]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-mq.c
blk-mq: Add a polling specific stats function
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-tag.h"
35 #include "blk-stat.h"
36 #include "blk-wbt.h"
37 #include "blk-mq-sched.h"
38
39 static DEFINE_MUTEX(all_q_mutex);
40 static LIST_HEAD(all_q_list);
41
42 static void blk_mq_poll_stats_start(struct request_queue *q);
43 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44
45 /* Must be consisitent with function below */
46 #define BLK_MQ_POLL_STATS_BKTS 16
47 static int blk_mq_poll_stats_bkt(const struct request *rq)
48 {
49 int ddir, bytes, bucket;
50
51 ddir = blk_stat_rq_ddir(rq);
52 bytes = blk_rq_bytes(rq);
53
54 bucket = ddir + 2*(ilog2(bytes) - 9);
55
56 if (bucket < 0)
57 return -1;
58 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
59 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
60
61 return bucket;
62 }
63
64 /*
65 * Check if any of the ctx's have pending work in this hardware queue
66 */
67 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
68 {
69 return sbitmap_any_bit_set(&hctx->ctx_map) ||
70 !list_empty_careful(&hctx->dispatch) ||
71 blk_mq_sched_has_work(hctx);
72 }
73
74 /*
75 * Mark this ctx as having pending work in this hardware queue
76 */
77 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
78 struct blk_mq_ctx *ctx)
79 {
80 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
81 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
82 }
83
84 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
85 struct blk_mq_ctx *ctx)
86 {
87 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
88 }
89
90 void blk_freeze_queue_start(struct request_queue *q)
91 {
92 int freeze_depth;
93
94 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
95 if (freeze_depth == 1) {
96 percpu_ref_kill(&q->q_usage_counter);
97 blk_mq_run_hw_queues(q, false);
98 }
99 }
100 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
101
102 void blk_mq_freeze_queue_wait(struct request_queue *q)
103 {
104 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
105 }
106 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
107
108 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
109 unsigned long timeout)
110 {
111 return wait_event_timeout(q->mq_freeze_wq,
112 percpu_ref_is_zero(&q->q_usage_counter),
113 timeout);
114 }
115 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
116
117 /*
118 * Guarantee no request is in use, so we can change any data structure of
119 * the queue afterward.
120 */
121 void blk_freeze_queue(struct request_queue *q)
122 {
123 /*
124 * In the !blk_mq case we are only calling this to kill the
125 * q_usage_counter, otherwise this increases the freeze depth
126 * and waits for it to return to zero. For this reason there is
127 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
128 * exported to drivers as the only user for unfreeze is blk_mq.
129 */
130 blk_freeze_queue_start(q);
131 blk_mq_freeze_queue_wait(q);
132 }
133
134 void blk_mq_freeze_queue(struct request_queue *q)
135 {
136 /*
137 * ...just an alias to keep freeze and unfreeze actions balanced
138 * in the blk_mq_* namespace
139 */
140 blk_freeze_queue(q);
141 }
142 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
143
144 void blk_mq_unfreeze_queue(struct request_queue *q)
145 {
146 int freeze_depth;
147
148 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
149 WARN_ON_ONCE(freeze_depth < 0);
150 if (!freeze_depth) {
151 percpu_ref_reinit(&q->q_usage_counter);
152 wake_up_all(&q->mq_freeze_wq);
153 }
154 }
155 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
156
157 /**
158 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
159 * @q: request queue.
160 *
161 * Note: this function does not prevent that the struct request end_io()
162 * callback function is invoked. Additionally, it is not prevented that
163 * new queue_rq() calls occur unless the queue has been stopped first.
164 */
165 void blk_mq_quiesce_queue(struct request_queue *q)
166 {
167 struct blk_mq_hw_ctx *hctx;
168 unsigned int i;
169 bool rcu = false;
170
171 blk_mq_stop_hw_queues(q);
172
173 queue_for_each_hw_ctx(q, hctx, i) {
174 if (hctx->flags & BLK_MQ_F_BLOCKING)
175 synchronize_srcu(&hctx->queue_rq_srcu);
176 else
177 rcu = true;
178 }
179 if (rcu)
180 synchronize_rcu();
181 }
182 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
183
184 void blk_mq_wake_waiters(struct request_queue *q)
185 {
186 struct blk_mq_hw_ctx *hctx;
187 unsigned int i;
188
189 queue_for_each_hw_ctx(q, hctx, i)
190 if (blk_mq_hw_queue_mapped(hctx))
191 blk_mq_tag_wakeup_all(hctx->tags, true);
192
193 /*
194 * If we are called because the queue has now been marked as
195 * dying, we need to ensure that processes currently waiting on
196 * the queue are notified as well.
197 */
198 wake_up_all(&q->mq_freeze_wq);
199 }
200
201 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
202 {
203 return blk_mq_has_free_tags(hctx->tags);
204 }
205 EXPORT_SYMBOL(blk_mq_can_queue);
206
207 void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
208 struct request *rq, unsigned int op)
209 {
210 INIT_LIST_HEAD(&rq->queuelist);
211 /* csd/requeue_work/fifo_time is initialized before use */
212 rq->q = q;
213 rq->mq_ctx = ctx;
214 rq->cmd_flags = op;
215 if (blk_queue_io_stat(q))
216 rq->rq_flags |= RQF_IO_STAT;
217 /* do not touch atomic flags, it needs atomic ops against the timer */
218 rq->cpu = -1;
219 INIT_HLIST_NODE(&rq->hash);
220 RB_CLEAR_NODE(&rq->rb_node);
221 rq->rq_disk = NULL;
222 rq->part = NULL;
223 rq->start_time = jiffies;
224 #ifdef CONFIG_BLK_CGROUP
225 rq->rl = NULL;
226 set_start_time_ns(rq);
227 rq->io_start_time_ns = 0;
228 #endif
229 rq->nr_phys_segments = 0;
230 #if defined(CONFIG_BLK_DEV_INTEGRITY)
231 rq->nr_integrity_segments = 0;
232 #endif
233 rq->special = NULL;
234 /* tag was already set */
235 rq->extra_len = 0;
236
237 INIT_LIST_HEAD(&rq->timeout_list);
238 rq->timeout = 0;
239
240 rq->end_io = NULL;
241 rq->end_io_data = NULL;
242 rq->next_rq = NULL;
243
244 ctx->rq_dispatched[op_is_sync(op)]++;
245 }
246 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
247
248 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
249 unsigned int op)
250 {
251 struct request *rq;
252 unsigned int tag;
253
254 tag = blk_mq_get_tag(data);
255 if (tag != BLK_MQ_TAG_FAIL) {
256 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
257
258 rq = tags->static_rqs[tag];
259
260 if (data->flags & BLK_MQ_REQ_INTERNAL) {
261 rq->tag = -1;
262 rq->internal_tag = tag;
263 } else {
264 if (blk_mq_tag_busy(data->hctx)) {
265 rq->rq_flags = RQF_MQ_INFLIGHT;
266 atomic_inc(&data->hctx->nr_active);
267 }
268 rq->tag = tag;
269 rq->internal_tag = -1;
270 data->hctx->tags->rqs[rq->tag] = rq;
271 }
272
273 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
274 return rq;
275 }
276
277 return NULL;
278 }
279 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
280
281 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
282 unsigned int flags)
283 {
284 struct blk_mq_alloc_data alloc_data = { .flags = flags };
285 struct request *rq;
286 int ret;
287
288 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
289 if (ret)
290 return ERR_PTR(ret);
291
292 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
293
294 blk_mq_put_ctx(alloc_data.ctx);
295 blk_queue_exit(q);
296
297 if (!rq)
298 return ERR_PTR(-EWOULDBLOCK);
299
300 rq->__data_len = 0;
301 rq->__sector = (sector_t) -1;
302 rq->bio = rq->biotail = NULL;
303 return rq;
304 }
305 EXPORT_SYMBOL(blk_mq_alloc_request);
306
307 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
308 unsigned int flags, unsigned int hctx_idx)
309 {
310 struct blk_mq_alloc_data alloc_data = { .flags = flags };
311 struct request *rq;
312 unsigned int cpu;
313 int ret;
314
315 /*
316 * If the tag allocator sleeps we could get an allocation for a
317 * different hardware context. No need to complicate the low level
318 * allocator for this for the rare use case of a command tied to
319 * a specific queue.
320 */
321 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
322 return ERR_PTR(-EINVAL);
323
324 if (hctx_idx >= q->nr_hw_queues)
325 return ERR_PTR(-EIO);
326
327 ret = blk_queue_enter(q, true);
328 if (ret)
329 return ERR_PTR(ret);
330
331 /*
332 * Check if the hardware context is actually mapped to anything.
333 * If not tell the caller that it should skip this queue.
334 */
335 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
336 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
337 blk_queue_exit(q);
338 return ERR_PTR(-EXDEV);
339 }
340 cpu = cpumask_first(alloc_data.hctx->cpumask);
341 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
342
343 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
344
345 blk_queue_exit(q);
346
347 if (!rq)
348 return ERR_PTR(-EWOULDBLOCK);
349
350 return rq;
351 }
352 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
353
354 void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
355 struct request *rq)
356 {
357 const int sched_tag = rq->internal_tag;
358 struct request_queue *q = rq->q;
359
360 if (rq->rq_flags & RQF_MQ_INFLIGHT)
361 atomic_dec(&hctx->nr_active);
362
363 wbt_done(q->rq_wb, &rq->issue_stat);
364 rq->rq_flags = 0;
365
366 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
367 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
368 if (rq->tag != -1)
369 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
370 if (sched_tag != -1)
371 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
372 blk_mq_sched_restart(hctx);
373 blk_queue_exit(q);
374 }
375
376 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
377 struct request *rq)
378 {
379 struct blk_mq_ctx *ctx = rq->mq_ctx;
380
381 ctx->rq_completed[rq_is_sync(rq)]++;
382 __blk_mq_finish_request(hctx, ctx, rq);
383 }
384
385 void blk_mq_finish_request(struct request *rq)
386 {
387 blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
388 }
389 EXPORT_SYMBOL_GPL(blk_mq_finish_request);
390
391 void blk_mq_free_request(struct request *rq)
392 {
393 blk_mq_sched_put_request(rq);
394 }
395 EXPORT_SYMBOL_GPL(blk_mq_free_request);
396
397 inline void __blk_mq_end_request(struct request *rq, int error)
398 {
399 blk_account_io_done(rq);
400
401 if (rq->end_io) {
402 wbt_done(rq->q->rq_wb, &rq->issue_stat);
403 rq->end_io(rq, error);
404 } else {
405 if (unlikely(blk_bidi_rq(rq)))
406 blk_mq_free_request(rq->next_rq);
407 blk_mq_free_request(rq);
408 }
409 }
410 EXPORT_SYMBOL(__blk_mq_end_request);
411
412 void blk_mq_end_request(struct request *rq, int error)
413 {
414 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
415 BUG();
416 __blk_mq_end_request(rq, error);
417 }
418 EXPORT_SYMBOL(blk_mq_end_request);
419
420 static void __blk_mq_complete_request_remote(void *data)
421 {
422 struct request *rq = data;
423
424 rq->q->softirq_done_fn(rq);
425 }
426
427 static void __blk_mq_complete_request(struct request *rq)
428 {
429 struct blk_mq_ctx *ctx = rq->mq_ctx;
430 bool shared = false;
431 int cpu;
432
433 if (rq->internal_tag != -1)
434 blk_mq_sched_completed_request(rq);
435 if (rq->rq_flags & RQF_STATS) {
436 blk_mq_poll_stats_start(rq->q);
437 blk_stat_add(rq);
438 }
439
440 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
441 rq->q->softirq_done_fn(rq);
442 return;
443 }
444
445 cpu = get_cpu();
446 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
447 shared = cpus_share_cache(cpu, ctx->cpu);
448
449 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
450 rq->csd.func = __blk_mq_complete_request_remote;
451 rq->csd.info = rq;
452 rq->csd.flags = 0;
453 smp_call_function_single_async(ctx->cpu, &rq->csd);
454 } else {
455 rq->q->softirq_done_fn(rq);
456 }
457 put_cpu();
458 }
459
460 /**
461 * blk_mq_complete_request - end I/O on a request
462 * @rq: the request being processed
463 *
464 * Description:
465 * Ends all I/O on a request. It does not handle partial completions.
466 * The actual completion happens out-of-order, through a IPI handler.
467 **/
468 void blk_mq_complete_request(struct request *rq)
469 {
470 struct request_queue *q = rq->q;
471
472 if (unlikely(blk_should_fake_timeout(q)))
473 return;
474 if (!blk_mark_rq_complete(rq))
475 __blk_mq_complete_request(rq);
476 }
477 EXPORT_SYMBOL(blk_mq_complete_request);
478
479 int blk_mq_request_started(struct request *rq)
480 {
481 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
482 }
483 EXPORT_SYMBOL_GPL(blk_mq_request_started);
484
485 void blk_mq_start_request(struct request *rq)
486 {
487 struct request_queue *q = rq->q;
488
489 blk_mq_sched_started_request(rq);
490
491 trace_block_rq_issue(q, rq);
492
493 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
494 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
495 rq->rq_flags |= RQF_STATS;
496 wbt_issue(q->rq_wb, &rq->issue_stat);
497 }
498
499 blk_add_timer(rq);
500
501 /*
502 * Ensure that ->deadline is visible before set the started
503 * flag and clear the completed flag.
504 */
505 smp_mb__before_atomic();
506
507 /*
508 * Mark us as started and clear complete. Complete might have been
509 * set if requeue raced with timeout, which then marked it as
510 * complete. So be sure to clear complete again when we start
511 * the request, otherwise we'll ignore the completion event.
512 */
513 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
514 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
515 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
516 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
517
518 if (q->dma_drain_size && blk_rq_bytes(rq)) {
519 /*
520 * Make sure space for the drain appears. We know we can do
521 * this because max_hw_segments has been adjusted to be one
522 * fewer than the device can handle.
523 */
524 rq->nr_phys_segments++;
525 }
526 }
527 EXPORT_SYMBOL(blk_mq_start_request);
528
529 /*
530 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
531 * flag isn't set yet, so there may be race with timeout handler,
532 * but given rq->deadline is just set in .queue_rq() under
533 * this situation, the race won't be possible in reality because
534 * rq->timeout should be set as big enough to cover the window
535 * between blk_mq_start_request() called from .queue_rq() and
536 * clearing REQ_ATOM_STARTED here.
537 */
538 static void __blk_mq_requeue_request(struct request *rq)
539 {
540 struct request_queue *q = rq->q;
541
542 trace_block_rq_requeue(q, rq);
543 wbt_requeue(q->rq_wb, &rq->issue_stat);
544 blk_mq_sched_requeue_request(rq);
545
546 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
547 if (q->dma_drain_size && blk_rq_bytes(rq))
548 rq->nr_phys_segments--;
549 }
550 }
551
552 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
553 {
554 __blk_mq_requeue_request(rq);
555
556 BUG_ON(blk_queued_rq(rq));
557 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
558 }
559 EXPORT_SYMBOL(blk_mq_requeue_request);
560
561 static void blk_mq_requeue_work(struct work_struct *work)
562 {
563 struct request_queue *q =
564 container_of(work, struct request_queue, requeue_work.work);
565 LIST_HEAD(rq_list);
566 struct request *rq, *next;
567 unsigned long flags;
568
569 spin_lock_irqsave(&q->requeue_lock, flags);
570 list_splice_init(&q->requeue_list, &rq_list);
571 spin_unlock_irqrestore(&q->requeue_lock, flags);
572
573 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
574 if (!(rq->rq_flags & RQF_SOFTBARRIER))
575 continue;
576
577 rq->rq_flags &= ~RQF_SOFTBARRIER;
578 list_del_init(&rq->queuelist);
579 blk_mq_sched_insert_request(rq, true, false, false, true);
580 }
581
582 while (!list_empty(&rq_list)) {
583 rq = list_entry(rq_list.next, struct request, queuelist);
584 list_del_init(&rq->queuelist);
585 blk_mq_sched_insert_request(rq, false, false, false, true);
586 }
587
588 blk_mq_run_hw_queues(q, false);
589 }
590
591 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
592 bool kick_requeue_list)
593 {
594 struct request_queue *q = rq->q;
595 unsigned long flags;
596
597 /*
598 * We abuse this flag that is otherwise used by the I/O scheduler to
599 * request head insertation from the workqueue.
600 */
601 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
602
603 spin_lock_irqsave(&q->requeue_lock, flags);
604 if (at_head) {
605 rq->rq_flags |= RQF_SOFTBARRIER;
606 list_add(&rq->queuelist, &q->requeue_list);
607 } else {
608 list_add_tail(&rq->queuelist, &q->requeue_list);
609 }
610 spin_unlock_irqrestore(&q->requeue_lock, flags);
611
612 if (kick_requeue_list)
613 blk_mq_kick_requeue_list(q);
614 }
615 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
616
617 void blk_mq_kick_requeue_list(struct request_queue *q)
618 {
619 kblockd_schedule_delayed_work(&q->requeue_work, 0);
620 }
621 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
622
623 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
624 unsigned long msecs)
625 {
626 kblockd_schedule_delayed_work(&q->requeue_work,
627 msecs_to_jiffies(msecs));
628 }
629 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
630
631 void blk_mq_abort_requeue_list(struct request_queue *q)
632 {
633 unsigned long flags;
634 LIST_HEAD(rq_list);
635
636 spin_lock_irqsave(&q->requeue_lock, flags);
637 list_splice_init(&q->requeue_list, &rq_list);
638 spin_unlock_irqrestore(&q->requeue_lock, flags);
639
640 while (!list_empty(&rq_list)) {
641 struct request *rq;
642
643 rq = list_first_entry(&rq_list, struct request, queuelist);
644 list_del_init(&rq->queuelist);
645 blk_mq_end_request(rq, -EIO);
646 }
647 }
648 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
649
650 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
651 {
652 if (tag < tags->nr_tags) {
653 prefetch(tags->rqs[tag]);
654 return tags->rqs[tag];
655 }
656
657 return NULL;
658 }
659 EXPORT_SYMBOL(blk_mq_tag_to_rq);
660
661 struct blk_mq_timeout_data {
662 unsigned long next;
663 unsigned int next_set;
664 };
665
666 void blk_mq_rq_timed_out(struct request *req, bool reserved)
667 {
668 const struct blk_mq_ops *ops = req->q->mq_ops;
669 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
670
671 /*
672 * We know that complete is set at this point. If STARTED isn't set
673 * anymore, then the request isn't active and the "timeout" should
674 * just be ignored. This can happen due to the bitflag ordering.
675 * Timeout first checks if STARTED is set, and if it is, assumes
676 * the request is active. But if we race with completion, then
677 * both flags will get cleared. So check here again, and ignore
678 * a timeout event with a request that isn't active.
679 */
680 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
681 return;
682
683 if (ops->timeout)
684 ret = ops->timeout(req, reserved);
685
686 switch (ret) {
687 case BLK_EH_HANDLED:
688 __blk_mq_complete_request(req);
689 break;
690 case BLK_EH_RESET_TIMER:
691 blk_add_timer(req);
692 blk_clear_rq_complete(req);
693 break;
694 case BLK_EH_NOT_HANDLED:
695 break;
696 default:
697 printk(KERN_ERR "block: bad eh return: %d\n", ret);
698 break;
699 }
700 }
701
702 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
703 struct request *rq, void *priv, bool reserved)
704 {
705 struct blk_mq_timeout_data *data = priv;
706
707 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
708 return;
709
710 /*
711 * The rq being checked may have been freed and reallocated
712 * out already here, we avoid this race by checking rq->deadline
713 * and REQ_ATOM_COMPLETE flag together:
714 *
715 * - if rq->deadline is observed as new value because of
716 * reusing, the rq won't be timed out because of timing.
717 * - if rq->deadline is observed as previous value,
718 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
719 * because we put a barrier between setting rq->deadline
720 * and clearing the flag in blk_mq_start_request(), so
721 * this rq won't be timed out too.
722 */
723 if (time_after_eq(jiffies, rq->deadline)) {
724 if (!blk_mark_rq_complete(rq))
725 blk_mq_rq_timed_out(rq, reserved);
726 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
727 data->next = rq->deadline;
728 data->next_set = 1;
729 }
730 }
731
732 static void blk_mq_timeout_work(struct work_struct *work)
733 {
734 struct request_queue *q =
735 container_of(work, struct request_queue, timeout_work);
736 struct blk_mq_timeout_data data = {
737 .next = 0,
738 .next_set = 0,
739 };
740 int i;
741
742 /* A deadlock might occur if a request is stuck requiring a
743 * timeout at the same time a queue freeze is waiting
744 * completion, since the timeout code would not be able to
745 * acquire the queue reference here.
746 *
747 * That's why we don't use blk_queue_enter here; instead, we use
748 * percpu_ref_tryget directly, because we need to be able to
749 * obtain a reference even in the short window between the queue
750 * starting to freeze, by dropping the first reference in
751 * blk_freeze_queue_start, and the moment the last request is
752 * consumed, marked by the instant q_usage_counter reaches
753 * zero.
754 */
755 if (!percpu_ref_tryget(&q->q_usage_counter))
756 return;
757
758 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
759
760 if (data.next_set) {
761 data.next = blk_rq_timeout(round_jiffies_up(data.next));
762 mod_timer(&q->timeout, data.next);
763 } else {
764 struct blk_mq_hw_ctx *hctx;
765
766 queue_for_each_hw_ctx(q, hctx, i) {
767 /* the hctx may be unmapped, so check it here */
768 if (blk_mq_hw_queue_mapped(hctx))
769 blk_mq_tag_idle(hctx);
770 }
771 }
772 blk_queue_exit(q);
773 }
774
775 /*
776 * Reverse check our software queue for entries that we could potentially
777 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
778 * too much time checking for merges.
779 */
780 static bool blk_mq_attempt_merge(struct request_queue *q,
781 struct blk_mq_ctx *ctx, struct bio *bio)
782 {
783 struct request *rq;
784 int checked = 8;
785
786 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
787 bool merged = false;
788
789 if (!checked--)
790 break;
791
792 if (!blk_rq_merge_ok(rq, bio))
793 continue;
794
795 switch (blk_try_merge(rq, bio)) {
796 case ELEVATOR_BACK_MERGE:
797 if (blk_mq_sched_allow_merge(q, rq, bio))
798 merged = bio_attempt_back_merge(q, rq, bio);
799 break;
800 case ELEVATOR_FRONT_MERGE:
801 if (blk_mq_sched_allow_merge(q, rq, bio))
802 merged = bio_attempt_front_merge(q, rq, bio);
803 break;
804 case ELEVATOR_DISCARD_MERGE:
805 merged = bio_attempt_discard_merge(q, rq, bio);
806 break;
807 default:
808 continue;
809 }
810
811 if (merged)
812 ctx->rq_merged++;
813 return merged;
814 }
815
816 return false;
817 }
818
819 struct flush_busy_ctx_data {
820 struct blk_mq_hw_ctx *hctx;
821 struct list_head *list;
822 };
823
824 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
825 {
826 struct flush_busy_ctx_data *flush_data = data;
827 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
828 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
829
830 sbitmap_clear_bit(sb, bitnr);
831 spin_lock(&ctx->lock);
832 list_splice_tail_init(&ctx->rq_list, flush_data->list);
833 spin_unlock(&ctx->lock);
834 return true;
835 }
836
837 /*
838 * Process software queues that have been marked busy, splicing them
839 * to the for-dispatch
840 */
841 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
842 {
843 struct flush_busy_ctx_data data = {
844 .hctx = hctx,
845 .list = list,
846 };
847
848 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
849 }
850 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
851
852 static inline unsigned int queued_to_index(unsigned int queued)
853 {
854 if (!queued)
855 return 0;
856
857 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
858 }
859
860 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
861 bool wait)
862 {
863 struct blk_mq_alloc_data data = {
864 .q = rq->q,
865 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
866 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
867 };
868
869 if (rq->tag != -1)
870 goto done;
871
872 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
873 data.flags |= BLK_MQ_REQ_RESERVED;
874
875 rq->tag = blk_mq_get_tag(&data);
876 if (rq->tag >= 0) {
877 if (blk_mq_tag_busy(data.hctx)) {
878 rq->rq_flags |= RQF_MQ_INFLIGHT;
879 atomic_inc(&data.hctx->nr_active);
880 }
881 data.hctx->tags->rqs[rq->tag] = rq;
882 }
883
884 done:
885 if (hctx)
886 *hctx = data.hctx;
887 return rq->tag != -1;
888 }
889
890 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
891 struct request *rq)
892 {
893 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
894 rq->tag = -1;
895
896 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
897 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
898 atomic_dec(&hctx->nr_active);
899 }
900 }
901
902 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
903 struct request *rq)
904 {
905 if (rq->tag == -1 || rq->internal_tag == -1)
906 return;
907
908 __blk_mq_put_driver_tag(hctx, rq);
909 }
910
911 static void blk_mq_put_driver_tag(struct request *rq)
912 {
913 struct blk_mq_hw_ctx *hctx;
914
915 if (rq->tag == -1 || rq->internal_tag == -1)
916 return;
917
918 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
919 __blk_mq_put_driver_tag(hctx, rq);
920 }
921
922 /*
923 * If we fail getting a driver tag because all the driver tags are already
924 * assigned and on the dispatch list, BUT the first entry does not have a
925 * tag, then we could deadlock. For that case, move entries with assigned
926 * driver tags to the front, leaving the set of tagged requests in the
927 * same order, and the untagged set in the same order.
928 */
929 static bool reorder_tags_to_front(struct list_head *list)
930 {
931 struct request *rq, *tmp, *first = NULL;
932
933 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
934 if (rq == first)
935 break;
936 if (rq->tag != -1) {
937 list_move(&rq->queuelist, list);
938 if (!first)
939 first = rq;
940 }
941 }
942
943 return first != NULL;
944 }
945
946 static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
947 void *key)
948 {
949 struct blk_mq_hw_ctx *hctx;
950
951 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
952
953 list_del(&wait->task_list);
954 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
955 blk_mq_run_hw_queue(hctx, true);
956 return 1;
957 }
958
959 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
960 {
961 struct sbq_wait_state *ws;
962
963 /*
964 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
965 * The thread which wins the race to grab this bit adds the hardware
966 * queue to the wait queue.
967 */
968 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
969 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
970 return false;
971
972 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
973 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
974
975 /*
976 * As soon as this returns, it's no longer safe to fiddle with
977 * hctx->dispatch_wait, since a completion can wake up the wait queue
978 * and unlock the bit.
979 */
980 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
981 return true;
982 }
983
984 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
985 {
986 struct blk_mq_hw_ctx *hctx;
987 struct request *rq;
988 int errors, queued, ret = BLK_MQ_RQ_QUEUE_OK;
989
990 if (list_empty(list))
991 return false;
992
993 /*
994 * Now process all the entries, sending them to the driver.
995 */
996 errors = queued = 0;
997 do {
998 struct blk_mq_queue_data bd;
999
1000 rq = list_first_entry(list, struct request, queuelist);
1001 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1002 if (!queued && reorder_tags_to_front(list))
1003 continue;
1004
1005 /*
1006 * The initial allocation attempt failed, so we need to
1007 * rerun the hardware queue when a tag is freed.
1008 */
1009 if (!blk_mq_dispatch_wait_add(hctx))
1010 break;
1011
1012 /*
1013 * It's possible that a tag was freed in the window
1014 * between the allocation failure and adding the
1015 * hardware queue to the wait queue.
1016 */
1017 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1018 break;
1019 }
1020
1021 list_del_init(&rq->queuelist);
1022
1023 bd.rq = rq;
1024
1025 /*
1026 * Flag last if we have no more requests, or if we have more
1027 * but can't assign a driver tag to it.
1028 */
1029 if (list_empty(list))
1030 bd.last = true;
1031 else {
1032 struct request *nxt;
1033
1034 nxt = list_first_entry(list, struct request, queuelist);
1035 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1036 }
1037
1038 ret = q->mq_ops->queue_rq(hctx, &bd);
1039 switch (ret) {
1040 case BLK_MQ_RQ_QUEUE_OK:
1041 queued++;
1042 break;
1043 case BLK_MQ_RQ_QUEUE_BUSY:
1044 blk_mq_put_driver_tag_hctx(hctx, rq);
1045 list_add(&rq->queuelist, list);
1046 __blk_mq_requeue_request(rq);
1047 break;
1048 default:
1049 pr_err("blk-mq: bad return on queue: %d\n", ret);
1050 case BLK_MQ_RQ_QUEUE_ERROR:
1051 errors++;
1052 blk_mq_end_request(rq, -EIO);
1053 break;
1054 }
1055
1056 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
1057 break;
1058 } while (!list_empty(list));
1059
1060 hctx->dispatched[queued_to_index(queued)]++;
1061
1062 /*
1063 * Any items that need requeuing? Stuff them into hctx->dispatch,
1064 * that is where we will continue on next queue run.
1065 */
1066 if (!list_empty(list)) {
1067 /*
1068 * If an I/O scheduler has been configured and we got a driver
1069 * tag for the next request already, free it again.
1070 */
1071 rq = list_first_entry(list, struct request, queuelist);
1072 blk_mq_put_driver_tag(rq);
1073
1074 spin_lock(&hctx->lock);
1075 list_splice_init(list, &hctx->dispatch);
1076 spin_unlock(&hctx->lock);
1077
1078 /*
1079 * If SCHED_RESTART was set by the caller of this function and
1080 * it is no longer set that means that it was cleared by another
1081 * thread and hence that a queue rerun is needed.
1082 *
1083 * If TAG_WAITING is set that means that an I/O scheduler has
1084 * been configured and another thread is waiting for a driver
1085 * tag. To guarantee fairness, do not rerun this hardware queue
1086 * but let the other thread grab the driver tag.
1087 *
1088 * If no I/O scheduler has been configured it is possible that
1089 * the hardware queue got stopped and restarted before requests
1090 * were pushed back onto the dispatch list. Rerun the queue to
1091 * avoid starvation. Notes:
1092 * - blk_mq_run_hw_queue() checks whether or not a queue has
1093 * been stopped before rerunning a queue.
1094 * - Some but not all block drivers stop a queue before
1095 * returning BLK_MQ_RQ_QUEUE_BUSY. Two exceptions are scsi-mq
1096 * and dm-rq.
1097 */
1098 if (!blk_mq_sched_needs_restart(hctx) &&
1099 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1100 blk_mq_run_hw_queue(hctx, true);
1101 }
1102
1103 return (queued + errors) != 0;
1104 }
1105
1106 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1107 {
1108 int srcu_idx;
1109
1110 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1111 cpu_online(hctx->next_cpu));
1112
1113 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1114 rcu_read_lock();
1115 blk_mq_sched_dispatch_requests(hctx);
1116 rcu_read_unlock();
1117 } else {
1118 might_sleep();
1119
1120 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1121 blk_mq_sched_dispatch_requests(hctx);
1122 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1123 }
1124 }
1125
1126 /*
1127 * It'd be great if the workqueue API had a way to pass
1128 * in a mask and had some smarts for more clever placement.
1129 * For now we just round-robin here, switching for every
1130 * BLK_MQ_CPU_WORK_BATCH queued items.
1131 */
1132 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1133 {
1134 if (hctx->queue->nr_hw_queues == 1)
1135 return WORK_CPU_UNBOUND;
1136
1137 if (--hctx->next_cpu_batch <= 0) {
1138 int next_cpu;
1139
1140 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1141 if (next_cpu >= nr_cpu_ids)
1142 next_cpu = cpumask_first(hctx->cpumask);
1143
1144 hctx->next_cpu = next_cpu;
1145 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1146 }
1147
1148 return hctx->next_cpu;
1149 }
1150
1151 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1152 unsigned long msecs)
1153 {
1154 if (unlikely(blk_mq_hctx_stopped(hctx) ||
1155 !blk_mq_hw_queue_mapped(hctx)))
1156 return;
1157
1158 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1159 int cpu = get_cpu();
1160 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1161 __blk_mq_run_hw_queue(hctx);
1162 put_cpu();
1163 return;
1164 }
1165
1166 put_cpu();
1167 }
1168
1169 if (msecs == 0)
1170 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx),
1171 &hctx->run_work);
1172 else
1173 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1174 &hctx->delayed_run_work,
1175 msecs_to_jiffies(msecs));
1176 }
1177
1178 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1179 {
1180 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1181 }
1182 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1183
1184 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1185 {
1186 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1187 }
1188 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1189
1190 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1191 {
1192 struct blk_mq_hw_ctx *hctx;
1193 int i;
1194
1195 queue_for_each_hw_ctx(q, hctx, i) {
1196 if (!blk_mq_hctx_has_pending(hctx) ||
1197 blk_mq_hctx_stopped(hctx))
1198 continue;
1199
1200 blk_mq_run_hw_queue(hctx, async);
1201 }
1202 }
1203 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1204
1205 /**
1206 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1207 * @q: request queue.
1208 *
1209 * The caller is responsible for serializing this function against
1210 * blk_mq_{start,stop}_hw_queue().
1211 */
1212 bool blk_mq_queue_stopped(struct request_queue *q)
1213 {
1214 struct blk_mq_hw_ctx *hctx;
1215 int i;
1216
1217 queue_for_each_hw_ctx(q, hctx, i)
1218 if (blk_mq_hctx_stopped(hctx))
1219 return true;
1220
1221 return false;
1222 }
1223 EXPORT_SYMBOL(blk_mq_queue_stopped);
1224
1225 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1226 {
1227 cancel_work(&hctx->run_work);
1228 cancel_delayed_work(&hctx->delay_work);
1229 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1230 }
1231 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1232
1233 void blk_mq_stop_hw_queues(struct request_queue *q)
1234 {
1235 struct blk_mq_hw_ctx *hctx;
1236 int i;
1237
1238 queue_for_each_hw_ctx(q, hctx, i)
1239 blk_mq_stop_hw_queue(hctx);
1240 }
1241 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1242
1243 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1244 {
1245 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1246
1247 blk_mq_run_hw_queue(hctx, false);
1248 }
1249 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1250
1251 void blk_mq_start_hw_queues(struct request_queue *q)
1252 {
1253 struct blk_mq_hw_ctx *hctx;
1254 int i;
1255
1256 queue_for_each_hw_ctx(q, hctx, i)
1257 blk_mq_start_hw_queue(hctx);
1258 }
1259 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1260
1261 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1262 {
1263 if (!blk_mq_hctx_stopped(hctx))
1264 return;
1265
1266 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1267 blk_mq_run_hw_queue(hctx, async);
1268 }
1269 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1270
1271 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1272 {
1273 struct blk_mq_hw_ctx *hctx;
1274 int i;
1275
1276 queue_for_each_hw_ctx(q, hctx, i)
1277 blk_mq_start_stopped_hw_queue(hctx, async);
1278 }
1279 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1280
1281 static void blk_mq_run_work_fn(struct work_struct *work)
1282 {
1283 struct blk_mq_hw_ctx *hctx;
1284
1285 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1286
1287 __blk_mq_run_hw_queue(hctx);
1288 }
1289
1290 static void blk_mq_delayed_run_work_fn(struct work_struct *work)
1291 {
1292 struct blk_mq_hw_ctx *hctx;
1293
1294 hctx = container_of(work, struct blk_mq_hw_ctx, delayed_run_work.work);
1295
1296 __blk_mq_run_hw_queue(hctx);
1297 }
1298
1299 static void blk_mq_delay_work_fn(struct work_struct *work)
1300 {
1301 struct blk_mq_hw_ctx *hctx;
1302
1303 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1304
1305 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1306 __blk_mq_run_hw_queue(hctx);
1307 }
1308
1309 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1310 {
1311 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1312 return;
1313
1314 blk_mq_stop_hw_queue(hctx);
1315 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1316 &hctx->delay_work, msecs_to_jiffies(msecs));
1317 }
1318 EXPORT_SYMBOL(blk_mq_delay_queue);
1319
1320 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1321 struct request *rq,
1322 bool at_head)
1323 {
1324 struct blk_mq_ctx *ctx = rq->mq_ctx;
1325
1326 trace_block_rq_insert(hctx->queue, rq);
1327
1328 if (at_head)
1329 list_add(&rq->queuelist, &ctx->rq_list);
1330 else
1331 list_add_tail(&rq->queuelist, &ctx->rq_list);
1332 }
1333
1334 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1335 bool at_head)
1336 {
1337 struct blk_mq_ctx *ctx = rq->mq_ctx;
1338
1339 __blk_mq_insert_req_list(hctx, rq, at_head);
1340 blk_mq_hctx_mark_pending(hctx, ctx);
1341 }
1342
1343 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1344 struct list_head *list)
1345
1346 {
1347 /*
1348 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1349 * offline now
1350 */
1351 spin_lock(&ctx->lock);
1352 while (!list_empty(list)) {
1353 struct request *rq;
1354
1355 rq = list_first_entry(list, struct request, queuelist);
1356 BUG_ON(rq->mq_ctx != ctx);
1357 list_del_init(&rq->queuelist);
1358 __blk_mq_insert_req_list(hctx, rq, false);
1359 }
1360 blk_mq_hctx_mark_pending(hctx, ctx);
1361 spin_unlock(&ctx->lock);
1362 }
1363
1364 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1365 {
1366 struct request *rqa = container_of(a, struct request, queuelist);
1367 struct request *rqb = container_of(b, struct request, queuelist);
1368
1369 return !(rqa->mq_ctx < rqb->mq_ctx ||
1370 (rqa->mq_ctx == rqb->mq_ctx &&
1371 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1372 }
1373
1374 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1375 {
1376 struct blk_mq_ctx *this_ctx;
1377 struct request_queue *this_q;
1378 struct request *rq;
1379 LIST_HEAD(list);
1380 LIST_HEAD(ctx_list);
1381 unsigned int depth;
1382
1383 list_splice_init(&plug->mq_list, &list);
1384
1385 list_sort(NULL, &list, plug_ctx_cmp);
1386
1387 this_q = NULL;
1388 this_ctx = NULL;
1389 depth = 0;
1390
1391 while (!list_empty(&list)) {
1392 rq = list_entry_rq(list.next);
1393 list_del_init(&rq->queuelist);
1394 BUG_ON(!rq->q);
1395 if (rq->mq_ctx != this_ctx) {
1396 if (this_ctx) {
1397 trace_block_unplug(this_q, depth, from_schedule);
1398 blk_mq_sched_insert_requests(this_q, this_ctx,
1399 &ctx_list,
1400 from_schedule);
1401 }
1402
1403 this_ctx = rq->mq_ctx;
1404 this_q = rq->q;
1405 depth = 0;
1406 }
1407
1408 depth++;
1409 list_add_tail(&rq->queuelist, &ctx_list);
1410 }
1411
1412 /*
1413 * If 'this_ctx' is set, we know we have entries to complete
1414 * on 'ctx_list'. Do those.
1415 */
1416 if (this_ctx) {
1417 trace_block_unplug(this_q, depth, from_schedule);
1418 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1419 from_schedule);
1420 }
1421 }
1422
1423 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1424 {
1425 blk_init_request_from_bio(rq, bio);
1426
1427 blk_account_io_start(rq, true);
1428 }
1429
1430 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1431 {
1432 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1433 !blk_queue_nomerges(hctx->queue);
1434 }
1435
1436 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1437 struct blk_mq_ctx *ctx,
1438 struct request *rq, struct bio *bio)
1439 {
1440 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1441 blk_mq_bio_to_request(rq, bio);
1442 spin_lock(&ctx->lock);
1443 insert_rq:
1444 __blk_mq_insert_request(hctx, rq, false);
1445 spin_unlock(&ctx->lock);
1446 return false;
1447 } else {
1448 struct request_queue *q = hctx->queue;
1449
1450 spin_lock(&ctx->lock);
1451 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1452 blk_mq_bio_to_request(rq, bio);
1453 goto insert_rq;
1454 }
1455
1456 spin_unlock(&ctx->lock);
1457 __blk_mq_finish_request(hctx, ctx, rq);
1458 return true;
1459 }
1460 }
1461
1462 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1463 {
1464 if (rq->tag != -1)
1465 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1466
1467 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1468 }
1469
1470 static void __blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
1471 bool may_sleep)
1472 {
1473 struct request_queue *q = rq->q;
1474 struct blk_mq_queue_data bd = {
1475 .rq = rq,
1476 .last = true,
1477 };
1478 struct blk_mq_hw_ctx *hctx;
1479 blk_qc_t new_cookie;
1480 int ret;
1481
1482 if (q->elevator)
1483 goto insert;
1484
1485 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1486 goto insert;
1487
1488 new_cookie = request_to_qc_t(hctx, rq);
1489
1490 /*
1491 * For OK queue, we are done. For error, kill it. Any other
1492 * error (busy), just add it to our list as we previously
1493 * would have done
1494 */
1495 ret = q->mq_ops->queue_rq(hctx, &bd);
1496 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1497 *cookie = new_cookie;
1498 return;
1499 }
1500
1501 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1502 *cookie = BLK_QC_T_NONE;
1503 blk_mq_end_request(rq, -EIO);
1504 return;
1505 }
1506
1507 __blk_mq_requeue_request(rq);
1508 insert:
1509 blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
1510 }
1511
1512 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1513 struct request *rq, blk_qc_t *cookie)
1514 {
1515 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1516 rcu_read_lock();
1517 __blk_mq_try_issue_directly(rq, cookie, false);
1518 rcu_read_unlock();
1519 } else {
1520 unsigned int srcu_idx;
1521
1522 might_sleep();
1523
1524 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1525 __blk_mq_try_issue_directly(rq, cookie, true);
1526 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1527 }
1528 }
1529
1530 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1531 {
1532 const int is_sync = op_is_sync(bio->bi_opf);
1533 const int is_flush_fua = op_is_flush(bio->bi_opf);
1534 struct blk_mq_alloc_data data = { .flags = 0 };
1535 struct request *rq;
1536 unsigned int request_count = 0;
1537 struct blk_plug *plug;
1538 struct request *same_queue_rq = NULL;
1539 blk_qc_t cookie;
1540 unsigned int wb_acct;
1541
1542 blk_queue_bounce(q, &bio);
1543
1544 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1545 bio_io_error(bio);
1546 return BLK_QC_T_NONE;
1547 }
1548
1549 blk_queue_split(q, &bio, q->bio_split);
1550
1551 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1552 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1553 return BLK_QC_T_NONE;
1554
1555 if (blk_mq_sched_bio_merge(q, bio))
1556 return BLK_QC_T_NONE;
1557
1558 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1559
1560 trace_block_getrq(q, bio, bio->bi_opf);
1561
1562 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1563 if (unlikely(!rq)) {
1564 __wbt_done(q->rq_wb, wb_acct);
1565 return BLK_QC_T_NONE;
1566 }
1567
1568 wbt_track(&rq->issue_stat, wb_acct);
1569
1570 cookie = request_to_qc_t(data.hctx, rq);
1571
1572 plug = current->plug;
1573 if (unlikely(is_flush_fua)) {
1574 blk_mq_bio_to_request(rq, bio);
1575 if (q->elevator) {
1576 blk_mq_sched_insert_request(rq, false, true, true,
1577 true);
1578 } else {
1579 blk_insert_flush(rq);
1580 blk_mq_run_hw_queue(data.hctx, true);
1581 }
1582 } else if (plug && q->nr_hw_queues == 1) {
1583 struct request *last = NULL;
1584
1585 blk_mq_bio_to_request(rq, bio);
1586
1587 /*
1588 * @request_count may become stale because of schedule
1589 * out, so check the list again.
1590 */
1591 if (list_empty(&plug->mq_list))
1592 request_count = 0;
1593 else if (blk_queue_nomerges(q))
1594 request_count = blk_plug_queued_count(q);
1595
1596 if (!request_count)
1597 trace_block_plug(q);
1598 else
1599 last = list_entry_rq(plug->mq_list.prev);
1600
1601 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1602 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1603 blk_flush_plug_list(plug, false);
1604 trace_block_plug(q);
1605 }
1606
1607 list_add_tail(&rq->queuelist, &plug->mq_list);
1608 } else if (plug && !blk_queue_nomerges(q)) {
1609 blk_mq_bio_to_request(rq, bio);
1610
1611 /*
1612 * We do limited plugging. If the bio can be merged, do that.
1613 * Otherwise the existing request in the plug list will be
1614 * issued. So the plug list will have one request at most
1615 * The plug list might get flushed before this. If that happens,
1616 * the plug list is empty, and same_queue_rq is invalid.
1617 */
1618 if (list_empty(&plug->mq_list))
1619 same_queue_rq = NULL;
1620 if (same_queue_rq)
1621 list_del_init(&same_queue_rq->queuelist);
1622 list_add_tail(&rq->queuelist, &plug->mq_list);
1623
1624 blk_mq_put_ctx(data.ctx);
1625
1626 if (same_queue_rq)
1627 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1628 &cookie);
1629
1630 return cookie;
1631 } else if (q->nr_hw_queues > 1 && is_sync) {
1632 blk_mq_put_ctx(data.ctx);
1633 blk_mq_bio_to_request(rq, bio);
1634 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1635 return cookie;
1636 } else if (q->elevator) {
1637 blk_mq_bio_to_request(rq, bio);
1638 blk_mq_sched_insert_request(rq, false, true, true, true);
1639 } else if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio))
1640 blk_mq_run_hw_queue(data.hctx, true);
1641
1642 blk_mq_put_ctx(data.ctx);
1643 return cookie;
1644 }
1645
1646 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1647 unsigned int hctx_idx)
1648 {
1649 struct page *page;
1650
1651 if (tags->rqs && set->ops->exit_request) {
1652 int i;
1653
1654 for (i = 0; i < tags->nr_tags; i++) {
1655 struct request *rq = tags->static_rqs[i];
1656
1657 if (!rq)
1658 continue;
1659 set->ops->exit_request(set->driver_data, rq,
1660 hctx_idx, i);
1661 tags->static_rqs[i] = NULL;
1662 }
1663 }
1664
1665 while (!list_empty(&tags->page_list)) {
1666 page = list_first_entry(&tags->page_list, struct page, lru);
1667 list_del_init(&page->lru);
1668 /*
1669 * Remove kmemleak object previously allocated in
1670 * blk_mq_init_rq_map().
1671 */
1672 kmemleak_free(page_address(page));
1673 __free_pages(page, page->private);
1674 }
1675 }
1676
1677 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1678 {
1679 kfree(tags->rqs);
1680 tags->rqs = NULL;
1681 kfree(tags->static_rqs);
1682 tags->static_rqs = NULL;
1683
1684 blk_mq_free_tags(tags);
1685 }
1686
1687 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1688 unsigned int hctx_idx,
1689 unsigned int nr_tags,
1690 unsigned int reserved_tags)
1691 {
1692 struct blk_mq_tags *tags;
1693 int node;
1694
1695 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1696 if (node == NUMA_NO_NODE)
1697 node = set->numa_node;
1698
1699 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1700 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1701 if (!tags)
1702 return NULL;
1703
1704 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1705 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1706 node);
1707 if (!tags->rqs) {
1708 blk_mq_free_tags(tags);
1709 return NULL;
1710 }
1711
1712 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1713 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1714 node);
1715 if (!tags->static_rqs) {
1716 kfree(tags->rqs);
1717 blk_mq_free_tags(tags);
1718 return NULL;
1719 }
1720
1721 return tags;
1722 }
1723
1724 static size_t order_to_size(unsigned int order)
1725 {
1726 return (size_t)PAGE_SIZE << order;
1727 }
1728
1729 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1730 unsigned int hctx_idx, unsigned int depth)
1731 {
1732 unsigned int i, j, entries_per_page, max_order = 4;
1733 size_t rq_size, left;
1734 int node;
1735
1736 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1737 if (node == NUMA_NO_NODE)
1738 node = set->numa_node;
1739
1740 INIT_LIST_HEAD(&tags->page_list);
1741
1742 /*
1743 * rq_size is the size of the request plus driver payload, rounded
1744 * to the cacheline size
1745 */
1746 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1747 cache_line_size());
1748 left = rq_size * depth;
1749
1750 for (i = 0; i < depth; ) {
1751 int this_order = max_order;
1752 struct page *page;
1753 int to_do;
1754 void *p;
1755
1756 while (this_order && left < order_to_size(this_order - 1))
1757 this_order--;
1758
1759 do {
1760 page = alloc_pages_node(node,
1761 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1762 this_order);
1763 if (page)
1764 break;
1765 if (!this_order--)
1766 break;
1767 if (order_to_size(this_order) < rq_size)
1768 break;
1769 } while (1);
1770
1771 if (!page)
1772 goto fail;
1773
1774 page->private = this_order;
1775 list_add_tail(&page->lru, &tags->page_list);
1776
1777 p = page_address(page);
1778 /*
1779 * Allow kmemleak to scan these pages as they contain pointers
1780 * to additional allocations like via ops->init_request().
1781 */
1782 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1783 entries_per_page = order_to_size(this_order) / rq_size;
1784 to_do = min(entries_per_page, depth - i);
1785 left -= to_do * rq_size;
1786 for (j = 0; j < to_do; j++) {
1787 struct request *rq = p;
1788
1789 tags->static_rqs[i] = rq;
1790 if (set->ops->init_request) {
1791 if (set->ops->init_request(set->driver_data,
1792 rq, hctx_idx, i,
1793 node)) {
1794 tags->static_rqs[i] = NULL;
1795 goto fail;
1796 }
1797 }
1798
1799 p += rq_size;
1800 i++;
1801 }
1802 }
1803 return 0;
1804
1805 fail:
1806 blk_mq_free_rqs(set, tags, hctx_idx);
1807 return -ENOMEM;
1808 }
1809
1810 /*
1811 * 'cpu' is going away. splice any existing rq_list entries from this
1812 * software queue to the hw queue dispatch list, and ensure that it
1813 * gets run.
1814 */
1815 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1816 {
1817 struct blk_mq_hw_ctx *hctx;
1818 struct blk_mq_ctx *ctx;
1819 LIST_HEAD(tmp);
1820
1821 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1822 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1823
1824 spin_lock(&ctx->lock);
1825 if (!list_empty(&ctx->rq_list)) {
1826 list_splice_init(&ctx->rq_list, &tmp);
1827 blk_mq_hctx_clear_pending(hctx, ctx);
1828 }
1829 spin_unlock(&ctx->lock);
1830
1831 if (list_empty(&tmp))
1832 return 0;
1833
1834 spin_lock(&hctx->lock);
1835 list_splice_tail_init(&tmp, &hctx->dispatch);
1836 spin_unlock(&hctx->lock);
1837
1838 blk_mq_run_hw_queue(hctx, true);
1839 return 0;
1840 }
1841
1842 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1843 {
1844 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1845 &hctx->cpuhp_dead);
1846 }
1847
1848 /* hctx->ctxs will be freed in queue's release handler */
1849 static void blk_mq_exit_hctx(struct request_queue *q,
1850 struct blk_mq_tag_set *set,
1851 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1852 {
1853 unsigned flush_start_tag = set->queue_depth;
1854
1855 blk_mq_tag_idle(hctx);
1856
1857 if (set->ops->exit_request)
1858 set->ops->exit_request(set->driver_data,
1859 hctx->fq->flush_rq, hctx_idx,
1860 flush_start_tag + hctx_idx);
1861
1862 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1863
1864 if (set->ops->exit_hctx)
1865 set->ops->exit_hctx(hctx, hctx_idx);
1866
1867 if (hctx->flags & BLK_MQ_F_BLOCKING)
1868 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1869
1870 blk_mq_remove_cpuhp(hctx);
1871 blk_free_flush_queue(hctx->fq);
1872 sbitmap_free(&hctx->ctx_map);
1873 }
1874
1875 static void blk_mq_exit_hw_queues(struct request_queue *q,
1876 struct blk_mq_tag_set *set, int nr_queue)
1877 {
1878 struct blk_mq_hw_ctx *hctx;
1879 unsigned int i;
1880
1881 queue_for_each_hw_ctx(q, hctx, i) {
1882 if (i == nr_queue)
1883 break;
1884 blk_mq_exit_hctx(q, set, hctx, i);
1885 }
1886 }
1887
1888 static int blk_mq_init_hctx(struct request_queue *q,
1889 struct blk_mq_tag_set *set,
1890 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1891 {
1892 int node;
1893 unsigned flush_start_tag = set->queue_depth;
1894
1895 node = hctx->numa_node;
1896 if (node == NUMA_NO_NODE)
1897 node = hctx->numa_node = set->numa_node;
1898
1899 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1900 INIT_DELAYED_WORK(&hctx->delayed_run_work, blk_mq_delayed_run_work_fn);
1901 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1902 spin_lock_init(&hctx->lock);
1903 INIT_LIST_HEAD(&hctx->dispatch);
1904 hctx->queue = q;
1905 hctx->queue_num = hctx_idx;
1906 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1907
1908 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1909
1910 hctx->tags = set->tags[hctx_idx];
1911
1912 /*
1913 * Allocate space for all possible cpus to avoid allocation at
1914 * runtime
1915 */
1916 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1917 GFP_KERNEL, node);
1918 if (!hctx->ctxs)
1919 goto unregister_cpu_notifier;
1920
1921 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1922 node))
1923 goto free_ctxs;
1924
1925 hctx->nr_ctx = 0;
1926
1927 if (set->ops->init_hctx &&
1928 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1929 goto free_bitmap;
1930
1931 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
1932 goto exit_hctx;
1933
1934 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1935 if (!hctx->fq)
1936 goto sched_exit_hctx;
1937
1938 if (set->ops->init_request &&
1939 set->ops->init_request(set->driver_data,
1940 hctx->fq->flush_rq, hctx_idx,
1941 flush_start_tag + hctx_idx, node))
1942 goto free_fq;
1943
1944 if (hctx->flags & BLK_MQ_F_BLOCKING)
1945 init_srcu_struct(&hctx->queue_rq_srcu);
1946
1947 return 0;
1948
1949 free_fq:
1950 kfree(hctx->fq);
1951 sched_exit_hctx:
1952 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1953 exit_hctx:
1954 if (set->ops->exit_hctx)
1955 set->ops->exit_hctx(hctx, hctx_idx);
1956 free_bitmap:
1957 sbitmap_free(&hctx->ctx_map);
1958 free_ctxs:
1959 kfree(hctx->ctxs);
1960 unregister_cpu_notifier:
1961 blk_mq_remove_cpuhp(hctx);
1962 return -1;
1963 }
1964
1965 static void blk_mq_init_cpu_queues(struct request_queue *q,
1966 unsigned int nr_hw_queues)
1967 {
1968 unsigned int i;
1969
1970 for_each_possible_cpu(i) {
1971 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1972 struct blk_mq_hw_ctx *hctx;
1973
1974 __ctx->cpu = i;
1975 spin_lock_init(&__ctx->lock);
1976 INIT_LIST_HEAD(&__ctx->rq_list);
1977 __ctx->queue = q;
1978
1979 /* If the cpu isn't online, the cpu is mapped to first hctx */
1980 if (!cpu_online(i))
1981 continue;
1982
1983 hctx = blk_mq_map_queue(q, i);
1984
1985 /*
1986 * Set local node, IFF we have more than one hw queue. If
1987 * not, we remain on the home node of the device
1988 */
1989 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1990 hctx->numa_node = local_memory_node(cpu_to_node(i));
1991 }
1992 }
1993
1994 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1995 {
1996 int ret = 0;
1997
1998 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1999 set->queue_depth, set->reserved_tags);
2000 if (!set->tags[hctx_idx])
2001 return false;
2002
2003 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2004 set->queue_depth);
2005 if (!ret)
2006 return true;
2007
2008 blk_mq_free_rq_map(set->tags[hctx_idx]);
2009 set->tags[hctx_idx] = NULL;
2010 return false;
2011 }
2012
2013 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2014 unsigned int hctx_idx)
2015 {
2016 if (set->tags[hctx_idx]) {
2017 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2018 blk_mq_free_rq_map(set->tags[hctx_idx]);
2019 set->tags[hctx_idx] = NULL;
2020 }
2021 }
2022
2023 static void blk_mq_map_swqueue(struct request_queue *q,
2024 const struct cpumask *online_mask)
2025 {
2026 unsigned int i, hctx_idx;
2027 struct blk_mq_hw_ctx *hctx;
2028 struct blk_mq_ctx *ctx;
2029 struct blk_mq_tag_set *set = q->tag_set;
2030
2031 /*
2032 * Avoid others reading imcomplete hctx->cpumask through sysfs
2033 */
2034 mutex_lock(&q->sysfs_lock);
2035
2036 queue_for_each_hw_ctx(q, hctx, i) {
2037 cpumask_clear(hctx->cpumask);
2038 hctx->nr_ctx = 0;
2039 }
2040
2041 /*
2042 * Map software to hardware queues
2043 */
2044 for_each_possible_cpu(i) {
2045 /* If the cpu isn't online, the cpu is mapped to first hctx */
2046 if (!cpumask_test_cpu(i, online_mask))
2047 continue;
2048
2049 hctx_idx = q->mq_map[i];
2050 /* unmapped hw queue can be remapped after CPU topo changed */
2051 if (!set->tags[hctx_idx] &&
2052 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2053 /*
2054 * If tags initialization fail for some hctx,
2055 * that hctx won't be brought online. In this
2056 * case, remap the current ctx to hctx[0] which
2057 * is guaranteed to always have tags allocated
2058 */
2059 q->mq_map[i] = 0;
2060 }
2061
2062 ctx = per_cpu_ptr(q->queue_ctx, i);
2063 hctx = blk_mq_map_queue(q, i);
2064
2065 cpumask_set_cpu(i, hctx->cpumask);
2066 ctx->index_hw = hctx->nr_ctx;
2067 hctx->ctxs[hctx->nr_ctx++] = ctx;
2068 }
2069
2070 mutex_unlock(&q->sysfs_lock);
2071
2072 queue_for_each_hw_ctx(q, hctx, i) {
2073 /*
2074 * If no software queues are mapped to this hardware queue,
2075 * disable it and free the request entries.
2076 */
2077 if (!hctx->nr_ctx) {
2078 /* Never unmap queue 0. We need it as a
2079 * fallback in case of a new remap fails
2080 * allocation
2081 */
2082 if (i && set->tags[i])
2083 blk_mq_free_map_and_requests(set, i);
2084
2085 hctx->tags = NULL;
2086 continue;
2087 }
2088
2089 hctx->tags = set->tags[i];
2090 WARN_ON(!hctx->tags);
2091
2092 /*
2093 * Set the map size to the number of mapped software queues.
2094 * This is more accurate and more efficient than looping
2095 * over all possibly mapped software queues.
2096 */
2097 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2098
2099 /*
2100 * Initialize batch roundrobin counts
2101 */
2102 hctx->next_cpu = cpumask_first(hctx->cpumask);
2103 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2104 }
2105 }
2106
2107 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2108 {
2109 struct blk_mq_hw_ctx *hctx;
2110 int i;
2111
2112 queue_for_each_hw_ctx(q, hctx, i) {
2113 if (shared)
2114 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2115 else
2116 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2117 }
2118 }
2119
2120 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2121 {
2122 struct request_queue *q;
2123
2124 lockdep_assert_held(&set->tag_list_lock);
2125
2126 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2127 blk_mq_freeze_queue(q);
2128 queue_set_hctx_shared(q, shared);
2129 blk_mq_unfreeze_queue(q);
2130 }
2131 }
2132
2133 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2134 {
2135 struct blk_mq_tag_set *set = q->tag_set;
2136
2137 mutex_lock(&set->tag_list_lock);
2138 list_del_rcu(&q->tag_set_list);
2139 INIT_LIST_HEAD(&q->tag_set_list);
2140 if (list_is_singular(&set->tag_list)) {
2141 /* just transitioned to unshared */
2142 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2143 /* update existing queue */
2144 blk_mq_update_tag_set_depth(set, false);
2145 }
2146 mutex_unlock(&set->tag_list_lock);
2147
2148 synchronize_rcu();
2149 }
2150
2151 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2152 struct request_queue *q)
2153 {
2154 q->tag_set = set;
2155
2156 mutex_lock(&set->tag_list_lock);
2157
2158 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2159 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2160 set->flags |= BLK_MQ_F_TAG_SHARED;
2161 /* update existing queue */
2162 blk_mq_update_tag_set_depth(set, true);
2163 }
2164 if (set->flags & BLK_MQ_F_TAG_SHARED)
2165 queue_set_hctx_shared(q, true);
2166 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2167
2168 mutex_unlock(&set->tag_list_lock);
2169 }
2170
2171 /*
2172 * It is the actual release handler for mq, but we do it from
2173 * request queue's release handler for avoiding use-after-free
2174 * and headache because q->mq_kobj shouldn't have been introduced,
2175 * but we can't group ctx/kctx kobj without it.
2176 */
2177 void blk_mq_release(struct request_queue *q)
2178 {
2179 struct blk_mq_hw_ctx *hctx;
2180 unsigned int i;
2181
2182 /* hctx kobj stays in hctx */
2183 queue_for_each_hw_ctx(q, hctx, i) {
2184 if (!hctx)
2185 continue;
2186 kobject_put(&hctx->kobj);
2187 }
2188
2189 q->mq_map = NULL;
2190
2191 kfree(q->queue_hw_ctx);
2192
2193 /*
2194 * release .mq_kobj and sw queue's kobject now because
2195 * both share lifetime with request queue.
2196 */
2197 blk_mq_sysfs_deinit(q);
2198
2199 free_percpu(q->queue_ctx);
2200 }
2201
2202 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2203 {
2204 struct request_queue *uninit_q, *q;
2205
2206 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2207 if (!uninit_q)
2208 return ERR_PTR(-ENOMEM);
2209
2210 q = blk_mq_init_allocated_queue(set, uninit_q);
2211 if (IS_ERR(q))
2212 blk_cleanup_queue(uninit_q);
2213
2214 return q;
2215 }
2216 EXPORT_SYMBOL(blk_mq_init_queue);
2217
2218 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2219 struct request_queue *q)
2220 {
2221 int i, j;
2222 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2223
2224 blk_mq_sysfs_unregister(q);
2225 for (i = 0; i < set->nr_hw_queues; i++) {
2226 int node;
2227
2228 if (hctxs[i])
2229 continue;
2230
2231 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2232 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2233 GFP_KERNEL, node);
2234 if (!hctxs[i])
2235 break;
2236
2237 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2238 node)) {
2239 kfree(hctxs[i]);
2240 hctxs[i] = NULL;
2241 break;
2242 }
2243
2244 atomic_set(&hctxs[i]->nr_active, 0);
2245 hctxs[i]->numa_node = node;
2246 hctxs[i]->queue_num = i;
2247
2248 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2249 free_cpumask_var(hctxs[i]->cpumask);
2250 kfree(hctxs[i]);
2251 hctxs[i] = NULL;
2252 break;
2253 }
2254 blk_mq_hctx_kobj_init(hctxs[i]);
2255 }
2256 for (j = i; j < q->nr_hw_queues; j++) {
2257 struct blk_mq_hw_ctx *hctx = hctxs[j];
2258
2259 if (hctx) {
2260 if (hctx->tags)
2261 blk_mq_free_map_and_requests(set, j);
2262 blk_mq_exit_hctx(q, set, hctx, j);
2263 kobject_put(&hctx->kobj);
2264 hctxs[j] = NULL;
2265
2266 }
2267 }
2268 q->nr_hw_queues = i;
2269 blk_mq_sysfs_register(q);
2270 }
2271
2272 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2273 struct request_queue *q)
2274 {
2275 /* mark the queue as mq asap */
2276 q->mq_ops = set->ops;
2277
2278 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2279 blk_mq_poll_stats_bkt,
2280 BLK_MQ_POLL_STATS_BKTS, q);
2281 if (!q->poll_cb)
2282 goto err_exit;
2283
2284 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2285 if (!q->queue_ctx)
2286 goto err_exit;
2287
2288 /* init q->mq_kobj and sw queues' kobjects */
2289 blk_mq_sysfs_init(q);
2290
2291 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2292 GFP_KERNEL, set->numa_node);
2293 if (!q->queue_hw_ctx)
2294 goto err_percpu;
2295
2296 q->mq_map = set->mq_map;
2297
2298 blk_mq_realloc_hw_ctxs(set, q);
2299 if (!q->nr_hw_queues)
2300 goto err_hctxs;
2301
2302 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2303 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2304
2305 q->nr_queues = nr_cpu_ids;
2306
2307 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2308
2309 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2310 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2311
2312 q->sg_reserved_size = INT_MAX;
2313
2314 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2315 INIT_LIST_HEAD(&q->requeue_list);
2316 spin_lock_init(&q->requeue_lock);
2317
2318 blk_queue_make_request(q, blk_mq_make_request);
2319
2320 /*
2321 * Do this after blk_queue_make_request() overrides it...
2322 */
2323 q->nr_requests = set->queue_depth;
2324
2325 /*
2326 * Default to classic polling
2327 */
2328 q->poll_nsec = -1;
2329
2330 if (set->ops->complete)
2331 blk_queue_softirq_done(q, set->ops->complete);
2332
2333 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2334
2335 get_online_cpus();
2336 mutex_lock(&all_q_mutex);
2337
2338 list_add_tail(&q->all_q_node, &all_q_list);
2339 blk_mq_add_queue_tag_set(set, q);
2340 blk_mq_map_swqueue(q, cpu_online_mask);
2341
2342 mutex_unlock(&all_q_mutex);
2343 put_online_cpus();
2344
2345 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2346 int ret;
2347
2348 ret = blk_mq_sched_init(q);
2349 if (ret)
2350 return ERR_PTR(ret);
2351 }
2352
2353 return q;
2354
2355 err_hctxs:
2356 kfree(q->queue_hw_ctx);
2357 err_percpu:
2358 free_percpu(q->queue_ctx);
2359 err_exit:
2360 q->mq_ops = NULL;
2361 return ERR_PTR(-ENOMEM);
2362 }
2363 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2364
2365 void blk_mq_free_queue(struct request_queue *q)
2366 {
2367 struct blk_mq_tag_set *set = q->tag_set;
2368
2369 mutex_lock(&all_q_mutex);
2370 list_del_init(&q->all_q_node);
2371 mutex_unlock(&all_q_mutex);
2372
2373 blk_mq_del_queue_tag_set(q);
2374
2375 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2376 }
2377
2378 /* Basically redo blk_mq_init_queue with queue frozen */
2379 static void blk_mq_queue_reinit(struct request_queue *q,
2380 const struct cpumask *online_mask)
2381 {
2382 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2383
2384 blk_mq_sysfs_unregister(q);
2385
2386 /*
2387 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2388 * we should change hctx numa_node according to new topology (this
2389 * involves free and re-allocate memory, worthy doing?)
2390 */
2391
2392 blk_mq_map_swqueue(q, online_mask);
2393
2394 blk_mq_sysfs_register(q);
2395 }
2396
2397 /*
2398 * New online cpumask which is going to be set in this hotplug event.
2399 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2400 * one-by-one and dynamically allocating this could result in a failure.
2401 */
2402 static struct cpumask cpuhp_online_new;
2403
2404 static void blk_mq_queue_reinit_work(void)
2405 {
2406 struct request_queue *q;
2407
2408 mutex_lock(&all_q_mutex);
2409 /*
2410 * We need to freeze and reinit all existing queues. Freezing
2411 * involves synchronous wait for an RCU grace period and doing it
2412 * one by one may take a long time. Start freezing all queues in
2413 * one swoop and then wait for the completions so that freezing can
2414 * take place in parallel.
2415 */
2416 list_for_each_entry(q, &all_q_list, all_q_node)
2417 blk_freeze_queue_start(q);
2418 list_for_each_entry(q, &all_q_list, all_q_node)
2419 blk_mq_freeze_queue_wait(q);
2420
2421 list_for_each_entry(q, &all_q_list, all_q_node)
2422 blk_mq_queue_reinit(q, &cpuhp_online_new);
2423
2424 list_for_each_entry(q, &all_q_list, all_q_node)
2425 blk_mq_unfreeze_queue(q);
2426
2427 mutex_unlock(&all_q_mutex);
2428 }
2429
2430 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2431 {
2432 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2433 blk_mq_queue_reinit_work();
2434 return 0;
2435 }
2436
2437 /*
2438 * Before hotadded cpu starts handling requests, new mappings must be
2439 * established. Otherwise, these requests in hw queue might never be
2440 * dispatched.
2441 *
2442 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2443 * for CPU0, and ctx1 for CPU1).
2444 *
2445 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2446 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2447 *
2448 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2449 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2450 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2451 * ignored.
2452 */
2453 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2454 {
2455 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2456 cpumask_set_cpu(cpu, &cpuhp_online_new);
2457 blk_mq_queue_reinit_work();
2458 return 0;
2459 }
2460
2461 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2462 {
2463 int i;
2464
2465 for (i = 0; i < set->nr_hw_queues; i++)
2466 if (!__blk_mq_alloc_rq_map(set, i))
2467 goto out_unwind;
2468
2469 return 0;
2470
2471 out_unwind:
2472 while (--i >= 0)
2473 blk_mq_free_rq_map(set->tags[i]);
2474
2475 return -ENOMEM;
2476 }
2477
2478 /*
2479 * Allocate the request maps associated with this tag_set. Note that this
2480 * may reduce the depth asked for, if memory is tight. set->queue_depth
2481 * will be updated to reflect the allocated depth.
2482 */
2483 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2484 {
2485 unsigned int depth;
2486 int err;
2487
2488 depth = set->queue_depth;
2489 do {
2490 err = __blk_mq_alloc_rq_maps(set);
2491 if (!err)
2492 break;
2493
2494 set->queue_depth >>= 1;
2495 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2496 err = -ENOMEM;
2497 break;
2498 }
2499 } while (set->queue_depth);
2500
2501 if (!set->queue_depth || err) {
2502 pr_err("blk-mq: failed to allocate request map\n");
2503 return -ENOMEM;
2504 }
2505
2506 if (depth != set->queue_depth)
2507 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2508 depth, set->queue_depth);
2509
2510 return 0;
2511 }
2512
2513 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2514 {
2515 if (set->ops->map_queues)
2516 return set->ops->map_queues(set);
2517 else
2518 return blk_mq_map_queues(set);
2519 }
2520
2521 /*
2522 * Alloc a tag set to be associated with one or more request queues.
2523 * May fail with EINVAL for various error conditions. May adjust the
2524 * requested depth down, if if it too large. In that case, the set
2525 * value will be stored in set->queue_depth.
2526 */
2527 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2528 {
2529 int ret;
2530
2531 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2532
2533 if (!set->nr_hw_queues)
2534 return -EINVAL;
2535 if (!set->queue_depth)
2536 return -EINVAL;
2537 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2538 return -EINVAL;
2539
2540 if (!set->ops->queue_rq)
2541 return -EINVAL;
2542
2543 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2544 pr_info("blk-mq: reduced tag depth to %u\n",
2545 BLK_MQ_MAX_DEPTH);
2546 set->queue_depth = BLK_MQ_MAX_DEPTH;
2547 }
2548
2549 /*
2550 * If a crashdump is active, then we are potentially in a very
2551 * memory constrained environment. Limit us to 1 queue and
2552 * 64 tags to prevent using too much memory.
2553 */
2554 if (is_kdump_kernel()) {
2555 set->nr_hw_queues = 1;
2556 set->queue_depth = min(64U, set->queue_depth);
2557 }
2558 /*
2559 * There is no use for more h/w queues than cpus.
2560 */
2561 if (set->nr_hw_queues > nr_cpu_ids)
2562 set->nr_hw_queues = nr_cpu_ids;
2563
2564 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2565 GFP_KERNEL, set->numa_node);
2566 if (!set->tags)
2567 return -ENOMEM;
2568
2569 ret = -ENOMEM;
2570 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2571 GFP_KERNEL, set->numa_node);
2572 if (!set->mq_map)
2573 goto out_free_tags;
2574
2575 ret = blk_mq_update_queue_map(set);
2576 if (ret)
2577 goto out_free_mq_map;
2578
2579 ret = blk_mq_alloc_rq_maps(set);
2580 if (ret)
2581 goto out_free_mq_map;
2582
2583 mutex_init(&set->tag_list_lock);
2584 INIT_LIST_HEAD(&set->tag_list);
2585
2586 return 0;
2587
2588 out_free_mq_map:
2589 kfree(set->mq_map);
2590 set->mq_map = NULL;
2591 out_free_tags:
2592 kfree(set->tags);
2593 set->tags = NULL;
2594 return ret;
2595 }
2596 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2597
2598 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2599 {
2600 int i;
2601
2602 for (i = 0; i < nr_cpu_ids; i++)
2603 blk_mq_free_map_and_requests(set, i);
2604
2605 kfree(set->mq_map);
2606 set->mq_map = NULL;
2607
2608 kfree(set->tags);
2609 set->tags = NULL;
2610 }
2611 EXPORT_SYMBOL(blk_mq_free_tag_set);
2612
2613 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2614 {
2615 struct blk_mq_tag_set *set = q->tag_set;
2616 struct blk_mq_hw_ctx *hctx;
2617 int i, ret;
2618
2619 if (!set)
2620 return -EINVAL;
2621
2622 blk_mq_freeze_queue(q);
2623 blk_mq_quiesce_queue(q);
2624
2625 ret = 0;
2626 queue_for_each_hw_ctx(q, hctx, i) {
2627 if (!hctx->tags)
2628 continue;
2629 /*
2630 * If we're using an MQ scheduler, just update the scheduler
2631 * queue depth. This is similar to what the old code would do.
2632 */
2633 if (!hctx->sched_tags) {
2634 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2635 min(nr, set->queue_depth),
2636 false);
2637 } else {
2638 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2639 nr, true);
2640 }
2641 if (ret)
2642 break;
2643 }
2644
2645 if (!ret)
2646 q->nr_requests = nr;
2647
2648 blk_mq_unfreeze_queue(q);
2649 blk_mq_start_stopped_hw_queues(q, true);
2650
2651 return ret;
2652 }
2653
2654 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2655 {
2656 struct request_queue *q;
2657
2658 lockdep_assert_held(&set->tag_list_lock);
2659
2660 if (nr_hw_queues > nr_cpu_ids)
2661 nr_hw_queues = nr_cpu_ids;
2662 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2663 return;
2664
2665 list_for_each_entry(q, &set->tag_list, tag_set_list)
2666 blk_mq_freeze_queue(q);
2667
2668 set->nr_hw_queues = nr_hw_queues;
2669 blk_mq_update_queue_map(set);
2670 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2671 blk_mq_realloc_hw_ctxs(set, q);
2672 blk_mq_queue_reinit(q, cpu_online_mask);
2673 }
2674
2675 list_for_each_entry(q, &set->tag_list, tag_set_list)
2676 blk_mq_unfreeze_queue(q);
2677 }
2678 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2679
2680 /* Enable polling stats and return whether they were already enabled. */
2681 static bool blk_poll_stats_enable(struct request_queue *q)
2682 {
2683 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2684 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2685 return true;
2686 blk_stat_add_callback(q, q->poll_cb);
2687 return false;
2688 }
2689
2690 static void blk_mq_poll_stats_start(struct request_queue *q)
2691 {
2692 /*
2693 * We don't arm the callback if polling stats are not enabled or the
2694 * callback is already active.
2695 */
2696 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2697 blk_stat_is_active(q->poll_cb))
2698 return;
2699
2700 blk_stat_activate_msecs(q->poll_cb, 100);
2701 }
2702
2703 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2704 {
2705 struct request_queue *q = cb->data;
2706 int bucket;
2707
2708 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2709 if (cb->stat[bucket].nr_samples)
2710 q->poll_stat[bucket] = cb->stat[bucket];
2711 }
2712 }
2713
2714 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2715 struct blk_mq_hw_ctx *hctx,
2716 struct request *rq)
2717 {
2718 unsigned long ret = 0;
2719 int bucket;
2720
2721 /*
2722 * If stats collection isn't on, don't sleep but turn it on for
2723 * future users
2724 */
2725 if (!blk_poll_stats_enable(q))
2726 return 0;
2727
2728 /*
2729 * As an optimistic guess, use half of the mean service time
2730 * for this type of request. We can (and should) make this smarter.
2731 * For instance, if the completion latencies are tight, we can
2732 * get closer than just half the mean. This is especially
2733 * important on devices where the completion latencies are longer
2734 * than ~10 usec. We do use the stats for the relevant IO size
2735 * if available which does lead to better estimates.
2736 */
2737 bucket = blk_mq_poll_stats_bkt(rq);
2738 if (bucket < 0)
2739 return ret;
2740
2741 if (q->poll_stat[bucket].nr_samples)
2742 ret = (q->poll_stat[bucket].mean + 1) / 2;
2743
2744 return ret;
2745 }
2746
2747 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2748 struct blk_mq_hw_ctx *hctx,
2749 struct request *rq)
2750 {
2751 struct hrtimer_sleeper hs;
2752 enum hrtimer_mode mode;
2753 unsigned int nsecs;
2754 ktime_t kt;
2755
2756 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2757 return false;
2758
2759 /*
2760 * poll_nsec can be:
2761 *
2762 * -1: don't ever hybrid sleep
2763 * 0: use half of prev avg
2764 * >0: use this specific value
2765 */
2766 if (q->poll_nsec == -1)
2767 return false;
2768 else if (q->poll_nsec > 0)
2769 nsecs = q->poll_nsec;
2770 else
2771 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2772
2773 if (!nsecs)
2774 return false;
2775
2776 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2777
2778 /*
2779 * This will be replaced with the stats tracking code, using
2780 * 'avg_completion_time / 2' as the pre-sleep target.
2781 */
2782 kt = nsecs;
2783
2784 mode = HRTIMER_MODE_REL;
2785 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2786 hrtimer_set_expires(&hs.timer, kt);
2787
2788 hrtimer_init_sleeper(&hs, current);
2789 do {
2790 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2791 break;
2792 set_current_state(TASK_UNINTERRUPTIBLE);
2793 hrtimer_start_expires(&hs.timer, mode);
2794 if (hs.task)
2795 io_schedule();
2796 hrtimer_cancel(&hs.timer);
2797 mode = HRTIMER_MODE_ABS;
2798 } while (hs.task && !signal_pending(current));
2799
2800 __set_current_state(TASK_RUNNING);
2801 destroy_hrtimer_on_stack(&hs.timer);
2802 return true;
2803 }
2804
2805 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2806 {
2807 struct request_queue *q = hctx->queue;
2808 long state;
2809
2810 /*
2811 * If we sleep, have the caller restart the poll loop to reset
2812 * the state. Like for the other success return cases, the
2813 * caller is responsible for checking if the IO completed. If
2814 * the IO isn't complete, we'll get called again and will go
2815 * straight to the busy poll loop.
2816 */
2817 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2818 return true;
2819
2820 hctx->poll_considered++;
2821
2822 state = current->state;
2823 while (!need_resched()) {
2824 int ret;
2825
2826 hctx->poll_invoked++;
2827
2828 ret = q->mq_ops->poll(hctx, rq->tag);
2829 if (ret > 0) {
2830 hctx->poll_success++;
2831 set_current_state(TASK_RUNNING);
2832 return true;
2833 }
2834
2835 if (signal_pending_state(state, current))
2836 set_current_state(TASK_RUNNING);
2837
2838 if (current->state == TASK_RUNNING)
2839 return true;
2840 if (ret < 0)
2841 break;
2842 cpu_relax();
2843 }
2844
2845 return false;
2846 }
2847
2848 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2849 {
2850 struct blk_mq_hw_ctx *hctx;
2851 struct blk_plug *plug;
2852 struct request *rq;
2853
2854 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2855 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2856 return false;
2857
2858 plug = current->plug;
2859 if (plug)
2860 blk_flush_plug_list(plug, false);
2861
2862 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2863 if (!blk_qc_t_is_internal(cookie))
2864 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2865 else
2866 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2867
2868 return __blk_mq_poll(hctx, rq);
2869 }
2870 EXPORT_SYMBOL_GPL(blk_mq_poll);
2871
2872 void blk_mq_disable_hotplug(void)
2873 {
2874 mutex_lock(&all_q_mutex);
2875 }
2876
2877 void blk_mq_enable_hotplug(void)
2878 {
2879 mutex_unlock(&all_q_mutex);
2880 }
2881
2882 static int __init blk_mq_init(void)
2883 {
2884 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2885 blk_mq_hctx_notify_dead);
2886
2887 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2888 blk_mq_queue_reinit_prepare,
2889 blk_mq_queue_reinit_dead);
2890 return 0;
2891 }
2892 subsys_initcall(blk_mq_init);