]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-mq.c
blk-mq: put the driver tag of nxt rq before first one is requeued
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46 int ddir, bytes, bucket;
47
48 ddir = rq_data_dir(rq);
49 bytes = blk_rq_bytes(rq);
50
51 bucket = ddir + 2*(ilog2(bytes) - 9);
52
53 if (bucket < 0)
54 return -1;
55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58 return bucket;
59 }
60
61 /*
62 * Check if any of the ctx's have pending work in this hardware queue
63 */
64 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66 return sbitmap_any_bit_set(&hctx->ctx_map) ||
67 !list_empty_careful(&hctx->dispatch) ||
68 blk_mq_sched_has_work(hctx);
69 }
70
71 /*
72 * Mark this ctx as having pending work in this hardware queue
73 */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 struct blk_mq_ctx *ctx)
76 {
77 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 }
80
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 struct blk_mq_ctx *ctx)
83 {
84 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 }
86
87 struct mq_inflight {
88 struct hd_struct *part;
89 unsigned int *inflight;
90 };
91
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93 struct request *rq, void *priv,
94 bool reserved)
95 {
96 struct mq_inflight *mi = priv;
97
98 if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
99 !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
100 /*
101 * index[0] counts the specific partition that was asked
102 * for. index[1] counts the ones that are active on the
103 * whole device, so increment that if mi->part is indeed
104 * a partition, and not a whole device.
105 */
106 if (rq->part == mi->part)
107 mi->inflight[0]++;
108 if (mi->part->partno)
109 mi->inflight[1]++;
110 }
111 }
112
113 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
114 unsigned int inflight[2])
115 {
116 struct mq_inflight mi = { .part = part, .inflight = inflight, };
117
118 inflight[0] = inflight[1] = 0;
119 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120 }
121
122 void blk_freeze_queue_start(struct request_queue *q)
123 {
124 int freeze_depth;
125
126 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
127 if (freeze_depth == 1) {
128 percpu_ref_kill(&q->q_usage_counter);
129 blk_mq_run_hw_queues(q, false);
130 }
131 }
132 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
133
134 void blk_mq_freeze_queue_wait(struct request_queue *q)
135 {
136 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
137 }
138 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
139
140 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
141 unsigned long timeout)
142 {
143 return wait_event_timeout(q->mq_freeze_wq,
144 percpu_ref_is_zero(&q->q_usage_counter),
145 timeout);
146 }
147 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
148
149 /*
150 * Guarantee no request is in use, so we can change any data structure of
151 * the queue afterward.
152 */
153 void blk_freeze_queue(struct request_queue *q)
154 {
155 /*
156 * In the !blk_mq case we are only calling this to kill the
157 * q_usage_counter, otherwise this increases the freeze depth
158 * and waits for it to return to zero. For this reason there is
159 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
160 * exported to drivers as the only user for unfreeze is blk_mq.
161 */
162 blk_freeze_queue_start(q);
163 blk_mq_freeze_queue_wait(q);
164 }
165
166 void blk_mq_freeze_queue(struct request_queue *q)
167 {
168 /*
169 * ...just an alias to keep freeze and unfreeze actions balanced
170 * in the blk_mq_* namespace
171 */
172 blk_freeze_queue(q);
173 }
174 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
175
176 void blk_mq_unfreeze_queue(struct request_queue *q)
177 {
178 int freeze_depth;
179
180 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
181 WARN_ON_ONCE(freeze_depth < 0);
182 if (!freeze_depth) {
183 percpu_ref_reinit(&q->q_usage_counter);
184 wake_up_all(&q->mq_freeze_wq);
185 }
186 }
187 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
188
189 /*
190 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
191 * mpt3sas driver such that this function can be removed.
192 */
193 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
194 {
195 unsigned long flags;
196
197 spin_lock_irqsave(q->queue_lock, flags);
198 queue_flag_set(QUEUE_FLAG_QUIESCED, q);
199 spin_unlock_irqrestore(q->queue_lock, flags);
200 }
201 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
202
203 /**
204 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
205 * @q: request queue.
206 *
207 * Note: this function does not prevent that the struct request end_io()
208 * callback function is invoked. Once this function is returned, we make
209 * sure no dispatch can happen until the queue is unquiesced via
210 * blk_mq_unquiesce_queue().
211 */
212 void blk_mq_quiesce_queue(struct request_queue *q)
213 {
214 struct blk_mq_hw_ctx *hctx;
215 unsigned int i;
216 bool rcu = false;
217
218 blk_mq_quiesce_queue_nowait(q);
219
220 queue_for_each_hw_ctx(q, hctx, i) {
221 if (hctx->flags & BLK_MQ_F_BLOCKING)
222 synchronize_srcu(hctx->queue_rq_srcu);
223 else
224 rcu = true;
225 }
226 if (rcu)
227 synchronize_rcu();
228 }
229 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
230
231 /*
232 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
233 * @q: request queue.
234 *
235 * This function recovers queue into the state before quiescing
236 * which is done by blk_mq_quiesce_queue.
237 */
238 void blk_mq_unquiesce_queue(struct request_queue *q)
239 {
240 unsigned long flags;
241
242 spin_lock_irqsave(q->queue_lock, flags);
243 queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
244 spin_unlock_irqrestore(q->queue_lock, flags);
245
246 /* dispatch requests which are inserted during quiescing */
247 blk_mq_run_hw_queues(q, true);
248 }
249 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
250
251 void blk_mq_wake_waiters(struct request_queue *q)
252 {
253 struct blk_mq_hw_ctx *hctx;
254 unsigned int i;
255
256 queue_for_each_hw_ctx(q, hctx, i)
257 if (blk_mq_hw_queue_mapped(hctx))
258 blk_mq_tag_wakeup_all(hctx->tags, true);
259
260 /*
261 * If we are called because the queue has now been marked as
262 * dying, we need to ensure that processes currently waiting on
263 * the queue are notified as well.
264 */
265 wake_up_all(&q->mq_freeze_wq);
266 }
267
268 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
269 {
270 return blk_mq_has_free_tags(hctx->tags);
271 }
272 EXPORT_SYMBOL(blk_mq_can_queue);
273
274 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
275 unsigned int tag, unsigned int op)
276 {
277 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
278 struct request *rq = tags->static_rqs[tag];
279
280 rq->rq_flags = 0;
281
282 if (data->flags & BLK_MQ_REQ_INTERNAL) {
283 rq->tag = -1;
284 rq->internal_tag = tag;
285 } else {
286 if (blk_mq_tag_busy(data->hctx)) {
287 rq->rq_flags = RQF_MQ_INFLIGHT;
288 atomic_inc(&data->hctx->nr_active);
289 }
290 rq->tag = tag;
291 rq->internal_tag = -1;
292 data->hctx->tags->rqs[rq->tag] = rq;
293 }
294
295 INIT_LIST_HEAD(&rq->queuelist);
296 /* csd/requeue_work/fifo_time is initialized before use */
297 rq->q = data->q;
298 rq->mq_ctx = data->ctx;
299 rq->cmd_flags = op;
300 if (blk_queue_io_stat(data->q))
301 rq->rq_flags |= RQF_IO_STAT;
302 /* do not touch atomic flags, it needs atomic ops against the timer */
303 rq->cpu = -1;
304 INIT_HLIST_NODE(&rq->hash);
305 RB_CLEAR_NODE(&rq->rb_node);
306 rq->rq_disk = NULL;
307 rq->part = NULL;
308 rq->start_time = jiffies;
309 #ifdef CONFIG_BLK_CGROUP
310 rq->rl = NULL;
311 set_start_time_ns(rq);
312 rq->io_start_time_ns = 0;
313 #endif
314 rq->nr_phys_segments = 0;
315 #if defined(CONFIG_BLK_DEV_INTEGRITY)
316 rq->nr_integrity_segments = 0;
317 #endif
318 rq->special = NULL;
319 /* tag was already set */
320 rq->extra_len = 0;
321
322 INIT_LIST_HEAD(&rq->timeout_list);
323 rq->timeout = 0;
324
325 rq->end_io = NULL;
326 rq->end_io_data = NULL;
327 rq->next_rq = NULL;
328
329 data->ctx->rq_dispatched[op_is_sync(op)]++;
330 return rq;
331 }
332
333 static struct request *blk_mq_get_request(struct request_queue *q,
334 struct bio *bio, unsigned int op,
335 struct blk_mq_alloc_data *data)
336 {
337 struct elevator_queue *e = q->elevator;
338 struct request *rq;
339 unsigned int tag;
340 bool put_ctx_on_error = false;
341
342 blk_queue_enter_live(q);
343 data->q = q;
344 if (likely(!data->ctx)) {
345 data->ctx = blk_mq_get_ctx(q);
346 put_ctx_on_error = true;
347 }
348 if (likely(!data->hctx))
349 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
350 if (op & REQ_NOWAIT)
351 data->flags |= BLK_MQ_REQ_NOWAIT;
352
353 if (e) {
354 data->flags |= BLK_MQ_REQ_INTERNAL;
355
356 /*
357 * Flush requests are special and go directly to the
358 * dispatch list.
359 */
360 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
361 e->type->ops.mq.limit_depth(op, data);
362 }
363
364 tag = blk_mq_get_tag(data);
365 if (tag == BLK_MQ_TAG_FAIL) {
366 if (put_ctx_on_error) {
367 blk_mq_put_ctx(data->ctx);
368 data->ctx = NULL;
369 }
370 blk_queue_exit(q);
371 return NULL;
372 }
373
374 rq = blk_mq_rq_ctx_init(data, tag, op);
375 if (!op_is_flush(op)) {
376 rq->elv.icq = NULL;
377 if (e && e->type->ops.mq.prepare_request) {
378 if (e->type->icq_cache && rq_ioc(bio))
379 blk_mq_sched_assign_ioc(rq, bio);
380
381 e->type->ops.mq.prepare_request(rq, bio);
382 rq->rq_flags |= RQF_ELVPRIV;
383 }
384 }
385 data->hctx->queued++;
386 return rq;
387 }
388
389 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
390 unsigned int flags)
391 {
392 struct blk_mq_alloc_data alloc_data = { .flags = flags };
393 struct request *rq;
394 int ret;
395
396 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
397 if (ret)
398 return ERR_PTR(ret);
399
400 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
401 blk_queue_exit(q);
402
403 if (!rq)
404 return ERR_PTR(-EWOULDBLOCK);
405
406 blk_mq_put_ctx(alloc_data.ctx);
407
408 rq->__data_len = 0;
409 rq->__sector = (sector_t) -1;
410 rq->bio = rq->biotail = NULL;
411 return rq;
412 }
413 EXPORT_SYMBOL(blk_mq_alloc_request);
414
415 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
416 unsigned int op, unsigned int flags, unsigned int hctx_idx)
417 {
418 struct blk_mq_alloc_data alloc_data = { .flags = flags };
419 struct request *rq;
420 unsigned int cpu;
421 int ret;
422
423 /*
424 * If the tag allocator sleeps we could get an allocation for a
425 * different hardware context. No need to complicate the low level
426 * allocator for this for the rare use case of a command tied to
427 * a specific queue.
428 */
429 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
430 return ERR_PTR(-EINVAL);
431
432 if (hctx_idx >= q->nr_hw_queues)
433 return ERR_PTR(-EIO);
434
435 ret = blk_queue_enter(q, true);
436 if (ret)
437 return ERR_PTR(ret);
438
439 /*
440 * Check if the hardware context is actually mapped to anything.
441 * If not tell the caller that it should skip this queue.
442 */
443 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
444 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
445 blk_queue_exit(q);
446 return ERR_PTR(-EXDEV);
447 }
448 cpu = cpumask_first(alloc_data.hctx->cpumask);
449 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
450
451 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
452 blk_queue_exit(q);
453
454 if (!rq)
455 return ERR_PTR(-EWOULDBLOCK);
456
457 return rq;
458 }
459 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
460
461 void blk_mq_free_request(struct request *rq)
462 {
463 struct request_queue *q = rq->q;
464 struct elevator_queue *e = q->elevator;
465 struct blk_mq_ctx *ctx = rq->mq_ctx;
466 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
467 const int sched_tag = rq->internal_tag;
468
469 if (rq->rq_flags & RQF_ELVPRIV) {
470 if (e && e->type->ops.mq.finish_request)
471 e->type->ops.mq.finish_request(rq);
472 if (rq->elv.icq) {
473 put_io_context(rq->elv.icq->ioc);
474 rq->elv.icq = NULL;
475 }
476 }
477
478 ctx->rq_completed[rq_is_sync(rq)]++;
479 if (rq->rq_flags & RQF_MQ_INFLIGHT)
480 atomic_dec(&hctx->nr_active);
481
482 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
483 laptop_io_completion(q->backing_dev_info);
484
485 wbt_done(q->rq_wb, &rq->issue_stat);
486
487 if (blk_rq_rl(rq))
488 blk_put_rl(blk_rq_rl(rq));
489
490 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
491 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
492 if (rq->tag != -1)
493 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
494 if (sched_tag != -1)
495 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
496 blk_mq_sched_restart(hctx);
497 blk_queue_exit(q);
498 }
499 EXPORT_SYMBOL_GPL(blk_mq_free_request);
500
501 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
502 {
503 blk_account_io_done(rq);
504
505 if (rq->end_io) {
506 wbt_done(rq->q->rq_wb, &rq->issue_stat);
507 rq->end_io(rq, error);
508 } else {
509 if (unlikely(blk_bidi_rq(rq)))
510 blk_mq_free_request(rq->next_rq);
511 blk_mq_free_request(rq);
512 }
513 }
514 EXPORT_SYMBOL(__blk_mq_end_request);
515
516 void blk_mq_end_request(struct request *rq, blk_status_t error)
517 {
518 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
519 BUG();
520 __blk_mq_end_request(rq, error);
521 }
522 EXPORT_SYMBOL(blk_mq_end_request);
523
524 static void __blk_mq_complete_request_remote(void *data)
525 {
526 struct request *rq = data;
527
528 rq->q->softirq_done_fn(rq);
529 }
530
531 static void __blk_mq_complete_request(struct request *rq)
532 {
533 struct blk_mq_ctx *ctx = rq->mq_ctx;
534 bool shared = false;
535 int cpu;
536
537 if (rq->internal_tag != -1)
538 blk_mq_sched_completed_request(rq);
539 if (rq->rq_flags & RQF_STATS) {
540 blk_mq_poll_stats_start(rq->q);
541 blk_stat_add(rq);
542 }
543
544 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
545 rq->q->softirq_done_fn(rq);
546 return;
547 }
548
549 cpu = get_cpu();
550 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
551 shared = cpus_share_cache(cpu, ctx->cpu);
552
553 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
554 rq->csd.func = __blk_mq_complete_request_remote;
555 rq->csd.info = rq;
556 rq->csd.flags = 0;
557 smp_call_function_single_async(ctx->cpu, &rq->csd);
558 } else {
559 rq->q->softirq_done_fn(rq);
560 }
561 put_cpu();
562 }
563
564 /**
565 * blk_mq_complete_request - end I/O on a request
566 * @rq: the request being processed
567 *
568 * Description:
569 * Ends all I/O on a request. It does not handle partial completions.
570 * The actual completion happens out-of-order, through a IPI handler.
571 **/
572 void blk_mq_complete_request(struct request *rq)
573 {
574 struct request_queue *q = rq->q;
575
576 if (unlikely(blk_should_fake_timeout(q)))
577 return;
578 if (!blk_mark_rq_complete(rq))
579 __blk_mq_complete_request(rq);
580 }
581 EXPORT_SYMBOL(blk_mq_complete_request);
582
583 int blk_mq_request_started(struct request *rq)
584 {
585 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
586 }
587 EXPORT_SYMBOL_GPL(blk_mq_request_started);
588
589 void blk_mq_start_request(struct request *rq)
590 {
591 struct request_queue *q = rq->q;
592
593 blk_mq_sched_started_request(rq);
594
595 trace_block_rq_issue(q, rq);
596
597 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
598 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
599 rq->rq_flags |= RQF_STATS;
600 wbt_issue(q->rq_wb, &rq->issue_stat);
601 }
602
603 blk_add_timer(rq);
604
605 WARN_ON_ONCE(test_bit(REQ_ATOM_STARTED, &rq->atomic_flags));
606
607 /*
608 * Mark us as started and clear complete. Complete might have been
609 * set if requeue raced with timeout, which then marked it as
610 * complete. So be sure to clear complete again when we start
611 * the request, otherwise we'll ignore the completion event.
612 *
613 * Ensure that ->deadline is visible before we set STARTED, such that
614 * blk_mq_check_expired() is guaranteed to observe our ->deadline when
615 * it observes STARTED.
616 */
617 smp_wmb();
618 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
619 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
620 /*
621 * Coherence order guarantees these consecutive stores to a
622 * single variable propagate in the specified order. Thus the
623 * clear_bit() is ordered _after_ the set bit. See
624 * blk_mq_check_expired().
625 *
626 * (the bits must be part of the same byte for this to be
627 * true).
628 */
629 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
630 }
631
632 if (q->dma_drain_size && blk_rq_bytes(rq)) {
633 /*
634 * Make sure space for the drain appears. We know we can do
635 * this because max_hw_segments has been adjusted to be one
636 * fewer than the device can handle.
637 */
638 rq->nr_phys_segments++;
639 }
640 }
641 EXPORT_SYMBOL(blk_mq_start_request);
642
643 /*
644 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
645 * flag isn't set yet, so there may be race with timeout handler,
646 * but given rq->deadline is just set in .queue_rq() under
647 * this situation, the race won't be possible in reality because
648 * rq->timeout should be set as big enough to cover the window
649 * between blk_mq_start_request() called from .queue_rq() and
650 * clearing REQ_ATOM_STARTED here.
651 */
652 static void __blk_mq_requeue_request(struct request *rq)
653 {
654 struct request_queue *q = rq->q;
655
656 trace_block_rq_requeue(q, rq);
657 wbt_requeue(q->rq_wb, &rq->issue_stat);
658 blk_mq_sched_requeue_request(rq);
659
660 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
661 if (q->dma_drain_size && blk_rq_bytes(rq))
662 rq->nr_phys_segments--;
663 }
664 }
665
666 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
667 {
668 __blk_mq_requeue_request(rq);
669
670 BUG_ON(blk_queued_rq(rq));
671 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
672 }
673 EXPORT_SYMBOL(blk_mq_requeue_request);
674
675 static void blk_mq_requeue_work(struct work_struct *work)
676 {
677 struct request_queue *q =
678 container_of(work, struct request_queue, requeue_work.work);
679 LIST_HEAD(rq_list);
680 struct request *rq, *next;
681
682 spin_lock_irq(&q->requeue_lock);
683 list_splice_init(&q->requeue_list, &rq_list);
684 spin_unlock_irq(&q->requeue_lock);
685
686 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
687 if (!(rq->rq_flags & RQF_SOFTBARRIER))
688 continue;
689
690 rq->rq_flags &= ~RQF_SOFTBARRIER;
691 list_del_init(&rq->queuelist);
692 blk_mq_sched_insert_request(rq, true, false, false, true);
693 }
694
695 while (!list_empty(&rq_list)) {
696 rq = list_entry(rq_list.next, struct request, queuelist);
697 list_del_init(&rq->queuelist);
698 blk_mq_sched_insert_request(rq, false, false, false, true);
699 }
700
701 blk_mq_run_hw_queues(q, false);
702 }
703
704 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
705 bool kick_requeue_list)
706 {
707 struct request_queue *q = rq->q;
708 unsigned long flags;
709
710 /*
711 * We abuse this flag that is otherwise used by the I/O scheduler to
712 * request head insertation from the workqueue.
713 */
714 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
715
716 spin_lock_irqsave(&q->requeue_lock, flags);
717 if (at_head) {
718 rq->rq_flags |= RQF_SOFTBARRIER;
719 list_add(&rq->queuelist, &q->requeue_list);
720 } else {
721 list_add_tail(&rq->queuelist, &q->requeue_list);
722 }
723 spin_unlock_irqrestore(&q->requeue_lock, flags);
724
725 if (kick_requeue_list)
726 blk_mq_kick_requeue_list(q);
727 }
728 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
729
730 void blk_mq_kick_requeue_list(struct request_queue *q)
731 {
732 kblockd_schedule_delayed_work(&q->requeue_work, 0);
733 }
734 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
735
736 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
737 unsigned long msecs)
738 {
739 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
740 msecs_to_jiffies(msecs));
741 }
742 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
743
744 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
745 {
746 if (tag < tags->nr_tags) {
747 prefetch(tags->rqs[tag]);
748 return tags->rqs[tag];
749 }
750
751 return NULL;
752 }
753 EXPORT_SYMBOL(blk_mq_tag_to_rq);
754
755 struct blk_mq_timeout_data {
756 unsigned long next;
757 unsigned int next_set;
758 };
759
760 void blk_mq_rq_timed_out(struct request *req, bool reserved)
761 {
762 const struct blk_mq_ops *ops = req->q->mq_ops;
763 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
764
765 /*
766 * We know that complete is set at this point. If STARTED isn't set
767 * anymore, then the request isn't active and the "timeout" should
768 * just be ignored. This can happen due to the bitflag ordering.
769 * Timeout first checks if STARTED is set, and if it is, assumes
770 * the request is active. But if we race with completion, then
771 * both flags will get cleared. So check here again, and ignore
772 * a timeout event with a request that isn't active.
773 */
774 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
775 return;
776
777 if (ops->timeout)
778 ret = ops->timeout(req, reserved);
779
780 switch (ret) {
781 case BLK_EH_HANDLED:
782 __blk_mq_complete_request(req);
783 break;
784 case BLK_EH_RESET_TIMER:
785 blk_add_timer(req);
786 blk_clear_rq_complete(req);
787 break;
788 case BLK_EH_NOT_HANDLED:
789 break;
790 default:
791 printk(KERN_ERR "block: bad eh return: %d\n", ret);
792 break;
793 }
794 }
795
796 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
797 struct request *rq, void *priv, bool reserved)
798 {
799 struct blk_mq_timeout_data *data = priv;
800 unsigned long deadline;
801
802 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
803 return;
804
805 /*
806 * Ensures that if we see STARTED we must also see our
807 * up-to-date deadline, see blk_mq_start_request().
808 */
809 smp_rmb();
810
811 deadline = READ_ONCE(rq->deadline);
812
813 /*
814 * The rq being checked may have been freed and reallocated
815 * out already here, we avoid this race by checking rq->deadline
816 * and REQ_ATOM_COMPLETE flag together:
817 *
818 * - if rq->deadline is observed as new value because of
819 * reusing, the rq won't be timed out because of timing.
820 * - if rq->deadline is observed as previous value,
821 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
822 * because we put a barrier between setting rq->deadline
823 * and clearing the flag in blk_mq_start_request(), so
824 * this rq won't be timed out too.
825 */
826 if (time_after_eq(jiffies, deadline)) {
827 if (!blk_mark_rq_complete(rq)) {
828 /*
829 * Again coherence order ensures that consecutive reads
830 * from the same variable must be in that order. This
831 * ensures that if we see COMPLETE clear, we must then
832 * see STARTED set and we'll ignore this timeout.
833 *
834 * (There's also the MB implied by the test_and_clear())
835 */
836 blk_mq_rq_timed_out(rq, reserved);
837 }
838 } else if (!data->next_set || time_after(data->next, deadline)) {
839 data->next = deadline;
840 data->next_set = 1;
841 }
842 }
843
844 static void blk_mq_timeout_work(struct work_struct *work)
845 {
846 struct request_queue *q =
847 container_of(work, struct request_queue, timeout_work);
848 struct blk_mq_timeout_data data = {
849 .next = 0,
850 .next_set = 0,
851 };
852 int i;
853
854 /* A deadlock might occur if a request is stuck requiring a
855 * timeout at the same time a queue freeze is waiting
856 * completion, since the timeout code would not be able to
857 * acquire the queue reference here.
858 *
859 * That's why we don't use blk_queue_enter here; instead, we use
860 * percpu_ref_tryget directly, because we need to be able to
861 * obtain a reference even in the short window between the queue
862 * starting to freeze, by dropping the first reference in
863 * blk_freeze_queue_start, and the moment the last request is
864 * consumed, marked by the instant q_usage_counter reaches
865 * zero.
866 */
867 if (!percpu_ref_tryget(&q->q_usage_counter))
868 return;
869
870 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
871
872 if (data.next_set) {
873 data.next = blk_rq_timeout(round_jiffies_up(data.next));
874 mod_timer(&q->timeout, data.next);
875 } else {
876 struct blk_mq_hw_ctx *hctx;
877
878 queue_for_each_hw_ctx(q, hctx, i) {
879 /* the hctx may be unmapped, so check it here */
880 if (blk_mq_hw_queue_mapped(hctx))
881 blk_mq_tag_idle(hctx);
882 }
883 }
884 blk_queue_exit(q);
885 }
886
887 struct flush_busy_ctx_data {
888 struct blk_mq_hw_ctx *hctx;
889 struct list_head *list;
890 };
891
892 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
893 {
894 struct flush_busy_ctx_data *flush_data = data;
895 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
896 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
897
898 sbitmap_clear_bit(sb, bitnr);
899 spin_lock(&ctx->lock);
900 list_splice_tail_init(&ctx->rq_list, flush_data->list);
901 spin_unlock(&ctx->lock);
902 return true;
903 }
904
905 /*
906 * Process software queues that have been marked busy, splicing them
907 * to the for-dispatch
908 */
909 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
910 {
911 struct flush_busy_ctx_data data = {
912 .hctx = hctx,
913 .list = list,
914 };
915
916 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
917 }
918 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
919
920 struct dispatch_rq_data {
921 struct blk_mq_hw_ctx *hctx;
922 struct request *rq;
923 };
924
925 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
926 void *data)
927 {
928 struct dispatch_rq_data *dispatch_data = data;
929 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
930 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
931
932 spin_lock(&ctx->lock);
933 if (unlikely(!list_empty(&ctx->rq_list))) {
934 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
935 list_del_init(&dispatch_data->rq->queuelist);
936 if (list_empty(&ctx->rq_list))
937 sbitmap_clear_bit(sb, bitnr);
938 }
939 spin_unlock(&ctx->lock);
940
941 return !dispatch_data->rq;
942 }
943
944 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
945 struct blk_mq_ctx *start)
946 {
947 unsigned off = start ? start->index_hw : 0;
948 struct dispatch_rq_data data = {
949 .hctx = hctx,
950 .rq = NULL,
951 };
952
953 __sbitmap_for_each_set(&hctx->ctx_map, off,
954 dispatch_rq_from_ctx, &data);
955
956 return data.rq;
957 }
958
959 static inline unsigned int queued_to_index(unsigned int queued)
960 {
961 if (!queued)
962 return 0;
963
964 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
965 }
966
967 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
968 bool wait)
969 {
970 struct blk_mq_alloc_data data = {
971 .q = rq->q,
972 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
973 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
974 };
975
976 might_sleep_if(wait);
977
978 if (rq->tag != -1)
979 goto done;
980
981 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
982 data.flags |= BLK_MQ_REQ_RESERVED;
983
984 rq->tag = blk_mq_get_tag(&data);
985 if (rq->tag >= 0) {
986 if (blk_mq_tag_busy(data.hctx)) {
987 rq->rq_flags |= RQF_MQ_INFLIGHT;
988 atomic_inc(&data.hctx->nr_active);
989 }
990 data.hctx->tags->rqs[rq->tag] = rq;
991 }
992
993 done:
994 if (hctx)
995 *hctx = data.hctx;
996 return rq->tag != -1;
997 }
998
999 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
1000 struct request *rq)
1001 {
1002 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
1003 rq->tag = -1;
1004
1005 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
1006 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
1007 atomic_dec(&hctx->nr_active);
1008 }
1009 }
1010
1011 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
1012 struct request *rq)
1013 {
1014 if (rq->tag == -1 || rq->internal_tag == -1)
1015 return;
1016
1017 __blk_mq_put_driver_tag(hctx, rq);
1018 }
1019
1020 static void blk_mq_put_driver_tag(struct request *rq)
1021 {
1022 struct blk_mq_hw_ctx *hctx;
1023
1024 if (rq->tag == -1 || rq->internal_tag == -1)
1025 return;
1026
1027 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1028 __blk_mq_put_driver_tag(hctx, rq);
1029 }
1030
1031 /*
1032 * If we fail getting a driver tag because all the driver tags are already
1033 * assigned and on the dispatch list, BUT the first entry does not have a
1034 * tag, then we could deadlock. For that case, move entries with assigned
1035 * driver tags to the front, leaving the set of tagged requests in the
1036 * same order, and the untagged set in the same order.
1037 */
1038 static bool reorder_tags_to_front(struct list_head *list)
1039 {
1040 struct request *rq, *tmp, *first = NULL;
1041
1042 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
1043 if (rq == first)
1044 break;
1045 if (rq->tag != -1) {
1046 list_move(&rq->queuelist, list);
1047 if (!first)
1048 first = rq;
1049 }
1050 }
1051
1052 return first != NULL;
1053 }
1054
1055 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
1056 void *key)
1057 {
1058 struct blk_mq_hw_ctx *hctx;
1059
1060 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1061
1062 list_del(&wait->entry);
1063 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
1064 blk_mq_run_hw_queue(hctx, true);
1065 return 1;
1066 }
1067
1068 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
1069 {
1070 struct sbq_wait_state *ws;
1071
1072 /*
1073 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
1074 * The thread which wins the race to grab this bit adds the hardware
1075 * queue to the wait queue.
1076 */
1077 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
1078 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
1079 return false;
1080
1081 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
1082 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
1083
1084 /*
1085 * As soon as this returns, it's no longer safe to fiddle with
1086 * hctx->dispatch_wait, since a completion can wake up the wait queue
1087 * and unlock the bit.
1088 */
1089 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
1090 return true;
1091 }
1092
1093 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1094 bool got_budget)
1095 {
1096 struct blk_mq_hw_ctx *hctx;
1097 struct request *rq, *nxt;
1098 int errors, queued;
1099
1100 if (list_empty(list))
1101 return false;
1102
1103 WARN_ON(!list_is_singular(list) && got_budget);
1104
1105 /*
1106 * Now process all the entries, sending them to the driver.
1107 */
1108 errors = queued = 0;
1109 do {
1110 struct blk_mq_queue_data bd;
1111 blk_status_t ret;
1112
1113 rq = list_first_entry(list, struct request, queuelist);
1114 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1115 if (!queued && reorder_tags_to_front(list))
1116 continue;
1117
1118 /*
1119 * The initial allocation attempt failed, so we need to
1120 * rerun the hardware queue when a tag is freed.
1121 */
1122 if (!blk_mq_dispatch_wait_add(hctx)) {
1123 if (got_budget)
1124 blk_mq_put_dispatch_budget(hctx);
1125 break;
1126 }
1127
1128 /*
1129 * It's possible that a tag was freed in the window
1130 * between the allocation failure and adding the
1131 * hardware queue to the wait queue.
1132 */
1133 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1134 if (got_budget)
1135 blk_mq_put_dispatch_budget(hctx);
1136 break;
1137 }
1138 }
1139
1140 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1141 break;
1142
1143 list_del_init(&rq->queuelist);
1144
1145 bd.rq = rq;
1146
1147 /*
1148 * Flag last if we have no more requests, or if we have more
1149 * but can't assign a driver tag to it.
1150 */
1151 if (list_empty(list))
1152 bd.last = true;
1153 else {
1154 nxt = list_first_entry(list, struct request, queuelist);
1155 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1156 }
1157
1158 ret = q->mq_ops->queue_rq(hctx, &bd);
1159 if (ret == BLK_STS_RESOURCE) {
1160 /*
1161 * If an I/O scheduler has been configured and we got a
1162 * driver tag for the next request already, free it again.
1163 */
1164 if (!list_empty(list)) {
1165 nxt = list_first_entry(list, struct request, queuelist);
1166 blk_mq_put_driver_tag(nxt);
1167 }
1168 blk_mq_put_driver_tag_hctx(hctx, rq);
1169 list_add(&rq->queuelist, list);
1170 __blk_mq_requeue_request(rq);
1171 break;
1172 }
1173
1174 if (unlikely(ret != BLK_STS_OK)) {
1175 errors++;
1176 blk_mq_end_request(rq, BLK_STS_IOERR);
1177 continue;
1178 }
1179
1180 queued++;
1181 } while (!list_empty(list));
1182
1183 hctx->dispatched[queued_to_index(queued)]++;
1184
1185 /*
1186 * Any items that need requeuing? Stuff them into hctx->dispatch,
1187 * that is where we will continue on next queue run.
1188 */
1189 if (!list_empty(list)) {
1190 spin_lock(&hctx->lock);
1191 list_splice_init(list, &hctx->dispatch);
1192 spin_unlock(&hctx->lock);
1193
1194 /*
1195 * If SCHED_RESTART was set by the caller of this function and
1196 * it is no longer set that means that it was cleared by another
1197 * thread and hence that a queue rerun is needed.
1198 *
1199 * If TAG_WAITING is set that means that an I/O scheduler has
1200 * been configured and another thread is waiting for a driver
1201 * tag. To guarantee fairness, do not rerun this hardware queue
1202 * but let the other thread grab the driver tag.
1203 *
1204 * If no I/O scheduler has been configured it is possible that
1205 * the hardware queue got stopped and restarted before requests
1206 * were pushed back onto the dispatch list. Rerun the queue to
1207 * avoid starvation. Notes:
1208 * - blk_mq_run_hw_queue() checks whether or not a queue has
1209 * been stopped before rerunning a queue.
1210 * - Some but not all block drivers stop a queue before
1211 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1212 * and dm-rq.
1213 */
1214 if (!blk_mq_sched_needs_restart(hctx) &&
1215 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1216 blk_mq_run_hw_queue(hctx, true);
1217 }
1218
1219 return (queued + errors) != 0;
1220 }
1221
1222 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1223 {
1224 int srcu_idx;
1225
1226 /*
1227 * We should be running this queue from one of the CPUs that
1228 * are mapped to it.
1229 */
1230 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1231 cpu_online(hctx->next_cpu));
1232
1233 /*
1234 * We can't run the queue inline with ints disabled. Ensure that
1235 * we catch bad users of this early.
1236 */
1237 WARN_ON_ONCE(in_interrupt());
1238
1239 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1240 rcu_read_lock();
1241 blk_mq_sched_dispatch_requests(hctx);
1242 rcu_read_unlock();
1243 } else {
1244 might_sleep();
1245
1246 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1247 blk_mq_sched_dispatch_requests(hctx);
1248 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1249 }
1250 }
1251
1252 /*
1253 * It'd be great if the workqueue API had a way to pass
1254 * in a mask and had some smarts for more clever placement.
1255 * For now we just round-robin here, switching for every
1256 * BLK_MQ_CPU_WORK_BATCH queued items.
1257 */
1258 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1259 {
1260 if (hctx->queue->nr_hw_queues == 1)
1261 return WORK_CPU_UNBOUND;
1262
1263 if (--hctx->next_cpu_batch <= 0) {
1264 int next_cpu;
1265
1266 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1267 if (next_cpu >= nr_cpu_ids)
1268 next_cpu = cpumask_first(hctx->cpumask);
1269
1270 hctx->next_cpu = next_cpu;
1271 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1272 }
1273
1274 return hctx->next_cpu;
1275 }
1276
1277 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1278 unsigned long msecs)
1279 {
1280 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1281 return;
1282
1283 if (unlikely(blk_mq_hctx_stopped(hctx)))
1284 return;
1285
1286 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1287 int cpu = get_cpu();
1288 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1289 __blk_mq_run_hw_queue(hctx);
1290 put_cpu();
1291 return;
1292 }
1293
1294 put_cpu();
1295 }
1296
1297 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1298 &hctx->run_work,
1299 msecs_to_jiffies(msecs));
1300 }
1301
1302 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1303 {
1304 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1305 }
1306 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1307
1308 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1309 {
1310 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1311 }
1312 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1313
1314 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1315 {
1316 struct blk_mq_hw_ctx *hctx;
1317 int i;
1318
1319 queue_for_each_hw_ctx(q, hctx, i) {
1320 if (!blk_mq_hctx_has_pending(hctx) ||
1321 blk_mq_hctx_stopped(hctx))
1322 continue;
1323
1324 blk_mq_run_hw_queue(hctx, async);
1325 }
1326 }
1327 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1328
1329 /**
1330 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1331 * @q: request queue.
1332 *
1333 * The caller is responsible for serializing this function against
1334 * blk_mq_{start,stop}_hw_queue().
1335 */
1336 bool blk_mq_queue_stopped(struct request_queue *q)
1337 {
1338 struct blk_mq_hw_ctx *hctx;
1339 int i;
1340
1341 queue_for_each_hw_ctx(q, hctx, i)
1342 if (blk_mq_hctx_stopped(hctx))
1343 return true;
1344
1345 return false;
1346 }
1347 EXPORT_SYMBOL(blk_mq_queue_stopped);
1348
1349 /*
1350 * This function is often used for pausing .queue_rq() by driver when
1351 * there isn't enough resource or some conditions aren't satisfied, and
1352 * BLK_STS_RESOURCE is usually returned.
1353 *
1354 * We do not guarantee that dispatch can be drained or blocked
1355 * after blk_mq_stop_hw_queue() returns. Please use
1356 * blk_mq_quiesce_queue() for that requirement.
1357 */
1358 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1359 {
1360 cancel_delayed_work(&hctx->run_work);
1361
1362 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1363 }
1364 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1365
1366 /*
1367 * This function is often used for pausing .queue_rq() by driver when
1368 * there isn't enough resource or some conditions aren't satisfied, and
1369 * BLK_STS_RESOURCE is usually returned.
1370 *
1371 * We do not guarantee that dispatch can be drained or blocked
1372 * after blk_mq_stop_hw_queues() returns. Please use
1373 * blk_mq_quiesce_queue() for that requirement.
1374 */
1375 void blk_mq_stop_hw_queues(struct request_queue *q)
1376 {
1377 struct blk_mq_hw_ctx *hctx;
1378 int i;
1379
1380 queue_for_each_hw_ctx(q, hctx, i)
1381 blk_mq_stop_hw_queue(hctx);
1382 }
1383 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1384
1385 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1386 {
1387 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1388
1389 blk_mq_run_hw_queue(hctx, false);
1390 }
1391 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1392
1393 void blk_mq_start_hw_queues(struct request_queue *q)
1394 {
1395 struct blk_mq_hw_ctx *hctx;
1396 int i;
1397
1398 queue_for_each_hw_ctx(q, hctx, i)
1399 blk_mq_start_hw_queue(hctx);
1400 }
1401 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1402
1403 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1404 {
1405 if (!blk_mq_hctx_stopped(hctx))
1406 return;
1407
1408 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1409 blk_mq_run_hw_queue(hctx, async);
1410 }
1411 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1412
1413 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1414 {
1415 struct blk_mq_hw_ctx *hctx;
1416 int i;
1417
1418 queue_for_each_hw_ctx(q, hctx, i)
1419 blk_mq_start_stopped_hw_queue(hctx, async);
1420 }
1421 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1422
1423 static void blk_mq_run_work_fn(struct work_struct *work)
1424 {
1425 struct blk_mq_hw_ctx *hctx;
1426
1427 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1428
1429 /*
1430 * If we are stopped, don't run the queue. The exception is if
1431 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1432 * the STOPPED bit and run it.
1433 */
1434 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1435 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1436 return;
1437
1438 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1439 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1440 }
1441
1442 __blk_mq_run_hw_queue(hctx);
1443 }
1444
1445
1446 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1447 {
1448 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1449 return;
1450
1451 /*
1452 * Stop the hw queue, then modify currently delayed work.
1453 * This should prevent us from running the queue prematurely.
1454 * Mark the queue as auto-clearing STOPPED when it runs.
1455 */
1456 blk_mq_stop_hw_queue(hctx);
1457 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1458 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1459 &hctx->run_work,
1460 msecs_to_jiffies(msecs));
1461 }
1462 EXPORT_SYMBOL(blk_mq_delay_queue);
1463
1464 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1465 struct request *rq,
1466 bool at_head)
1467 {
1468 struct blk_mq_ctx *ctx = rq->mq_ctx;
1469
1470 lockdep_assert_held(&ctx->lock);
1471
1472 trace_block_rq_insert(hctx->queue, rq);
1473
1474 if (at_head)
1475 list_add(&rq->queuelist, &ctx->rq_list);
1476 else
1477 list_add_tail(&rq->queuelist, &ctx->rq_list);
1478 }
1479
1480 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1481 bool at_head)
1482 {
1483 struct blk_mq_ctx *ctx = rq->mq_ctx;
1484
1485 lockdep_assert_held(&ctx->lock);
1486
1487 __blk_mq_insert_req_list(hctx, rq, at_head);
1488 blk_mq_hctx_mark_pending(hctx, ctx);
1489 }
1490
1491 /*
1492 * Should only be used carefully, when the caller knows we want to
1493 * bypass a potential IO scheduler on the target device.
1494 */
1495 void blk_mq_request_bypass_insert(struct request *rq)
1496 {
1497 struct blk_mq_ctx *ctx = rq->mq_ctx;
1498 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1499
1500 spin_lock(&hctx->lock);
1501 list_add_tail(&rq->queuelist, &hctx->dispatch);
1502 spin_unlock(&hctx->lock);
1503
1504 blk_mq_run_hw_queue(hctx, false);
1505 }
1506
1507 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1508 struct list_head *list)
1509
1510 {
1511 /*
1512 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1513 * offline now
1514 */
1515 spin_lock(&ctx->lock);
1516 while (!list_empty(list)) {
1517 struct request *rq;
1518
1519 rq = list_first_entry(list, struct request, queuelist);
1520 BUG_ON(rq->mq_ctx != ctx);
1521 list_del_init(&rq->queuelist);
1522 __blk_mq_insert_req_list(hctx, rq, false);
1523 }
1524 blk_mq_hctx_mark_pending(hctx, ctx);
1525 spin_unlock(&ctx->lock);
1526 }
1527
1528 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1529 {
1530 struct request *rqa = container_of(a, struct request, queuelist);
1531 struct request *rqb = container_of(b, struct request, queuelist);
1532
1533 return !(rqa->mq_ctx < rqb->mq_ctx ||
1534 (rqa->mq_ctx == rqb->mq_ctx &&
1535 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1536 }
1537
1538 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1539 {
1540 struct blk_mq_ctx *this_ctx;
1541 struct request_queue *this_q;
1542 struct request *rq;
1543 LIST_HEAD(list);
1544 LIST_HEAD(ctx_list);
1545 unsigned int depth;
1546
1547 list_splice_init(&plug->mq_list, &list);
1548
1549 list_sort(NULL, &list, plug_ctx_cmp);
1550
1551 this_q = NULL;
1552 this_ctx = NULL;
1553 depth = 0;
1554
1555 while (!list_empty(&list)) {
1556 rq = list_entry_rq(list.next);
1557 list_del_init(&rq->queuelist);
1558 BUG_ON(!rq->q);
1559 if (rq->mq_ctx != this_ctx) {
1560 if (this_ctx) {
1561 trace_block_unplug(this_q, depth, from_schedule);
1562 blk_mq_sched_insert_requests(this_q, this_ctx,
1563 &ctx_list,
1564 from_schedule);
1565 }
1566
1567 this_ctx = rq->mq_ctx;
1568 this_q = rq->q;
1569 depth = 0;
1570 }
1571
1572 depth++;
1573 list_add_tail(&rq->queuelist, &ctx_list);
1574 }
1575
1576 /*
1577 * If 'this_ctx' is set, we know we have entries to complete
1578 * on 'ctx_list'. Do those.
1579 */
1580 if (this_ctx) {
1581 trace_block_unplug(this_q, depth, from_schedule);
1582 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1583 from_schedule);
1584 }
1585 }
1586
1587 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1588 {
1589 blk_init_request_from_bio(rq, bio);
1590
1591 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1592
1593 blk_account_io_start(rq, true);
1594 }
1595
1596 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1597 struct blk_mq_ctx *ctx,
1598 struct request *rq)
1599 {
1600 spin_lock(&ctx->lock);
1601 __blk_mq_insert_request(hctx, rq, false);
1602 spin_unlock(&ctx->lock);
1603 }
1604
1605 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1606 {
1607 if (rq->tag != -1)
1608 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1609
1610 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1611 }
1612
1613 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1614 struct request *rq,
1615 blk_qc_t *cookie, bool may_sleep)
1616 {
1617 struct request_queue *q = rq->q;
1618 struct blk_mq_queue_data bd = {
1619 .rq = rq,
1620 .last = true,
1621 };
1622 blk_qc_t new_cookie;
1623 blk_status_t ret;
1624 bool run_queue = true;
1625
1626 /* RCU or SRCU read lock is needed before checking quiesced flag */
1627 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1628 run_queue = false;
1629 goto insert;
1630 }
1631
1632 if (q->elevator)
1633 goto insert;
1634
1635 if (!blk_mq_get_driver_tag(rq, NULL, false))
1636 goto insert;
1637
1638 if (!blk_mq_get_dispatch_budget(hctx)) {
1639 blk_mq_put_driver_tag(rq);
1640 goto insert;
1641 }
1642
1643 new_cookie = request_to_qc_t(hctx, rq);
1644
1645 /*
1646 * For OK queue, we are done. For error, kill it. Any other
1647 * error (busy), just add it to our list as we previously
1648 * would have done
1649 */
1650 ret = q->mq_ops->queue_rq(hctx, &bd);
1651 switch (ret) {
1652 case BLK_STS_OK:
1653 *cookie = new_cookie;
1654 return;
1655 case BLK_STS_RESOURCE:
1656 __blk_mq_requeue_request(rq);
1657 goto insert;
1658 default:
1659 *cookie = BLK_QC_T_NONE;
1660 blk_mq_end_request(rq, ret);
1661 return;
1662 }
1663
1664 insert:
1665 blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1666 }
1667
1668 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1669 struct request *rq, blk_qc_t *cookie)
1670 {
1671 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1672 rcu_read_lock();
1673 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1674 rcu_read_unlock();
1675 } else {
1676 unsigned int srcu_idx;
1677
1678 might_sleep();
1679
1680 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1681 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
1682 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1683 }
1684 }
1685
1686 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1687 {
1688 const int is_sync = op_is_sync(bio->bi_opf);
1689 const int is_flush_fua = op_is_flush(bio->bi_opf);
1690 struct blk_mq_alloc_data data = { .flags = 0 };
1691 struct request *rq;
1692 unsigned int request_count = 0;
1693 struct blk_plug *plug;
1694 struct request *same_queue_rq = NULL;
1695 blk_qc_t cookie;
1696 unsigned int wb_acct;
1697
1698 blk_queue_bounce(q, &bio);
1699
1700 blk_queue_split(q, &bio);
1701
1702 if (!bio_integrity_prep(bio))
1703 return BLK_QC_T_NONE;
1704
1705 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1706 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1707 return BLK_QC_T_NONE;
1708
1709 if (blk_mq_sched_bio_merge(q, bio))
1710 return BLK_QC_T_NONE;
1711
1712 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1713
1714 trace_block_getrq(q, bio, bio->bi_opf);
1715
1716 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1717 if (unlikely(!rq)) {
1718 __wbt_done(q->rq_wb, wb_acct);
1719 if (bio->bi_opf & REQ_NOWAIT)
1720 bio_wouldblock_error(bio);
1721 return BLK_QC_T_NONE;
1722 }
1723
1724 wbt_track(&rq->issue_stat, wb_acct);
1725
1726 cookie = request_to_qc_t(data.hctx, rq);
1727
1728 plug = current->plug;
1729 if (unlikely(is_flush_fua)) {
1730 blk_mq_put_ctx(data.ctx);
1731 blk_mq_bio_to_request(rq, bio);
1732 if (q->elevator) {
1733 blk_mq_sched_insert_request(rq, false, true, true,
1734 true);
1735 } else {
1736 blk_insert_flush(rq);
1737 blk_mq_run_hw_queue(data.hctx, true);
1738 }
1739 } else if (plug && q->nr_hw_queues == 1) {
1740 struct request *last = NULL;
1741
1742 blk_mq_put_ctx(data.ctx);
1743 blk_mq_bio_to_request(rq, bio);
1744
1745 /*
1746 * @request_count may become stale because of schedule
1747 * out, so check the list again.
1748 */
1749 if (list_empty(&plug->mq_list))
1750 request_count = 0;
1751 else if (blk_queue_nomerges(q))
1752 request_count = blk_plug_queued_count(q);
1753
1754 if (!request_count)
1755 trace_block_plug(q);
1756 else
1757 last = list_entry_rq(plug->mq_list.prev);
1758
1759 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1760 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1761 blk_flush_plug_list(plug, false);
1762 trace_block_plug(q);
1763 }
1764
1765 list_add_tail(&rq->queuelist, &plug->mq_list);
1766 } else if (plug && !blk_queue_nomerges(q)) {
1767 blk_mq_bio_to_request(rq, bio);
1768
1769 /*
1770 * We do limited plugging. If the bio can be merged, do that.
1771 * Otherwise the existing request in the plug list will be
1772 * issued. So the plug list will have one request at most
1773 * The plug list might get flushed before this. If that happens,
1774 * the plug list is empty, and same_queue_rq is invalid.
1775 */
1776 if (list_empty(&plug->mq_list))
1777 same_queue_rq = NULL;
1778 if (same_queue_rq)
1779 list_del_init(&same_queue_rq->queuelist);
1780 list_add_tail(&rq->queuelist, &plug->mq_list);
1781
1782 blk_mq_put_ctx(data.ctx);
1783
1784 if (same_queue_rq) {
1785 data.hctx = blk_mq_map_queue(q,
1786 same_queue_rq->mq_ctx->cpu);
1787 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1788 &cookie);
1789 }
1790 } else if (q->nr_hw_queues > 1 && is_sync) {
1791 blk_mq_put_ctx(data.ctx);
1792 blk_mq_bio_to_request(rq, bio);
1793 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1794 } else if (q->elevator) {
1795 blk_mq_put_ctx(data.ctx);
1796 blk_mq_bio_to_request(rq, bio);
1797 blk_mq_sched_insert_request(rq, false, true, true, true);
1798 } else {
1799 blk_mq_put_ctx(data.ctx);
1800 blk_mq_bio_to_request(rq, bio);
1801 blk_mq_queue_io(data.hctx, data.ctx, rq);
1802 blk_mq_run_hw_queue(data.hctx, true);
1803 }
1804
1805 return cookie;
1806 }
1807
1808 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1809 unsigned int hctx_idx)
1810 {
1811 struct page *page;
1812
1813 if (tags->rqs && set->ops->exit_request) {
1814 int i;
1815
1816 for (i = 0; i < tags->nr_tags; i++) {
1817 struct request *rq = tags->static_rqs[i];
1818
1819 if (!rq)
1820 continue;
1821 set->ops->exit_request(set, rq, hctx_idx);
1822 tags->static_rqs[i] = NULL;
1823 }
1824 }
1825
1826 while (!list_empty(&tags->page_list)) {
1827 page = list_first_entry(&tags->page_list, struct page, lru);
1828 list_del_init(&page->lru);
1829 /*
1830 * Remove kmemleak object previously allocated in
1831 * blk_mq_init_rq_map().
1832 */
1833 kmemleak_free(page_address(page));
1834 __free_pages(page, page->private);
1835 }
1836 }
1837
1838 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1839 {
1840 kfree(tags->rqs);
1841 tags->rqs = NULL;
1842 kfree(tags->static_rqs);
1843 tags->static_rqs = NULL;
1844
1845 blk_mq_free_tags(tags);
1846 }
1847
1848 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1849 unsigned int hctx_idx,
1850 unsigned int nr_tags,
1851 unsigned int reserved_tags)
1852 {
1853 struct blk_mq_tags *tags;
1854 int node;
1855
1856 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1857 if (node == NUMA_NO_NODE)
1858 node = set->numa_node;
1859
1860 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1861 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1862 if (!tags)
1863 return NULL;
1864
1865 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1866 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1867 node);
1868 if (!tags->rqs) {
1869 blk_mq_free_tags(tags);
1870 return NULL;
1871 }
1872
1873 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1874 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1875 node);
1876 if (!tags->static_rqs) {
1877 kfree(tags->rqs);
1878 blk_mq_free_tags(tags);
1879 return NULL;
1880 }
1881
1882 return tags;
1883 }
1884
1885 static size_t order_to_size(unsigned int order)
1886 {
1887 return (size_t)PAGE_SIZE << order;
1888 }
1889
1890 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1891 unsigned int hctx_idx, unsigned int depth)
1892 {
1893 unsigned int i, j, entries_per_page, max_order = 4;
1894 size_t rq_size, left;
1895 int node;
1896
1897 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1898 if (node == NUMA_NO_NODE)
1899 node = set->numa_node;
1900
1901 INIT_LIST_HEAD(&tags->page_list);
1902
1903 /*
1904 * rq_size is the size of the request plus driver payload, rounded
1905 * to the cacheline size
1906 */
1907 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1908 cache_line_size());
1909 left = rq_size * depth;
1910
1911 for (i = 0; i < depth; ) {
1912 int this_order = max_order;
1913 struct page *page;
1914 int to_do;
1915 void *p;
1916
1917 while (this_order && left < order_to_size(this_order - 1))
1918 this_order--;
1919
1920 do {
1921 page = alloc_pages_node(node,
1922 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1923 this_order);
1924 if (page)
1925 break;
1926 if (!this_order--)
1927 break;
1928 if (order_to_size(this_order) < rq_size)
1929 break;
1930 } while (1);
1931
1932 if (!page)
1933 goto fail;
1934
1935 page->private = this_order;
1936 list_add_tail(&page->lru, &tags->page_list);
1937
1938 p = page_address(page);
1939 /*
1940 * Allow kmemleak to scan these pages as they contain pointers
1941 * to additional allocations like via ops->init_request().
1942 */
1943 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1944 entries_per_page = order_to_size(this_order) / rq_size;
1945 to_do = min(entries_per_page, depth - i);
1946 left -= to_do * rq_size;
1947 for (j = 0; j < to_do; j++) {
1948 struct request *rq = p;
1949
1950 tags->static_rqs[i] = rq;
1951 if (set->ops->init_request) {
1952 if (set->ops->init_request(set, rq, hctx_idx,
1953 node)) {
1954 tags->static_rqs[i] = NULL;
1955 goto fail;
1956 }
1957 }
1958
1959 p += rq_size;
1960 i++;
1961 }
1962 }
1963 return 0;
1964
1965 fail:
1966 blk_mq_free_rqs(set, tags, hctx_idx);
1967 return -ENOMEM;
1968 }
1969
1970 /*
1971 * 'cpu' is going away. splice any existing rq_list entries from this
1972 * software queue to the hw queue dispatch list, and ensure that it
1973 * gets run.
1974 */
1975 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1976 {
1977 struct blk_mq_hw_ctx *hctx;
1978 struct blk_mq_ctx *ctx;
1979 LIST_HEAD(tmp);
1980
1981 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1982 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1983
1984 spin_lock(&ctx->lock);
1985 if (!list_empty(&ctx->rq_list)) {
1986 list_splice_init(&ctx->rq_list, &tmp);
1987 blk_mq_hctx_clear_pending(hctx, ctx);
1988 }
1989 spin_unlock(&ctx->lock);
1990
1991 if (list_empty(&tmp))
1992 return 0;
1993
1994 spin_lock(&hctx->lock);
1995 list_splice_tail_init(&tmp, &hctx->dispatch);
1996 spin_unlock(&hctx->lock);
1997
1998 blk_mq_run_hw_queue(hctx, true);
1999 return 0;
2000 }
2001
2002 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2003 {
2004 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2005 &hctx->cpuhp_dead);
2006 }
2007
2008 /* hctx->ctxs will be freed in queue's release handler */
2009 static void blk_mq_exit_hctx(struct request_queue *q,
2010 struct blk_mq_tag_set *set,
2011 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2012 {
2013 blk_mq_debugfs_unregister_hctx(hctx);
2014
2015 blk_mq_tag_idle(hctx);
2016
2017 if (set->ops->exit_request)
2018 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2019
2020 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2021
2022 if (set->ops->exit_hctx)
2023 set->ops->exit_hctx(hctx, hctx_idx);
2024
2025 if (hctx->flags & BLK_MQ_F_BLOCKING)
2026 cleanup_srcu_struct(hctx->queue_rq_srcu);
2027
2028 blk_mq_remove_cpuhp(hctx);
2029 blk_free_flush_queue(hctx->fq);
2030 sbitmap_free(&hctx->ctx_map);
2031 }
2032
2033 static void blk_mq_exit_hw_queues(struct request_queue *q,
2034 struct blk_mq_tag_set *set, int nr_queue)
2035 {
2036 struct blk_mq_hw_ctx *hctx;
2037 unsigned int i;
2038
2039 queue_for_each_hw_ctx(q, hctx, i) {
2040 if (i == nr_queue)
2041 break;
2042 blk_mq_exit_hctx(q, set, hctx, i);
2043 }
2044 }
2045
2046 static int blk_mq_init_hctx(struct request_queue *q,
2047 struct blk_mq_tag_set *set,
2048 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2049 {
2050 int node;
2051
2052 node = hctx->numa_node;
2053 if (node == NUMA_NO_NODE)
2054 node = hctx->numa_node = set->numa_node;
2055
2056 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2057 spin_lock_init(&hctx->lock);
2058 INIT_LIST_HEAD(&hctx->dispatch);
2059 hctx->queue = q;
2060 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2061
2062 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2063
2064 hctx->tags = set->tags[hctx_idx];
2065
2066 /*
2067 * Allocate space for all possible cpus to avoid allocation at
2068 * runtime
2069 */
2070 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
2071 GFP_KERNEL, node);
2072 if (!hctx->ctxs)
2073 goto unregister_cpu_notifier;
2074
2075 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2076 node))
2077 goto free_ctxs;
2078
2079 hctx->nr_ctx = 0;
2080
2081 if (set->ops->init_hctx &&
2082 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2083 goto free_bitmap;
2084
2085 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2086 goto exit_hctx;
2087
2088 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2089 if (!hctx->fq)
2090 goto sched_exit_hctx;
2091
2092 if (set->ops->init_request &&
2093 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
2094 node))
2095 goto free_fq;
2096
2097 if (hctx->flags & BLK_MQ_F_BLOCKING)
2098 init_srcu_struct(hctx->queue_rq_srcu);
2099
2100 blk_mq_debugfs_register_hctx(q, hctx);
2101
2102 return 0;
2103
2104 free_fq:
2105 kfree(hctx->fq);
2106 sched_exit_hctx:
2107 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2108 exit_hctx:
2109 if (set->ops->exit_hctx)
2110 set->ops->exit_hctx(hctx, hctx_idx);
2111 free_bitmap:
2112 sbitmap_free(&hctx->ctx_map);
2113 free_ctxs:
2114 kfree(hctx->ctxs);
2115 unregister_cpu_notifier:
2116 blk_mq_remove_cpuhp(hctx);
2117 return -1;
2118 }
2119
2120 static void blk_mq_init_cpu_queues(struct request_queue *q,
2121 unsigned int nr_hw_queues)
2122 {
2123 unsigned int i;
2124
2125 for_each_possible_cpu(i) {
2126 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2127 struct blk_mq_hw_ctx *hctx;
2128
2129 __ctx->cpu = i;
2130 spin_lock_init(&__ctx->lock);
2131 INIT_LIST_HEAD(&__ctx->rq_list);
2132 __ctx->queue = q;
2133
2134 /* If the cpu isn't present, the cpu is mapped to first hctx */
2135 if (!cpu_present(i))
2136 continue;
2137
2138 hctx = blk_mq_map_queue(q, i);
2139
2140 /*
2141 * Set local node, IFF we have more than one hw queue. If
2142 * not, we remain on the home node of the device
2143 */
2144 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2145 hctx->numa_node = local_memory_node(cpu_to_node(i));
2146 }
2147 }
2148
2149 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2150 {
2151 int ret = 0;
2152
2153 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2154 set->queue_depth, set->reserved_tags);
2155 if (!set->tags[hctx_idx])
2156 return false;
2157
2158 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2159 set->queue_depth);
2160 if (!ret)
2161 return true;
2162
2163 blk_mq_free_rq_map(set->tags[hctx_idx]);
2164 set->tags[hctx_idx] = NULL;
2165 return false;
2166 }
2167
2168 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2169 unsigned int hctx_idx)
2170 {
2171 if (set->tags[hctx_idx]) {
2172 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2173 blk_mq_free_rq_map(set->tags[hctx_idx]);
2174 set->tags[hctx_idx] = NULL;
2175 }
2176 }
2177
2178 static void blk_mq_map_swqueue(struct request_queue *q)
2179 {
2180 unsigned int i, hctx_idx;
2181 struct blk_mq_hw_ctx *hctx;
2182 struct blk_mq_ctx *ctx;
2183 struct blk_mq_tag_set *set = q->tag_set;
2184
2185 /*
2186 * Avoid others reading imcomplete hctx->cpumask through sysfs
2187 */
2188 mutex_lock(&q->sysfs_lock);
2189
2190 queue_for_each_hw_ctx(q, hctx, i) {
2191 cpumask_clear(hctx->cpumask);
2192 hctx->nr_ctx = 0;
2193 }
2194
2195 /*
2196 * Map software to hardware queues.
2197 *
2198 * If the cpu isn't present, the cpu is mapped to first hctx.
2199 */
2200 for_each_present_cpu(i) {
2201 hctx_idx = q->mq_map[i];
2202 /* unmapped hw queue can be remapped after CPU topo changed */
2203 if (!set->tags[hctx_idx] &&
2204 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2205 /*
2206 * If tags initialization fail for some hctx,
2207 * that hctx won't be brought online. In this
2208 * case, remap the current ctx to hctx[0] which
2209 * is guaranteed to always have tags allocated
2210 */
2211 q->mq_map[i] = 0;
2212 }
2213
2214 ctx = per_cpu_ptr(q->queue_ctx, i);
2215 hctx = blk_mq_map_queue(q, i);
2216
2217 cpumask_set_cpu(i, hctx->cpumask);
2218 ctx->index_hw = hctx->nr_ctx;
2219 hctx->ctxs[hctx->nr_ctx++] = ctx;
2220 }
2221
2222 mutex_unlock(&q->sysfs_lock);
2223
2224 queue_for_each_hw_ctx(q, hctx, i) {
2225 /*
2226 * If no software queues are mapped to this hardware queue,
2227 * disable it and free the request entries.
2228 */
2229 if (!hctx->nr_ctx) {
2230 /* Never unmap queue 0. We need it as a
2231 * fallback in case of a new remap fails
2232 * allocation
2233 */
2234 if (i && set->tags[i])
2235 blk_mq_free_map_and_requests(set, i);
2236
2237 hctx->tags = NULL;
2238 continue;
2239 }
2240
2241 hctx->tags = set->tags[i];
2242 WARN_ON(!hctx->tags);
2243
2244 /*
2245 * Set the map size to the number of mapped software queues.
2246 * This is more accurate and more efficient than looping
2247 * over all possibly mapped software queues.
2248 */
2249 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2250
2251 /*
2252 * Initialize batch roundrobin counts
2253 */
2254 hctx->next_cpu = cpumask_first(hctx->cpumask);
2255 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2256 }
2257 }
2258
2259 /*
2260 * Caller needs to ensure that we're either frozen/quiesced, or that
2261 * the queue isn't live yet.
2262 */
2263 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2264 {
2265 struct blk_mq_hw_ctx *hctx;
2266 int i;
2267
2268 queue_for_each_hw_ctx(q, hctx, i) {
2269 if (shared) {
2270 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2271 atomic_inc(&q->shared_hctx_restart);
2272 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2273 } else {
2274 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2275 atomic_dec(&q->shared_hctx_restart);
2276 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2277 }
2278 }
2279 }
2280
2281 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2282 bool shared)
2283 {
2284 struct request_queue *q;
2285
2286 lockdep_assert_held(&set->tag_list_lock);
2287
2288 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2289 blk_mq_freeze_queue(q);
2290 queue_set_hctx_shared(q, shared);
2291 blk_mq_unfreeze_queue(q);
2292 }
2293 }
2294
2295 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2296 {
2297 struct blk_mq_tag_set *set = q->tag_set;
2298
2299 mutex_lock(&set->tag_list_lock);
2300 list_del_rcu(&q->tag_set_list);
2301 INIT_LIST_HEAD(&q->tag_set_list);
2302 if (list_is_singular(&set->tag_list)) {
2303 /* just transitioned to unshared */
2304 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2305 /* update existing queue */
2306 blk_mq_update_tag_set_depth(set, false);
2307 }
2308 mutex_unlock(&set->tag_list_lock);
2309
2310 synchronize_rcu();
2311 }
2312
2313 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2314 struct request_queue *q)
2315 {
2316 q->tag_set = set;
2317
2318 mutex_lock(&set->tag_list_lock);
2319
2320 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2321 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2322 set->flags |= BLK_MQ_F_TAG_SHARED;
2323 /* update existing queue */
2324 blk_mq_update_tag_set_depth(set, true);
2325 }
2326 if (set->flags & BLK_MQ_F_TAG_SHARED)
2327 queue_set_hctx_shared(q, true);
2328 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2329
2330 mutex_unlock(&set->tag_list_lock);
2331 }
2332
2333 /*
2334 * It is the actual release handler for mq, but we do it from
2335 * request queue's release handler for avoiding use-after-free
2336 * and headache because q->mq_kobj shouldn't have been introduced,
2337 * but we can't group ctx/kctx kobj without it.
2338 */
2339 void blk_mq_release(struct request_queue *q)
2340 {
2341 struct blk_mq_hw_ctx *hctx;
2342 unsigned int i;
2343
2344 /* hctx kobj stays in hctx */
2345 queue_for_each_hw_ctx(q, hctx, i) {
2346 if (!hctx)
2347 continue;
2348 kobject_put(&hctx->kobj);
2349 }
2350
2351 q->mq_map = NULL;
2352
2353 kfree(q->queue_hw_ctx);
2354
2355 /*
2356 * release .mq_kobj and sw queue's kobject now because
2357 * both share lifetime with request queue.
2358 */
2359 blk_mq_sysfs_deinit(q);
2360
2361 free_percpu(q->queue_ctx);
2362 }
2363
2364 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2365 {
2366 struct request_queue *uninit_q, *q;
2367
2368 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2369 if (!uninit_q)
2370 return ERR_PTR(-ENOMEM);
2371
2372 q = blk_mq_init_allocated_queue(set, uninit_q);
2373 if (IS_ERR(q))
2374 blk_cleanup_queue(uninit_q);
2375
2376 return q;
2377 }
2378 EXPORT_SYMBOL(blk_mq_init_queue);
2379
2380 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2381 {
2382 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2383
2384 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
2385 __alignof__(struct blk_mq_hw_ctx)) !=
2386 sizeof(struct blk_mq_hw_ctx));
2387
2388 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2389 hw_ctx_size += sizeof(struct srcu_struct);
2390
2391 return hw_ctx_size;
2392 }
2393
2394 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2395 struct request_queue *q)
2396 {
2397 int i, j;
2398 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2399
2400 blk_mq_sysfs_unregister(q);
2401 for (i = 0; i < set->nr_hw_queues; i++) {
2402 int node;
2403
2404 if (hctxs[i])
2405 continue;
2406
2407 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2408 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2409 GFP_KERNEL, node);
2410 if (!hctxs[i])
2411 break;
2412
2413 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2414 node)) {
2415 kfree(hctxs[i]);
2416 hctxs[i] = NULL;
2417 break;
2418 }
2419
2420 atomic_set(&hctxs[i]->nr_active, 0);
2421 hctxs[i]->numa_node = node;
2422 hctxs[i]->queue_num = i;
2423
2424 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2425 free_cpumask_var(hctxs[i]->cpumask);
2426 kfree(hctxs[i]);
2427 hctxs[i] = NULL;
2428 break;
2429 }
2430 blk_mq_hctx_kobj_init(hctxs[i]);
2431 }
2432 for (j = i; j < q->nr_hw_queues; j++) {
2433 struct blk_mq_hw_ctx *hctx = hctxs[j];
2434
2435 if (hctx) {
2436 if (hctx->tags)
2437 blk_mq_free_map_and_requests(set, j);
2438 blk_mq_exit_hctx(q, set, hctx, j);
2439 kobject_put(&hctx->kobj);
2440 hctxs[j] = NULL;
2441
2442 }
2443 }
2444 q->nr_hw_queues = i;
2445 blk_mq_sysfs_register(q);
2446 }
2447
2448 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2449 struct request_queue *q)
2450 {
2451 /* mark the queue as mq asap */
2452 q->mq_ops = set->ops;
2453
2454 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2455 blk_mq_poll_stats_bkt,
2456 BLK_MQ_POLL_STATS_BKTS, q);
2457 if (!q->poll_cb)
2458 goto err_exit;
2459
2460 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2461 if (!q->queue_ctx)
2462 goto err_exit;
2463
2464 /* init q->mq_kobj and sw queues' kobjects */
2465 blk_mq_sysfs_init(q);
2466
2467 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2468 GFP_KERNEL, set->numa_node);
2469 if (!q->queue_hw_ctx)
2470 goto err_percpu;
2471
2472 q->mq_map = set->mq_map;
2473
2474 blk_mq_realloc_hw_ctxs(set, q);
2475 if (!q->nr_hw_queues)
2476 goto err_hctxs;
2477
2478 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2479 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2480
2481 q->nr_queues = nr_cpu_ids;
2482
2483 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2484
2485 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2486 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2487
2488 q->sg_reserved_size = INT_MAX;
2489
2490 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2491 INIT_LIST_HEAD(&q->requeue_list);
2492 spin_lock_init(&q->requeue_lock);
2493
2494 blk_queue_make_request(q, blk_mq_make_request);
2495 if (q->mq_ops->poll)
2496 q->poll_fn = blk_mq_poll;
2497
2498 /*
2499 * Do this after blk_queue_make_request() overrides it...
2500 */
2501 q->nr_requests = set->queue_depth;
2502
2503 /*
2504 * Default to classic polling
2505 */
2506 q->poll_nsec = -1;
2507
2508 if (set->ops->complete)
2509 blk_queue_softirq_done(q, set->ops->complete);
2510
2511 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2512 blk_mq_add_queue_tag_set(set, q);
2513 blk_mq_map_swqueue(q);
2514
2515 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2516 int ret;
2517
2518 ret = blk_mq_sched_init(q);
2519 if (ret)
2520 return ERR_PTR(ret);
2521 }
2522
2523 return q;
2524
2525 err_hctxs:
2526 kfree(q->queue_hw_ctx);
2527 err_percpu:
2528 free_percpu(q->queue_ctx);
2529 err_exit:
2530 q->mq_ops = NULL;
2531 return ERR_PTR(-ENOMEM);
2532 }
2533 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2534
2535 void blk_mq_free_queue(struct request_queue *q)
2536 {
2537 struct blk_mq_tag_set *set = q->tag_set;
2538
2539 blk_mq_del_queue_tag_set(q);
2540 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2541 }
2542
2543 /* Basically redo blk_mq_init_queue with queue frozen */
2544 static void blk_mq_queue_reinit(struct request_queue *q)
2545 {
2546 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2547
2548 blk_mq_debugfs_unregister_hctxs(q);
2549 blk_mq_sysfs_unregister(q);
2550
2551 /*
2552 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2553 * we should change hctx numa_node according to new topology (this
2554 * involves free and re-allocate memory, worthy doing?)
2555 */
2556
2557 blk_mq_map_swqueue(q);
2558
2559 blk_mq_sysfs_register(q);
2560 blk_mq_debugfs_register_hctxs(q);
2561 }
2562
2563 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2564 {
2565 int i;
2566
2567 for (i = 0; i < set->nr_hw_queues; i++)
2568 if (!__blk_mq_alloc_rq_map(set, i))
2569 goto out_unwind;
2570
2571 return 0;
2572
2573 out_unwind:
2574 while (--i >= 0)
2575 blk_mq_free_rq_map(set->tags[i]);
2576
2577 return -ENOMEM;
2578 }
2579
2580 /*
2581 * Allocate the request maps associated with this tag_set. Note that this
2582 * may reduce the depth asked for, if memory is tight. set->queue_depth
2583 * will be updated to reflect the allocated depth.
2584 */
2585 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2586 {
2587 unsigned int depth;
2588 int err;
2589
2590 depth = set->queue_depth;
2591 do {
2592 err = __blk_mq_alloc_rq_maps(set);
2593 if (!err)
2594 break;
2595
2596 set->queue_depth >>= 1;
2597 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2598 err = -ENOMEM;
2599 break;
2600 }
2601 } while (set->queue_depth);
2602
2603 if (!set->queue_depth || err) {
2604 pr_err("blk-mq: failed to allocate request map\n");
2605 return -ENOMEM;
2606 }
2607
2608 if (depth != set->queue_depth)
2609 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2610 depth, set->queue_depth);
2611
2612 return 0;
2613 }
2614
2615 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2616 {
2617 if (set->ops->map_queues)
2618 return set->ops->map_queues(set);
2619 else
2620 return blk_mq_map_queues(set);
2621 }
2622
2623 /*
2624 * Alloc a tag set to be associated with one or more request queues.
2625 * May fail with EINVAL for various error conditions. May adjust the
2626 * requested depth down, if if it too large. In that case, the set
2627 * value will be stored in set->queue_depth.
2628 */
2629 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2630 {
2631 int ret;
2632
2633 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2634
2635 if (!set->nr_hw_queues)
2636 return -EINVAL;
2637 if (!set->queue_depth)
2638 return -EINVAL;
2639 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2640 return -EINVAL;
2641
2642 if (!set->ops->queue_rq)
2643 return -EINVAL;
2644
2645 if (!set->ops->get_budget ^ !set->ops->put_budget)
2646 return -EINVAL;
2647
2648 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2649 pr_info("blk-mq: reduced tag depth to %u\n",
2650 BLK_MQ_MAX_DEPTH);
2651 set->queue_depth = BLK_MQ_MAX_DEPTH;
2652 }
2653
2654 /*
2655 * If a crashdump is active, then we are potentially in a very
2656 * memory constrained environment. Limit us to 1 queue and
2657 * 64 tags to prevent using too much memory.
2658 */
2659 if (is_kdump_kernel()) {
2660 set->nr_hw_queues = 1;
2661 set->queue_depth = min(64U, set->queue_depth);
2662 }
2663 /*
2664 * There is no use for more h/w queues than cpus.
2665 */
2666 if (set->nr_hw_queues > nr_cpu_ids)
2667 set->nr_hw_queues = nr_cpu_ids;
2668
2669 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2670 GFP_KERNEL, set->numa_node);
2671 if (!set->tags)
2672 return -ENOMEM;
2673
2674 ret = -ENOMEM;
2675 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2676 GFP_KERNEL, set->numa_node);
2677 if (!set->mq_map)
2678 goto out_free_tags;
2679
2680 ret = blk_mq_update_queue_map(set);
2681 if (ret)
2682 goto out_free_mq_map;
2683
2684 ret = blk_mq_alloc_rq_maps(set);
2685 if (ret)
2686 goto out_free_mq_map;
2687
2688 mutex_init(&set->tag_list_lock);
2689 INIT_LIST_HEAD(&set->tag_list);
2690
2691 return 0;
2692
2693 out_free_mq_map:
2694 kfree(set->mq_map);
2695 set->mq_map = NULL;
2696 out_free_tags:
2697 kfree(set->tags);
2698 set->tags = NULL;
2699 return ret;
2700 }
2701 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2702
2703 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2704 {
2705 int i;
2706
2707 for (i = 0; i < nr_cpu_ids; i++)
2708 blk_mq_free_map_and_requests(set, i);
2709
2710 kfree(set->mq_map);
2711 set->mq_map = NULL;
2712
2713 kfree(set->tags);
2714 set->tags = NULL;
2715 }
2716 EXPORT_SYMBOL(blk_mq_free_tag_set);
2717
2718 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2719 {
2720 struct blk_mq_tag_set *set = q->tag_set;
2721 struct blk_mq_hw_ctx *hctx;
2722 int i, ret;
2723
2724 if (!set)
2725 return -EINVAL;
2726
2727 blk_mq_freeze_queue(q);
2728
2729 ret = 0;
2730 queue_for_each_hw_ctx(q, hctx, i) {
2731 if (!hctx->tags)
2732 continue;
2733 /*
2734 * If we're using an MQ scheduler, just update the scheduler
2735 * queue depth. This is similar to what the old code would do.
2736 */
2737 if (!hctx->sched_tags) {
2738 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2739 false);
2740 } else {
2741 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2742 nr, true);
2743 }
2744 if (ret)
2745 break;
2746 }
2747
2748 if (!ret)
2749 q->nr_requests = nr;
2750
2751 blk_mq_unfreeze_queue(q);
2752
2753 return ret;
2754 }
2755
2756 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2757 int nr_hw_queues)
2758 {
2759 struct request_queue *q;
2760
2761 lockdep_assert_held(&set->tag_list_lock);
2762
2763 if (nr_hw_queues > nr_cpu_ids)
2764 nr_hw_queues = nr_cpu_ids;
2765 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2766 return;
2767
2768 list_for_each_entry(q, &set->tag_list, tag_set_list)
2769 blk_mq_freeze_queue(q);
2770
2771 set->nr_hw_queues = nr_hw_queues;
2772 blk_mq_update_queue_map(set);
2773 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2774 blk_mq_realloc_hw_ctxs(set, q);
2775 blk_mq_queue_reinit(q);
2776 }
2777
2778 list_for_each_entry(q, &set->tag_list, tag_set_list)
2779 blk_mq_unfreeze_queue(q);
2780 }
2781
2782 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2783 {
2784 mutex_lock(&set->tag_list_lock);
2785 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2786 mutex_unlock(&set->tag_list_lock);
2787 }
2788 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2789
2790 /* Enable polling stats and return whether they were already enabled. */
2791 static bool blk_poll_stats_enable(struct request_queue *q)
2792 {
2793 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2794 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2795 return true;
2796 blk_stat_add_callback(q, q->poll_cb);
2797 return false;
2798 }
2799
2800 static void blk_mq_poll_stats_start(struct request_queue *q)
2801 {
2802 /*
2803 * We don't arm the callback if polling stats are not enabled or the
2804 * callback is already active.
2805 */
2806 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2807 blk_stat_is_active(q->poll_cb))
2808 return;
2809
2810 blk_stat_activate_msecs(q->poll_cb, 100);
2811 }
2812
2813 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2814 {
2815 struct request_queue *q = cb->data;
2816 int bucket;
2817
2818 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2819 if (cb->stat[bucket].nr_samples)
2820 q->poll_stat[bucket] = cb->stat[bucket];
2821 }
2822 }
2823
2824 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2825 struct blk_mq_hw_ctx *hctx,
2826 struct request *rq)
2827 {
2828 unsigned long ret = 0;
2829 int bucket;
2830
2831 /*
2832 * If stats collection isn't on, don't sleep but turn it on for
2833 * future users
2834 */
2835 if (!blk_poll_stats_enable(q))
2836 return 0;
2837
2838 /*
2839 * As an optimistic guess, use half of the mean service time
2840 * for this type of request. We can (and should) make this smarter.
2841 * For instance, if the completion latencies are tight, we can
2842 * get closer than just half the mean. This is especially
2843 * important on devices where the completion latencies are longer
2844 * than ~10 usec. We do use the stats for the relevant IO size
2845 * if available which does lead to better estimates.
2846 */
2847 bucket = blk_mq_poll_stats_bkt(rq);
2848 if (bucket < 0)
2849 return ret;
2850
2851 if (q->poll_stat[bucket].nr_samples)
2852 ret = (q->poll_stat[bucket].mean + 1) / 2;
2853
2854 return ret;
2855 }
2856
2857 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2858 struct blk_mq_hw_ctx *hctx,
2859 struct request *rq)
2860 {
2861 struct hrtimer_sleeper hs;
2862 enum hrtimer_mode mode;
2863 unsigned int nsecs;
2864 ktime_t kt;
2865
2866 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2867 return false;
2868
2869 /*
2870 * poll_nsec can be:
2871 *
2872 * -1: don't ever hybrid sleep
2873 * 0: use half of prev avg
2874 * >0: use this specific value
2875 */
2876 if (q->poll_nsec == -1)
2877 return false;
2878 else if (q->poll_nsec > 0)
2879 nsecs = q->poll_nsec;
2880 else
2881 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2882
2883 if (!nsecs)
2884 return false;
2885
2886 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2887
2888 /*
2889 * This will be replaced with the stats tracking code, using
2890 * 'avg_completion_time / 2' as the pre-sleep target.
2891 */
2892 kt = nsecs;
2893
2894 mode = HRTIMER_MODE_REL;
2895 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2896 hrtimer_set_expires(&hs.timer, kt);
2897
2898 hrtimer_init_sleeper(&hs, current);
2899 do {
2900 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2901 break;
2902 set_current_state(TASK_UNINTERRUPTIBLE);
2903 hrtimer_start_expires(&hs.timer, mode);
2904 if (hs.task)
2905 io_schedule();
2906 hrtimer_cancel(&hs.timer);
2907 mode = HRTIMER_MODE_ABS;
2908 } while (hs.task && !signal_pending(current));
2909
2910 __set_current_state(TASK_RUNNING);
2911 destroy_hrtimer_on_stack(&hs.timer);
2912 return true;
2913 }
2914
2915 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2916 {
2917 struct request_queue *q = hctx->queue;
2918 long state;
2919
2920 /*
2921 * If we sleep, have the caller restart the poll loop to reset
2922 * the state. Like for the other success return cases, the
2923 * caller is responsible for checking if the IO completed. If
2924 * the IO isn't complete, we'll get called again and will go
2925 * straight to the busy poll loop.
2926 */
2927 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2928 return true;
2929
2930 hctx->poll_considered++;
2931
2932 state = current->state;
2933 while (!need_resched()) {
2934 int ret;
2935
2936 hctx->poll_invoked++;
2937
2938 ret = q->mq_ops->poll(hctx, rq->tag);
2939 if (ret > 0) {
2940 hctx->poll_success++;
2941 set_current_state(TASK_RUNNING);
2942 return true;
2943 }
2944
2945 if (signal_pending_state(state, current))
2946 set_current_state(TASK_RUNNING);
2947
2948 if (current->state == TASK_RUNNING)
2949 return true;
2950 if (ret < 0)
2951 break;
2952 cpu_relax();
2953 }
2954
2955 return false;
2956 }
2957
2958 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2959 {
2960 struct blk_mq_hw_ctx *hctx;
2961 struct request *rq;
2962
2963 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2964 return false;
2965
2966 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2967 if (!blk_qc_t_is_internal(cookie))
2968 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2969 else {
2970 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2971 /*
2972 * With scheduling, if the request has completed, we'll
2973 * get a NULL return here, as we clear the sched tag when
2974 * that happens. The request still remains valid, like always,
2975 * so we should be safe with just the NULL check.
2976 */
2977 if (!rq)
2978 return false;
2979 }
2980
2981 return __blk_mq_poll(hctx, rq);
2982 }
2983
2984 static int __init blk_mq_init(void)
2985 {
2986 /*
2987 * See comment in block/blk.h rq_atomic_flags enum
2988 */
2989 BUILD_BUG_ON((REQ_ATOM_STARTED / BITS_PER_BYTE) !=
2990 (REQ_ATOM_COMPLETE / BITS_PER_BYTE));
2991
2992 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2993 blk_mq_hctx_notify_dead);
2994 return 0;
2995 }
2996 subsys_initcall(blk_mq_init);