]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - block/blk-mq.c
Merge tag 'drm-msm-fixes-2021-10-18' of https://gitlab.freedesktop.org/drm/msm into...
[mirror_ubuntu-jammy-kernel.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Block multiqueue core code
4 *
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
7 */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30
31 #include <trace/events/block.h>
32
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43
44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
45
46 static void blk_mq_poll_stats_start(struct request_queue *q);
47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48
49 static int blk_mq_poll_stats_bkt(const struct request *rq)
50 {
51 int ddir, sectors, bucket;
52
53 ddir = rq_data_dir(rq);
54 sectors = blk_rq_stats_sectors(rq);
55
56 bucket = ddir + 2 * ilog2(sectors);
57
58 if (bucket < 0)
59 return -1;
60 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62
63 return bucket;
64 }
65
66 /*
67 * Check if any of the ctx, dispatch list or elevator
68 * have pending work in this hardware queue.
69 */
70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
71 {
72 return !list_empty_careful(&hctx->dispatch) ||
73 sbitmap_any_bit_set(&hctx->ctx_map) ||
74 blk_mq_sched_has_work(hctx);
75 }
76
77 /*
78 * Mark this ctx as having pending work in this hardware queue
79 */
80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81 struct blk_mq_ctx *ctx)
82 {
83 const int bit = ctx->index_hw[hctx->type];
84
85 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86 sbitmap_set_bit(&hctx->ctx_map, bit);
87 }
88
89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90 struct blk_mq_ctx *ctx)
91 {
92 const int bit = ctx->index_hw[hctx->type];
93
94 sbitmap_clear_bit(&hctx->ctx_map, bit);
95 }
96
97 struct mq_inflight {
98 struct block_device *part;
99 unsigned int inflight[2];
100 };
101
102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103 struct request *rq, void *priv,
104 bool reserved)
105 {
106 struct mq_inflight *mi = priv;
107
108 if ((!mi->part->bd_partno || rq->part == mi->part) &&
109 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
110 mi->inflight[rq_data_dir(rq)]++;
111
112 return true;
113 }
114
115 unsigned int blk_mq_in_flight(struct request_queue *q,
116 struct block_device *part)
117 {
118 struct mq_inflight mi = { .part = part };
119
120 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
121
122 return mi.inflight[0] + mi.inflight[1];
123 }
124
125 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
126 unsigned int inflight[2])
127 {
128 struct mq_inflight mi = { .part = part };
129
130 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
131 inflight[0] = mi.inflight[0];
132 inflight[1] = mi.inflight[1];
133 }
134
135 void blk_freeze_queue_start(struct request_queue *q)
136 {
137 mutex_lock(&q->mq_freeze_lock);
138 if (++q->mq_freeze_depth == 1) {
139 percpu_ref_kill(&q->q_usage_counter);
140 mutex_unlock(&q->mq_freeze_lock);
141 if (queue_is_mq(q))
142 blk_mq_run_hw_queues(q, false);
143 } else {
144 mutex_unlock(&q->mq_freeze_lock);
145 }
146 }
147 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
148
149 void blk_mq_freeze_queue_wait(struct request_queue *q)
150 {
151 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
152 }
153 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
154
155 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
156 unsigned long timeout)
157 {
158 return wait_event_timeout(q->mq_freeze_wq,
159 percpu_ref_is_zero(&q->q_usage_counter),
160 timeout);
161 }
162 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
163
164 /*
165 * Guarantee no request is in use, so we can change any data structure of
166 * the queue afterward.
167 */
168 void blk_freeze_queue(struct request_queue *q)
169 {
170 /*
171 * In the !blk_mq case we are only calling this to kill the
172 * q_usage_counter, otherwise this increases the freeze depth
173 * and waits for it to return to zero. For this reason there is
174 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
175 * exported to drivers as the only user for unfreeze is blk_mq.
176 */
177 blk_freeze_queue_start(q);
178 blk_mq_freeze_queue_wait(q);
179 }
180
181 void blk_mq_freeze_queue(struct request_queue *q)
182 {
183 /*
184 * ...just an alias to keep freeze and unfreeze actions balanced
185 * in the blk_mq_* namespace
186 */
187 blk_freeze_queue(q);
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
190
191 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
192 {
193 mutex_lock(&q->mq_freeze_lock);
194 if (force_atomic)
195 q->q_usage_counter.data->force_atomic = true;
196 q->mq_freeze_depth--;
197 WARN_ON_ONCE(q->mq_freeze_depth < 0);
198 if (!q->mq_freeze_depth) {
199 percpu_ref_resurrect(&q->q_usage_counter);
200 wake_up_all(&q->mq_freeze_wq);
201 }
202 mutex_unlock(&q->mq_freeze_lock);
203 }
204
205 void blk_mq_unfreeze_queue(struct request_queue *q)
206 {
207 __blk_mq_unfreeze_queue(q, false);
208 }
209 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
210
211 /*
212 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
213 * mpt3sas driver such that this function can be removed.
214 */
215 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
216 {
217 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
218 }
219 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
220
221 /**
222 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
223 * @q: request queue.
224 *
225 * Note: this function does not prevent that the struct request end_io()
226 * callback function is invoked. Once this function is returned, we make
227 * sure no dispatch can happen until the queue is unquiesced via
228 * blk_mq_unquiesce_queue().
229 */
230 void blk_mq_quiesce_queue(struct request_queue *q)
231 {
232 struct blk_mq_hw_ctx *hctx;
233 unsigned int i;
234 bool rcu = false;
235
236 blk_mq_quiesce_queue_nowait(q);
237
238 queue_for_each_hw_ctx(q, hctx, i) {
239 if (hctx->flags & BLK_MQ_F_BLOCKING)
240 synchronize_srcu(hctx->srcu);
241 else
242 rcu = true;
243 }
244 if (rcu)
245 synchronize_rcu();
246 }
247 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
248
249 /*
250 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
251 * @q: request queue.
252 *
253 * This function recovers queue into the state before quiescing
254 * which is done by blk_mq_quiesce_queue.
255 */
256 void blk_mq_unquiesce_queue(struct request_queue *q)
257 {
258 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
259
260 /* dispatch requests which are inserted during quiescing */
261 blk_mq_run_hw_queues(q, true);
262 }
263 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
264
265 void blk_mq_wake_waiters(struct request_queue *q)
266 {
267 struct blk_mq_hw_ctx *hctx;
268 unsigned int i;
269
270 queue_for_each_hw_ctx(q, hctx, i)
271 if (blk_mq_hw_queue_mapped(hctx))
272 blk_mq_tag_wakeup_all(hctx->tags, true);
273 }
274
275 /*
276 * Only need start/end time stamping if we have iostat or
277 * blk stats enabled, or using an IO scheduler.
278 */
279 static inline bool blk_mq_need_time_stamp(struct request *rq)
280 {
281 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
282 }
283
284 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
285 unsigned int tag, u64 alloc_time_ns)
286 {
287 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
288 struct request *rq = tags->static_rqs[tag];
289
290 if (data->q->elevator) {
291 rq->tag = BLK_MQ_NO_TAG;
292 rq->internal_tag = tag;
293 } else {
294 rq->tag = tag;
295 rq->internal_tag = BLK_MQ_NO_TAG;
296 }
297
298 /* csd/requeue_work/fifo_time is initialized before use */
299 rq->q = data->q;
300 rq->mq_ctx = data->ctx;
301 rq->mq_hctx = data->hctx;
302 rq->rq_flags = 0;
303 rq->cmd_flags = data->cmd_flags;
304 if (data->flags & BLK_MQ_REQ_PM)
305 rq->rq_flags |= RQF_PM;
306 if (blk_queue_io_stat(data->q))
307 rq->rq_flags |= RQF_IO_STAT;
308 INIT_LIST_HEAD(&rq->queuelist);
309 INIT_HLIST_NODE(&rq->hash);
310 RB_CLEAR_NODE(&rq->rb_node);
311 rq->rq_disk = NULL;
312 rq->part = NULL;
313 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
314 rq->alloc_time_ns = alloc_time_ns;
315 #endif
316 if (blk_mq_need_time_stamp(rq))
317 rq->start_time_ns = ktime_get_ns();
318 else
319 rq->start_time_ns = 0;
320 rq->io_start_time_ns = 0;
321 rq->stats_sectors = 0;
322 rq->nr_phys_segments = 0;
323 #if defined(CONFIG_BLK_DEV_INTEGRITY)
324 rq->nr_integrity_segments = 0;
325 #endif
326 blk_crypto_rq_set_defaults(rq);
327 /* tag was already set */
328 WRITE_ONCE(rq->deadline, 0);
329
330 rq->timeout = 0;
331
332 rq->end_io = NULL;
333 rq->end_io_data = NULL;
334
335 data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
336 refcount_set(&rq->ref, 1);
337
338 if (!op_is_flush(data->cmd_flags)) {
339 struct elevator_queue *e = data->q->elevator;
340
341 rq->elv.icq = NULL;
342 if (e && e->type->ops.prepare_request) {
343 if (e->type->icq_cache)
344 blk_mq_sched_assign_ioc(rq);
345
346 e->type->ops.prepare_request(rq);
347 rq->rq_flags |= RQF_ELVPRIV;
348 }
349 }
350
351 data->hctx->queued++;
352 return rq;
353 }
354
355 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
356 {
357 struct request_queue *q = data->q;
358 struct elevator_queue *e = q->elevator;
359 u64 alloc_time_ns = 0;
360 unsigned int tag;
361
362 /* alloc_time includes depth and tag waits */
363 if (blk_queue_rq_alloc_time(q))
364 alloc_time_ns = ktime_get_ns();
365
366 if (data->cmd_flags & REQ_NOWAIT)
367 data->flags |= BLK_MQ_REQ_NOWAIT;
368
369 if (e) {
370 /*
371 * Flush/passthrough requests are special and go directly to the
372 * dispatch list. Don't include reserved tags in the
373 * limiting, as it isn't useful.
374 */
375 if (!op_is_flush(data->cmd_flags) &&
376 !blk_op_is_passthrough(data->cmd_flags) &&
377 e->type->ops.limit_depth &&
378 !(data->flags & BLK_MQ_REQ_RESERVED))
379 e->type->ops.limit_depth(data->cmd_flags, data);
380 }
381
382 retry:
383 data->ctx = blk_mq_get_ctx(q);
384 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
385 if (!e)
386 blk_mq_tag_busy(data->hctx);
387
388 /*
389 * Waiting allocations only fail because of an inactive hctx. In that
390 * case just retry the hctx assignment and tag allocation as CPU hotplug
391 * should have migrated us to an online CPU by now.
392 */
393 tag = blk_mq_get_tag(data);
394 if (tag == BLK_MQ_NO_TAG) {
395 if (data->flags & BLK_MQ_REQ_NOWAIT)
396 return NULL;
397
398 /*
399 * Give up the CPU and sleep for a random short time to ensure
400 * that thread using a realtime scheduling class are migrated
401 * off the CPU, and thus off the hctx that is going away.
402 */
403 msleep(3);
404 goto retry;
405 }
406 return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
407 }
408
409 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
410 blk_mq_req_flags_t flags)
411 {
412 struct blk_mq_alloc_data data = {
413 .q = q,
414 .flags = flags,
415 .cmd_flags = op,
416 };
417 struct request *rq;
418 int ret;
419
420 ret = blk_queue_enter(q, flags);
421 if (ret)
422 return ERR_PTR(ret);
423
424 rq = __blk_mq_alloc_request(&data);
425 if (!rq)
426 goto out_queue_exit;
427 rq->__data_len = 0;
428 rq->__sector = (sector_t) -1;
429 rq->bio = rq->biotail = NULL;
430 return rq;
431 out_queue_exit:
432 blk_queue_exit(q);
433 return ERR_PTR(-EWOULDBLOCK);
434 }
435 EXPORT_SYMBOL(blk_mq_alloc_request);
436
437 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
438 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
439 {
440 struct blk_mq_alloc_data data = {
441 .q = q,
442 .flags = flags,
443 .cmd_flags = op,
444 };
445 u64 alloc_time_ns = 0;
446 unsigned int cpu;
447 unsigned int tag;
448 int ret;
449
450 /* alloc_time includes depth and tag waits */
451 if (blk_queue_rq_alloc_time(q))
452 alloc_time_ns = ktime_get_ns();
453
454 /*
455 * If the tag allocator sleeps we could get an allocation for a
456 * different hardware context. No need to complicate the low level
457 * allocator for this for the rare use case of a command tied to
458 * a specific queue.
459 */
460 if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
461 return ERR_PTR(-EINVAL);
462
463 if (hctx_idx >= q->nr_hw_queues)
464 return ERR_PTR(-EIO);
465
466 ret = blk_queue_enter(q, flags);
467 if (ret)
468 return ERR_PTR(ret);
469
470 /*
471 * Check if the hardware context is actually mapped to anything.
472 * If not tell the caller that it should skip this queue.
473 */
474 ret = -EXDEV;
475 data.hctx = q->queue_hw_ctx[hctx_idx];
476 if (!blk_mq_hw_queue_mapped(data.hctx))
477 goto out_queue_exit;
478 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
479 data.ctx = __blk_mq_get_ctx(q, cpu);
480
481 if (!q->elevator)
482 blk_mq_tag_busy(data.hctx);
483
484 ret = -EWOULDBLOCK;
485 tag = blk_mq_get_tag(&data);
486 if (tag == BLK_MQ_NO_TAG)
487 goto out_queue_exit;
488 return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
489
490 out_queue_exit:
491 blk_queue_exit(q);
492 return ERR_PTR(ret);
493 }
494 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
495
496 static void __blk_mq_free_request(struct request *rq)
497 {
498 struct request_queue *q = rq->q;
499 struct blk_mq_ctx *ctx = rq->mq_ctx;
500 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
501 const int sched_tag = rq->internal_tag;
502
503 blk_crypto_free_request(rq);
504 blk_pm_mark_last_busy(rq);
505 rq->mq_hctx = NULL;
506 if (rq->tag != BLK_MQ_NO_TAG)
507 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
508 if (sched_tag != BLK_MQ_NO_TAG)
509 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
510 blk_mq_sched_restart(hctx);
511 blk_queue_exit(q);
512 }
513
514 void blk_mq_free_request(struct request *rq)
515 {
516 struct request_queue *q = rq->q;
517 struct elevator_queue *e = q->elevator;
518 struct blk_mq_ctx *ctx = rq->mq_ctx;
519 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
520
521 if (rq->rq_flags & RQF_ELVPRIV) {
522 if (e && e->type->ops.finish_request)
523 e->type->ops.finish_request(rq);
524 if (rq->elv.icq) {
525 put_io_context(rq->elv.icq->ioc);
526 rq->elv.icq = NULL;
527 }
528 }
529
530 ctx->rq_completed[rq_is_sync(rq)]++;
531 if (rq->rq_flags & RQF_MQ_INFLIGHT)
532 __blk_mq_dec_active_requests(hctx);
533
534 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
535 laptop_io_completion(q->disk->bdi);
536
537 rq_qos_done(q, rq);
538
539 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
540 if (refcount_dec_and_test(&rq->ref))
541 __blk_mq_free_request(rq);
542 }
543 EXPORT_SYMBOL_GPL(blk_mq_free_request);
544
545 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
546 {
547 u64 now = 0;
548
549 if (blk_mq_need_time_stamp(rq))
550 now = ktime_get_ns();
551
552 if (rq->rq_flags & RQF_STATS) {
553 blk_mq_poll_stats_start(rq->q);
554 blk_stat_add(rq, now);
555 }
556
557 blk_mq_sched_completed_request(rq, now);
558
559 blk_account_io_done(rq, now);
560
561 if (rq->end_io) {
562 rq_qos_done(rq->q, rq);
563 rq->end_io(rq, error);
564 } else {
565 blk_mq_free_request(rq);
566 }
567 }
568 EXPORT_SYMBOL(__blk_mq_end_request);
569
570 void blk_mq_end_request(struct request *rq, blk_status_t error)
571 {
572 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
573 BUG();
574 __blk_mq_end_request(rq, error);
575 }
576 EXPORT_SYMBOL(blk_mq_end_request);
577
578 static void blk_complete_reqs(struct llist_head *list)
579 {
580 struct llist_node *entry = llist_reverse_order(llist_del_all(list));
581 struct request *rq, *next;
582
583 llist_for_each_entry_safe(rq, next, entry, ipi_list)
584 rq->q->mq_ops->complete(rq);
585 }
586
587 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
588 {
589 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
590 }
591
592 static int blk_softirq_cpu_dead(unsigned int cpu)
593 {
594 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
595 return 0;
596 }
597
598 static void __blk_mq_complete_request_remote(void *data)
599 {
600 __raise_softirq_irqoff(BLOCK_SOFTIRQ);
601 }
602
603 static inline bool blk_mq_complete_need_ipi(struct request *rq)
604 {
605 int cpu = raw_smp_processor_id();
606
607 if (!IS_ENABLED(CONFIG_SMP) ||
608 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
609 return false;
610 /*
611 * With force threaded interrupts enabled, raising softirq from an SMP
612 * function call will always result in waking the ksoftirqd thread.
613 * This is probably worse than completing the request on a different
614 * cache domain.
615 */
616 if (force_irqthreads())
617 return false;
618
619 /* same CPU or cache domain? Complete locally */
620 if (cpu == rq->mq_ctx->cpu ||
621 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
622 cpus_share_cache(cpu, rq->mq_ctx->cpu)))
623 return false;
624
625 /* don't try to IPI to an offline CPU */
626 return cpu_online(rq->mq_ctx->cpu);
627 }
628
629 static void blk_mq_complete_send_ipi(struct request *rq)
630 {
631 struct llist_head *list;
632 unsigned int cpu;
633
634 cpu = rq->mq_ctx->cpu;
635 list = &per_cpu(blk_cpu_done, cpu);
636 if (llist_add(&rq->ipi_list, list)) {
637 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
638 smp_call_function_single_async(cpu, &rq->csd);
639 }
640 }
641
642 static void blk_mq_raise_softirq(struct request *rq)
643 {
644 struct llist_head *list;
645
646 preempt_disable();
647 list = this_cpu_ptr(&blk_cpu_done);
648 if (llist_add(&rq->ipi_list, list))
649 raise_softirq(BLOCK_SOFTIRQ);
650 preempt_enable();
651 }
652
653 bool blk_mq_complete_request_remote(struct request *rq)
654 {
655 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
656
657 /*
658 * For a polled request, always complete locallly, it's pointless
659 * to redirect the completion.
660 */
661 if (rq->cmd_flags & REQ_HIPRI)
662 return false;
663
664 if (blk_mq_complete_need_ipi(rq)) {
665 blk_mq_complete_send_ipi(rq);
666 return true;
667 }
668
669 if (rq->q->nr_hw_queues == 1) {
670 blk_mq_raise_softirq(rq);
671 return true;
672 }
673 return false;
674 }
675 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
676
677 /**
678 * blk_mq_complete_request - end I/O on a request
679 * @rq: the request being processed
680 *
681 * Description:
682 * Complete a request by scheduling the ->complete_rq operation.
683 **/
684 void blk_mq_complete_request(struct request *rq)
685 {
686 if (!blk_mq_complete_request_remote(rq))
687 rq->q->mq_ops->complete(rq);
688 }
689 EXPORT_SYMBOL(blk_mq_complete_request);
690
691 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
692 __releases(hctx->srcu)
693 {
694 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
695 rcu_read_unlock();
696 else
697 srcu_read_unlock(hctx->srcu, srcu_idx);
698 }
699
700 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
701 __acquires(hctx->srcu)
702 {
703 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
704 /* shut up gcc false positive */
705 *srcu_idx = 0;
706 rcu_read_lock();
707 } else
708 *srcu_idx = srcu_read_lock(hctx->srcu);
709 }
710
711 /**
712 * blk_mq_start_request - Start processing a request
713 * @rq: Pointer to request to be started
714 *
715 * Function used by device drivers to notify the block layer that a request
716 * is going to be processed now, so blk layer can do proper initializations
717 * such as starting the timeout timer.
718 */
719 void blk_mq_start_request(struct request *rq)
720 {
721 struct request_queue *q = rq->q;
722
723 trace_block_rq_issue(rq);
724
725 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
726 rq->io_start_time_ns = ktime_get_ns();
727 rq->stats_sectors = blk_rq_sectors(rq);
728 rq->rq_flags |= RQF_STATS;
729 rq_qos_issue(q, rq);
730 }
731
732 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
733
734 blk_add_timer(rq);
735 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
736
737 #ifdef CONFIG_BLK_DEV_INTEGRITY
738 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
739 q->integrity.profile->prepare_fn(rq);
740 #endif
741 }
742 EXPORT_SYMBOL(blk_mq_start_request);
743
744 static void __blk_mq_requeue_request(struct request *rq)
745 {
746 struct request_queue *q = rq->q;
747
748 blk_mq_put_driver_tag(rq);
749
750 trace_block_rq_requeue(rq);
751 rq_qos_requeue(q, rq);
752
753 if (blk_mq_request_started(rq)) {
754 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
755 rq->rq_flags &= ~RQF_TIMED_OUT;
756 }
757 }
758
759 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
760 {
761 __blk_mq_requeue_request(rq);
762
763 /* this request will be re-inserted to io scheduler queue */
764 blk_mq_sched_requeue_request(rq);
765
766 BUG_ON(!list_empty(&rq->queuelist));
767 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
768 }
769 EXPORT_SYMBOL(blk_mq_requeue_request);
770
771 static void blk_mq_requeue_work(struct work_struct *work)
772 {
773 struct request_queue *q =
774 container_of(work, struct request_queue, requeue_work.work);
775 LIST_HEAD(rq_list);
776 struct request *rq, *next;
777
778 spin_lock_irq(&q->requeue_lock);
779 list_splice_init(&q->requeue_list, &rq_list);
780 spin_unlock_irq(&q->requeue_lock);
781
782 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
783 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
784 continue;
785
786 rq->rq_flags &= ~RQF_SOFTBARRIER;
787 list_del_init(&rq->queuelist);
788 /*
789 * If RQF_DONTPREP, rq has contained some driver specific
790 * data, so insert it to hctx dispatch list to avoid any
791 * merge.
792 */
793 if (rq->rq_flags & RQF_DONTPREP)
794 blk_mq_request_bypass_insert(rq, false, false);
795 else
796 blk_mq_sched_insert_request(rq, true, false, false);
797 }
798
799 while (!list_empty(&rq_list)) {
800 rq = list_entry(rq_list.next, struct request, queuelist);
801 list_del_init(&rq->queuelist);
802 blk_mq_sched_insert_request(rq, false, false, false);
803 }
804
805 blk_mq_run_hw_queues(q, false);
806 }
807
808 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
809 bool kick_requeue_list)
810 {
811 struct request_queue *q = rq->q;
812 unsigned long flags;
813
814 /*
815 * We abuse this flag that is otherwise used by the I/O scheduler to
816 * request head insertion from the workqueue.
817 */
818 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
819
820 spin_lock_irqsave(&q->requeue_lock, flags);
821 if (at_head) {
822 rq->rq_flags |= RQF_SOFTBARRIER;
823 list_add(&rq->queuelist, &q->requeue_list);
824 } else {
825 list_add_tail(&rq->queuelist, &q->requeue_list);
826 }
827 spin_unlock_irqrestore(&q->requeue_lock, flags);
828
829 if (kick_requeue_list)
830 blk_mq_kick_requeue_list(q);
831 }
832
833 void blk_mq_kick_requeue_list(struct request_queue *q)
834 {
835 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
836 }
837 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
838
839 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
840 unsigned long msecs)
841 {
842 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
843 msecs_to_jiffies(msecs));
844 }
845 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
846
847 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
848 {
849 if (tag < tags->nr_tags) {
850 prefetch(tags->rqs[tag]);
851 return tags->rqs[tag];
852 }
853
854 return NULL;
855 }
856 EXPORT_SYMBOL(blk_mq_tag_to_rq);
857
858 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
859 void *priv, bool reserved)
860 {
861 /*
862 * If we find a request that isn't idle and the queue matches,
863 * we know the queue is busy. Return false to stop the iteration.
864 */
865 if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
866 bool *busy = priv;
867
868 *busy = true;
869 return false;
870 }
871
872 return true;
873 }
874
875 bool blk_mq_queue_inflight(struct request_queue *q)
876 {
877 bool busy = false;
878
879 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
880 return busy;
881 }
882 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
883
884 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
885 {
886 req->rq_flags |= RQF_TIMED_OUT;
887 if (req->q->mq_ops->timeout) {
888 enum blk_eh_timer_return ret;
889
890 ret = req->q->mq_ops->timeout(req, reserved);
891 if (ret == BLK_EH_DONE)
892 return;
893 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
894 }
895
896 blk_add_timer(req);
897 }
898
899 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
900 {
901 unsigned long deadline;
902
903 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
904 return false;
905 if (rq->rq_flags & RQF_TIMED_OUT)
906 return false;
907
908 deadline = READ_ONCE(rq->deadline);
909 if (time_after_eq(jiffies, deadline))
910 return true;
911
912 if (*next == 0)
913 *next = deadline;
914 else if (time_after(*next, deadline))
915 *next = deadline;
916 return false;
917 }
918
919 void blk_mq_put_rq_ref(struct request *rq)
920 {
921 if (is_flush_rq(rq))
922 rq->end_io(rq, 0);
923 else if (refcount_dec_and_test(&rq->ref))
924 __blk_mq_free_request(rq);
925 }
926
927 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
928 struct request *rq, void *priv, bool reserved)
929 {
930 unsigned long *next = priv;
931
932 /*
933 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
934 * be reallocated underneath the timeout handler's processing, then
935 * the expire check is reliable. If the request is not expired, then
936 * it was completed and reallocated as a new request after returning
937 * from blk_mq_check_expired().
938 */
939 if (blk_mq_req_expired(rq, next))
940 blk_mq_rq_timed_out(rq, reserved);
941 return true;
942 }
943
944 static void blk_mq_timeout_work(struct work_struct *work)
945 {
946 struct request_queue *q =
947 container_of(work, struct request_queue, timeout_work);
948 unsigned long next = 0;
949 struct blk_mq_hw_ctx *hctx;
950 int i;
951
952 /* A deadlock might occur if a request is stuck requiring a
953 * timeout at the same time a queue freeze is waiting
954 * completion, since the timeout code would not be able to
955 * acquire the queue reference here.
956 *
957 * That's why we don't use blk_queue_enter here; instead, we use
958 * percpu_ref_tryget directly, because we need to be able to
959 * obtain a reference even in the short window between the queue
960 * starting to freeze, by dropping the first reference in
961 * blk_freeze_queue_start, and the moment the last request is
962 * consumed, marked by the instant q_usage_counter reaches
963 * zero.
964 */
965 if (!percpu_ref_tryget(&q->q_usage_counter))
966 return;
967
968 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
969
970 if (next != 0) {
971 mod_timer(&q->timeout, next);
972 } else {
973 /*
974 * Request timeouts are handled as a forward rolling timer. If
975 * we end up here it means that no requests are pending and
976 * also that no request has been pending for a while. Mark
977 * each hctx as idle.
978 */
979 queue_for_each_hw_ctx(q, hctx, i) {
980 /* the hctx may be unmapped, so check it here */
981 if (blk_mq_hw_queue_mapped(hctx))
982 blk_mq_tag_idle(hctx);
983 }
984 }
985 blk_queue_exit(q);
986 }
987
988 struct flush_busy_ctx_data {
989 struct blk_mq_hw_ctx *hctx;
990 struct list_head *list;
991 };
992
993 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
994 {
995 struct flush_busy_ctx_data *flush_data = data;
996 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
997 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
998 enum hctx_type type = hctx->type;
999
1000 spin_lock(&ctx->lock);
1001 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1002 sbitmap_clear_bit(sb, bitnr);
1003 spin_unlock(&ctx->lock);
1004 return true;
1005 }
1006
1007 /*
1008 * Process software queues that have been marked busy, splicing them
1009 * to the for-dispatch
1010 */
1011 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1012 {
1013 struct flush_busy_ctx_data data = {
1014 .hctx = hctx,
1015 .list = list,
1016 };
1017
1018 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1019 }
1020 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1021
1022 struct dispatch_rq_data {
1023 struct blk_mq_hw_ctx *hctx;
1024 struct request *rq;
1025 };
1026
1027 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1028 void *data)
1029 {
1030 struct dispatch_rq_data *dispatch_data = data;
1031 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1032 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1033 enum hctx_type type = hctx->type;
1034
1035 spin_lock(&ctx->lock);
1036 if (!list_empty(&ctx->rq_lists[type])) {
1037 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1038 list_del_init(&dispatch_data->rq->queuelist);
1039 if (list_empty(&ctx->rq_lists[type]))
1040 sbitmap_clear_bit(sb, bitnr);
1041 }
1042 spin_unlock(&ctx->lock);
1043
1044 return !dispatch_data->rq;
1045 }
1046
1047 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1048 struct blk_mq_ctx *start)
1049 {
1050 unsigned off = start ? start->index_hw[hctx->type] : 0;
1051 struct dispatch_rq_data data = {
1052 .hctx = hctx,
1053 .rq = NULL,
1054 };
1055
1056 __sbitmap_for_each_set(&hctx->ctx_map, off,
1057 dispatch_rq_from_ctx, &data);
1058
1059 return data.rq;
1060 }
1061
1062 static inline unsigned int queued_to_index(unsigned int queued)
1063 {
1064 if (!queued)
1065 return 0;
1066
1067 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1068 }
1069
1070 static bool __blk_mq_get_driver_tag(struct request *rq)
1071 {
1072 struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1073 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1074 int tag;
1075
1076 blk_mq_tag_busy(rq->mq_hctx);
1077
1078 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1079 bt = rq->mq_hctx->tags->breserved_tags;
1080 tag_offset = 0;
1081 } else {
1082 if (!hctx_may_queue(rq->mq_hctx, bt))
1083 return false;
1084 }
1085
1086 tag = __sbitmap_queue_get(bt);
1087 if (tag == BLK_MQ_NO_TAG)
1088 return false;
1089
1090 rq->tag = tag + tag_offset;
1091 return true;
1092 }
1093
1094 bool blk_mq_get_driver_tag(struct request *rq)
1095 {
1096 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1097
1098 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1099 return false;
1100
1101 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1102 !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1103 rq->rq_flags |= RQF_MQ_INFLIGHT;
1104 __blk_mq_inc_active_requests(hctx);
1105 }
1106 hctx->tags->rqs[rq->tag] = rq;
1107 return true;
1108 }
1109
1110 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1111 int flags, void *key)
1112 {
1113 struct blk_mq_hw_ctx *hctx;
1114
1115 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1116
1117 spin_lock(&hctx->dispatch_wait_lock);
1118 if (!list_empty(&wait->entry)) {
1119 struct sbitmap_queue *sbq;
1120
1121 list_del_init(&wait->entry);
1122 sbq = hctx->tags->bitmap_tags;
1123 atomic_dec(&sbq->ws_active);
1124 }
1125 spin_unlock(&hctx->dispatch_wait_lock);
1126
1127 blk_mq_run_hw_queue(hctx, true);
1128 return 1;
1129 }
1130
1131 /*
1132 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1133 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1134 * restart. For both cases, take care to check the condition again after
1135 * marking us as waiting.
1136 */
1137 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1138 struct request *rq)
1139 {
1140 struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1141 struct wait_queue_head *wq;
1142 wait_queue_entry_t *wait;
1143 bool ret;
1144
1145 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1146 blk_mq_sched_mark_restart_hctx(hctx);
1147
1148 /*
1149 * It's possible that a tag was freed in the window between the
1150 * allocation failure and adding the hardware queue to the wait
1151 * queue.
1152 *
1153 * Don't clear RESTART here, someone else could have set it.
1154 * At most this will cost an extra queue run.
1155 */
1156 return blk_mq_get_driver_tag(rq);
1157 }
1158
1159 wait = &hctx->dispatch_wait;
1160 if (!list_empty_careful(&wait->entry))
1161 return false;
1162
1163 wq = &bt_wait_ptr(sbq, hctx)->wait;
1164
1165 spin_lock_irq(&wq->lock);
1166 spin_lock(&hctx->dispatch_wait_lock);
1167 if (!list_empty(&wait->entry)) {
1168 spin_unlock(&hctx->dispatch_wait_lock);
1169 spin_unlock_irq(&wq->lock);
1170 return false;
1171 }
1172
1173 atomic_inc(&sbq->ws_active);
1174 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1175 __add_wait_queue(wq, wait);
1176
1177 /*
1178 * It's possible that a tag was freed in the window between the
1179 * allocation failure and adding the hardware queue to the wait
1180 * queue.
1181 */
1182 ret = blk_mq_get_driver_tag(rq);
1183 if (!ret) {
1184 spin_unlock(&hctx->dispatch_wait_lock);
1185 spin_unlock_irq(&wq->lock);
1186 return false;
1187 }
1188
1189 /*
1190 * We got a tag, remove ourselves from the wait queue to ensure
1191 * someone else gets the wakeup.
1192 */
1193 list_del_init(&wait->entry);
1194 atomic_dec(&sbq->ws_active);
1195 spin_unlock(&hctx->dispatch_wait_lock);
1196 spin_unlock_irq(&wq->lock);
1197
1198 return true;
1199 }
1200
1201 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1202 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1203 /*
1204 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1205 * - EWMA is one simple way to compute running average value
1206 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1207 * - take 4 as factor for avoiding to get too small(0) result, and this
1208 * factor doesn't matter because EWMA decreases exponentially
1209 */
1210 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1211 {
1212 unsigned int ewma;
1213
1214 ewma = hctx->dispatch_busy;
1215
1216 if (!ewma && !busy)
1217 return;
1218
1219 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1220 if (busy)
1221 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1222 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1223
1224 hctx->dispatch_busy = ewma;
1225 }
1226
1227 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1228
1229 static void blk_mq_handle_dev_resource(struct request *rq,
1230 struct list_head *list)
1231 {
1232 struct request *next =
1233 list_first_entry_or_null(list, struct request, queuelist);
1234
1235 /*
1236 * If an I/O scheduler has been configured and we got a driver tag for
1237 * the next request already, free it.
1238 */
1239 if (next)
1240 blk_mq_put_driver_tag(next);
1241
1242 list_add(&rq->queuelist, list);
1243 __blk_mq_requeue_request(rq);
1244 }
1245
1246 static void blk_mq_handle_zone_resource(struct request *rq,
1247 struct list_head *zone_list)
1248 {
1249 /*
1250 * If we end up here it is because we cannot dispatch a request to a
1251 * specific zone due to LLD level zone-write locking or other zone
1252 * related resource not being available. In this case, set the request
1253 * aside in zone_list for retrying it later.
1254 */
1255 list_add(&rq->queuelist, zone_list);
1256 __blk_mq_requeue_request(rq);
1257 }
1258
1259 enum prep_dispatch {
1260 PREP_DISPATCH_OK,
1261 PREP_DISPATCH_NO_TAG,
1262 PREP_DISPATCH_NO_BUDGET,
1263 };
1264
1265 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1266 bool need_budget)
1267 {
1268 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1269 int budget_token = -1;
1270
1271 if (need_budget) {
1272 budget_token = blk_mq_get_dispatch_budget(rq->q);
1273 if (budget_token < 0) {
1274 blk_mq_put_driver_tag(rq);
1275 return PREP_DISPATCH_NO_BUDGET;
1276 }
1277 blk_mq_set_rq_budget_token(rq, budget_token);
1278 }
1279
1280 if (!blk_mq_get_driver_tag(rq)) {
1281 /*
1282 * The initial allocation attempt failed, so we need to
1283 * rerun the hardware queue when a tag is freed. The
1284 * waitqueue takes care of that. If the queue is run
1285 * before we add this entry back on the dispatch list,
1286 * we'll re-run it below.
1287 */
1288 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1289 /*
1290 * All budgets not got from this function will be put
1291 * together during handling partial dispatch
1292 */
1293 if (need_budget)
1294 blk_mq_put_dispatch_budget(rq->q, budget_token);
1295 return PREP_DISPATCH_NO_TAG;
1296 }
1297 }
1298
1299 return PREP_DISPATCH_OK;
1300 }
1301
1302 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1303 static void blk_mq_release_budgets(struct request_queue *q,
1304 struct list_head *list)
1305 {
1306 struct request *rq;
1307
1308 list_for_each_entry(rq, list, queuelist) {
1309 int budget_token = blk_mq_get_rq_budget_token(rq);
1310
1311 if (budget_token >= 0)
1312 blk_mq_put_dispatch_budget(q, budget_token);
1313 }
1314 }
1315
1316 /*
1317 * Returns true if we did some work AND can potentially do more.
1318 */
1319 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1320 unsigned int nr_budgets)
1321 {
1322 enum prep_dispatch prep;
1323 struct request_queue *q = hctx->queue;
1324 struct request *rq, *nxt;
1325 int errors, queued;
1326 blk_status_t ret = BLK_STS_OK;
1327 LIST_HEAD(zone_list);
1328
1329 if (list_empty(list))
1330 return false;
1331
1332 /*
1333 * Now process all the entries, sending them to the driver.
1334 */
1335 errors = queued = 0;
1336 do {
1337 struct blk_mq_queue_data bd;
1338
1339 rq = list_first_entry(list, struct request, queuelist);
1340
1341 WARN_ON_ONCE(hctx != rq->mq_hctx);
1342 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1343 if (prep != PREP_DISPATCH_OK)
1344 break;
1345
1346 list_del_init(&rq->queuelist);
1347
1348 bd.rq = rq;
1349
1350 /*
1351 * Flag last if we have no more requests, or if we have more
1352 * but can't assign a driver tag to it.
1353 */
1354 if (list_empty(list))
1355 bd.last = true;
1356 else {
1357 nxt = list_first_entry(list, struct request, queuelist);
1358 bd.last = !blk_mq_get_driver_tag(nxt);
1359 }
1360
1361 /*
1362 * once the request is queued to lld, no need to cover the
1363 * budget any more
1364 */
1365 if (nr_budgets)
1366 nr_budgets--;
1367 ret = q->mq_ops->queue_rq(hctx, &bd);
1368 switch (ret) {
1369 case BLK_STS_OK:
1370 queued++;
1371 break;
1372 case BLK_STS_RESOURCE:
1373 case BLK_STS_DEV_RESOURCE:
1374 blk_mq_handle_dev_resource(rq, list);
1375 goto out;
1376 case BLK_STS_ZONE_RESOURCE:
1377 /*
1378 * Move the request to zone_list and keep going through
1379 * the dispatch list to find more requests the drive can
1380 * accept.
1381 */
1382 blk_mq_handle_zone_resource(rq, &zone_list);
1383 break;
1384 default:
1385 errors++;
1386 blk_mq_end_request(rq, ret);
1387 }
1388 } while (!list_empty(list));
1389 out:
1390 if (!list_empty(&zone_list))
1391 list_splice_tail_init(&zone_list, list);
1392
1393 hctx->dispatched[queued_to_index(queued)]++;
1394
1395 /* If we didn't flush the entire list, we could have told the driver
1396 * there was more coming, but that turned out to be a lie.
1397 */
1398 if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1399 q->mq_ops->commit_rqs(hctx);
1400 /*
1401 * Any items that need requeuing? Stuff them into hctx->dispatch,
1402 * that is where we will continue on next queue run.
1403 */
1404 if (!list_empty(list)) {
1405 bool needs_restart;
1406 /* For non-shared tags, the RESTART check will suffice */
1407 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1408 (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1409 bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET;
1410
1411 if (nr_budgets)
1412 blk_mq_release_budgets(q, list);
1413
1414 spin_lock(&hctx->lock);
1415 list_splice_tail_init(list, &hctx->dispatch);
1416 spin_unlock(&hctx->lock);
1417
1418 /*
1419 * Order adding requests to hctx->dispatch and checking
1420 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1421 * in blk_mq_sched_restart(). Avoid restart code path to
1422 * miss the new added requests to hctx->dispatch, meantime
1423 * SCHED_RESTART is observed here.
1424 */
1425 smp_mb();
1426
1427 /*
1428 * If SCHED_RESTART was set by the caller of this function and
1429 * it is no longer set that means that it was cleared by another
1430 * thread and hence that a queue rerun is needed.
1431 *
1432 * If 'no_tag' is set, that means that we failed getting
1433 * a driver tag with an I/O scheduler attached. If our dispatch
1434 * waitqueue is no longer active, ensure that we run the queue
1435 * AFTER adding our entries back to the list.
1436 *
1437 * If no I/O scheduler has been configured it is possible that
1438 * the hardware queue got stopped and restarted before requests
1439 * were pushed back onto the dispatch list. Rerun the queue to
1440 * avoid starvation. Notes:
1441 * - blk_mq_run_hw_queue() checks whether or not a queue has
1442 * been stopped before rerunning a queue.
1443 * - Some but not all block drivers stop a queue before
1444 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1445 * and dm-rq.
1446 *
1447 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1448 * bit is set, run queue after a delay to avoid IO stalls
1449 * that could otherwise occur if the queue is idle. We'll do
1450 * similar if we couldn't get budget and SCHED_RESTART is set.
1451 */
1452 needs_restart = blk_mq_sched_needs_restart(hctx);
1453 if (!needs_restart ||
1454 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1455 blk_mq_run_hw_queue(hctx, true);
1456 else if (needs_restart && (ret == BLK_STS_RESOURCE ||
1457 no_budget_avail))
1458 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1459
1460 blk_mq_update_dispatch_busy(hctx, true);
1461 return false;
1462 } else
1463 blk_mq_update_dispatch_busy(hctx, false);
1464
1465 return (queued + errors) != 0;
1466 }
1467
1468 /**
1469 * __blk_mq_run_hw_queue - Run a hardware queue.
1470 * @hctx: Pointer to the hardware queue to run.
1471 *
1472 * Send pending requests to the hardware.
1473 */
1474 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1475 {
1476 int srcu_idx;
1477
1478 /*
1479 * We can't run the queue inline with ints disabled. Ensure that
1480 * we catch bad users of this early.
1481 */
1482 WARN_ON_ONCE(in_interrupt());
1483
1484 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1485
1486 hctx_lock(hctx, &srcu_idx);
1487 blk_mq_sched_dispatch_requests(hctx);
1488 hctx_unlock(hctx, srcu_idx);
1489 }
1490
1491 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1492 {
1493 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1494
1495 if (cpu >= nr_cpu_ids)
1496 cpu = cpumask_first(hctx->cpumask);
1497 return cpu;
1498 }
1499
1500 /*
1501 * It'd be great if the workqueue API had a way to pass
1502 * in a mask and had some smarts for more clever placement.
1503 * For now we just round-robin here, switching for every
1504 * BLK_MQ_CPU_WORK_BATCH queued items.
1505 */
1506 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1507 {
1508 bool tried = false;
1509 int next_cpu = hctx->next_cpu;
1510
1511 if (hctx->queue->nr_hw_queues == 1)
1512 return WORK_CPU_UNBOUND;
1513
1514 if (--hctx->next_cpu_batch <= 0) {
1515 select_cpu:
1516 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1517 cpu_online_mask);
1518 if (next_cpu >= nr_cpu_ids)
1519 next_cpu = blk_mq_first_mapped_cpu(hctx);
1520 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1521 }
1522
1523 /*
1524 * Do unbound schedule if we can't find a online CPU for this hctx,
1525 * and it should only happen in the path of handling CPU DEAD.
1526 */
1527 if (!cpu_online(next_cpu)) {
1528 if (!tried) {
1529 tried = true;
1530 goto select_cpu;
1531 }
1532
1533 /*
1534 * Make sure to re-select CPU next time once after CPUs
1535 * in hctx->cpumask become online again.
1536 */
1537 hctx->next_cpu = next_cpu;
1538 hctx->next_cpu_batch = 1;
1539 return WORK_CPU_UNBOUND;
1540 }
1541
1542 hctx->next_cpu = next_cpu;
1543 return next_cpu;
1544 }
1545
1546 /**
1547 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1548 * @hctx: Pointer to the hardware queue to run.
1549 * @async: If we want to run the queue asynchronously.
1550 * @msecs: Milliseconds of delay to wait before running the queue.
1551 *
1552 * If !@async, try to run the queue now. Else, run the queue asynchronously and
1553 * with a delay of @msecs.
1554 */
1555 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1556 unsigned long msecs)
1557 {
1558 if (unlikely(blk_mq_hctx_stopped(hctx)))
1559 return;
1560
1561 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1562 int cpu = get_cpu();
1563 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1564 __blk_mq_run_hw_queue(hctx);
1565 put_cpu();
1566 return;
1567 }
1568
1569 put_cpu();
1570 }
1571
1572 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1573 msecs_to_jiffies(msecs));
1574 }
1575
1576 /**
1577 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1578 * @hctx: Pointer to the hardware queue to run.
1579 * @msecs: Milliseconds of delay to wait before running the queue.
1580 *
1581 * Run a hardware queue asynchronously with a delay of @msecs.
1582 */
1583 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1584 {
1585 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1586 }
1587 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1588
1589 /**
1590 * blk_mq_run_hw_queue - Start to run a hardware queue.
1591 * @hctx: Pointer to the hardware queue to run.
1592 * @async: If we want to run the queue asynchronously.
1593 *
1594 * Check if the request queue is not in a quiesced state and if there are
1595 * pending requests to be sent. If this is true, run the queue to send requests
1596 * to hardware.
1597 */
1598 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1599 {
1600 int srcu_idx;
1601 bool need_run;
1602
1603 /*
1604 * When queue is quiesced, we may be switching io scheduler, or
1605 * updating nr_hw_queues, or other things, and we can't run queue
1606 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1607 *
1608 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1609 * quiesced.
1610 */
1611 hctx_lock(hctx, &srcu_idx);
1612 need_run = !blk_queue_quiesced(hctx->queue) &&
1613 blk_mq_hctx_has_pending(hctx);
1614 hctx_unlock(hctx, srcu_idx);
1615
1616 if (need_run)
1617 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1618 }
1619 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1620
1621 /*
1622 * Is the request queue handled by an IO scheduler that does not respect
1623 * hardware queues when dispatching?
1624 */
1625 static bool blk_mq_has_sqsched(struct request_queue *q)
1626 {
1627 struct elevator_queue *e = q->elevator;
1628
1629 if (e && e->type->ops.dispatch_request &&
1630 !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
1631 return true;
1632 return false;
1633 }
1634
1635 /*
1636 * Return prefered queue to dispatch from (if any) for non-mq aware IO
1637 * scheduler.
1638 */
1639 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
1640 {
1641 struct blk_mq_hw_ctx *hctx;
1642
1643 /*
1644 * If the IO scheduler does not respect hardware queues when
1645 * dispatching, we just don't bother with multiple HW queues and
1646 * dispatch from hctx for the current CPU since running multiple queues
1647 * just causes lock contention inside the scheduler and pointless cache
1648 * bouncing.
1649 */
1650 hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
1651 raw_smp_processor_id());
1652 if (!blk_mq_hctx_stopped(hctx))
1653 return hctx;
1654 return NULL;
1655 }
1656
1657 /**
1658 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1659 * @q: Pointer to the request queue to run.
1660 * @async: If we want to run the queue asynchronously.
1661 */
1662 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1663 {
1664 struct blk_mq_hw_ctx *hctx, *sq_hctx;
1665 int i;
1666
1667 sq_hctx = NULL;
1668 if (blk_mq_has_sqsched(q))
1669 sq_hctx = blk_mq_get_sq_hctx(q);
1670 queue_for_each_hw_ctx(q, hctx, i) {
1671 if (blk_mq_hctx_stopped(hctx))
1672 continue;
1673 /*
1674 * Dispatch from this hctx either if there's no hctx preferred
1675 * by IO scheduler or if it has requests that bypass the
1676 * scheduler.
1677 */
1678 if (!sq_hctx || sq_hctx == hctx ||
1679 !list_empty_careful(&hctx->dispatch))
1680 blk_mq_run_hw_queue(hctx, async);
1681 }
1682 }
1683 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1684
1685 /**
1686 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1687 * @q: Pointer to the request queue to run.
1688 * @msecs: Milliseconds of delay to wait before running the queues.
1689 */
1690 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1691 {
1692 struct blk_mq_hw_ctx *hctx, *sq_hctx;
1693 int i;
1694
1695 sq_hctx = NULL;
1696 if (blk_mq_has_sqsched(q))
1697 sq_hctx = blk_mq_get_sq_hctx(q);
1698 queue_for_each_hw_ctx(q, hctx, i) {
1699 if (blk_mq_hctx_stopped(hctx))
1700 continue;
1701 /*
1702 * Dispatch from this hctx either if there's no hctx preferred
1703 * by IO scheduler or if it has requests that bypass the
1704 * scheduler.
1705 */
1706 if (!sq_hctx || sq_hctx == hctx ||
1707 !list_empty_careful(&hctx->dispatch))
1708 blk_mq_delay_run_hw_queue(hctx, msecs);
1709 }
1710 }
1711 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1712
1713 /**
1714 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1715 * @q: request queue.
1716 *
1717 * The caller is responsible for serializing this function against
1718 * blk_mq_{start,stop}_hw_queue().
1719 */
1720 bool blk_mq_queue_stopped(struct request_queue *q)
1721 {
1722 struct blk_mq_hw_ctx *hctx;
1723 int i;
1724
1725 queue_for_each_hw_ctx(q, hctx, i)
1726 if (blk_mq_hctx_stopped(hctx))
1727 return true;
1728
1729 return false;
1730 }
1731 EXPORT_SYMBOL(blk_mq_queue_stopped);
1732
1733 /*
1734 * This function is often used for pausing .queue_rq() by driver when
1735 * there isn't enough resource or some conditions aren't satisfied, and
1736 * BLK_STS_RESOURCE is usually returned.
1737 *
1738 * We do not guarantee that dispatch can be drained or blocked
1739 * after blk_mq_stop_hw_queue() returns. Please use
1740 * blk_mq_quiesce_queue() for that requirement.
1741 */
1742 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1743 {
1744 cancel_delayed_work(&hctx->run_work);
1745
1746 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1747 }
1748 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1749
1750 /*
1751 * This function is often used for pausing .queue_rq() by driver when
1752 * there isn't enough resource or some conditions aren't satisfied, and
1753 * BLK_STS_RESOURCE is usually returned.
1754 *
1755 * We do not guarantee that dispatch can be drained or blocked
1756 * after blk_mq_stop_hw_queues() returns. Please use
1757 * blk_mq_quiesce_queue() for that requirement.
1758 */
1759 void blk_mq_stop_hw_queues(struct request_queue *q)
1760 {
1761 struct blk_mq_hw_ctx *hctx;
1762 int i;
1763
1764 queue_for_each_hw_ctx(q, hctx, i)
1765 blk_mq_stop_hw_queue(hctx);
1766 }
1767 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1768
1769 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1770 {
1771 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1772
1773 blk_mq_run_hw_queue(hctx, false);
1774 }
1775 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1776
1777 void blk_mq_start_hw_queues(struct request_queue *q)
1778 {
1779 struct blk_mq_hw_ctx *hctx;
1780 int i;
1781
1782 queue_for_each_hw_ctx(q, hctx, i)
1783 blk_mq_start_hw_queue(hctx);
1784 }
1785 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1786
1787 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1788 {
1789 if (!blk_mq_hctx_stopped(hctx))
1790 return;
1791
1792 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1793 blk_mq_run_hw_queue(hctx, async);
1794 }
1795 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1796
1797 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1798 {
1799 struct blk_mq_hw_ctx *hctx;
1800 int i;
1801
1802 queue_for_each_hw_ctx(q, hctx, i)
1803 blk_mq_start_stopped_hw_queue(hctx, async);
1804 }
1805 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1806
1807 static void blk_mq_run_work_fn(struct work_struct *work)
1808 {
1809 struct blk_mq_hw_ctx *hctx;
1810
1811 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1812
1813 /*
1814 * If we are stopped, don't run the queue.
1815 */
1816 if (blk_mq_hctx_stopped(hctx))
1817 return;
1818
1819 __blk_mq_run_hw_queue(hctx);
1820 }
1821
1822 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1823 struct request *rq,
1824 bool at_head)
1825 {
1826 struct blk_mq_ctx *ctx = rq->mq_ctx;
1827 enum hctx_type type = hctx->type;
1828
1829 lockdep_assert_held(&ctx->lock);
1830
1831 trace_block_rq_insert(rq);
1832
1833 if (at_head)
1834 list_add(&rq->queuelist, &ctx->rq_lists[type]);
1835 else
1836 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1837 }
1838
1839 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1840 bool at_head)
1841 {
1842 struct blk_mq_ctx *ctx = rq->mq_ctx;
1843
1844 lockdep_assert_held(&ctx->lock);
1845
1846 __blk_mq_insert_req_list(hctx, rq, at_head);
1847 blk_mq_hctx_mark_pending(hctx, ctx);
1848 }
1849
1850 /**
1851 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1852 * @rq: Pointer to request to be inserted.
1853 * @at_head: true if the request should be inserted at the head of the list.
1854 * @run_queue: If we should run the hardware queue after inserting the request.
1855 *
1856 * Should only be used carefully, when the caller knows we want to
1857 * bypass a potential IO scheduler on the target device.
1858 */
1859 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1860 bool run_queue)
1861 {
1862 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1863
1864 spin_lock(&hctx->lock);
1865 if (at_head)
1866 list_add(&rq->queuelist, &hctx->dispatch);
1867 else
1868 list_add_tail(&rq->queuelist, &hctx->dispatch);
1869 spin_unlock(&hctx->lock);
1870
1871 if (run_queue)
1872 blk_mq_run_hw_queue(hctx, false);
1873 }
1874
1875 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1876 struct list_head *list)
1877
1878 {
1879 struct request *rq;
1880 enum hctx_type type = hctx->type;
1881
1882 /*
1883 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1884 * offline now
1885 */
1886 list_for_each_entry(rq, list, queuelist) {
1887 BUG_ON(rq->mq_ctx != ctx);
1888 trace_block_rq_insert(rq);
1889 }
1890
1891 spin_lock(&ctx->lock);
1892 list_splice_tail_init(list, &ctx->rq_lists[type]);
1893 blk_mq_hctx_mark_pending(hctx, ctx);
1894 spin_unlock(&ctx->lock);
1895 }
1896
1897 static int plug_rq_cmp(void *priv, const struct list_head *a,
1898 const struct list_head *b)
1899 {
1900 struct request *rqa = container_of(a, struct request, queuelist);
1901 struct request *rqb = container_of(b, struct request, queuelist);
1902
1903 if (rqa->mq_ctx != rqb->mq_ctx)
1904 return rqa->mq_ctx > rqb->mq_ctx;
1905 if (rqa->mq_hctx != rqb->mq_hctx)
1906 return rqa->mq_hctx > rqb->mq_hctx;
1907
1908 return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1909 }
1910
1911 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1912 {
1913 LIST_HEAD(list);
1914
1915 if (list_empty(&plug->mq_list))
1916 return;
1917 list_splice_init(&plug->mq_list, &list);
1918
1919 if (plug->rq_count > 2 && plug->multiple_queues)
1920 list_sort(NULL, &list, plug_rq_cmp);
1921
1922 plug->rq_count = 0;
1923
1924 do {
1925 struct list_head rq_list;
1926 struct request *rq, *head_rq = list_entry_rq(list.next);
1927 struct list_head *pos = &head_rq->queuelist; /* skip first */
1928 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1929 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1930 unsigned int depth = 1;
1931
1932 list_for_each_continue(pos, &list) {
1933 rq = list_entry_rq(pos);
1934 BUG_ON(!rq->q);
1935 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1936 break;
1937 depth++;
1938 }
1939
1940 list_cut_before(&rq_list, &list, pos);
1941 trace_block_unplug(head_rq->q, depth, !from_schedule);
1942 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1943 from_schedule);
1944 } while(!list_empty(&list));
1945 }
1946
1947 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1948 unsigned int nr_segs)
1949 {
1950 int err;
1951
1952 if (bio->bi_opf & REQ_RAHEAD)
1953 rq->cmd_flags |= REQ_FAILFAST_MASK;
1954
1955 rq->__sector = bio->bi_iter.bi_sector;
1956 rq->write_hint = bio->bi_write_hint;
1957 blk_rq_bio_prep(rq, bio, nr_segs);
1958
1959 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
1960 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1961 WARN_ON_ONCE(err);
1962
1963 blk_account_io_start(rq);
1964 }
1965
1966 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1967 struct request *rq,
1968 blk_qc_t *cookie, bool last)
1969 {
1970 struct request_queue *q = rq->q;
1971 struct blk_mq_queue_data bd = {
1972 .rq = rq,
1973 .last = last,
1974 };
1975 blk_qc_t new_cookie;
1976 blk_status_t ret;
1977
1978 new_cookie = request_to_qc_t(hctx, rq);
1979
1980 /*
1981 * For OK queue, we are done. For error, caller may kill it.
1982 * Any other error (busy), just add it to our list as we
1983 * previously would have done.
1984 */
1985 ret = q->mq_ops->queue_rq(hctx, &bd);
1986 switch (ret) {
1987 case BLK_STS_OK:
1988 blk_mq_update_dispatch_busy(hctx, false);
1989 *cookie = new_cookie;
1990 break;
1991 case BLK_STS_RESOURCE:
1992 case BLK_STS_DEV_RESOURCE:
1993 blk_mq_update_dispatch_busy(hctx, true);
1994 __blk_mq_requeue_request(rq);
1995 break;
1996 default:
1997 blk_mq_update_dispatch_busy(hctx, false);
1998 *cookie = BLK_QC_T_NONE;
1999 break;
2000 }
2001
2002 return ret;
2003 }
2004
2005 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2006 struct request *rq,
2007 blk_qc_t *cookie,
2008 bool bypass_insert, bool last)
2009 {
2010 struct request_queue *q = rq->q;
2011 bool run_queue = true;
2012 int budget_token;
2013
2014 /*
2015 * RCU or SRCU read lock is needed before checking quiesced flag.
2016 *
2017 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2018 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2019 * and avoid driver to try to dispatch again.
2020 */
2021 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2022 run_queue = false;
2023 bypass_insert = false;
2024 goto insert;
2025 }
2026
2027 if (q->elevator && !bypass_insert)
2028 goto insert;
2029
2030 budget_token = blk_mq_get_dispatch_budget(q);
2031 if (budget_token < 0)
2032 goto insert;
2033
2034 blk_mq_set_rq_budget_token(rq, budget_token);
2035
2036 if (!blk_mq_get_driver_tag(rq)) {
2037 blk_mq_put_dispatch_budget(q, budget_token);
2038 goto insert;
2039 }
2040
2041 return __blk_mq_issue_directly(hctx, rq, cookie, last);
2042 insert:
2043 if (bypass_insert)
2044 return BLK_STS_RESOURCE;
2045
2046 blk_mq_sched_insert_request(rq, false, run_queue, false);
2047
2048 return BLK_STS_OK;
2049 }
2050
2051 /**
2052 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2053 * @hctx: Pointer of the associated hardware queue.
2054 * @rq: Pointer to request to be sent.
2055 * @cookie: Request queue cookie.
2056 *
2057 * If the device has enough resources to accept a new request now, send the
2058 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2059 * we can try send it another time in the future. Requests inserted at this
2060 * queue have higher priority.
2061 */
2062 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2063 struct request *rq, blk_qc_t *cookie)
2064 {
2065 blk_status_t ret;
2066 int srcu_idx;
2067
2068 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2069
2070 hctx_lock(hctx, &srcu_idx);
2071
2072 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2073 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2074 blk_mq_request_bypass_insert(rq, false, true);
2075 else if (ret != BLK_STS_OK)
2076 blk_mq_end_request(rq, ret);
2077
2078 hctx_unlock(hctx, srcu_idx);
2079 }
2080
2081 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2082 {
2083 blk_status_t ret;
2084 int srcu_idx;
2085 blk_qc_t unused_cookie;
2086 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2087
2088 hctx_lock(hctx, &srcu_idx);
2089 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2090 hctx_unlock(hctx, srcu_idx);
2091
2092 return ret;
2093 }
2094
2095 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2096 struct list_head *list)
2097 {
2098 int queued = 0;
2099 int errors = 0;
2100
2101 while (!list_empty(list)) {
2102 blk_status_t ret;
2103 struct request *rq = list_first_entry(list, struct request,
2104 queuelist);
2105
2106 list_del_init(&rq->queuelist);
2107 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2108 if (ret != BLK_STS_OK) {
2109 if (ret == BLK_STS_RESOURCE ||
2110 ret == BLK_STS_DEV_RESOURCE) {
2111 blk_mq_request_bypass_insert(rq, false,
2112 list_empty(list));
2113 break;
2114 }
2115 blk_mq_end_request(rq, ret);
2116 errors++;
2117 } else
2118 queued++;
2119 }
2120
2121 /*
2122 * If we didn't flush the entire list, we could have told
2123 * the driver there was more coming, but that turned out to
2124 * be a lie.
2125 */
2126 if ((!list_empty(list) || errors) &&
2127 hctx->queue->mq_ops->commit_rqs && queued)
2128 hctx->queue->mq_ops->commit_rqs(hctx);
2129 }
2130
2131 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2132 {
2133 list_add_tail(&rq->queuelist, &plug->mq_list);
2134 plug->rq_count++;
2135 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2136 struct request *tmp;
2137
2138 tmp = list_first_entry(&plug->mq_list, struct request,
2139 queuelist);
2140 if (tmp->q != rq->q)
2141 plug->multiple_queues = true;
2142 }
2143 }
2144
2145 /*
2146 * Allow 4x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
2147 * queues. This is important for md arrays to benefit from merging
2148 * requests.
2149 */
2150 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
2151 {
2152 if (plug->multiple_queues)
2153 return BLK_MAX_REQUEST_COUNT * 4;
2154 return BLK_MAX_REQUEST_COUNT;
2155 }
2156
2157 /**
2158 * blk_mq_submit_bio - Create and send a request to block device.
2159 * @bio: Bio pointer.
2160 *
2161 * Builds up a request structure from @q and @bio and send to the device. The
2162 * request may not be queued directly to hardware if:
2163 * * This request can be merged with another one
2164 * * We want to place request at plug queue for possible future merging
2165 * * There is an IO scheduler active at this queue
2166 *
2167 * It will not queue the request if there is an error with the bio, or at the
2168 * request creation.
2169 *
2170 * Returns: Request queue cookie.
2171 */
2172 blk_qc_t blk_mq_submit_bio(struct bio *bio)
2173 {
2174 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
2175 const int is_sync = op_is_sync(bio->bi_opf);
2176 const int is_flush_fua = op_is_flush(bio->bi_opf);
2177 struct blk_mq_alloc_data data = {
2178 .q = q,
2179 };
2180 struct request *rq;
2181 struct blk_plug *plug;
2182 struct request *same_queue_rq = NULL;
2183 unsigned int nr_segs;
2184 blk_qc_t cookie;
2185 blk_status_t ret;
2186 bool hipri;
2187
2188 blk_queue_bounce(q, &bio);
2189 __blk_queue_split(&bio, &nr_segs);
2190
2191 if (!bio_integrity_prep(bio))
2192 goto queue_exit;
2193
2194 if (!is_flush_fua && !blk_queue_nomerges(q) &&
2195 blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2196 goto queue_exit;
2197
2198 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2199 goto queue_exit;
2200
2201 rq_qos_throttle(q, bio);
2202
2203 hipri = bio->bi_opf & REQ_HIPRI;
2204
2205 data.cmd_flags = bio->bi_opf;
2206 rq = __blk_mq_alloc_request(&data);
2207 if (unlikely(!rq)) {
2208 rq_qos_cleanup(q, bio);
2209 if (bio->bi_opf & REQ_NOWAIT)
2210 bio_wouldblock_error(bio);
2211 goto queue_exit;
2212 }
2213
2214 trace_block_getrq(bio);
2215
2216 rq_qos_track(q, rq, bio);
2217
2218 cookie = request_to_qc_t(data.hctx, rq);
2219
2220 blk_mq_bio_to_request(rq, bio, nr_segs);
2221
2222 ret = blk_crypto_init_request(rq);
2223 if (ret != BLK_STS_OK) {
2224 bio->bi_status = ret;
2225 bio_endio(bio);
2226 blk_mq_free_request(rq);
2227 return BLK_QC_T_NONE;
2228 }
2229
2230 plug = blk_mq_plug(q, bio);
2231 if (unlikely(is_flush_fua)) {
2232 /* Bypass scheduler for flush requests */
2233 blk_insert_flush(rq);
2234 blk_mq_run_hw_queue(data.hctx, true);
2235 } else if (plug && (q->nr_hw_queues == 1 ||
2236 blk_mq_is_sbitmap_shared(rq->mq_hctx->flags) ||
2237 q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) {
2238 /*
2239 * Use plugging if we have a ->commit_rqs() hook as well, as
2240 * we know the driver uses bd->last in a smart fashion.
2241 *
2242 * Use normal plugging if this disk is slow HDD, as sequential
2243 * IO may benefit a lot from plug merging.
2244 */
2245 unsigned int request_count = plug->rq_count;
2246 struct request *last = NULL;
2247
2248 if (!request_count)
2249 trace_block_plug(q);
2250 else
2251 last = list_entry_rq(plug->mq_list.prev);
2252
2253 if (request_count >= blk_plug_max_rq_count(plug) || (last &&
2254 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2255 blk_flush_plug_list(plug, false);
2256 trace_block_plug(q);
2257 }
2258
2259 blk_add_rq_to_plug(plug, rq);
2260 } else if (q->elevator) {
2261 /* Insert the request at the IO scheduler queue */
2262 blk_mq_sched_insert_request(rq, false, true, true);
2263 } else if (plug && !blk_queue_nomerges(q)) {
2264 /*
2265 * We do limited plugging. If the bio can be merged, do that.
2266 * Otherwise the existing request in the plug list will be
2267 * issued. So the plug list will have one request at most
2268 * The plug list might get flushed before this. If that happens,
2269 * the plug list is empty, and same_queue_rq is invalid.
2270 */
2271 if (list_empty(&plug->mq_list))
2272 same_queue_rq = NULL;
2273 if (same_queue_rq) {
2274 list_del_init(&same_queue_rq->queuelist);
2275 plug->rq_count--;
2276 }
2277 blk_add_rq_to_plug(plug, rq);
2278 trace_block_plug(q);
2279
2280 if (same_queue_rq) {
2281 data.hctx = same_queue_rq->mq_hctx;
2282 trace_block_unplug(q, 1, true);
2283 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2284 &cookie);
2285 }
2286 } else if ((q->nr_hw_queues > 1 && is_sync) ||
2287 !data.hctx->dispatch_busy) {
2288 /*
2289 * There is no scheduler and we can try to send directly
2290 * to the hardware.
2291 */
2292 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2293 } else {
2294 /* Default case. */
2295 blk_mq_sched_insert_request(rq, false, true, true);
2296 }
2297
2298 if (!hipri)
2299 return BLK_QC_T_NONE;
2300 return cookie;
2301 queue_exit:
2302 blk_queue_exit(q);
2303 return BLK_QC_T_NONE;
2304 }
2305
2306 static size_t order_to_size(unsigned int order)
2307 {
2308 return (size_t)PAGE_SIZE << order;
2309 }
2310
2311 /* called before freeing request pool in @tags */
2312 static void blk_mq_clear_rq_mapping(struct blk_mq_tag_set *set,
2313 struct blk_mq_tags *tags, unsigned int hctx_idx)
2314 {
2315 struct blk_mq_tags *drv_tags = set->tags[hctx_idx];
2316 struct page *page;
2317 unsigned long flags;
2318
2319 list_for_each_entry(page, &tags->page_list, lru) {
2320 unsigned long start = (unsigned long)page_address(page);
2321 unsigned long end = start + order_to_size(page->private);
2322 int i;
2323
2324 for (i = 0; i < set->queue_depth; i++) {
2325 struct request *rq = drv_tags->rqs[i];
2326 unsigned long rq_addr = (unsigned long)rq;
2327
2328 if (rq_addr >= start && rq_addr < end) {
2329 WARN_ON_ONCE(refcount_read(&rq->ref) != 0);
2330 cmpxchg(&drv_tags->rqs[i], rq, NULL);
2331 }
2332 }
2333 }
2334
2335 /*
2336 * Wait until all pending iteration is done.
2337 *
2338 * Request reference is cleared and it is guaranteed to be observed
2339 * after the ->lock is released.
2340 */
2341 spin_lock_irqsave(&drv_tags->lock, flags);
2342 spin_unlock_irqrestore(&drv_tags->lock, flags);
2343 }
2344
2345 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2346 unsigned int hctx_idx)
2347 {
2348 struct page *page;
2349
2350 if (tags->rqs && set->ops->exit_request) {
2351 int i;
2352
2353 for (i = 0; i < tags->nr_tags; i++) {
2354 struct request *rq = tags->static_rqs[i];
2355
2356 if (!rq)
2357 continue;
2358 set->ops->exit_request(set, rq, hctx_idx);
2359 tags->static_rqs[i] = NULL;
2360 }
2361 }
2362
2363 blk_mq_clear_rq_mapping(set, tags, hctx_idx);
2364
2365 while (!list_empty(&tags->page_list)) {
2366 page = list_first_entry(&tags->page_list, struct page, lru);
2367 list_del_init(&page->lru);
2368 /*
2369 * Remove kmemleak object previously allocated in
2370 * blk_mq_alloc_rqs().
2371 */
2372 kmemleak_free(page_address(page));
2373 __free_pages(page, page->private);
2374 }
2375 }
2376
2377 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2378 {
2379 kfree(tags->rqs);
2380 tags->rqs = NULL;
2381 kfree(tags->static_rqs);
2382 tags->static_rqs = NULL;
2383
2384 blk_mq_free_tags(tags, flags);
2385 }
2386
2387 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2388 unsigned int hctx_idx,
2389 unsigned int nr_tags,
2390 unsigned int reserved_tags,
2391 unsigned int flags)
2392 {
2393 struct blk_mq_tags *tags;
2394 int node;
2395
2396 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2397 if (node == NUMA_NO_NODE)
2398 node = set->numa_node;
2399
2400 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2401 if (!tags)
2402 return NULL;
2403
2404 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2405 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2406 node);
2407 if (!tags->rqs) {
2408 blk_mq_free_tags(tags, flags);
2409 return NULL;
2410 }
2411
2412 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2413 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2414 node);
2415 if (!tags->static_rqs) {
2416 kfree(tags->rqs);
2417 blk_mq_free_tags(tags, flags);
2418 return NULL;
2419 }
2420
2421 return tags;
2422 }
2423
2424 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2425 unsigned int hctx_idx, int node)
2426 {
2427 int ret;
2428
2429 if (set->ops->init_request) {
2430 ret = set->ops->init_request(set, rq, hctx_idx, node);
2431 if (ret)
2432 return ret;
2433 }
2434
2435 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2436 return 0;
2437 }
2438
2439 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2440 unsigned int hctx_idx, unsigned int depth)
2441 {
2442 unsigned int i, j, entries_per_page, max_order = 4;
2443 size_t rq_size, left;
2444 int node;
2445
2446 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2447 if (node == NUMA_NO_NODE)
2448 node = set->numa_node;
2449
2450 INIT_LIST_HEAD(&tags->page_list);
2451
2452 /*
2453 * rq_size is the size of the request plus driver payload, rounded
2454 * to the cacheline size
2455 */
2456 rq_size = round_up(sizeof(struct request) + set->cmd_size,
2457 cache_line_size());
2458 left = rq_size * depth;
2459
2460 for (i = 0; i < depth; ) {
2461 int this_order = max_order;
2462 struct page *page;
2463 int to_do;
2464 void *p;
2465
2466 while (this_order && left < order_to_size(this_order - 1))
2467 this_order--;
2468
2469 do {
2470 page = alloc_pages_node(node,
2471 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2472 this_order);
2473 if (page)
2474 break;
2475 if (!this_order--)
2476 break;
2477 if (order_to_size(this_order) < rq_size)
2478 break;
2479 } while (1);
2480
2481 if (!page)
2482 goto fail;
2483
2484 page->private = this_order;
2485 list_add_tail(&page->lru, &tags->page_list);
2486
2487 p = page_address(page);
2488 /*
2489 * Allow kmemleak to scan these pages as they contain pointers
2490 * to additional allocations like via ops->init_request().
2491 */
2492 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2493 entries_per_page = order_to_size(this_order) / rq_size;
2494 to_do = min(entries_per_page, depth - i);
2495 left -= to_do * rq_size;
2496 for (j = 0; j < to_do; j++) {
2497 struct request *rq = p;
2498
2499 tags->static_rqs[i] = rq;
2500 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2501 tags->static_rqs[i] = NULL;
2502 goto fail;
2503 }
2504
2505 p += rq_size;
2506 i++;
2507 }
2508 }
2509 return 0;
2510
2511 fail:
2512 blk_mq_free_rqs(set, tags, hctx_idx);
2513 return -ENOMEM;
2514 }
2515
2516 struct rq_iter_data {
2517 struct blk_mq_hw_ctx *hctx;
2518 bool has_rq;
2519 };
2520
2521 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2522 {
2523 struct rq_iter_data *iter_data = data;
2524
2525 if (rq->mq_hctx != iter_data->hctx)
2526 return true;
2527 iter_data->has_rq = true;
2528 return false;
2529 }
2530
2531 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2532 {
2533 struct blk_mq_tags *tags = hctx->sched_tags ?
2534 hctx->sched_tags : hctx->tags;
2535 struct rq_iter_data data = {
2536 .hctx = hctx,
2537 };
2538
2539 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2540 return data.has_rq;
2541 }
2542
2543 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2544 struct blk_mq_hw_ctx *hctx)
2545 {
2546 if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2547 return false;
2548 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2549 return false;
2550 return true;
2551 }
2552
2553 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2554 {
2555 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2556 struct blk_mq_hw_ctx, cpuhp_online);
2557
2558 if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2559 !blk_mq_last_cpu_in_hctx(cpu, hctx))
2560 return 0;
2561
2562 /*
2563 * Prevent new request from being allocated on the current hctx.
2564 *
2565 * The smp_mb__after_atomic() Pairs with the implied barrier in
2566 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is
2567 * seen once we return from the tag allocator.
2568 */
2569 set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2570 smp_mb__after_atomic();
2571
2572 /*
2573 * Try to grab a reference to the queue and wait for any outstanding
2574 * requests. If we could not grab a reference the queue has been
2575 * frozen and there are no requests.
2576 */
2577 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2578 while (blk_mq_hctx_has_requests(hctx))
2579 msleep(5);
2580 percpu_ref_put(&hctx->queue->q_usage_counter);
2581 }
2582
2583 return 0;
2584 }
2585
2586 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2587 {
2588 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2589 struct blk_mq_hw_ctx, cpuhp_online);
2590
2591 if (cpumask_test_cpu(cpu, hctx->cpumask))
2592 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2593 return 0;
2594 }
2595
2596 /*
2597 * 'cpu' is going away. splice any existing rq_list entries from this
2598 * software queue to the hw queue dispatch list, and ensure that it
2599 * gets run.
2600 */
2601 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2602 {
2603 struct blk_mq_hw_ctx *hctx;
2604 struct blk_mq_ctx *ctx;
2605 LIST_HEAD(tmp);
2606 enum hctx_type type;
2607
2608 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2609 if (!cpumask_test_cpu(cpu, hctx->cpumask))
2610 return 0;
2611
2612 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2613 type = hctx->type;
2614
2615 spin_lock(&ctx->lock);
2616 if (!list_empty(&ctx->rq_lists[type])) {
2617 list_splice_init(&ctx->rq_lists[type], &tmp);
2618 blk_mq_hctx_clear_pending(hctx, ctx);
2619 }
2620 spin_unlock(&ctx->lock);
2621
2622 if (list_empty(&tmp))
2623 return 0;
2624
2625 spin_lock(&hctx->lock);
2626 list_splice_tail_init(&tmp, &hctx->dispatch);
2627 spin_unlock(&hctx->lock);
2628
2629 blk_mq_run_hw_queue(hctx, true);
2630 return 0;
2631 }
2632
2633 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2634 {
2635 if (!(hctx->flags & BLK_MQ_F_STACKING))
2636 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2637 &hctx->cpuhp_online);
2638 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2639 &hctx->cpuhp_dead);
2640 }
2641
2642 /*
2643 * Before freeing hw queue, clearing the flush request reference in
2644 * tags->rqs[] for avoiding potential UAF.
2645 */
2646 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
2647 unsigned int queue_depth, struct request *flush_rq)
2648 {
2649 int i;
2650 unsigned long flags;
2651
2652 /* The hw queue may not be mapped yet */
2653 if (!tags)
2654 return;
2655
2656 WARN_ON_ONCE(refcount_read(&flush_rq->ref) != 0);
2657
2658 for (i = 0; i < queue_depth; i++)
2659 cmpxchg(&tags->rqs[i], flush_rq, NULL);
2660
2661 /*
2662 * Wait until all pending iteration is done.
2663 *
2664 * Request reference is cleared and it is guaranteed to be observed
2665 * after the ->lock is released.
2666 */
2667 spin_lock_irqsave(&tags->lock, flags);
2668 spin_unlock_irqrestore(&tags->lock, flags);
2669 }
2670
2671 /* hctx->ctxs will be freed in queue's release handler */
2672 static void blk_mq_exit_hctx(struct request_queue *q,
2673 struct blk_mq_tag_set *set,
2674 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2675 {
2676 struct request *flush_rq = hctx->fq->flush_rq;
2677
2678 if (blk_mq_hw_queue_mapped(hctx))
2679 blk_mq_tag_idle(hctx);
2680
2681 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
2682 set->queue_depth, flush_rq);
2683 if (set->ops->exit_request)
2684 set->ops->exit_request(set, flush_rq, hctx_idx);
2685
2686 if (set->ops->exit_hctx)
2687 set->ops->exit_hctx(hctx, hctx_idx);
2688
2689 blk_mq_remove_cpuhp(hctx);
2690
2691 spin_lock(&q->unused_hctx_lock);
2692 list_add(&hctx->hctx_list, &q->unused_hctx_list);
2693 spin_unlock(&q->unused_hctx_lock);
2694 }
2695
2696 static void blk_mq_exit_hw_queues(struct request_queue *q,
2697 struct blk_mq_tag_set *set, int nr_queue)
2698 {
2699 struct blk_mq_hw_ctx *hctx;
2700 unsigned int i;
2701
2702 queue_for_each_hw_ctx(q, hctx, i) {
2703 if (i == nr_queue)
2704 break;
2705 blk_mq_debugfs_unregister_hctx(hctx);
2706 blk_mq_exit_hctx(q, set, hctx, i);
2707 }
2708 }
2709
2710 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2711 {
2712 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2713
2714 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2715 __alignof__(struct blk_mq_hw_ctx)) !=
2716 sizeof(struct blk_mq_hw_ctx));
2717
2718 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2719 hw_ctx_size += sizeof(struct srcu_struct);
2720
2721 return hw_ctx_size;
2722 }
2723
2724 static int blk_mq_init_hctx(struct request_queue *q,
2725 struct blk_mq_tag_set *set,
2726 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2727 {
2728 hctx->queue_num = hctx_idx;
2729
2730 if (!(hctx->flags & BLK_MQ_F_STACKING))
2731 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2732 &hctx->cpuhp_online);
2733 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2734
2735 hctx->tags = set->tags[hctx_idx];
2736
2737 if (set->ops->init_hctx &&
2738 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2739 goto unregister_cpu_notifier;
2740
2741 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2742 hctx->numa_node))
2743 goto exit_hctx;
2744 return 0;
2745
2746 exit_hctx:
2747 if (set->ops->exit_hctx)
2748 set->ops->exit_hctx(hctx, hctx_idx);
2749 unregister_cpu_notifier:
2750 blk_mq_remove_cpuhp(hctx);
2751 return -1;
2752 }
2753
2754 static struct blk_mq_hw_ctx *
2755 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2756 int node)
2757 {
2758 struct blk_mq_hw_ctx *hctx;
2759 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2760
2761 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2762 if (!hctx)
2763 goto fail_alloc_hctx;
2764
2765 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2766 goto free_hctx;
2767
2768 atomic_set(&hctx->nr_active, 0);
2769 if (node == NUMA_NO_NODE)
2770 node = set->numa_node;
2771 hctx->numa_node = node;
2772
2773 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2774 spin_lock_init(&hctx->lock);
2775 INIT_LIST_HEAD(&hctx->dispatch);
2776 hctx->queue = q;
2777 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2778
2779 INIT_LIST_HEAD(&hctx->hctx_list);
2780
2781 /*
2782 * Allocate space for all possible cpus to avoid allocation at
2783 * runtime
2784 */
2785 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2786 gfp, node);
2787 if (!hctx->ctxs)
2788 goto free_cpumask;
2789
2790 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2791 gfp, node, false, false))
2792 goto free_ctxs;
2793 hctx->nr_ctx = 0;
2794
2795 spin_lock_init(&hctx->dispatch_wait_lock);
2796 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2797 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2798
2799 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2800 if (!hctx->fq)
2801 goto free_bitmap;
2802
2803 if (hctx->flags & BLK_MQ_F_BLOCKING)
2804 init_srcu_struct(hctx->srcu);
2805 blk_mq_hctx_kobj_init(hctx);
2806
2807 return hctx;
2808
2809 free_bitmap:
2810 sbitmap_free(&hctx->ctx_map);
2811 free_ctxs:
2812 kfree(hctx->ctxs);
2813 free_cpumask:
2814 free_cpumask_var(hctx->cpumask);
2815 free_hctx:
2816 kfree(hctx);
2817 fail_alloc_hctx:
2818 return NULL;
2819 }
2820
2821 static void blk_mq_init_cpu_queues(struct request_queue *q,
2822 unsigned int nr_hw_queues)
2823 {
2824 struct blk_mq_tag_set *set = q->tag_set;
2825 unsigned int i, j;
2826
2827 for_each_possible_cpu(i) {
2828 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2829 struct blk_mq_hw_ctx *hctx;
2830 int k;
2831
2832 __ctx->cpu = i;
2833 spin_lock_init(&__ctx->lock);
2834 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2835 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2836
2837 __ctx->queue = q;
2838
2839 /*
2840 * Set local node, IFF we have more than one hw queue. If
2841 * not, we remain on the home node of the device
2842 */
2843 for (j = 0; j < set->nr_maps; j++) {
2844 hctx = blk_mq_map_queue_type(q, j, i);
2845 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2846 hctx->numa_node = cpu_to_node(i);
2847 }
2848 }
2849 }
2850
2851 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2852 int hctx_idx)
2853 {
2854 unsigned int flags = set->flags;
2855 int ret = 0;
2856
2857 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2858 set->queue_depth, set->reserved_tags, flags);
2859 if (!set->tags[hctx_idx])
2860 return false;
2861
2862 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2863 set->queue_depth);
2864 if (!ret)
2865 return true;
2866
2867 blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2868 set->tags[hctx_idx] = NULL;
2869 return false;
2870 }
2871
2872 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2873 unsigned int hctx_idx)
2874 {
2875 unsigned int flags = set->flags;
2876
2877 if (set->tags && set->tags[hctx_idx]) {
2878 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2879 blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2880 set->tags[hctx_idx] = NULL;
2881 }
2882 }
2883
2884 static void blk_mq_map_swqueue(struct request_queue *q)
2885 {
2886 unsigned int i, j, hctx_idx;
2887 struct blk_mq_hw_ctx *hctx;
2888 struct blk_mq_ctx *ctx;
2889 struct blk_mq_tag_set *set = q->tag_set;
2890
2891 queue_for_each_hw_ctx(q, hctx, i) {
2892 cpumask_clear(hctx->cpumask);
2893 hctx->nr_ctx = 0;
2894 hctx->dispatch_from = NULL;
2895 }
2896
2897 /*
2898 * Map software to hardware queues.
2899 *
2900 * If the cpu isn't present, the cpu is mapped to first hctx.
2901 */
2902 for_each_possible_cpu(i) {
2903
2904 ctx = per_cpu_ptr(q->queue_ctx, i);
2905 for (j = 0; j < set->nr_maps; j++) {
2906 if (!set->map[j].nr_queues) {
2907 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2908 HCTX_TYPE_DEFAULT, i);
2909 continue;
2910 }
2911 hctx_idx = set->map[j].mq_map[i];
2912 /* unmapped hw queue can be remapped after CPU topo changed */
2913 if (!set->tags[hctx_idx] &&
2914 !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2915 /*
2916 * If tags initialization fail for some hctx,
2917 * that hctx won't be brought online. In this
2918 * case, remap the current ctx to hctx[0] which
2919 * is guaranteed to always have tags allocated
2920 */
2921 set->map[j].mq_map[i] = 0;
2922 }
2923
2924 hctx = blk_mq_map_queue_type(q, j, i);
2925 ctx->hctxs[j] = hctx;
2926 /*
2927 * If the CPU is already set in the mask, then we've
2928 * mapped this one already. This can happen if
2929 * devices share queues across queue maps.
2930 */
2931 if (cpumask_test_cpu(i, hctx->cpumask))
2932 continue;
2933
2934 cpumask_set_cpu(i, hctx->cpumask);
2935 hctx->type = j;
2936 ctx->index_hw[hctx->type] = hctx->nr_ctx;
2937 hctx->ctxs[hctx->nr_ctx++] = ctx;
2938
2939 /*
2940 * If the nr_ctx type overflows, we have exceeded the
2941 * amount of sw queues we can support.
2942 */
2943 BUG_ON(!hctx->nr_ctx);
2944 }
2945
2946 for (; j < HCTX_MAX_TYPES; j++)
2947 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2948 HCTX_TYPE_DEFAULT, i);
2949 }
2950
2951 queue_for_each_hw_ctx(q, hctx, i) {
2952 /*
2953 * If no software queues are mapped to this hardware queue,
2954 * disable it and free the request entries.
2955 */
2956 if (!hctx->nr_ctx) {
2957 /* Never unmap queue 0. We need it as a
2958 * fallback in case of a new remap fails
2959 * allocation
2960 */
2961 if (i && set->tags[i])
2962 blk_mq_free_map_and_requests(set, i);
2963
2964 hctx->tags = NULL;
2965 continue;
2966 }
2967
2968 hctx->tags = set->tags[i];
2969 WARN_ON(!hctx->tags);
2970
2971 /*
2972 * Set the map size to the number of mapped software queues.
2973 * This is more accurate and more efficient than looping
2974 * over all possibly mapped software queues.
2975 */
2976 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2977
2978 /*
2979 * Initialize batch roundrobin counts
2980 */
2981 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2982 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2983 }
2984 }
2985
2986 /*
2987 * Caller needs to ensure that we're either frozen/quiesced, or that
2988 * the queue isn't live yet.
2989 */
2990 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2991 {
2992 struct blk_mq_hw_ctx *hctx;
2993 int i;
2994
2995 queue_for_each_hw_ctx(q, hctx, i) {
2996 if (shared) {
2997 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2998 } else {
2999 blk_mq_tag_idle(hctx);
3000 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3001 }
3002 }
3003 }
3004
3005 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3006 bool shared)
3007 {
3008 struct request_queue *q;
3009
3010 lockdep_assert_held(&set->tag_list_lock);
3011
3012 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3013 blk_mq_freeze_queue(q);
3014 queue_set_hctx_shared(q, shared);
3015 blk_mq_unfreeze_queue(q);
3016 }
3017 }
3018
3019 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3020 {
3021 struct blk_mq_tag_set *set = q->tag_set;
3022
3023 mutex_lock(&set->tag_list_lock);
3024 list_del(&q->tag_set_list);
3025 if (list_is_singular(&set->tag_list)) {
3026 /* just transitioned to unshared */
3027 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3028 /* update existing queue */
3029 blk_mq_update_tag_set_shared(set, false);
3030 }
3031 mutex_unlock(&set->tag_list_lock);
3032 INIT_LIST_HEAD(&q->tag_set_list);
3033 }
3034
3035 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3036 struct request_queue *q)
3037 {
3038 mutex_lock(&set->tag_list_lock);
3039
3040 /*
3041 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3042 */
3043 if (!list_empty(&set->tag_list) &&
3044 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3045 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3046 /* update existing queue */
3047 blk_mq_update_tag_set_shared(set, true);
3048 }
3049 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3050 queue_set_hctx_shared(q, true);
3051 list_add_tail(&q->tag_set_list, &set->tag_list);
3052
3053 mutex_unlock(&set->tag_list_lock);
3054 }
3055
3056 /* All allocations will be freed in release handler of q->mq_kobj */
3057 static int blk_mq_alloc_ctxs(struct request_queue *q)
3058 {
3059 struct blk_mq_ctxs *ctxs;
3060 int cpu;
3061
3062 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3063 if (!ctxs)
3064 return -ENOMEM;
3065
3066 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3067 if (!ctxs->queue_ctx)
3068 goto fail;
3069
3070 for_each_possible_cpu(cpu) {
3071 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3072 ctx->ctxs = ctxs;
3073 }
3074
3075 q->mq_kobj = &ctxs->kobj;
3076 q->queue_ctx = ctxs->queue_ctx;
3077
3078 return 0;
3079 fail:
3080 kfree(ctxs);
3081 return -ENOMEM;
3082 }
3083
3084 /*
3085 * It is the actual release handler for mq, but we do it from
3086 * request queue's release handler for avoiding use-after-free
3087 * and headache because q->mq_kobj shouldn't have been introduced,
3088 * but we can't group ctx/kctx kobj without it.
3089 */
3090 void blk_mq_release(struct request_queue *q)
3091 {
3092 struct blk_mq_hw_ctx *hctx, *next;
3093 int i;
3094
3095 queue_for_each_hw_ctx(q, hctx, i)
3096 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3097
3098 /* all hctx are in .unused_hctx_list now */
3099 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3100 list_del_init(&hctx->hctx_list);
3101 kobject_put(&hctx->kobj);
3102 }
3103
3104 kfree(q->queue_hw_ctx);
3105
3106 /*
3107 * release .mq_kobj and sw queue's kobject now because
3108 * both share lifetime with request queue.
3109 */
3110 blk_mq_sysfs_deinit(q);
3111 }
3112
3113 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3114 void *queuedata)
3115 {
3116 struct request_queue *q;
3117 int ret;
3118
3119 q = blk_alloc_queue(set->numa_node);
3120 if (!q)
3121 return ERR_PTR(-ENOMEM);
3122 q->queuedata = queuedata;
3123 ret = blk_mq_init_allocated_queue(set, q);
3124 if (ret) {
3125 blk_cleanup_queue(q);
3126 return ERR_PTR(ret);
3127 }
3128 return q;
3129 }
3130
3131 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3132 {
3133 return blk_mq_init_queue_data(set, NULL);
3134 }
3135 EXPORT_SYMBOL(blk_mq_init_queue);
3136
3137 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
3138 struct lock_class_key *lkclass)
3139 {
3140 struct request_queue *q;
3141 struct gendisk *disk;
3142
3143 q = blk_mq_init_queue_data(set, queuedata);
3144 if (IS_ERR(q))
3145 return ERR_CAST(q);
3146
3147 disk = __alloc_disk_node(q, set->numa_node, lkclass);
3148 if (!disk) {
3149 blk_cleanup_queue(q);
3150 return ERR_PTR(-ENOMEM);
3151 }
3152 return disk;
3153 }
3154 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3155
3156 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3157 struct blk_mq_tag_set *set, struct request_queue *q,
3158 int hctx_idx, int node)
3159 {
3160 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3161
3162 /* reuse dead hctx first */
3163 spin_lock(&q->unused_hctx_lock);
3164 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3165 if (tmp->numa_node == node) {
3166 hctx = tmp;
3167 break;
3168 }
3169 }
3170 if (hctx)
3171 list_del_init(&hctx->hctx_list);
3172 spin_unlock(&q->unused_hctx_lock);
3173
3174 if (!hctx)
3175 hctx = blk_mq_alloc_hctx(q, set, node);
3176 if (!hctx)
3177 goto fail;
3178
3179 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3180 goto free_hctx;
3181
3182 return hctx;
3183
3184 free_hctx:
3185 kobject_put(&hctx->kobj);
3186 fail:
3187 return NULL;
3188 }
3189
3190 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3191 struct request_queue *q)
3192 {
3193 int i, j, end;
3194 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3195
3196 if (q->nr_hw_queues < set->nr_hw_queues) {
3197 struct blk_mq_hw_ctx **new_hctxs;
3198
3199 new_hctxs = kcalloc_node(set->nr_hw_queues,
3200 sizeof(*new_hctxs), GFP_KERNEL,
3201 set->numa_node);
3202 if (!new_hctxs)
3203 return;
3204 if (hctxs)
3205 memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3206 sizeof(*hctxs));
3207 q->queue_hw_ctx = new_hctxs;
3208 kfree(hctxs);
3209 hctxs = new_hctxs;
3210 }
3211
3212 /* protect against switching io scheduler */
3213 mutex_lock(&q->sysfs_lock);
3214 for (i = 0; i < set->nr_hw_queues; i++) {
3215 int node;
3216 struct blk_mq_hw_ctx *hctx;
3217
3218 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3219 /*
3220 * If the hw queue has been mapped to another numa node,
3221 * we need to realloc the hctx. If allocation fails, fallback
3222 * to use the previous one.
3223 */
3224 if (hctxs[i] && (hctxs[i]->numa_node == node))
3225 continue;
3226
3227 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3228 if (hctx) {
3229 if (hctxs[i])
3230 blk_mq_exit_hctx(q, set, hctxs[i], i);
3231 hctxs[i] = hctx;
3232 } else {
3233 if (hctxs[i])
3234 pr_warn("Allocate new hctx on node %d fails,\
3235 fallback to previous one on node %d\n",
3236 node, hctxs[i]->numa_node);
3237 else
3238 break;
3239 }
3240 }
3241 /*
3242 * Increasing nr_hw_queues fails. Free the newly allocated
3243 * hctxs and keep the previous q->nr_hw_queues.
3244 */
3245 if (i != set->nr_hw_queues) {
3246 j = q->nr_hw_queues;
3247 end = i;
3248 } else {
3249 j = i;
3250 end = q->nr_hw_queues;
3251 q->nr_hw_queues = set->nr_hw_queues;
3252 }
3253
3254 for (; j < end; j++) {
3255 struct blk_mq_hw_ctx *hctx = hctxs[j];
3256
3257 if (hctx) {
3258 if (hctx->tags)
3259 blk_mq_free_map_and_requests(set, j);
3260 blk_mq_exit_hctx(q, set, hctx, j);
3261 hctxs[j] = NULL;
3262 }
3263 }
3264 mutex_unlock(&q->sysfs_lock);
3265 }
3266
3267 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3268 struct request_queue *q)
3269 {
3270 /* mark the queue as mq asap */
3271 q->mq_ops = set->ops;
3272
3273 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3274 blk_mq_poll_stats_bkt,
3275 BLK_MQ_POLL_STATS_BKTS, q);
3276 if (!q->poll_cb)
3277 goto err_exit;
3278
3279 if (blk_mq_alloc_ctxs(q))
3280 goto err_poll;
3281
3282 /* init q->mq_kobj and sw queues' kobjects */
3283 blk_mq_sysfs_init(q);
3284
3285 INIT_LIST_HEAD(&q->unused_hctx_list);
3286 spin_lock_init(&q->unused_hctx_lock);
3287
3288 blk_mq_realloc_hw_ctxs(set, q);
3289 if (!q->nr_hw_queues)
3290 goto err_hctxs;
3291
3292 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3293 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3294
3295 q->tag_set = set;
3296
3297 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3298 if (set->nr_maps > HCTX_TYPE_POLL &&
3299 set->map[HCTX_TYPE_POLL].nr_queues)
3300 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3301
3302 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3303 INIT_LIST_HEAD(&q->requeue_list);
3304 spin_lock_init(&q->requeue_lock);
3305
3306 q->nr_requests = set->queue_depth;
3307
3308 /*
3309 * Default to classic polling
3310 */
3311 q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3312
3313 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3314 blk_mq_add_queue_tag_set(set, q);
3315 blk_mq_map_swqueue(q);
3316 return 0;
3317
3318 err_hctxs:
3319 kfree(q->queue_hw_ctx);
3320 q->nr_hw_queues = 0;
3321 blk_mq_sysfs_deinit(q);
3322 err_poll:
3323 blk_stat_free_callback(q->poll_cb);
3324 q->poll_cb = NULL;
3325 err_exit:
3326 q->mq_ops = NULL;
3327 return -ENOMEM;
3328 }
3329 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3330
3331 /* tags can _not_ be used after returning from blk_mq_exit_queue */
3332 void blk_mq_exit_queue(struct request_queue *q)
3333 {
3334 struct blk_mq_tag_set *set = q->tag_set;
3335
3336 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
3337 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3338 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
3339 blk_mq_del_queue_tag_set(q);
3340 }
3341
3342 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3343 {
3344 int i;
3345
3346 for (i = 0; i < set->nr_hw_queues; i++) {
3347 if (!__blk_mq_alloc_map_and_request(set, i))
3348 goto out_unwind;
3349 cond_resched();
3350 }
3351
3352 return 0;
3353
3354 out_unwind:
3355 while (--i >= 0)
3356 blk_mq_free_map_and_requests(set, i);
3357
3358 return -ENOMEM;
3359 }
3360
3361 /*
3362 * Allocate the request maps associated with this tag_set. Note that this
3363 * may reduce the depth asked for, if memory is tight. set->queue_depth
3364 * will be updated to reflect the allocated depth.
3365 */
3366 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3367 {
3368 unsigned int depth;
3369 int err;
3370
3371 depth = set->queue_depth;
3372 do {
3373 err = __blk_mq_alloc_rq_maps(set);
3374 if (!err)
3375 break;
3376
3377 set->queue_depth >>= 1;
3378 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3379 err = -ENOMEM;
3380 break;
3381 }
3382 } while (set->queue_depth);
3383
3384 if (!set->queue_depth || err) {
3385 pr_err("blk-mq: failed to allocate request map\n");
3386 return -ENOMEM;
3387 }
3388
3389 if (depth != set->queue_depth)
3390 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3391 depth, set->queue_depth);
3392
3393 return 0;
3394 }
3395
3396 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3397 {
3398 /*
3399 * blk_mq_map_queues() and multiple .map_queues() implementations
3400 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3401 * number of hardware queues.
3402 */
3403 if (set->nr_maps == 1)
3404 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3405
3406 if (set->ops->map_queues && !is_kdump_kernel()) {
3407 int i;
3408
3409 /*
3410 * transport .map_queues is usually done in the following
3411 * way:
3412 *
3413 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3414 * mask = get_cpu_mask(queue)
3415 * for_each_cpu(cpu, mask)
3416 * set->map[x].mq_map[cpu] = queue;
3417 * }
3418 *
3419 * When we need to remap, the table has to be cleared for
3420 * killing stale mapping since one CPU may not be mapped
3421 * to any hw queue.
3422 */
3423 for (i = 0; i < set->nr_maps; i++)
3424 blk_mq_clear_mq_map(&set->map[i]);
3425
3426 return set->ops->map_queues(set);
3427 } else {
3428 BUG_ON(set->nr_maps > 1);
3429 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3430 }
3431 }
3432
3433 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3434 int cur_nr_hw_queues, int new_nr_hw_queues)
3435 {
3436 struct blk_mq_tags **new_tags;
3437
3438 if (cur_nr_hw_queues >= new_nr_hw_queues)
3439 return 0;
3440
3441 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3442 GFP_KERNEL, set->numa_node);
3443 if (!new_tags)
3444 return -ENOMEM;
3445
3446 if (set->tags)
3447 memcpy(new_tags, set->tags, cur_nr_hw_queues *
3448 sizeof(*set->tags));
3449 kfree(set->tags);
3450 set->tags = new_tags;
3451 set->nr_hw_queues = new_nr_hw_queues;
3452
3453 return 0;
3454 }
3455
3456 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
3457 int new_nr_hw_queues)
3458 {
3459 return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
3460 }
3461
3462 /*
3463 * Alloc a tag set to be associated with one or more request queues.
3464 * May fail with EINVAL for various error conditions. May adjust the
3465 * requested depth down, if it's too large. In that case, the set
3466 * value will be stored in set->queue_depth.
3467 */
3468 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3469 {
3470 int i, ret;
3471
3472 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3473
3474 if (!set->nr_hw_queues)
3475 return -EINVAL;
3476 if (!set->queue_depth)
3477 return -EINVAL;
3478 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3479 return -EINVAL;
3480
3481 if (!set->ops->queue_rq)
3482 return -EINVAL;
3483
3484 if (!set->ops->get_budget ^ !set->ops->put_budget)
3485 return -EINVAL;
3486
3487 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3488 pr_info("blk-mq: reduced tag depth to %u\n",
3489 BLK_MQ_MAX_DEPTH);
3490 set->queue_depth = BLK_MQ_MAX_DEPTH;
3491 }
3492
3493 if (!set->nr_maps)
3494 set->nr_maps = 1;
3495 else if (set->nr_maps > HCTX_MAX_TYPES)
3496 return -EINVAL;
3497
3498 /*
3499 * If a crashdump is active, then we are potentially in a very
3500 * memory constrained environment. Limit us to 1 queue and
3501 * 64 tags to prevent using too much memory.
3502 */
3503 if (is_kdump_kernel()) {
3504 set->nr_hw_queues = 1;
3505 set->nr_maps = 1;
3506 set->queue_depth = min(64U, set->queue_depth);
3507 }
3508 /*
3509 * There is no use for more h/w queues than cpus if we just have
3510 * a single map
3511 */
3512 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3513 set->nr_hw_queues = nr_cpu_ids;
3514
3515 if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
3516 return -ENOMEM;
3517
3518 ret = -ENOMEM;
3519 for (i = 0; i < set->nr_maps; i++) {
3520 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3521 sizeof(set->map[i].mq_map[0]),
3522 GFP_KERNEL, set->numa_node);
3523 if (!set->map[i].mq_map)
3524 goto out_free_mq_map;
3525 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3526 }
3527
3528 ret = blk_mq_update_queue_map(set);
3529 if (ret)
3530 goto out_free_mq_map;
3531
3532 ret = blk_mq_alloc_map_and_requests(set);
3533 if (ret)
3534 goto out_free_mq_map;
3535
3536 if (blk_mq_is_sbitmap_shared(set->flags)) {
3537 atomic_set(&set->active_queues_shared_sbitmap, 0);
3538
3539 if (blk_mq_init_shared_sbitmap(set)) {
3540 ret = -ENOMEM;
3541 goto out_free_mq_rq_maps;
3542 }
3543 }
3544
3545 mutex_init(&set->tag_list_lock);
3546 INIT_LIST_HEAD(&set->tag_list);
3547
3548 return 0;
3549
3550 out_free_mq_rq_maps:
3551 for (i = 0; i < set->nr_hw_queues; i++)
3552 blk_mq_free_map_and_requests(set, i);
3553 out_free_mq_map:
3554 for (i = 0; i < set->nr_maps; i++) {
3555 kfree(set->map[i].mq_map);
3556 set->map[i].mq_map = NULL;
3557 }
3558 kfree(set->tags);
3559 set->tags = NULL;
3560 return ret;
3561 }
3562 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3563
3564 /* allocate and initialize a tagset for a simple single-queue device */
3565 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
3566 const struct blk_mq_ops *ops, unsigned int queue_depth,
3567 unsigned int set_flags)
3568 {
3569 memset(set, 0, sizeof(*set));
3570 set->ops = ops;
3571 set->nr_hw_queues = 1;
3572 set->nr_maps = 1;
3573 set->queue_depth = queue_depth;
3574 set->numa_node = NUMA_NO_NODE;
3575 set->flags = set_flags;
3576 return blk_mq_alloc_tag_set(set);
3577 }
3578 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
3579
3580 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3581 {
3582 int i, j;
3583
3584 for (i = 0; i < set->nr_hw_queues; i++)
3585 blk_mq_free_map_and_requests(set, i);
3586
3587 if (blk_mq_is_sbitmap_shared(set->flags))
3588 blk_mq_exit_shared_sbitmap(set);
3589
3590 for (j = 0; j < set->nr_maps; j++) {
3591 kfree(set->map[j].mq_map);
3592 set->map[j].mq_map = NULL;
3593 }
3594
3595 kfree(set->tags);
3596 set->tags = NULL;
3597 }
3598 EXPORT_SYMBOL(blk_mq_free_tag_set);
3599
3600 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3601 {
3602 struct blk_mq_tag_set *set = q->tag_set;
3603 struct blk_mq_hw_ctx *hctx;
3604 int i, ret;
3605
3606 if (!set)
3607 return -EINVAL;
3608
3609 if (q->nr_requests == nr)
3610 return 0;
3611
3612 blk_mq_freeze_queue(q);
3613 blk_mq_quiesce_queue(q);
3614
3615 ret = 0;
3616 queue_for_each_hw_ctx(q, hctx, i) {
3617 if (!hctx->tags)
3618 continue;
3619 /*
3620 * If we're using an MQ scheduler, just update the scheduler
3621 * queue depth. This is similar to what the old code would do.
3622 */
3623 if (!hctx->sched_tags) {
3624 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3625 false);
3626 if (!ret && blk_mq_is_sbitmap_shared(set->flags))
3627 blk_mq_tag_resize_shared_sbitmap(set, nr);
3628 } else {
3629 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3630 nr, true);
3631 if (blk_mq_is_sbitmap_shared(set->flags)) {
3632 hctx->sched_tags->bitmap_tags =
3633 &q->sched_bitmap_tags;
3634 hctx->sched_tags->breserved_tags =
3635 &q->sched_breserved_tags;
3636 }
3637 }
3638 if (ret)
3639 break;
3640 if (q->elevator && q->elevator->type->ops.depth_updated)
3641 q->elevator->type->ops.depth_updated(hctx);
3642 }
3643 if (!ret) {
3644 q->nr_requests = nr;
3645 if (q->elevator && blk_mq_is_sbitmap_shared(set->flags))
3646 sbitmap_queue_resize(&q->sched_bitmap_tags,
3647 nr - set->reserved_tags);
3648 }
3649
3650 blk_mq_unquiesce_queue(q);
3651 blk_mq_unfreeze_queue(q);
3652
3653 return ret;
3654 }
3655
3656 /*
3657 * request_queue and elevator_type pair.
3658 * It is just used by __blk_mq_update_nr_hw_queues to cache
3659 * the elevator_type associated with a request_queue.
3660 */
3661 struct blk_mq_qe_pair {
3662 struct list_head node;
3663 struct request_queue *q;
3664 struct elevator_type *type;
3665 };
3666
3667 /*
3668 * Cache the elevator_type in qe pair list and switch the
3669 * io scheduler to 'none'
3670 */
3671 static bool blk_mq_elv_switch_none(struct list_head *head,
3672 struct request_queue *q)
3673 {
3674 struct blk_mq_qe_pair *qe;
3675
3676 if (!q->elevator)
3677 return true;
3678
3679 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3680 if (!qe)
3681 return false;
3682
3683 INIT_LIST_HEAD(&qe->node);
3684 qe->q = q;
3685 qe->type = q->elevator->type;
3686 list_add(&qe->node, head);
3687
3688 mutex_lock(&q->sysfs_lock);
3689 /*
3690 * After elevator_switch_mq, the previous elevator_queue will be
3691 * released by elevator_release. The reference of the io scheduler
3692 * module get by elevator_get will also be put. So we need to get
3693 * a reference of the io scheduler module here to prevent it to be
3694 * removed.
3695 */
3696 __module_get(qe->type->elevator_owner);
3697 elevator_switch_mq(q, NULL);
3698 mutex_unlock(&q->sysfs_lock);
3699
3700 return true;
3701 }
3702
3703 static void blk_mq_elv_switch_back(struct list_head *head,
3704 struct request_queue *q)
3705 {
3706 struct blk_mq_qe_pair *qe;
3707 struct elevator_type *t = NULL;
3708
3709 list_for_each_entry(qe, head, node)
3710 if (qe->q == q) {
3711 t = qe->type;
3712 break;
3713 }
3714
3715 if (!t)
3716 return;
3717
3718 list_del(&qe->node);
3719 kfree(qe);
3720
3721 mutex_lock(&q->sysfs_lock);
3722 elevator_switch_mq(q, t);
3723 mutex_unlock(&q->sysfs_lock);
3724 }
3725
3726 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3727 int nr_hw_queues)
3728 {
3729 struct request_queue *q;
3730 LIST_HEAD(head);
3731 int prev_nr_hw_queues;
3732
3733 lockdep_assert_held(&set->tag_list_lock);
3734
3735 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3736 nr_hw_queues = nr_cpu_ids;
3737 if (nr_hw_queues < 1)
3738 return;
3739 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3740 return;
3741
3742 list_for_each_entry(q, &set->tag_list, tag_set_list)
3743 blk_mq_freeze_queue(q);
3744 /*
3745 * Switch IO scheduler to 'none', cleaning up the data associated
3746 * with the previous scheduler. We will switch back once we are done
3747 * updating the new sw to hw queue mappings.
3748 */
3749 list_for_each_entry(q, &set->tag_list, tag_set_list)
3750 if (!blk_mq_elv_switch_none(&head, q))
3751 goto switch_back;
3752
3753 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3754 blk_mq_debugfs_unregister_hctxs(q);
3755 blk_mq_sysfs_unregister(q);
3756 }
3757
3758 prev_nr_hw_queues = set->nr_hw_queues;
3759 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3760 0)
3761 goto reregister;
3762
3763 set->nr_hw_queues = nr_hw_queues;
3764 fallback:
3765 blk_mq_update_queue_map(set);
3766 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3767 blk_mq_realloc_hw_ctxs(set, q);
3768 if (q->nr_hw_queues != set->nr_hw_queues) {
3769 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3770 nr_hw_queues, prev_nr_hw_queues);
3771 set->nr_hw_queues = prev_nr_hw_queues;
3772 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3773 goto fallback;
3774 }
3775 blk_mq_map_swqueue(q);
3776 }
3777
3778 reregister:
3779 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3780 blk_mq_sysfs_register(q);
3781 blk_mq_debugfs_register_hctxs(q);
3782 }
3783
3784 switch_back:
3785 list_for_each_entry(q, &set->tag_list, tag_set_list)
3786 blk_mq_elv_switch_back(&head, q);
3787
3788 list_for_each_entry(q, &set->tag_list, tag_set_list)
3789 blk_mq_unfreeze_queue(q);
3790 }
3791
3792 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3793 {
3794 mutex_lock(&set->tag_list_lock);
3795 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3796 mutex_unlock(&set->tag_list_lock);
3797 }
3798 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3799
3800 /* Enable polling stats and return whether they were already enabled. */
3801 static bool blk_poll_stats_enable(struct request_queue *q)
3802 {
3803 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3804 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3805 return true;
3806 blk_stat_add_callback(q, q->poll_cb);
3807 return false;
3808 }
3809
3810 static void blk_mq_poll_stats_start(struct request_queue *q)
3811 {
3812 /*
3813 * We don't arm the callback if polling stats are not enabled or the
3814 * callback is already active.
3815 */
3816 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3817 blk_stat_is_active(q->poll_cb))
3818 return;
3819
3820 blk_stat_activate_msecs(q->poll_cb, 100);
3821 }
3822
3823 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3824 {
3825 struct request_queue *q = cb->data;
3826 int bucket;
3827
3828 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3829 if (cb->stat[bucket].nr_samples)
3830 q->poll_stat[bucket] = cb->stat[bucket];
3831 }
3832 }
3833
3834 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3835 struct request *rq)
3836 {
3837 unsigned long ret = 0;
3838 int bucket;
3839
3840 /*
3841 * If stats collection isn't on, don't sleep but turn it on for
3842 * future users
3843 */
3844 if (!blk_poll_stats_enable(q))
3845 return 0;
3846
3847 /*
3848 * As an optimistic guess, use half of the mean service time
3849 * for this type of request. We can (and should) make this smarter.
3850 * For instance, if the completion latencies are tight, we can
3851 * get closer than just half the mean. This is especially
3852 * important on devices where the completion latencies are longer
3853 * than ~10 usec. We do use the stats for the relevant IO size
3854 * if available which does lead to better estimates.
3855 */
3856 bucket = blk_mq_poll_stats_bkt(rq);
3857 if (bucket < 0)
3858 return ret;
3859
3860 if (q->poll_stat[bucket].nr_samples)
3861 ret = (q->poll_stat[bucket].mean + 1) / 2;
3862
3863 return ret;
3864 }
3865
3866 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3867 struct request *rq)
3868 {
3869 struct hrtimer_sleeper hs;
3870 enum hrtimer_mode mode;
3871 unsigned int nsecs;
3872 ktime_t kt;
3873
3874 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3875 return false;
3876
3877 /*
3878 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3879 *
3880 * 0: use half of prev avg
3881 * >0: use this specific value
3882 */
3883 if (q->poll_nsec > 0)
3884 nsecs = q->poll_nsec;
3885 else
3886 nsecs = blk_mq_poll_nsecs(q, rq);
3887
3888 if (!nsecs)
3889 return false;
3890
3891 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3892
3893 /*
3894 * This will be replaced with the stats tracking code, using
3895 * 'avg_completion_time / 2' as the pre-sleep target.
3896 */
3897 kt = nsecs;
3898
3899 mode = HRTIMER_MODE_REL;
3900 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3901 hrtimer_set_expires(&hs.timer, kt);
3902
3903 do {
3904 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3905 break;
3906 set_current_state(TASK_UNINTERRUPTIBLE);
3907 hrtimer_sleeper_start_expires(&hs, mode);
3908 if (hs.task)
3909 io_schedule();
3910 hrtimer_cancel(&hs.timer);
3911 mode = HRTIMER_MODE_ABS;
3912 } while (hs.task && !signal_pending(current));
3913
3914 __set_current_state(TASK_RUNNING);
3915 destroy_hrtimer_on_stack(&hs.timer);
3916 return true;
3917 }
3918
3919 static bool blk_mq_poll_hybrid(struct request_queue *q,
3920 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3921 {
3922 struct request *rq;
3923
3924 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3925 return false;
3926
3927 if (!blk_qc_t_is_internal(cookie))
3928 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3929 else {
3930 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3931 /*
3932 * With scheduling, if the request has completed, we'll
3933 * get a NULL return here, as we clear the sched tag when
3934 * that happens. The request still remains valid, like always,
3935 * so we should be safe with just the NULL check.
3936 */
3937 if (!rq)
3938 return false;
3939 }
3940
3941 return blk_mq_poll_hybrid_sleep(q, rq);
3942 }
3943
3944 /**
3945 * blk_poll - poll for IO completions
3946 * @q: the queue
3947 * @cookie: cookie passed back at IO submission time
3948 * @spin: whether to spin for completions
3949 *
3950 * Description:
3951 * Poll for completions on the passed in queue. Returns number of
3952 * completed entries found. If @spin is true, then blk_poll will continue
3953 * looping until at least one completion is found, unless the task is
3954 * otherwise marked running (or we need to reschedule).
3955 */
3956 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3957 {
3958 struct blk_mq_hw_ctx *hctx;
3959 unsigned int state;
3960
3961 if (!blk_qc_t_valid(cookie) ||
3962 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3963 return 0;
3964
3965 if (current->plug)
3966 blk_flush_plug_list(current->plug, false);
3967
3968 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3969
3970 /*
3971 * If we sleep, have the caller restart the poll loop to reset
3972 * the state. Like for the other success return cases, the
3973 * caller is responsible for checking if the IO completed. If
3974 * the IO isn't complete, we'll get called again and will go
3975 * straight to the busy poll loop. If specified not to spin,
3976 * we also should not sleep.
3977 */
3978 if (spin && blk_mq_poll_hybrid(q, hctx, cookie))
3979 return 1;
3980
3981 hctx->poll_considered++;
3982
3983 state = get_current_state();
3984 do {
3985 int ret;
3986
3987 hctx->poll_invoked++;
3988
3989 ret = q->mq_ops->poll(hctx);
3990 if (ret > 0) {
3991 hctx->poll_success++;
3992 __set_current_state(TASK_RUNNING);
3993 return ret;
3994 }
3995
3996 if (signal_pending_state(state, current))
3997 __set_current_state(TASK_RUNNING);
3998
3999 if (task_is_running(current))
4000 return 1;
4001 if (ret < 0 || !spin)
4002 break;
4003 cpu_relax();
4004 } while (!need_resched());
4005
4006 __set_current_state(TASK_RUNNING);
4007 return 0;
4008 }
4009 EXPORT_SYMBOL_GPL(blk_poll);
4010
4011 unsigned int blk_mq_rq_cpu(struct request *rq)
4012 {
4013 return rq->mq_ctx->cpu;
4014 }
4015 EXPORT_SYMBOL(blk_mq_rq_cpu);
4016
4017 static int __init blk_mq_init(void)
4018 {
4019 int i;
4020
4021 for_each_possible_cpu(i)
4022 init_llist_head(&per_cpu(blk_cpu_done, i));
4023 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4024
4025 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4026 "block/softirq:dead", NULL,
4027 blk_softirq_cpu_dead);
4028 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4029 blk_mq_hctx_notify_dead);
4030 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4031 blk_mq_hctx_notify_online,
4032 blk_mq_hctx_notify_offline);
4033 return 0;
4034 }
4035 subsys_initcall(blk_mq_init);