))
299 rq->rq_flags |= RQF_IO_STAT;
300 /* do not touch atomic flags, it needs atomic ops against the timer */
301 rq->cpu = -1;
302 INIT_HLIST_NODE(&rq->hash);
303 RB_CLEAR_NODE(&rq->rb_node);
304 rq->rq_disk = NULL;
305 rq->part = NULL;
306 rq->start_time = jiffies;
307 #ifdef CONFIG_BLK_CGROUP
308 rq->rl = NULL;
309 set_start_time_ns(rq);
310 rq->io_start_time_ns = 0;
311 #endif
312 rq->nr_phys_segments = 0;
313 #if defined(CONFIG_BLK_DEV_INTEGRITY)
314 rq->nr_integrity_segments = 0;
315 #endif
316 rq->special = NULL;
317 /* tag was already set */
318 rq->extra_len = 0;
319
320 INIT_LIST_HEAD(&rq->timeout_list);
321 rq->timeout = 0;
322
323 rq->end_io = NULL;
324 rq->end_io_data = NULL;
325 rq->next_rq = NULL;
326
327 data->ctx->rq_dispatched[op_is_sync(op)]++;
328 return rq;
329 }
330
331 static struct request *blk_mq_get_request(struct request_queue *q,
332 struct bio *bio, unsigned int op,
333 struct blk_mq_alloc_data *data)
334 {
335 struct elevator_queue *e = q->elevator;
336 struct request *rq;
337 unsigned int tag;
338 bool put_ctx_on_error = false;
339
340 blk_queue_enter_live(q);
341 data->q = q;
342 if (likely(!data->ctx)) {
343 data->ctx = blk_mq_get_ctx(q);
344 put_ctx_on_error = true;
345 }
346 if (likely(!data->hctx))
347 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
348 if (op & REQ_NOWAIT)
349 data->flags |= BLK_MQ_REQ_NOWAIT;
350
351 if (e) {
352 data->flags |= BLK_MQ_REQ_INTERNAL;
353
354 /*
355 * Flush requests are special and go directly to the
356 * dispatch list.
357 */
358 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
359 e->type->ops.mq.limit_depth(op, data);
360 }
361
362 tag = blk_mq_get_tag(data);
363 if (tag == BLK_MQ_TAG_FAIL) {
364 if (put_ctx_on_error) {
365 blk_mq_put_ctx(data->ctx);
366 data->ctx = NULL;
367 }
368 blk_queue_exit(q);
369 return NULL;
370 }
371
372 rq = blk_mq_rq_ctx_init(data, tag, op);
373 if (!op_is_flush(op)) {
374 rq->elv.icq = NULL;
375 if (e && e->type->ops.mq.prepare_request) {
376 if (e->type->icq_cache && rq_ioc(bio))
377 blk_mq_sched_assign_ioc(rq, bio);
378
379 e->type->ops.mq.prepare_request(rq, bio);
380 rq->rq_flags |= RQF_ELVPRIV;
381 }
382 }
383 data->hctx->queued++;
384 return rq;
385 }
386
387 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
388 blk_mq_req_flags_t flags)
389 {
390 struct blk_mq_alloc_data alloc_data = { .flags = flags };
391 struct request *rq;
392 int ret;
393
394 ret = blk_queue_enter(q, flags);
395 if (ret)
396 return ERR_PTR(ret);
397
398 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
399 blk_queue_exit(q);
400
401 if (!rq)
402 return ERR_PTR(-EWOULDBLOCK);
403
404 blk_mq_put_ctx(alloc_data.ctx);
405
406 rq->__data_len = 0;
407 rq->__sector = (sector_t) -1;
408 rq->bio = rq->biotail = NULL;
409 return rq;
410 }
411 EXPORT_SYMBOL(blk_mq_alloc_request);
412
413 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
414 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
415 {
416 struct blk_mq_alloc_data alloc_data = { .flags = flags };
417 struct request *rq;
418 unsigned int cpu;
419 int ret;
420
421 /*
422 * If the tag allocator sleeps we could get an allocation for a
423 * different hardware context. No need to complicate the low level
424 * allocator for this for the rare use case of a command tied to
425 * a specific queue.
426 */
427 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
428 return ERR_PTR(-EINVAL);
429
430 if (hctx_idx >= q->nr_hw_queues)
431 return ERR_PTR(-EIO);
432
433 ret = blk_queue_enter(q, flags);
434 if (ret)
435 return ERR_PTR(ret);
436
437 /*
438 * Check if the hardware context is actually mapped to anything.
439 * If not tell the caller that it should skip this queue.
440 */
441 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
442 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
443 blk_queue_exit(q);
444 return ERR_PTR(-EXDEV);
445 }
446 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
447 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
448
449 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
450 blk_queue_exit(q);
451
452 if (!rq)
453 return ERR_PTR(-EWOULDBLOCK);
454
455 return rq;
456 }
457 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
458
459 void blk_mq_free_request(struct request *rq)
460 {
461 struct request_queue *q = rq->q;
462 struct elevator_queue *e = q->elevator;
463 struct blk_mq_ctx *ctx = rq->mq_ctx;
464 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
465 const int sched_tag = rq->internal_tag;
466
467 if (rq->rq_flags & RQF_ELVPRIV) {
468 if (e && e->type->ops.mq.finish_request)
469 e->type->ops.mq.finish_request(rq);
470 if (rq->elv.icq) {
471 put_io_context(rq->elv.icq->ioc);
472 rq->elv.icq = NULL;
473 }
474 }
475
476 ctx->rq_completed[rq_is_sync(rq)]++;
477 if (rq->rq_flags & RQF_MQ_INFLIGHT)
478 atomic_dec(&hctx->nr_active);
479
480 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
481 laptop_io_completion(q->backing_dev_info);
482
483 wbt_done(q->rq_wb, &rq->issue_stat);
484
485 if (blk_rq_rl(rq))
486 blk_put_rl(blk_rq_rl(rq));
487
488 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
489 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
490 if (rq->tag != -1)
491 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
492 if (sched_tag != -1)
493 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
494 blk_mq_sched_restart(hctx);
495 blk_queue_exit(q);
496 }
497 EXPORT_SYMBOL_GPL(blk_mq_free_request);
498
499 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
500 {
501 blk_account_io_done(rq);
502
503 if (rq->end_io) {
504 wbt_done(rq->q->rq_wb, &rq->issue_stat);
505 rq->end_io(rq, error);
506 } else {
507 if (unlikely(blk_bidi_rq(rq)))
508 blk_mq_free_request(rq->next_rq);
509 blk_mq_free_request(rq);
510 }
511 }
512 EXPORT_SYMBOL(__blk_mq_end_request);
513
514 void blk_mq_end_request(struct request *rq, blk_status_t error)
515 {
516 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
517 BUG();
518 __blk_mq_end_request(rq, error);
519 }
520 EXPORT_SYMBOL(blk_mq_end_request);
521
522 static void __blk_mq_complete_request_remote(void *data)
523 {
524 struct request *rq = data;
525
526 rq->q->softirq_done_fn(rq);
527 }
528
529 static void __blk_mq_complete_request(struct request *rq)
530 {
531 struct blk_mq_ctx *ctx = rq->mq_ctx;
532 bool shared = false;
533 int cpu;
534
535 if (rq->internal_tag != -1)
536 blk_mq_sched_completed_request(rq);
537 if (rq->rq_flags & RQF_STATS) {
538 blk_mq_poll_stats_start(rq->q);
539 blk_stat_add(rq);
540 }
541
542 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
543 rq->q->softirq_done_fn(rq);
544 return;
545 }
546
547 cpu = get_cpu();
548 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
549 shared = cpus_share_cache(cpu, ctx->cpu);
550
551 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
552 rq->csd.func = __blk_mq_complete_request_remote;
553 rq->csd.info = rq;
554 rq->csd.flags = 0;
555 smp_call_function_single_async(ctx->cpu, &rq->csd);
556 } else {
557 rq->q->softirq_done_fn(rq);
558 }
559 put_cpu();
560 }
561
562 /**
563 * blk_mq_complete_request - end I/O on a request
564 * @rq: the request being processed
565 *
566 * Description:
567 * Ends all I/O on a request. It does not handle partial completions.
568 * The actual completion happens out-of-order, through a IPI handler.
569 **/
570 void blk_mq_complete_request(struct request *rq)
571 {
572 struct request_queue *q = rq->q;
573
574 if (unlikely(blk_should_fake_timeout(q)))
575 return;
576 if (!blk_mark_rq_complete(rq))
577 __blk_mq_complete_request(rq);
578 }
579 EXPORT_SYMBOL(blk_mq_complete_request);
580
581 int blk_mq_request_started(struct request *rq)
582 {
583 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
584 }
585 EXPORT_SYMBOL_GPL(blk_mq_request_started);
586
587 void blk_mq_start_request(struct request *rq)
588 {
589 struct request_queue *q = rq->q;
590
591 blk_mq_sched_started_request(rq);
592
593 trace_block_rq_issue(q, rq);
594
595 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
596 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
597 rq->rq_flags |= RQF_STATS;
598 wbt_issue(q->rq_wb, &rq->issue_stat);
599 }
600
601 blk_add_timer(rq);
602
603 WARN_ON_ONCE(test_bit(REQ_ATOM_STARTED, &rq->atomic_flags));
604
605 /*
606 * Mark us as started and clear complete. Complete might have been
607 * set if requeue raced with timeout, which then marked it as
608 * complete. So be sure to clear complete again when we start
609 * the request, otherwise we'll ignore the completion event.
610 *
611 * Ensure that ->deadline is visible before we set STARTED, such that
612 * blk_mq_check_expired() is guaranteed to observe our ->deadline when
613 * it observes STARTED.
614 */
615 smp_wmb();
616 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
617 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
618 /*
619 * Coherence order guarantees these consecutive stores to a
620 * single variable propagate in the specified order. Thus the
621 * clear_bit() is ordered _after_ the set bit. See
622 * blk_mq_check_expired().
623 *
624 * (the bits must be part of the same byte for this to be
625 * true).
626 */
627 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
628 }
629
630 if (q->dma_drain_size && blk_rq_bytes(rq)) {
631 /*
632 * Make sure space for the drain appears. We know we can do
633 * this because max_hw_segments has been adjusted to be one
634 * fewer than the device can handle.
635 */
636 rq->nr_phys_segments++;
637 }
638 }
639 EXPORT_SYMBOL(blk_mq_start_request);
640
641 /*
642 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
643 * flag isn't set yet, so there may be race with timeout handler,
644 * but given rq->deadline is just set in .queue_rq() under
645 * this situation, the race won't be possible in reality because
646 * rq->timeout should be set as big enough to cover the window
647 * between blk_mq_start_request() called from .queue_rq() and
648 * clearing REQ_ATOM_STARTED here.
649 */
650 static void __blk_mq_requeue_request(struct request *rq)
651 {
652 struct request_queue *q = rq->q;
653
654 blk_mq_put_driver_tag(rq);
655
656 trace_block_rq_requeue(q, rq);
657 wbt_requeue(q->rq_wb, &rq->issue_stat);
658
659 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
660 if (q->dma_drain_size && blk_rq_bytes(rq))
661 rq->nr_phys_segments--;
662 }
663 }
664
665 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
666 {
667 __blk_mq_requeue_request(rq);
668
669 /* this request will be re-inserted to io scheduler queue */
670 blk_mq_sched_requeue_request(rq);
671
672 BUG_ON(blk_queued_rq(rq));
673 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
674 }
675 EXPORT_SYMBOL(blk_mq_requeue_request);
676
677 static void blk_mq_requeue_work(struct work_struct *work)
678 {
679 struct request_queue *q =
680 container_of(work, struct request_queue, requeue_work.work);
681 LIST_HEAD(rq_list);
682 struct request *rq, *next;
683
684 spin_lock_irq(&q->requeue_lock);
685 list_splice_init(&q->requeue_list, &rq_list);
686 spin_unlock_irq(&q->requeue_lock);
687
688 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
689 if (!(rq->rq_flags & RQF_SOFTBARRIER))
690 continue;
691
692 rq->rq_flags &= ~RQF_SOFTBARRIER;
693 list_del_init(&rq->queuelist);
694 blk_mq_sched_insert_request(rq, true, false, false, true);
695 }
696
697 while (!list_empty(&rq_list)) {
698 rq = list_entry(rq_list.next, struct request, queuelist);
699 list_del_init(&rq->queuelist);
700 blk_mq_sched_insert_request(rq, false, false, false, true);
701 }
702
703 blk_mq_run_hw_queues(q, false);
704 }
705
706 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
707 bool kick_requeue_list)
708 {
709 struct request_queue *q = rq->q;
710 unsigned long flags;
711
712 /*
713 * We abuse this flag that is otherwise used by the I/O scheduler to
714 * request head insertion from the workqueue.
715 */
716 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
717
718 spin_lock_irqsave(&q->requeue_lock, flags);
719 if (at_head) {
720 rq->rq_flags |= RQF_SOFTBARRIER;
721 list_add(&rq->queuelist, &q->requeue_list);
722 } else {
723 list_add_tail(&rq->queuelist, &q->requeue_list);
724 }
725 spin_unlock_irqrestore(&q->requeue_lock, flags);
726
727 if (kick_requeue_list)
728 blk_mq_kick_requeue_list(q);
729 }
730 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
731
732 void blk_mq_kick_requeue_list(struct request_queue *q)
733 {
734 kblockd_schedule_delayed_work(&q->requeue_work, 0);
735 }
736 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
737
738 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
739 unsigned long msecs)
740 {
741 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
742 msecs_to_jiffies(msecs));
743 }
744 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
745
746 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
747 {
748 if (tag < tags->nr_tags) {
749 prefetch(tags->rqs[tag]);
750 return tags->rqs[tag];
751 }
752
753 return NULL;
754 }
755 EXPORT_SYMBOL(blk_mq_tag_to_rq);
756
757 struct blk_mq_timeout_data {
758 unsigned long next;
759 unsigned int next_set;
760 };
761
762 void blk_mq_rq_timed_out(struct request *req, bool reserved)
763 {
764 const struct blk_mq_ops *ops = req->q->mq_ops;
765 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
766
767 /*
768 * We know that complete is set at this point. If STARTED isn't set
769 * anymore, then the request isn't active and the "timeout" should
770 * just be ignored. This can happen due to the bitflag ordering.
771 * Timeout first checks if STARTED is set, and if it is, assumes
772 * the request is active. But if we race with completion, then
773 * both flags will get cleared. So check here again, and ignore
774 * a timeout event with a request that isn't active.
775 */
776 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
777 return;
778
779 if (ops->timeout)
780 ret = ops->timeout(req, reserved);
781
782 switch (ret) {
783 case BLK_EH_HANDLED:
784 __blk_mq_complete_request(req);
785 break;
786 case BLK_EH_RESET_TIMER:
787 blk_add_timer(req);
788 blk_clear_rq_complete(req);
789 break;
790 case BLK_EH_NOT_HANDLED:
791 break;
792 default:
793 printk(KERN_ERR "block: bad eh return: %d\n", ret);
794 break;
795 }
796 }
797
798 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
799 struct request *rq, void *priv, bool reserved)
800 {
801 struct blk_mq_timeout_data *data = priv;
802 unsigned long deadline;
803
804 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
805 return;
806
807 /*
808 * Ensures that if we see STARTED we must also see our
809 * up-to-date deadline, see blk_mq_start_request().
810 */
811 smp_rmb();
812
813 deadline = READ_ONCE(rq->deadline);
814
815 /*
816 * The rq being checked may have been freed and reallocated
817 * out already here, we avoid this race by checking rq->deadline
818 * and REQ_ATOM_COMPLETE flag together:
819 *
820 * - if rq->deadline is observed as new value because of
821 * reusing, the rq won't be timed out because of timing.
822 * - if rq->deadline is observed as previous value,
823 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
824 * because we put a barrier between setting rq->deadline
825 * and clearing the flag in blk_mq_start_request(), so
826 * this rq won't be timed out too.
827 */
828 if (time_after_eq(jiffies, deadline)) {
829 if (!blk_mark_rq_complete(rq)) {
830 /*
831 * Again coherence order ensures that consecutive reads
832 * from the same variable must be in that order. This
833 * ensures that if we see COMPLETE clear, we must then
834 * see STARTED set and we'll ignore this timeout.
835 *
836 * (There's also the MB implied by the test_and_clear())
837 */
838 blk_mq_rq_timed_out(rq, reserved);
839 }
840 } else if (!data->next_set || time_after(data->next, deadline)) {
841 data->next = deadline;
842 data->next_set = 1;
843 }
844 }
845
846 static void blk_mq_timeout_work(struct work_struct *work)
847 {
848 struct request_queue *q =
849 container_of(work, struct request_queue, timeout_work);
850 struct blk_mq_timeout_data data = {
851 .next = 0,
852 .next_set = 0,
853 };
854 int i;
855
856 /* A deadlock might occur if a request is stuck requiring a
857 * timeout at the same time a queue freeze is waiting
858 * completion, since the timeout code would not be able to
859 * acquire the queue reference here.
860 *
861 * That's why we don't use blk_queue_enter here; instead, we use
862 * percpu_ref_tryget directly, because we need to be able to
863 * obtain a reference even in the short window between the queue
864 * starting to freeze, by dropping the first reference in
865 * blk_freeze_queue_start, and the moment the last request is
866 * consumed, marked by the instant q_usage_counter reaches
867 * zero.
868 */
869 if (!percpu_ref_tryget(&q->q_usage_counter))
870 return;
871
872 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
873
874 if (data.next_set) {
875 data.next = blk_rq_timeout(round_jiffies_up(data.next));
876 mod_timer(&q->timeout, data.next);
877 } else {
878 struct blk_mq_hw_ctx *hctx;
879
880 queue_for_each_hw_ctx(q, hctx, i) {
881 /* the hctx may be unmapped, so check it here */
882 if (blk_mq_hw_queue_mapped(hctx))
883 blk_mq_tag_idle(hctx);
884 }
885 }
886 blk_queue_exit(q);
887 }
888
889 struct flush_busy_ctx_data {
890 struct blk_mq_hw_ctx *hctx;
891 struct list_head *list;
892 };
893
894 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
895 {
896 struct flush_busy_ctx_data *flush_data = data;
897 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
898 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
899
900 sbitmap_clear_bit(sb, bitnr);
901 spin_lock(&ctx->lock);
902 list_splice_tail_init(&ctx->rq_list, flush_data->list);
903 spin_unlock(&ctx->lock);
904 return true;
905 }
906
907 /*
908 * Process software queues that have been marked busy, splicing them
909 * to the for-dispatch
910 */
911 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
912 {
913 struct flush_busy_ctx_data data = {
914 .hctx = hctx,
915 .list = list,
916 };
917
918 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
919 }
920 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
921
922 struct dispatch_rq_data {
923 struct blk_mq_hw_ctx *hctx;
924 struct request *rq;
925 };
926
927 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
928 void *data)
929 {
930 struct dispatch_rq_data *dispatch_data = data;
931 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
932 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
933
934 spin_lock(&ctx->lock);
935 if (unlikely(!list_empty(&ctx->rq_list))) {
936 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
937 list_del_init(&dispatch_data->rq->queuelist);
938 if (list_empty(&ctx->rq_list))
939 sbitmap_clear_bit(sb, bitnr);
940 }
941 spin_unlock(&ctx->lock);
942
943 return !dispatch_data->rq;
944 }
945
946 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
947 struct blk_mq_ctx *start)
948 {
949 unsigned off = start ? start->index_hw : 0;
950 struct dispatch_rq_data data = {
951 .hctx = hctx,
952 .rq = NULL,
953 };
954
955 __sbitmap_for_each_set(&hctx->ctx_map, off,
956 dispatch_rq_from_ctx, &data);
957
958 return data.rq;
959 }
960
961 static inline unsigned int queued_to_index(unsigned int queued)
962 {
963 if (!queued)
964 return 0;
965
966 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
967 }
968
969 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
970 bool wait)
971 {
972 struct blk_mq_alloc_data data = {
973 .q = rq->q,
974 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
975 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
976 };
977
978 might_sleep_if(wait);
979
980 if (rq->tag != -1)
981 goto done;
982
983 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
984 data.flags |= BLK_MQ_REQ_RESERVED;
985
986 rq->tag = blk_mq_get_tag(&data);
987 if (rq->tag >= 0) {
988 if (blk_mq_tag_busy(data.hctx)) {
989 rq->rq_flags |= RQF_MQ_INFLIGHT;
990 atomic_inc(&data.hctx->nr_active);
991 }
992 data.hctx->tags->rqs[rq->tag] = rq;
993 }
994
995 done:
996 if (hctx)
997 *hctx = data.hctx;
998 return rq->tag != -1;
999 }
1000
1001 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1002 int flags, void *key)
1003 {
1004 struct blk_mq_hw_ctx *hctx;
1005
1006 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1007
1008 list_del_init(&wait->entry);
1009 blk_mq_run_hw_queue(hctx, true);
1010 return 1;
1011 }
1012
1013 /*
1014 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1015 * the tag wakeups. For non-shared tags, we can simply mark us nedeing a
1016 * restart. For both caes, take care to check the condition again after
1017 * marking us as waiting.
1018 */
1019 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
1020 struct request *rq)
1021 {
1022 struct blk_mq_hw_ctx *this_hctx = *hctx;
1023 bool shared_tags = (this_hctx->flags & BLK_MQ_F_TAG_SHARED) != 0;
1024 struct sbq_wait_state *ws;
1025 wait_queue_entry_t *wait;
1026 bool ret;
1027
1028 if (!shared_tags) {
1029 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
1030 set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
1031 } else {
1032 wait = &this_hctx->dispatch_wait;
1033 if (!list_empty_careful(&wait->entry))
1034 return false;
1035
1036 spin_lock(&this_hctx->lock);
1037 if (!list_empty(&wait->entry)) {
1038 spin_unlock(&this_hctx->lock);
1039 return false;
1040 }
1041
1042 ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
1043 add_wait_queue(&ws->wait, wait);
1044 }
1045
1046 /*
1047 * It's possible that a tag was freed in the window between the
1048 * allocation failure and adding the hardware queue to the wait
1049 * queue.
1050 */
1051 ret = blk_mq_get_driver_tag(rq, hctx, false);
1052
1053 if (!shared_tags) {
1054 /*
1055 * Don't clear RESTART here, someone else could have set it.
1056 * At most this will cost an extra queue run.
1057 */
1058 return ret;
1059 } else {
1060 if (!ret) {
1061 spin_unlock(&this_hctx->lock);
1062 return false;
1063 }
1064
1065 /*
1066 * We got a tag, remove ourselves from the wait queue to ensure
1067 * someone else gets the wakeup.
1068 */
1069 spin_lock_irq(&ws->wait.lock);
1070 list_del_init(&wait->entry);
1071 spin_unlock_irq(&ws->wait.lock);
1072 spin_unlock(&this_hctx->lock);
1073 return true;
1074 }
1075 }
1076
1077 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1078 bool got_budget)
1079 {
1080 struct blk_mq_hw_ctx *hctx;
1081 struct request *rq, *nxt;
1082 bool no_tag = false;
1083 int errors, queued;
1084
1085 if (list_empty(list))
1086 return false;
1087
1088 WARN_ON(!list_is_singular(list) && got_budget);
1089
1090 /*
1091 * Now process all the entries, sending them to the driver.
1092 */
1093 errors = queued = 0;
1094 do {
1095 struct blk_mq_queue_data bd;
1096 blk_status_t ret;
1097
1098 rq = list_first_entry(list, struct request, queuelist);
1099 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1100 /*
1101 * The initial allocation attempt failed, so we need to
1102 * rerun the hardware queue when a tag is freed. The
1103 * waitqueue takes care of that. If the queue is run
1104 * before we add this entry back on the dispatch list,
1105 * we'll re-run it below.
1106 */
1107 if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1108 if (got_budget)
1109 blk_mq_put_dispatch_budget(hctx);
1110 /*
1111 * For non-shared tags, the RESTART check
1112 * will suffice.
1113 */
1114 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1115 no_tag = true;
1116 break;
1117 }
1118 }
1119
1120 if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) {
1121 blk_mq_put_driver_tag(rq);
1122 break;
1123 }
1124
1125 list_del_init(&rq->queuelist);
1126
1127 bd.rq = rq;
1128
1129 /*
1130 * Flag last if we have no more requests, or if we have more
1131 * but can't assign a driver tag to it.
1132 */
1133 if (list_empty(list))
1134 bd.last = true;
1135 else {
1136 nxt = list_first_entry(list, struct request, queuelist);
1137 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1138 }
1139
1140 ret = q->mq_ops->queue_rq(hctx, &bd);
1141 if (ret == BLK_STS_RESOURCE) {
1142 /*
1143 * If an I/O scheduler has been configured and we got a
1144 * driver tag for the next request already, free it
1145 * again.
1146 */
1147 if (!list_empty(list)) {
1148 nxt = list_first_entry(list, struct request, queuelist);
1149 blk_mq_put_driver_tag(nxt);
1150 }
1151 list_add(&rq->queuelist, list);
1152 __blk_mq_requeue_request(rq);
1153 break;
1154 }
1155
1156 if (unlikely(ret != BLK_STS_OK)) {
1157 errors++;
1158 blk_mq_end_request(rq, BLK_STS_IOERR);
1159 continue;
1160 }
1161
1162 queued++;
1163 } while (!list_empty(list));
1164
1165 hctx->dispatched[queued_to_index(queued)]++;
1166
1167 /*
1168 * Any items that need requeuing? Stuff them into hctx->dispatch,
1169 * that is where we will continue on next queue run.
1170 */
1171 if (!list_empty(list)) {
1172 spin_lock(&hctx->lock);
1173 list_splice_init(list, &hctx->dispatch);
1174 spin_unlock(&hctx->lock);
1175
1176 /*
1177 * If SCHED_RESTART was set by the caller of this function and
1178 * it is no longer set that means that it was cleared by another
1179 * thread and hence that a queue rerun is needed.
1180 *
1181 * If 'no_tag' is set, that means that we failed getting
1182 * a driver tag with an I/O scheduler attached. If our dispatch
1183 * waitqueue is no longer active, ensure that we run the queue
1184 * AFTER adding our entries back to the list.
1185 *
1186 * If no I/O scheduler has been configured it is possible that
1187 * the hardware queue got stopped and restarted before requests
1188 * were pushed back onto the dispatch list. Rerun the queue to
1189 * avoid starvation. Notes:
1190 * - blk_mq_run_hw_queue() checks whether or not a queue has
1191 * been stopped before rerunning a queue.
1192 * - Some but not all block drivers stop a queue before
1193 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1194 * and dm-rq.
1195 */
1196 if (!blk_mq_sched_needs_restart(hctx) ||
1197 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1198 blk_mq_run_hw_queue(hctx, true);
1199 }
1200
1201 return (queued + errors) != 0;
1202 }
1203
1204 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1205 {
1206 int srcu_idx;
1207
1208 /*
1209 * We should be running this queue from one of the CPUs that
1210 * are mapped to it.
1211 *
1212 * There are at least two related races now between setting
1213 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1214 * __blk_mq_run_hw_queue():
1215 *
1216 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1217 * but later it becomes online, then this warning is harmless
1218 * at all
1219 *
1220 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1221 * but later it becomes offline, then the warning can't be
1222 * triggered, and we depend on blk-mq timeout handler to
1223 * handle dispatched requests to this hctx
1224 */
1225 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1226 cpu_online(hctx->next_cpu)) {
1227 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1228 raw_smp_processor_id(),
1229 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1230 dump_stack();
1231 }
1232
1233 /*
1234 * We can't run the queue inline with ints disabled. Ensure that
1235 * we catch bad users of this early.
1236 */
1237 WARN_ON_ONCE(in_interrupt());
1238
1239 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1240 rcu_read_lock();
1241 blk_mq_sched_dispatch_requests(hctx);
1242 rcu_read_unlock();
1243 } else {
1244 might_sleep();
1245
1246 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1247 blk_mq_sched_dispatch_requests(hctx);
1248 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1249 }
1250 }
1251
1252 /*
1253 * It'd be great if the workqueue API had a way to pass
1254 * in a mask and had some smarts for more clever placement.
1255 * For now we just round-robin here, switching for every
1256 * BLK_MQ_CPU_WORK_BATCH queued items.
1257 */
1258 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1259 {
1260 if (hctx->queue->nr_hw_queues == 1)
1261 return WORK_CPU_UNBOUND;
1262
1263 if (--hctx->next_cpu_batch <= 0) {
1264 int next_cpu;
1265
1266 next_cpu = cpumask_next_and(hctx->next_cpu, hctx->cpumask,
1267 cpu_online_mask);
1268 if (next_cpu >= nr_cpu_ids)
1269 next_cpu = cpumask_first_and(hctx->cpumask,cpu_online_mask);
1270
1271 hctx->next_cpu = next_cpu;
1272 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1273 }
1274
1275 return hctx->next_cpu;
1276 }
1277
1278 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1279 unsigned long msecs)
1280 {
1281 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1282 return;
1283
1284 if (unlikely(blk_mq_hctx_stopped(hctx)))
1285 return;
1286
1287 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1288 int cpu = get_cpu();
1289 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1290 __blk_mq_run_hw_queue(hctx);
1291 put_cpu();
1292 return;
1293 }
1294
1295 put_cpu();
1296 }
1297
1298 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1299 &hctx->run_work,
1300 msecs_to_jiffies(msecs));
1301 }
1302
1303 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1304 {
1305 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1306 }
1307 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1308
1309 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1310 {
1311 if (blk_mq_hctx_has_pending(hctx)) {
1312 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1313 return true;
1314 }
1315
1316 return false;
1317 }
1318 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1319
1320 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1321 {
1322 struct blk_mq_hw_ctx *hctx;
1323 int i;
1324
1325 queue_for_each_hw_ctx(q, hctx, i) {
1326 if (blk_mq_hctx_stopped(hctx))
1327 continue;
1328
1329 blk_mq_run_hw_queue(hctx, async);
1330 }
1331 }
1332 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1333
1334 /**
1335 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1336 * @q: request queue.
1337 *
1338 * The caller is responsible for serializing this function against
1339 * blk_mq_{start,stop}_hw_queue().
1340 */
1341 bool blk_mq_queue_stopped(struct request_queue *q)
1342 {
1343 struct blk_mq_hw_ctx *hctx;
1344 int i;
1345
1346 queue_for_each_hw_ctx(q, hctx, i)
1347 if (blk_mq_hctx_stopped(hctx))
1348 return true;
1349
1350 return false;
1351 }
1352 EXPORT_SYMBOL(blk_mq_queue_stopped);
1353
1354 /*
1355 * This function is often used for pausing .queue_rq() by driver when
1356 * there isn't enough resource or some conditions aren't satisfied, and
1357 * BLK_STS_RESOURCE is usually returned.
1358 *
1359 * We do not guarantee that dispatch can be drained or blocked
1360 * after blk_mq_stop_hw_queue() returns. Please use
1361 * blk_mq_quiesce_queue() for that requirement.
1362 */
1363 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1364 {
1365 cancel_delayed_work(&hctx->run_work);
1366
1367 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1368 }
1369 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1370
1371 /*
1372 * This function is often used for pausing .queue_rq() by driver when
1373 * there isn't enough resource or some conditions aren't satisfied, and
1374 * BLK_STS_RESOURCE is usually returned.
1375 *
1376 * We do not guarantee that dispatch can be drained or blocked
1377 * after blk_mq_stop_hw_queues() returns. Please use
1378 * blk_mq_quiesce_queue() for that requirement.
1379 */
1380 void blk_mq_stop_hw_queues(struct request_queue *q)
1381 {
1382 struct blk_mq_hw_ctx *hctx;
1383 int i;
1384
1385 queue_for_each_hw_ctx(q, hctx, i)
1386 blk_mq_stop_hw_queue(hctx);
1387 }
1388 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1389
1390 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1391 {
1392 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1393
1394 blk_mq_run_hw_queue(hctx, false);
1395 }
1396 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1397
1398 void blk_mq_start_hw_queues(struct request_queue *q)
1399 {
1400 struct blk_mq_hw_ctx *hctx;
1401 int i;
1402
1403 queue_for_each_hw_ctx(q, hctx, i)
1404 blk_mq_start_hw_queue(hctx);
1405 }
1406 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1407
1408 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1409 {
1410 if (!blk_mq_hctx_stopped(hctx))
1411 return;
1412
1413 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1414 blk_mq_run_hw_queue(hctx, async);
1415 }
1416 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1417
1418 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1419 {
1420 struct blk_mq_hw_ctx *hctx;
1421 int i;
1422
1423 queue_for_each_hw_ctx(q, hctx, i)
1424 blk_mq_start_stopped_hw_queue(hctx, async);
1425 }
1426 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1427
1428 static void blk_mq_run_work_fn(struct work_struct *work)
1429 {
1430 struct blk_mq_hw_ctx *hctx;
1431
1432 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1433
1434 /*
1435 * If we are stopped, don't run the queue. The exception is if
1436 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1437 * the STOPPED bit and run it.
1438 */
1439 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1440 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1441 return;
1442
1443 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1444 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1445 }
1446
1447 __blk_mq_run_hw_queue(hctx);
1448 }
1449
1450
1451 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1452 {
1453 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1454 return;
1455
1456 /*
1457 * Stop the hw queue, then modify currently delayed work.
1458 * This should prevent us from running the queue prematurely.
1459 * Mark the queue as auto-clearing STOPPED when it runs.
1460 */
1461 blk_mq_stop_hw_queue(hctx);
1462 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1463 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1464 &hctx->run_work,
1465 msecs_to_jiffies(msecs));
1466 }
1467 EXPORT_SYMBOL(blk_mq_delay_queue);
1468
1469 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1470 struct request *rq,
1471 bool at_head)
1472 {
1473 struct blk_mq_ctx *ctx = rq->mq_ctx;
1474
1475 lockdep_assert_held(&ctx->lock);
1476
1477 trace_block_rq_insert(hctx->queue, rq);
1478
1479 if (at_head)
1480 list_add(&rq->queuelist, &ctx->rq_list);
1481 else
1482 list_add_tail(&rq->queuelist, &ctx->rq_list);
1483 }
1484
1485 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1486 bool at_head)
1487 {
1488 struct blk_mq_ctx *ctx = rq->mq_ctx;
1489
1490 lockdep_assert_held(&ctx->lock);
1491
1492 __blk_mq_insert_req_list(hctx, rq, at_head);
1493 blk_mq_hctx_mark_pending(hctx, ctx);
1494 }
1495
1496 /*
1497 * Should only be used carefully, when the caller knows we want to
1498 * bypass a potential IO scheduler on the target device.
1499 */
1500 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1501 {
1502 struct blk_mq_ctx *ctx = rq->mq_ctx;
1503 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1504
1505 spin_lock(&hctx->lock);
1506 list_add_tail(&rq->queuelist, &hctx->dispatch);
1507 spin_unlock(&hctx->lock);
1508
1509 if (run_queue)
1510 blk_mq_run_hw_queue(hctx, false);
1511 }
1512
1513 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1514 struct list_head *list)
1515
1516 {
1517 /*
1518 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1519 * offline now
1520 */
1521 spin_lock(&ctx->lock);
1522 while (!list_empty(list)) {
1523 struct request *rq;
1524
1525 rq = list_first_entry(list, struct request, queuelist);
1526 BUG_ON(rq->mq_ctx != ctx);
1527 list_del_init(&rq->queuelist);
1528 __blk_mq_insert_req_list(hctx, rq, false);
1529 }
1530 blk_mq_hctx_mark_pending(hctx, ctx);
1531 spin_unlock(&ctx->lock);
1532 }
1533
1534 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1535 {
1536 struct request *rqa = container_of(a, struct request, queuelist);
1537 struct request *rqb = container_of(b, struct request, queuelist);
1538
1539 return !(rqa->mq_ctx < rqb->mq_ctx ||
1540 (rqa->mq_ctx == rqb->mq_ctx &&
1541 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1542 }
1543
1544 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1545 {
1546 struct blk_mq_ctx *this_ctx;
1547 struct request_queue *this_q;
1548 struct request *rq;
1549 LIST_HEAD(list);
1550 LIST_HEAD(ctx_list);
1551 unsigned int depth;
1552
1553 list_splice_init(&plug->mq_list, &list);
1554
1555 list_sort(NULL, &list, plug_ctx_cmp);
1556
1557 this_q = NULL;
1558 this_ctx = NULL;
1559 depth = 0;
1560
1561 while (!list_empty(&list)) {
1562 rq = list_entry_rq(list.next);
1563 list_del_init(&rq->queuelist);
1564 BUG_ON(!rq->q);
1565 if (rq->mq_ctx != this_ctx) {
1566 if (this_ctx) {
1567 trace_block_unplug(this_q, depth, from_schedule);
1568 blk_mq_sched_insert_requests(this_q, this_ctx,
1569 &ctx_list,
1570 from_schedule);
1571 }
1572
1573 this_ctx = rq->mq_ctx;
1574 this_q = rq->q;
1575 depth = 0;
1576 }
1577
1578 depth++;
1579 list_add_tail(&rq->queuelist, &ctx_list);
1580 }
1581
1582 /*
1583 * If 'this_ctx' is set, we know we have entries to complete
1584 * on 'ctx_list'. Do those.
1585 */
1586 if (this_ctx) {
1587 trace_block_unplug(this_q, depth, from_schedule);
1588 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1589 from_schedule);
1590 }
1591 }
1592
1593 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1594 {
1595 blk_init_request_from_bio(rq, bio);
1596
1597 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1598
1599 blk_account_io_start(rq, true);
1600 }
1601
1602 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1603 struct blk_mq_ctx *ctx,
1604 struct request *rq)
1605 {
1606 spin_lock(&ctx->lock);
1607 __blk_mq_insert_request(hctx, rq, false);
1608 spin_unlock(&ctx->lock);
1609 }
1610
1611 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1612 {
1613 if (rq->tag != -1)
1614 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1615
1616 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1617 }
1618
1619 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1620 struct request *rq,
1621 blk_qc_t *cookie, bool may_sleep)
1622 {
1623 struct request_queue *q = rq->q;
1624 struct blk_mq_queue_data bd = {
1625 .rq = rq,
1626 .last = true,
1627 };
1628 blk_qc_t new_cookie;
1629 blk_status_t ret;
1630 bool run_queue = true;
1631
1632 /* RCU or SRCU read lock is needed before checking quiesced flag */
1633 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1634 run_queue = false;
1635 goto insert;
1636 }
1637
1638 if (q->elevator)
1639 goto insert;
1640
1641 if (!blk_mq_get_driver_tag(rq, NULL, false))
1642 goto insert;
1643
1644 if (!blk_mq_get_dispatch_budget(hctx)) {
1645 blk_mq_put_driver_tag(rq);
1646 goto insert;
1647 }
1648
1649 new_cookie = request_to_qc_t(hctx, rq);
1650
1651 /*
1652 * For OK queue, we are done. For error, kill it. Any other
1653 * error (busy), just add it to our list as we previously
1654 * would have done
1655 */
1656 ret = q->mq_ops->queue_rq(hctx, &bd);
1657 switch (ret) {
1658 case BLK_STS_OK:
1659 *cookie = new_cookie;
1660 return;
1661 case BLK_STS_RESOURCE:
1662 __blk_mq_requeue_request(rq);
1663 goto insert;
1664 default:
1665 *cookie = BLK_QC_T_NONE;
1666 blk_mq_end_request(rq, ret);
1667 return;
1668 }
1669
1670 insert:
1671 blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1672 }
1673
1674 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1675 struct request *rq, blk_qc_t *cookie)
1676 {
1677 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1678 rcu_read_lock();
1679 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1680 rcu_read_unlock();
1681 } else {
1682 unsigned int srcu_idx;
1683
1684 might_sleep();
1685
1686 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1687 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
1688 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1689 }
1690 }
1691
1692 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1693 {
1694 const int is_sync = op_is_sync(bio->bi_opf);
1695 const int is_flush_fua = op_is_flush(bio->bi_opf);
1696 struct blk_mq_alloc_data data = { .flags = 0 };
1697 struct request *rq;
1698 unsigned int request_count = 0;
1699 struct blk_plug *plug;
1700 struct request *same_queue_rq = NULL;
1701 blk_qc_t cookie;
1702 unsigned int wb_acct;
1703
1704 blk_queue_bounce(q, &bio);
1705
1706 blk_queue_split(q, &bio);
1707
1708 if (!bio_integrity_prep(bio))
1709 return BLK_QC_T_NONE;
1710
1711 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1712 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1713 return BLK_QC_T_NONE;
1714
1715 if (blk_mq_sched_bio_merge(q, bio))
1716 return BLK_QC_T_NONE;
1717
1718 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1719
1720 trace_block_getrq(q, bio, bio->bi_opf);
1721
1722 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1723 if (unlikely(!rq)) {
1724 __wbt_done(q->rq_wb, wb_acct);
1725 if (bio->bi_opf & REQ_NOWAIT)
1726 bio_wouldblock_error(bio);
1727 return BLK_QC_T_NONE;
1728 }
1729
1730 wbt_track(&rq->issue_stat, wb_acct);
1731
1732 cookie = request_to_qc_t(data.hctx, rq);
1733
1734 plug = current->plug;
1735 if (unlikely(is_flush_fua)) {
1736 blk_mq_put_ctx(data.ctx);
1737 blk_mq_bio_to_request(rq, bio);
1738
1739 /* bypass scheduler for flush rq */
1740 blk_insert_flush(rq);
1741 blk_mq_run_hw_queue(data.hctx, true);
1742 } else if (plug && q->nr_hw_queues == 1) {
1743 struct request *last = NULL;
1744
1745 blk_mq_put_ctx(data.ctx);
1746 blk_mq_bio_to_request(rq, bio);
1747
1748 /*
1749 * @request_count may become stale because of schedule
1750 * out, so check the list again.
1751 */
1752 if (list_empty(&plug->mq_list))
1753 request_count = 0;
1754 else if (blk_queue_nomerges(q))
1755 request_count = blk_plug_queued_count(q);
1756
1757 if (!request_count)
1758 trace_block_plug(q);
1759 else
1760 last = list_entry_rq(plug->mq_list.prev);
1761
1762 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1763 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1764 blk_flush_plug_list(plug, false);
1765 trace_block_plug(q);
1766 }
1767
1768 list_add_tail(&rq->queuelist, &plug->mq_list);
1769 } else if (plug && !blk_queue_nomerges(q)) {
1770 blk_mq_bio_to_request(rq, bio);
1771
1772 /*
1773 * We do limited plugging. If the bio can be merged, do that.
1774 * Otherwise the existing request in the plug list will be
1775 * issued. So the plug list will have one request at most
1776 * The plug list might get flushed before this. If that happens,
1777 * the plug list is empty, and same_queue_rq is invalid.
1778 */
1779 if (list_empty(&plug->mq_list))
1780 same_queue_rq = NULL;
1781 if (same_queue_rq)
1782 list_del_init(&same_queue_rq->queuelist);
1783 list_add_tail(&rq->queuelist, &plug->mq_list);
1784
1785 blk_mq_put_ctx(data.ctx);
1786
1787 if (same_queue_rq) {
1788 data.hctx = blk_mq_map_queue(q,
1789 same_queue_rq->mq_ctx->cpu);
1790 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1791 &cookie);
1792 }
1793 } else if (q->nr_hw_queues > 1 && is_sync) {
1794 blk_mq_put_ctx(data.ctx);
1795 blk_mq_bio_to_request(rq, bio);
1796 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1797 } else if (q->elevator) {
1798 blk_mq_put_ctx(data.ctx);
1799 blk_mq_bio_to_request(rq, bio);
1800 blk_mq_sched_insert_request(rq, false, true, true, true);
1801 } else {
1802 blk_mq_put_ctx(data.ctx);
1803 blk_mq_bio_to_request(rq, bio);
1804 blk_mq_queue_io(data.hctx, data.ctx, rq);
1805 blk_mq_run_hw_queue(data.hctx, true);
1806 }
1807
1808 return cookie;
1809 }
1810
1811 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1812 unsigned int hctx_idx)
1813 {
1814 struct page *page;
1815
1816 if (tags->rqs && set->ops->exit_request) {
1817 int i;
1818
1819 for (i = 0; i < tags->nr_tags; i++) {
1820 struct request *rq = tags->static_rqs[i];
1821
1822 if (!rq)
1823 continue;
1824 set->ops->exit_request(set, rq, hctx_idx);
1825 tags->static_rqs[i] = NULL;
1826 }
1827 }
1828
1829 while (!list_empty(&tags->page_list)) {
1830 page = list_first_entry(&tags->page_list, struct page, lru);
1831 list_del_init(&page->lru);
1832 /*
1833 * Remove kmemleak object previously allocated in
1834 * blk_mq_init_rq_map().
1835 */
1836 kmemleak_free(page_address(page));
1837 __free_pages(page, page->private);
1838 }
1839 }
1840
1841 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1842 {
1843 kfree(tags->rqs);
1844 tags->rqs = NULL;
1845 kfree(tags->static_rqs);
1846 tags->static_rqs = NULL;
1847
1848 blk_mq_free_tags(tags);
1849 }
1850
1851 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1852 unsigned int hctx_idx,
1853 unsigned int nr_tags,
1854 unsigned int reserved_tags)
1855 {
1856 struct blk_mq_tags *tags;
1857 int node;
1858
1859 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1860 if (node == NUMA_NO_NODE)
1861 node = set->numa_node;
1862
1863 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1864 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1865 if (!tags)
1866 return NULL;
1867
1868 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1869 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1870 node);
1871 if (!tags->rqs) {
1872 blk_mq_free_tags(tags);
1873 return NULL;
1874 }
1875
1876 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1877 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1878 node);
1879 if (!tags->static_rqs) {
1880 kfree(tags->rqs);
1881 blk_mq_free_tags(tags);
1882 return NULL;
1883 }
1884
1885 return tags;
1886 }
1887
1888 static size_t order_to_size(unsigned int order)
1889 {
1890 return (size_t)PAGE_SIZE << order;
1891 }
1892
1893 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1894 unsigned int hctx_idx, unsigned int depth)
1895 {
1896 unsigned int i, j, entries_per_page, max_order = 4;
1897 size_t rq_size, left;
1898 int node;
1899
1900 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1901 if (node == NUMA_NO_NODE)
1902 node = set->numa_node;
1903
1904 INIT_LIST_HEAD(&tags->page_list);
1905
1906 /*
1907 * rq_size is the size of the request plus driver payload, rounded
1908 * to the cacheline size
1909 */
1910 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1911 cache_line_size());
1912 left = rq_size * depth;
1913
1914 for (i = 0; i < depth; ) {
1915 int this_order = max_order;
1916 struct page *page;
1917 int to_do;
1918 void *p;
1919
1920 while (this_order && left < order_to_size(this_order - 1))
1921 this_order--;
1922
1923 do {
1924 page = alloc_pages_node(node,
1925 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1926 this_order);
1927 if (page)
1928 break;
1929 if (!this_order--)
1930 break;
1931 if (order_to_size(this_order) < rq_size)
1932 break;
1933 } while (1);
1934
1935 if (!page)
1936 goto fail;
1937
1938 page->private = this_order;
1939 list_add_tail(&page->lru, &tags->page_list);
1940
1941 p = page_address(page);
1942 /*
1943 * Allow kmemleak to scan these pages as they contain pointers
1944 * to additional allocations like via ops->init_request().
1945 */
1946 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1947 entries_per_page = order_to_size(this_order) / rq_size;
1948 to_do = min(entries_per_page, depth - i);
1949 left -= to_do * rq_size;
1950 for (j = 0; j < to_do; j++) {
1951 struct request *rq = p;
1952
1953 tags->static_rqs[i] = rq;
1954 if (set->ops->init_request) {
1955 if (set->ops->init_request(set, rq, hctx_idx,
1956 node)) {
1957 tags->static_rqs[i] = NULL;
1958 goto fail;
1959 }
1960 }
1961
1962 p += rq_size;
1963 i++;
1964 }
1965 }
1966 return 0;
1967
1968 fail:
1969 blk_mq_free_rqs(set, tags, hctx_idx);
1970 return -ENOMEM;
1971 }
1972
1973 /*
1974 * 'cpu' is going away. splice any existing rq_list entries from this
1975 * software queue to the hw queue dispatch list, and ensure that it
1976 * gets run.
1977 */
1978 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1979 {
1980 struct blk_mq_hw_ctx *hctx;
1981 struct blk_mq_ctx *ctx;
1982 LIST_HEAD(tmp);
1983
1984 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1985 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1986
1987 spin_lock(&ctx->lock);
1988 if (!list_empty(&ctx->rq_list)) {
1989 list_splice_init(&ctx->rq_list, &tmp);
1990 blk_mq_hctx_clear_pending(hctx, ctx);
1991 }
1992 spin_unlock(&ctx->lock);
1993
1994 if (list_empty(&tmp))
1995 return 0;
1996
1997 spin_lock(&hctx->lock);
1998 list_splice_tail_init(&tmp, &hctx->dispatch);
1999 spin_unlock(&hctx->lock);
2000
2001 blk_mq_run_hw_queue(hctx, true);
2002 return 0;
2003 }
2004
2005 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2006 {
2007 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2008 &hctx->cpuhp_dead);
2009 }
2010
2011 /* hctx->ctxs will be freed in queue's release handler */
2012 static void blk_mq_exit_hctx(struct request_queue *q,
2013 struct blk_mq_tag_set *set,
2014 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2015 {
2016 blk_mq_debugfs_unregister_hctx(hctx);
2017
2018 blk_mq_tag_idle(hctx);
2019
2020 if (set->ops->exit_request)
2021 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2022
2023 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2024
2025 if (set->ops->exit_hctx)
2026 set->ops->exit_hctx(hctx, hctx_idx);
2027
2028 if (hctx->flags & BLK_MQ_F_BLOCKING)
2029 cleanup_srcu_struct(hctx->queue_rq_srcu);
2030
2031 blk_mq_remove_cpuhp(hctx);
2032 blk_free_flush_queue(hctx->fq);
2033 sbitmap_free(&hctx->ctx_map);
2034 }
2035
2036 static void blk_mq_exit_hw_queues(struct request_queue *q,
2037 struct blk_mq_tag_set *set, int nr_queue)
2038 {
2039 struct blk_mq_hw_ctx *hctx;
2040 unsigned int i;
2041
2042 queue_for_each_hw_ctx(q, hctx, i) {
2043 if (i == nr_queue)
2044 break;
2045 blk_mq_exit_hctx(q, set, hctx, i);
2046 }
2047 }
2048
2049 static int blk_mq_init_hctx(struct request_queue *q,
2050 struct blk_mq_tag_set *set,
2051 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2052 {
2053 int node;
2054
2055 node = hctx->numa_node;
2056 if (node == NUMA_NO_NODE)
2057 node = hctx->numa_node = set->numa_node;
2058
2059 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2060 spin_lock_init(&hctx->lock);
2061 INIT_LIST_HEAD(&hctx->dispatch);
2062 hctx->queue = q;
2063 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2064
2065 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2066
2067 hctx->tags = set->tags[hctx_idx];
2068
2069 /*
2070 * Allocate space for all possible cpus to avoid allocation at
2071 * runtime
2072 */
2073 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2074 GFP_KERNEL, node);
2075 if (!hctx->ctxs)
2076 goto unregister_cpu_notifier;
2077
2078 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2079 node))
2080 goto free_ctxs;
2081
2082 hctx->nr_ctx = 0;
2083
2084 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2085 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2086
2087 if (set->ops->init_hctx &&
2088 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2089 goto free_bitmap;
2090
2091 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2092 goto exit_hctx;
2093
2094 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2095 if (!hctx->fq)
2096 goto sched_exit_hctx;
2097
2098 if (set->ops->init_request &&
2099 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
2100 node))
2101 goto free_fq;
2102
2103 if (hctx->flags & BLK_MQ_F_BLOCKING)
2104 init_srcu_struct(hctx->queue_rq_srcu);
2105
2106 blk_mq_debugfs_register_hctx(q, hctx);
2107
2108 return 0;
2109
2110 free_fq:
2111 kfree(hctx->fq);
2112 sched_exit_hctx:
2113 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2114 exit_hctx:
2115 if (set->ops->exit_hctx)
2116 set->ops->exit_hctx(hctx, hctx_idx);
2117 free_bitmap:
2118 sbitmap_free(&hctx->ctx_map);
2119 free_ctxs:
2120 kfree(hctx->ctxs);
2121 unregister_cpu_notifier:
2122 blk_mq_remove_cpuhp(hctx);
2123 return -1;
2124 }
2125
2126 static void blk_mq_init_cpu_queues(struct request_queue *q,
2127 unsigned int nr_hw_queues)
2128 {
2129 unsigned int i;
2130
2131 for_each_possible_cpu(i) {
2132 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2133 struct blk_mq_hw_ctx *hctx;
2134
2135 __ctx->cpu = i;
2136 spin_lock_init(&__ctx->lock);
2137 INIT_LIST_HEAD(&__ctx->rq_list);
2138 __ctx->queue = q;
2139
2140 /*
2141 * Set local node, IFF we have more than one hw queue. If
2142 * not, we remain on the home node of the device
2143 */
2144 hctx = blk_mq_map_queue(q, i);
2145 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2146 hctx->numa_node = local_memory_node(cpu_to_node(i));
2147 }
2148 }
2149
2150 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2151 {
2152 int ret = 0;
2153
2154 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2155 set->queue_depth, set->reserved_tags);
2156 if (!set->tags[hctx_idx])
2157 return false;
2158
2159 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2160 set->queue_depth);
2161 if (!ret)
2162 return true;
2163
2164 blk_mq_free_rq_map(set->tags[hctx_idx]);
2165 set->tags[hctx_idx] = NULL;
2166 return false;
2167 }
2168
2169 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2170 unsigned int hctx_idx)
2171 {
2172 if (set->tags[hctx_idx]) {
2173 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2174 blk_mq_free_rq_map(set->tags[hctx_idx]);
2175 set->tags[hctx_idx] = NULL;
2176 }
2177 }
2178
2179 static void blk_mq_map_swqueue(struct request_queue *q)
2180 {
2181 unsigned int i, hctx_idx;
2182 struct blk_mq_hw_ctx *hctx;
2183 struct blk_mq_ctx *ctx;
2184 struct blk_mq_tag_set *set = q->tag_set;
2185
2186 /*
2187 * Avoid others reading imcomplete hctx->cpumask through sysfs
2188 */
2189 mutex_lock(&q->sysfs_lock);
2190
2191 queue_for_each_hw_ctx(q, hctx, i) {
2192 cpumask_clear(hctx->cpumask);
2193 hctx->nr_ctx = 0;
2194 }
2195
2196 /*
2197 * Map software to hardware queues.
2198 *
2199 * If the cpu isn't present, the cpu is mapped to first hctx.
2200 */
2201 for_each_possible_cpu(i) {
2202 hctx_idx = q->mq_map[i];
2203 /* unmapped hw queue can be remapped after CPU topo changed */
2204 if (!set->tags[hctx_idx] &&
2205 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2206 /*
2207 * If tags initialization fail for some hctx,
2208 * that hctx won't be brought online. In this
2209 * case, remap the current ctx to hctx[0] which
2210 * is guaranteed to always have tags allocated
2211 */
2212 q->mq_map[i] = 0;
2213 }
2214
2215 ctx = per_cpu_ptr(q->queue_ctx, i);
2216 hctx = blk_mq_map_queue(q, i);
2217
2218 cpumask_set_cpu(i, hctx->cpumask);
2219 ctx->index_hw = hctx->nr_ctx;
2220 hctx->ctxs[hctx->nr_ctx++] = ctx;
2221 }
2222
2223 mutex_unlock(&q->sysfs_lock);
2224
2225 queue_for_each_hw_ctx(q, hctx, i) {
2226 /*
2227 * If no software queues are mapped to this hardware queue,
2228 * disable it and free the request entries.
2229 */
2230 if (!hctx->nr_ctx) {
2231 /* Never unmap queue 0. We need it as a
2232 * fallback in case of a new remap fails
2233 * allocation
2234 */
2235 if (i && set->tags[i])
2236 blk_mq_free_map_and_requests(set, i);
2237
2238 hctx->tags = NULL;
2239 continue;
2240 }
2241
2242 hctx->tags = set->tags[i];
2243 WARN_ON(!hctx->tags);
2244
2245 /*
2246 * Set the map size to the number of mapped software queues.
2247 * This is more accurate and more efficient than looping
2248 * over all possibly mapped software queues.
2249 */
2250 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2251
2252 /*
2253 * Initialize batch roundrobin counts
2254 */
2255 hctx->next_cpu = cpumask_first_and(hctx->cpumask,
2256 cpu_online_mask);
2257 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2258 }
2259 }
2260
2261 /*
2262 * Caller needs to ensure that we're either frozen/quiesced, or that
2263 * the queue isn't live yet.
2264 */
2265 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2266 {
2267 struct blk_mq_hw_ctx *hctx;
2268 int i;
2269
2270 queue_for_each_hw_ctx(q, hctx, i) {
2271 if (shared) {
2272 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2273 atomic_inc(&q->shared_hctx_restart);
2274 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2275 } else {
2276 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2277 atomic_dec(&q->shared_hctx_restart);
2278 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2279 }
2280 }
2281 }
2282
2283 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2284 bool shared)
2285 {
2286 struct request_queue *q;
2287
2288 lockdep_assert_held(&set->tag_list_lock);
2289
2290 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2291 blk_mq_freeze_queue(q);
2292 queue_set_hctx_shared(q, shared);
2293 blk_mq_unfreeze_queue(q);
2294 }
2295 }
2296
2297 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2298 {
2299 struct blk_mq_tag_set *set = q->tag_set;
2300
2301 mutex_lock(&set->tag_list_lock);
2302 list_del_rcu(&q->tag_set_list);
2303 INIT_LIST_HEAD(&q->tag_set_list);
2304 if (list_is_singular(&set->tag_list)) {
2305 /* just transitioned to unshared */
2306 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2307 /* update existing queue */
2308 blk_mq_update_tag_set_depth(set, false);
2309 }
2310 mutex_unlock(&set->tag_list_lock);
2311
2312 synchronize_rcu();
2313 }
2314
2315 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2316 struct request_queue *q)
2317 {
2318 q->tag_set = set;
2319
2320 mutex_lock(&set->tag_list_lock);
2321
2322 /*
2323 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2324 */
2325 if (!list_empty(&set->tag_list) &&
2326 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2327 set->flags |= BLK_MQ_F_TAG_SHARED;
2328 /* update existing queue */
2329 blk_mq_update_tag_set_depth(set, true);
2330 }
2331 if (set->flags & BLK_MQ_F_TAG_SHARED)
2332 queue_set_hctx_shared(q, true);
2333 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2334
2335 mutex_unlock(&set->tag_list_lock);
2336 }
2337
2338 /*
2339 * It is the actual release handler for mq, but we do it from
2340 * request queue's release handler for avoiding use-after-free
2341 * and headache because q->mq_kobj shouldn't have been introduced,
2342 * but we can't group ctx/kctx kobj without it.
2343 */
2344 void blk_mq_release(struct request_queue *q)
2345 {
2346 struct blk_mq_hw_ctx *hctx;
2347 unsigned int i;
2348
2349 /* hctx kobj stays in hctx */
2350 queue_for_each_hw_ctx(q, hctx, i) {
2351 if (!hctx)
2352 continue;
2353 kobject_put(&hctx->kobj);
2354 }
2355
2356 q->mq_map = NULL;
2357
2358 kfree(q->queue_hw_ctx);
2359
2360 /*
2361 * release .mq_kobj and sw queue's kobject now because
2362 * both share lifetime with request queue.
2363 */
2364 blk_mq_sysfs_deinit(q);
2365
2366 free_percpu(q->queue_ctx);
2367 }
2368
2369 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2370 {
2371 struct request_queue *uninit_q, *q;
2372
2373 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2374 if (!uninit_q)
2375 return ERR_PTR(-ENOMEM);
2376
2377 q = blk_mq_init_allocated_queue(set, uninit_q);
2378 if (IS_ERR(q))
2379 blk_cleanup_queue(uninit_q);
2380
2381 return q;
2382 }
2383 EXPORT_SYMBOL(blk_mq_init_queue);
2384
2385 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2386 {
2387 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2388
2389 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
2390 __alignof__(struct blk_mq_hw_ctx)) !=
2391 sizeof(struct blk_mq_hw_ctx));
2392
2393 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2394 hw_ctx_size += sizeof(struct srcu_struct);
2395
2396 return hw_ctx_size;
2397 }
2398
2399 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2400 struct request_queue *q)
2401 {
2402 int i, j;
2403 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2404
2405 blk_mq_sysfs_unregister(q);
2406 for (i = 0; i < set->nr_hw_queues; i++) {
2407 int node;
2408
2409 if (hctxs[i])
2410 continue;
2411
2412 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2413 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2414 GFP_KERNEL, node);
2415 if (!hctxs[i])
2416 break;
2417
2418 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2419 node)) {
2420 kfree(hctxs[i]);
2421 hctxs[i] = NULL;
2422 break;
2423 }
2424
2425 atomic_set(&hctxs[i]->nr_active, 0);
2426 hctxs[i]->numa_node = node;
2427 hctxs[i]->queue_num = i;
2428
2429 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2430 free_cpumask_var(hctxs[i]->cpumask);
2431 kfree(hctxs[i]);
2432 hctxs[i] = NULL;
2433 break;
2434 }
2435 blk_mq_hctx_kobj_init(hctxs[i]);
2436 }
2437 for (j = i; j < q->nr_hw_queues; j++) {
2438 struct blk_mq_hw_ctx *hctx = hctxs[j];
2439
2440 if (hctx) {
2441 if (hctx->tags)
2442 blk_mq_free_map_and_requests(set, j);
2443 blk_mq_exit_hctx(q, set, hctx, j);
2444 kobject_put(&hctx->kobj);
2445 hctxs[j] = NULL;
2446
2447 }
2448 }
2449 q->nr_hw_queues = i;
2450 blk_mq_sysfs_register(q);
2451 }
2452
2453 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2454 struct request_queue *q)
2455 {
2456 /* mark the queue as mq asap */
2457 q->mq_ops = set->ops;
2458
2459 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2460 blk_mq_poll_stats_bkt,
2461 BLK_MQ_POLL_STATS_BKTS, q);
2462 if (!q->poll_cb)
2463 goto err_exit;
2464
2465 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2466 if (!q->queue_ctx)
2467 goto err_exit;
2468
2469 /* init q->mq_kobj and sw queues' kobjects */
2470 blk_mq_sysfs_init(q);
2471
2472 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2473 GFP_KERNEL, set->numa_node);
2474 if (!q->queue_hw_ctx)
2475 goto err_percpu;
2476
2477 q->mq_map = set->mq_map;
2478
2479 blk_mq_realloc_hw_ctxs(set, q);
2480 if (!q->nr_hw_queues)
2481 goto err_hctxs;
2482
2483 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2484 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2485
2486 q->nr_queues = nr_cpu_ids;
2487
2488 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2489
2490 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2491 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2492
2493 q->sg_reserved_size = INT_MAX;
2494
2495 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2496 INIT_LIST_HEAD(&q->requeue_list);
2497 spin_lock_init(&q->requeue_lock);
2498
2499 blk_queue_make_request(q, blk_mq_make_request);
2500 if (q->mq_ops->poll)
2501 q->poll_fn = blk_mq_poll;
2502
2503 /*
2504 * Do this after blk_queue_make_request() overrides it...
2505 */
2506 q->nr_requests = set->queue_depth;
2507
2508 /*
2509 * Default to classic polling
2510 */
2511 q->poll_nsec = -1;
2512
2513 if (set->ops->complete)
2514 blk_queue_softirq_done(q, set->ops->complete);
2515
2516 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2517 blk_mq_add_queue_tag_set(set, q);
2518 blk_mq_map_swqueue(q);
2519
2520 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2521 int ret;
2522
2523 ret = blk_mq_sched_init(q);
2524 if (ret)
2525 return ERR_PTR(ret);
2526 }
2527
2528 return q;
2529
2530 err_hctxs:
2531 kfree(q->queue_hw_ctx);
2532 err_percpu:
2533 free_percpu(q->queue_ctx);
2534 err_exit:
2535 q->mq_ops = NULL;
2536 return ERR_PTR(-ENOMEM);
2537 }
2538 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2539
2540 void blk_mq_free_queue(struct request_queue *q)
2541 {
2542 struct blk_mq_tag_set *set = q->tag_set;
2543
2544 blk_mq_del_queue_tag_set(q);
2545 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2546 }
2547
2548 /* Basically redo blk_mq_init_queue with queue frozen */
2549 static void blk_mq_queue_reinit(struct request_queue *q)
2550 {
2551 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2552
2553 blk_mq_debugfs_unregister_hctxs(q);
2554 blk_mq_sysfs_unregister(q);
2555
2556 /*
2557 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2558 * we should change hctx numa_node according to the new topology (this
2559 * involves freeing and re-allocating memory, worth doing?)
2560 */
2561 blk_mq_map_swqueue(q);
2562
2563 blk_mq_sysfs_register(q);
2564 blk_mq_debugfs_register_hctxs(q);
2565 }
2566
2567 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2568 {
2569 int i;
2570
2571 for (i = 0; i < set->nr_hw_queues; i++)
2572 if (!__blk_mq_alloc_rq_map(set, i))
2573 goto out_unwind;
2574
2575 return 0;
2576
2577 out_unwind:
2578 while (--i >= 0)
2579 blk_mq_free_rq_map(set->tags[i]);
2580
2581 return -ENOMEM;
2582 }
2583
2584 /*
2585 * Allocate the request maps associated with this tag_set. Note that this
2586 * may reduce the depth asked for, if memory is tight. set->queue_depth
2587 * will be updated to reflect the allocated depth.
2588 */
2589 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2590 {
2591 unsigned int depth;
2592 int err;
2593
2594 depth = set->queue_depth;
2595 do {
2596 err = __blk_mq_alloc_rq_maps(set);
2597 if (!err)
2598 break;
2599
2600 set->queue_depth >>= 1;
2601 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2602 err = -ENOMEM;
2603 break;
2604 }
2605 } while (set->queue_depth);
2606
2607 if (!set->queue_depth || err) {
2608 pr_err("blk-mq: failed to allocate request map\n");
2609 return -ENOMEM;
2610 }
2611
2612 if (depth != set->queue_depth)
2613 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2614 depth, set->queue_depth);
2615
2616 return 0;
2617 }
2618
2619 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2620 {
2621 if (set->ops->map_queues) {
2622 int cpu;
2623 /*
2624 * transport .map_queues is usually done in the following
2625 * way:
2626 *
2627 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2628 * mask = get_cpu_mask(queue)
2629 * for_each_cpu(cpu, mask)
2630 * set->mq_map[cpu] = queue;
2631 * }
2632 *
2633 * When we need to remap, the table has to be cleared for
2634 * killing stale mapping since one CPU may not be mapped
2635 * to any hw queue.
2636 */
2637 for_each_possible_cpu(cpu)
2638 set->mq_map[cpu] = 0;
2639
2640 return set->ops->map_queues(set);
2641 } else
2642 return blk_mq_map_queues(set);
2643 }
2644
2645 /*
2646 * Alloc a tag set to be associated with one or more request queues.
2647 * May fail with EINVAL for various error conditions. May adjust the
2648 * requested depth down, if if it too large. In that case, the set
2649 * value will be stored in set->queue_depth.
2650 */
2651 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2652 {
2653 int ret;
2654
2655 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2656
2657 if (!set->nr_hw_queues)
2658 return -EINVAL;
2659 if (!set->queue_depth)
2660 return -EINVAL;
2661 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2662 return -EINVAL;
2663
2664 if (!set->ops->queue_rq)
2665 return -EINVAL;
2666
2667 if (!set->ops->get_budget ^ !set->ops->put_budget)
2668 return -EINVAL;
2669
2670 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2671 pr_info("blk-mq: reduced tag depth to %u\n",
2672 BLK_MQ_MAX_DEPTH);
2673 set->queue_depth = BLK_MQ_MAX_DEPTH;
2674 }
2675
2676 /*
2677 * If a crashdump is active, then we are potentially in a very
2678 * memory constrained environment. Limit us to 1 queue and
2679 * 64 tags to prevent using too much memory.
2680 */
2681 if (is_kdump_kernel()) {
2682 set->nr_hw_queues = 1;
2683 set->queue_depth = min(64U, set->queue_depth);
2684 }
2685 /*
2686 * There is no use for more h/w queues than cpus.
2687 */
2688 if (set->nr_hw_queues > nr_cpu_ids)
2689 set->nr_hw_queues = nr_cpu_ids;
2690
2691 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2692 GFP_KERNEL, set->numa_node);
2693 if (!set->tags)
2694 return -ENOMEM;
2695
2696 ret = -ENOMEM;
2697 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2698 GFP_KERNEL, set->numa_node);
2699 if (!set->mq_map)
2700 goto out_free_tags;
2701
2702 ret = blk_mq_update_queue_map(set);
2703 if (ret)
2704 goto out_free_mq_map;
2705
2706 ret = blk_mq_alloc_rq_maps(set);
2707 if (ret)
2708 goto out_free_mq_map;
2709
2710 mutex_init(&set->tag_list_lock);
2711 INIT_LIST_HEAD(&set->tag_list);
2712
2713 return 0;
2714
2715 out_free_mq_map:
2716 kfree(set->mq_map);
2717 set->mq_map = NULL;
2718 out_free_tags:
2719 kfree(set->tags);
2720 set->tags = NULL;
2721 return ret;
2722 }
2723 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2724
2725 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2726 {
2727 int i;
2728
2729 for (i = 0; i < nr_cpu_ids; i++)
2730 blk_mq_free_map_and_requests(set, i);
2731
2732 kfree(set->mq_map);
2733 set->mq_map = NULL;
2734
2735 kfree(set->tags);
2736 set->tags = NULL;
2737 }
2738 EXPORT_SYMBOL(blk_mq_free_tag_set);
2739
2740 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2741 {
2742 struct blk_mq_tag_set *set = q->tag_set;
2743 struct blk_mq_hw_ctx *hctx;
2744 int i, ret;
2745
2746 if (!set)
2747 return -EINVAL;
2748
2749 blk_mq_freeze_queue(q);
2750
2751 ret = 0;
2752 queue_for_each_hw_ctx(q, hctx, i) {
2753 if (!hctx->tags)
2754 continue;
2755 /*
2756 * If we're using an MQ scheduler, just update the scheduler
2757 * queue depth. This is similar to what the old code would do.
2758 */
2759 if (!hctx->sched_tags) {
2760 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2761 false);
2762 } else {
2763 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2764 nr, true);
2765 }
2766 if (ret)
2767 break;
2768 }
2769
2770 if (!ret)
2771 q->nr_requests = nr;
2772
2773 blk_mq_unfreeze_queue(q);
2774
2775 return ret;
2776 }
2777
2778 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2779 int nr_hw_queues)
2780 {
2781 struct request_queue *q;
2782
2783 lockdep_assert_held(&set->tag_list_lock);
2784
2785 if (nr_hw_queues > nr_cpu_ids)
2786 nr_hw_queues = nr_cpu_ids;
2787 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2788 return;
2789
2790 list_for_each_entry(q, &set->tag_list, tag_set_list)
2791 blk_mq_freeze_queue(q);
2792
2793 set->nr_hw_queues = nr_hw_queues;
2794 blk_mq_update_queue_map(set);
2795 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2796 blk_mq_realloc_hw_ctxs(set, q);
2797 blk_mq_queue_reinit(q);
2798 }
2799
2800 list_for_each_entry(q, &set->tag_list, tag_set_list)
2801 blk_mq_unfreeze_queue(q);
2802 }
2803
2804 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2805 {
2806 mutex_lock(&set->tag_list_lock);
2807 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2808 mutex_unlock(&set->tag_list_lock);
2809 }
2810 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2811
2812 /* Enable polling stats and return whether they were already enabled. */
2813 static bool blk_poll_stats_enable(struct request_queue *q)
2814 {
2815 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2816 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2817 return true;
2818 blk_stat_add_callback(q, q->poll_cb);
2819 return false;
2820 }
2821
2822 static void blk_mq_poll_stats_start(struct request_queue *q)
2823 {
2824 /*
2825 * We don't arm the callback if polling stats are not enabled or the
2826 * callback is already active.
2827 */
2828 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2829 blk_stat_is_active(q->poll_cb))
2830 return;
2831
2832 blk_stat_activate_msecs(q->poll_cb, 100);
2833 }
2834
2835 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2836 {
2837 struct request_queue *q = cb->data;
2838 int bucket;
2839
2840 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2841 if (cb->stat[bucket].nr_samples)
2842 q->poll_stat[bucket] = cb->stat[bucket];
2843 }
2844 }
2845
2846 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2847 struct blk_mq_hw_ctx *hctx,
2848 struct request *rq)
2849 {
2850 unsigned long ret = 0;
2851 int bucket;
2852
2853 /*
2854 * If stats collection isn't on, don't sleep but turn it on for
2855 * future users
2856 */
2857 if (!blk_poll_stats_enable(q))
2858 return 0;
2859
2860 /*
2861 * As an optimistic guess, use half of the mean service time
2862 * for this type of request. We can (and should) make this smarter.
2863 * For instance, if the completion latencies are tight, we can
2864 * get closer than just half the mean. This is especially
2865 * important on devices where the completion latencies are longer
2866 * than ~10 usec. We do use the stats for the relevant IO size
2867 * if available which does lead to better estimates.
2868 */
2869 bucket = blk_mq_poll_stats_bkt(rq);
2870 if (bucket < 0)
2871 return ret;
2872
2873 if (q->poll_stat[bucket].nr_samples)
2874 ret = (q->poll_stat[bucket].mean + 1) / 2;
2875
2876 return ret;
2877 }
2878
2879 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2880 struct blk_mq_hw_ctx *hctx,
2881 struct request *rq)
2882 {
2883 struct hrtimer_sleeper hs;
2884 enum hrtimer_mode mode;
2885 unsigned int nsecs;
2886 ktime_t kt;
2887
2888 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2889 return false;
2890
2891 /*
2892 * poll_nsec can be:
2893 *
2894 * -1: don't ever hybrid sleep
2895 * 0: use half of prev avg
2896 * >0: use this specific value
2897 */
2898 if (q->poll_nsec == -1)
2899 return false;
2900 else if (q->poll_nsec > 0)
2901 nsecs = q->poll_nsec;
2902 else
2903 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2904
2905 if (!nsecs)
2906 return false;
2907
2908 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2909
2910 /*
2911 * This will be replaced with the stats tracking code, using
2912 * 'avg_completion_time / 2' as the pre-sleep target.
2913 */
2914 kt = nsecs;
2915
2916 mode = HRTIMER_MODE_REL;
2917 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2918 hrtimer_set_expires(&hs.timer, kt);
2919
2920 hrtimer_init_sleeper(&hs, current);
2921 do {
2922 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2923 break;
2924 set_current_state(TASK_UNINTERRUPTIBLE);
2925 hrtimer_start_expires(&hs.timer, mode);
2926 if (hs.task)
2927 io_schedule();
2928 hrtimer_cancel(&hs.timer);
2929 mode = HRTIMER_MODE_ABS;
2930 } while (hs.task && !signal_pending(current));
2931
2932 __set_current_state(TASK_RUNNING);
2933 destroy_hrtimer_on_stack(&hs.timer);
2934 return true;
2935 }
2936
2937 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2938 {
2939 struct request_queue *q = hctx->queue;
2940 long state;
2941
2942 /*
2943 * If we sleep, have the caller restart the poll loop to reset
2944 * the state. Like for the other success return cases, the
2945 * caller is responsible for checking if the IO completed. If
2946 * the IO isn't complete, we'll get called again and will go
2947 * straight to the busy poll loop.
2948 */
2949 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2950 return true;
2951
2952 hctx->poll_considered++;
2953
2954 state = current->state;
2955 while (!need_resched()) {
2956 int ret;
2957
2958 hctx->poll_invoked++;
2959
2960 ret = q->mq_ops->poll(hctx, rq->tag);
2961 if (ret > 0) {
2962 hctx->poll_success++;
2963 set_current_state(TASK_RUNNING);
2964 return true;
2965 }
2966
2967 if (signal_pending_state(state, current))
2968 set_current_state(TASK_RUNNING);
2969
2970 if (current->state == TASK_RUNNING)
2971 return true;
2972 if (ret < 0)
2973 break;
2974 cpu_relax();
2975 }
2976
2977 return false;
2978 }
2979
2980 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2981 {
2982 struct blk_mq_hw_ctx *hctx;
2983 struct request *rq;
2984
2985 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2986 return false;
2987
2988 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2989 if (!blk_qc_t_is_internal(cookie))
2990 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2991 else {
2992 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2993 /*
2994 * With scheduling, if the request has completed, we'll
2995 * get a NULL return here, as we clear the sched tag when
2996 * that happens. The request still remains valid, like always,
2997 * so we should be safe with just the NULL check.
2998 */
2999 if (!rq)
3000 return false;
3001 }
3002
3003 return __blk_mq_poll(hctx, rq);
3004 }
3005
3006 static int __init blk_mq_init(void)
3007 {
3008 /*
3009 * See comment in block/blk.h rq_atomic_flags enum
3010 */
3011 BUILD_BUG_ON((REQ_ATOM_STARTED / BITS_PER_BYTE) !=
3012 (REQ_ATOM_COMPLETE / BITS_PER_BYTE));
3013
3014 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3015 blk_mq_hctx_notify_dead);
3016 return 0;
3017 }
3018 subsys_initcall(blk_mq_init);