]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-mq.c
blk-mq: move hctx lock/unlock into a helper
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46 int ddir, bytes, bucket;
47
48 ddir = rq_data_dir(rq);
49 bytes = blk_rq_bytes(rq);
50
51 bucket = ddir + 2*(ilog2(bytes) - 9);
52
53 if (bucket < 0)
54 return -1;
55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58 return bucket;
59 }
60
61 /*
62 * Check if any of the ctx's have pending work in this hardware queue
63 */
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66 return !list_empty_careful(&hctx->dispatch) ||
67 sbitmap_any_bit_set(&hctx->ctx_map) ||
68 blk_mq_sched_has_work(hctx);
69 }
70
71 /*
72 * Mark this ctx as having pending work in this hardware queue
73 */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 struct blk_mq_ctx *ctx)
76 {
77 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 }
80
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 struct blk_mq_ctx *ctx)
83 {
84 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 }
86
87 struct mq_inflight {
88 struct hd_struct *part;
89 unsigned int *inflight;
90 };
91
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93 struct request *rq, void *priv,
94 bool reserved)
95 {
96 struct mq_inflight *mi = priv;
97
98 if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
99 !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
100 /*
101 * index[0] counts the specific partition that was asked
102 * for. index[1] counts the ones that are active on the
103 * whole device, so increment that if mi->part is indeed
104 * a partition, and not a whole device.
105 */
106 if (rq->part == mi->part)
107 mi->inflight[0]++;
108 if (mi->part->partno)
109 mi->inflight[1]++;
110 }
111 }
112
113 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
114 unsigned int inflight[2])
115 {
116 struct mq_inflight mi = { .part = part, .inflight = inflight, };
117
118 inflight[0] = inflight[1] = 0;
119 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120 }
121
122 static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
123 struct request *rq, void *priv,
124 bool reserved)
125 {
126 struct mq_inflight *mi = priv;
127
128 if (rq->part == mi->part)
129 mi->inflight[rq_data_dir(rq)]++;
130 }
131
132 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
133 unsigned int inflight[2])
134 {
135 struct mq_inflight mi = { .part = part, .inflight = inflight, };
136
137 inflight[0] = inflight[1] = 0;
138 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
139 }
140
141 void blk_freeze_queue_start(struct request_queue *q)
142 {
143 int freeze_depth;
144
145 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
146 if (freeze_depth == 1) {
147 percpu_ref_kill(&q->q_usage_counter);
148 if (q->mq_ops)
149 blk_mq_run_hw_queues(q, false);
150 }
151 }
152 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
153
154 void blk_mq_freeze_queue_wait(struct request_queue *q)
155 {
156 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
157 }
158 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
159
160 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
161 unsigned long timeout)
162 {
163 return wait_event_timeout(q->mq_freeze_wq,
164 percpu_ref_is_zero(&q->q_usage_counter),
165 timeout);
166 }
167 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
168
169 /*
170 * Guarantee no request is in use, so we can change any data structure of
171 * the queue afterward.
172 */
173 void blk_freeze_queue(struct request_queue *q)
174 {
175 /*
176 * In the !blk_mq case we are only calling this to kill the
177 * q_usage_counter, otherwise this increases the freeze depth
178 * and waits for it to return to zero. For this reason there is
179 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
180 * exported to drivers as the only user for unfreeze is blk_mq.
181 */
182 blk_freeze_queue_start(q);
183 if (!q->mq_ops)
184 blk_drain_queue(q);
185 blk_mq_freeze_queue_wait(q);
186 }
187
188 void blk_mq_freeze_queue(struct request_queue *q)
189 {
190 /*
191 * ...just an alias to keep freeze and unfreeze actions balanced
192 * in the blk_mq_* namespace
193 */
194 blk_freeze_queue(q);
195 }
196 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
197
198 void blk_mq_unfreeze_queue(struct request_queue *q)
199 {
200 int freeze_depth;
201
202 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
203 WARN_ON_ONCE(freeze_depth < 0);
204 if (!freeze_depth) {
205 percpu_ref_reinit(&q->q_usage_counter);
206 wake_up_all(&q->mq_freeze_wq);
207 }
208 }
209 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
210
211 /*
212 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
213 * mpt3sas driver such that this function can be removed.
214 */
215 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
216 {
217 unsigned long flags;
218
219 spin_lock_irqsave(q->queue_lock, flags);
220 queue_flag_set(QUEUE_FLAG_QUIESCED, q);
221 spin_unlock_irqrestore(q->queue_lock, flags);
222 }
223 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
224
225 /**
226 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
227 * @q: request queue.
228 *
229 * Note: this function does not prevent that the struct request end_io()
230 * callback function is invoked. Once this function is returned, we make
231 * sure no dispatch can happen until the queue is unquiesced via
232 * blk_mq_unquiesce_queue().
233 */
234 void blk_mq_quiesce_queue(struct request_queue *q)
235 {
236 struct blk_mq_hw_ctx *hctx;
237 unsigned int i;
238 bool rcu = false;
239
240 blk_mq_quiesce_queue_nowait(q);
241
242 queue_for_each_hw_ctx(q, hctx, i) {
243 if (hctx->flags & BLK_MQ_F_BLOCKING)
244 synchronize_srcu(hctx->queue_rq_srcu);
245 else
246 rcu = true;
247 }
248 if (rcu)
249 synchronize_rcu();
250 }
251 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
252
253 /*
254 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
255 * @q: request queue.
256 *
257 * This function recovers queue into the state before quiescing
258 * which is done by blk_mq_quiesce_queue.
259 */
260 void blk_mq_unquiesce_queue(struct request_queue *q)
261 {
262 unsigned long flags;
263
264 spin_lock_irqsave(q->queue_lock, flags);
265 queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
266 spin_unlock_irqrestore(q->queue_lock, flags);
267
268 /* dispatch requests which are inserted during quiescing */
269 blk_mq_run_hw_queues(q, true);
270 }
271 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
272
273 void blk_mq_wake_waiters(struct request_queue *q)
274 {
275 struct blk_mq_hw_ctx *hctx;
276 unsigned int i;
277
278 queue_for_each_hw_ctx(q, hctx, i)
279 if (blk_mq_hw_queue_mapped(hctx))
280 blk_mq_tag_wakeup_all(hctx->tags, true);
281 }
282
283 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
284 {
285 return blk_mq_has_free_tags(hctx->tags);
286 }
287 EXPORT_SYMBOL(blk_mq_can_queue);
288
289 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
290 unsigned int tag, unsigned int op)
291 {
292 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
293 struct request *rq = tags->static_rqs[tag];
294
295 rq->rq_flags = 0;
296
297 if (data->flags & BLK_MQ_REQ_INTERNAL) {
298 rq->tag = -1;
299 rq->internal_tag = tag;
300 } else {
301 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
302 rq->rq_flags = RQF_MQ_INFLIGHT;
303 atomic_inc(&data->hctx->nr_active);
304 }
305 rq->tag = tag;
306 rq->internal_tag = -1;
307 data->hctx->tags->rqs[rq->tag] = rq;
308 }
309
310 INIT_LIST_HEAD(&rq->queuelist);
311 /* csd/requeue_work/fifo_time is initialized before use */
312 rq->q = data->q;
313 rq->mq_ctx = data->ctx;
314 rq->cmd_flags = op;
315 if (data->flags & BLK_MQ_REQ_PREEMPT)
316 rq->rq_flags |= RQF_PREEMPT;
317 if (blk_queue_io_stat(data->q))
318 rq->rq_flags |= RQF_IO_STAT;
319 /* do not touch atomic flags, it needs atomic ops against the timer */
320 rq->cpu = -1;
321 INIT_HLIST_NODE(&rq->hash);
322 RB_CLEAR_NODE(&rq->rb_node);
323 rq->rq_disk = NULL;
324 rq->part = NULL;
325 rq->start_time = jiffies;
326 #ifdef CONFIG_BLK_CGROUP
327 rq->rl = NULL;
328 set_start_time_ns(rq);
329 rq->io_start_time_ns = 0;
330 #endif
331 rq->nr_phys_segments = 0;
332 #if defined(CONFIG_BLK_DEV_INTEGRITY)
333 rq->nr_integrity_segments = 0;
334 #endif
335 rq->special = NULL;
336 /* tag was already set */
337 rq->extra_len = 0;
338
339 INIT_LIST_HEAD(&rq->timeout_list);
340 rq->timeout = 0;
341
342 rq->end_io = NULL;
343 rq->end_io_data = NULL;
344 rq->next_rq = NULL;
345
346 data->ctx->rq_dispatched[op_is_sync(op)]++;
347 return rq;
348 }
349
350 static struct request *blk_mq_get_request(struct request_queue *q,
351 struct bio *bio, unsigned int op,
352 struct blk_mq_alloc_data *data)
353 {
354 struct elevator_queue *e = q->elevator;
355 struct request *rq;
356 unsigned int tag;
357 bool put_ctx_on_error = false;
358
359 blk_queue_enter_live(q);
360 data->q = q;
361 if (likely(!data->ctx)) {
362 data->ctx = blk_mq_get_ctx(q);
363 put_ctx_on_error = true;
364 }
365 if (likely(!data->hctx))
366 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
367 if (op & REQ_NOWAIT)
368 data->flags |= BLK_MQ_REQ_NOWAIT;
369
370 if (e) {
371 data->flags |= BLK_MQ_REQ_INTERNAL;
372
373 /*
374 * Flush requests are special and go directly to the
375 * dispatch list.
376 */
377 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
378 e->type->ops.mq.limit_depth(op, data);
379 } else {
380 blk_mq_tag_busy(data->hctx);
381 }
382
383 tag = blk_mq_get_tag(data);
384 if (tag == BLK_MQ_TAG_FAIL) {
385 if (put_ctx_on_error) {
386 blk_mq_put_ctx(data->ctx);
387 data->ctx = NULL;
388 }
389 blk_queue_exit(q);
390 return NULL;
391 }
392
393 rq = blk_mq_rq_ctx_init(data, tag, op);
394 if (!op_is_flush(op)) {
395 rq->elv.icq = NULL;
396 if (e && e->type->ops.mq.prepare_request) {
397 if (e->type->icq_cache && rq_ioc(bio))
398 blk_mq_sched_assign_ioc(rq, bio);
399
400 e->type->ops.mq.prepare_request(rq, bio);
401 rq->rq_flags |= RQF_ELVPRIV;
402 }
403 }
404 data->hctx->queued++;
405 return rq;
406 }
407
408 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
409 blk_mq_req_flags_t flags)
410 {
411 struct blk_mq_alloc_data alloc_data = { .flags = flags };
412 struct request *rq;
413 int ret;
414
415 ret = blk_queue_enter(q, flags);
416 if (ret)
417 return ERR_PTR(ret);
418
419 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
420 blk_queue_exit(q);
421
422 if (!rq)
423 return ERR_PTR(-EWOULDBLOCK);
424
425 blk_mq_put_ctx(alloc_data.ctx);
426
427 rq->__data_len = 0;
428 rq->__sector = (sector_t) -1;
429 rq->bio = rq->biotail = NULL;
430 return rq;
431 }
432 EXPORT_SYMBOL(blk_mq_alloc_request);
433
434 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
435 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
436 {
437 struct blk_mq_alloc_data alloc_data = { .flags = flags };
438 struct request *rq;
439 unsigned int cpu;
440 int ret;
441
442 /*
443 * If the tag allocator sleeps we could get an allocation for a
444 * different hardware context. No need to complicate the low level
445 * allocator for this for the rare use case of a command tied to
446 * a specific queue.
447 */
448 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
449 return ERR_PTR(-EINVAL);
450
451 if (hctx_idx >= q->nr_hw_queues)
452 return ERR_PTR(-EIO);
453
454 ret = blk_queue_enter(q, flags);
455 if (ret)
456 return ERR_PTR(ret);
457
458 /*
459 * Check if the hardware context is actually mapped to anything.
460 * If not tell the caller that it should skip this queue.
461 */
462 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
463 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
464 blk_queue_exit(q);
465 return ERR_PTR(-EXDEV);
466 }
467 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
468 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
469
470 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
471 blk_queue_exit(q);
472
473 if (!rq)
474 return ERR_PTR(-EWOULDBLOCK);
475
476 return rq;
477 }
478 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
479
480 void blk_mq_free_request(struct request *rq)
481 {
482 struct request_queue *q = rq->q;
483 struct elevator_queue *e = q->elevator;
484 struct blk_mq_ctx *ctx = rq->mq_ctx;
485 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
486 const int sched_tag = rq->internal_tag;
487
488 if (rq->rq_flags & RQF_ELVPRIV) {
489 if (e && e->type->ops.mq.finish_request)
490 e->type->ops.mq.finish_request(rq);
491 if (rq->elv.icq) {
492 put_io_context(rq->elv.icq->ioc);
493 rq->elv.icq = NULL;
494 }
495 }
496
497 ctx->rq_completed[rq_is_sync(rq)]++;
498 if (rq->rq_flags & RQF_MQ_INFLIGHT)
499 atomic_dec(&hctx->nr_active);
500
501 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
502 laptop_io_completion(q->backing_dev_info);
503
504 wbt_done(q->rq_wb, &rq->issue_stat);
505
506 if (blk_rq_rl(rq))
507 blk_put_rl(blk_rq_rl(rq));
508
509 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
510 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
511 if (rq->tag != -1)
512 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
513 if (sched_tag != -1)
514 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
515 blk_mq_sched_restart(hctx);
516 blk_queue_exit(q);
517 }
518 EXPORT_SYMBOL_GPL(blk_mq_free_request);
519
520 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
521 {
522 blk_account_io_done(rq);
523
524 if (rq->end_io) {
525 wbt_done(rq->q->rq_wb, &rq->issue_stat);
526 rq->end_io(rq, error);
527 } else {
528 if (unlikely(blk_bidi_rq(rq)))
529 blk_mq_free_request(rq->next_rq);
530 blk_mq_free_request(rq);
531 }
532 }
533 EXPORT_SYMBOL(__blk_mq_end_request);
534
535 void blk_mq_end_request(struct request *rq, blk_status_t error)
536 {
537 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
538 BUG();
539 __blk_mq_end_request(rq, error);
540 }
541 EXPORT_SYMBOL(blk_mq_end_request);
542
543 static void __blk_mq_complete_request_remote(void *data)
544 {
545 struct request *rq = data;
546
547 rq->q->softirq_done_fn(rq);
548 }
549
550 static void __blk_mq_complete_request(struct request *rq)
551 {
552 struct blk_mq_ctx *ctx = rq->mq_ctx;
553 bool shared = false;
554 int cpu;
555
556 if (rq->internal_tag != -1)
557 blk_mq_sched_completed_request(rq);
558 if (rq->rq_flags & RQF_STATS) {
559 blk_mq_poll_stats_start(rq->q);
560 blk_stat_add(rq);
561 }
562
563 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
564 rq->q->softirq_done_fn(rq);
565 return;
566 }
567
568 cpu = get_cpu();
569 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
570 shared = cpus_share_cache(cpu, ctx->cpu);
571
572 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
573 rq->csd.func = __blk_mq_complete_request_remote;
574 rq->csd.info = rq;
575 rq->csd.flags = 0;
576 smp_call_function_single_async(ctx->cpu, &rq->csd);
577 } else {
578 rq->q->softirq_done_fn(rq);
579 }
580 put_cpu();
581 }
582
583 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
584 {
585 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
586 rcu_read_unlock();
587 else
588 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
589 }
590
591 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
592 {
593 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
594 rcu_read_lock();
595 else
596 *srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
597 }
598
599 /**
600 * blk_mq_complete_request - end I/O on a request
601 * @rq: the request being processed
602 *
603 * Description:
604 * Ends all I/O on a request. It does not handle partial completions.
605 * The actual completion happens out-of-order, through a IPI handler.
606 **/
607 void blk_mq_complete_request(struct request *rq)
608 {
609 struct request_queue *q = rq->q;
610
611 if (unlikely(blk_should_fake_timeout(q)))
612 return;
613 if (!blk_mark_rq_complete(rq))
614 __blk_mq_complete_request(rq);
615 }
616 EXPORT_SYMBOL(blk_mq_complete_request);
617
618 int blk_mq_request_started(struct request *rq)
619 {
620 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
621 }
622 EXPORT_SYMBOL_GPL(blk_mq_request_started);
623
624 void blk_mq_start_request(struct request *rq)
625 {
626 struct request_queue *q = rq->q;
627
628 blk_mq_sched_started_request(rq);
629
630 trace_block_rq_issue(q, rq);
631
632 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
633 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
634 rq->rq_flags |= RQF_STATS;
635 wbt_issue(q->rq_wb, &rq->issue_stat);
636 }
637
638 blk_add_timer(rq);
639
640 WARN_ON_ONCE(test_bit(REQ_ATOM_STARTED, &rq->atomic_flags));
641
642 /*
643 * Mark us as started and clear complete. Complete might have been
644 * set if requeue raced with timeout, which then marked it as
645 * complete. So be sure to clear complete again when we start
646 * the request, otherwise we'll ignore the completion event.
647 *
648 * Ensure that ->deadline is visible before we set STARTED, such that
649 * blk_mq_check_expired() is guaranteed to observe our ->deadline when
650 * it observes STARTED.
651 */
652 smp_wmb();
653 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
654 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
655 /*
656 * Coherence order guarantees these consecutive stores to a
657 * single variable propagate in the specified order. Thus the
658 * clear_bit() is ordered _after_ the set bit. See
659 * blk_mq_check_expired().
660 *
661 * (the bits must be part of the same byte for this to be
662 * true).
663 */
664 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
665 }
666
667 if (q->dma_drain_size && blk_rq_bytes(rq)) {
668 /*
669 * Make sure space for the drain appears. We know we can do
670 * this because max_hw_segments has been adjusted to be one
671 * fewer than the device can handle.
672 */
673 rq->nr_phys_segments++;
674 }
675 }
676 EXPORT_SYMBOL(blk_mq_start_request);
677
678 /*
679 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
680 * flag isn't set yet, so there may be race with timeout handler,
681 * but given rq->deadline is just set in .queue_rq() under
682 * this situation, the race won't be possible in reality because
683 * rq->timeout should be set as big enough to cover the window
684 * between blk_mq_start_request() called from .queue_rq() and
685 * clearing REQ_ATOM_STARTED here.
686 */
687 static void __blk_mq_requeue_request(struct request *rq)
688 {
689 struct request_queue *q = rq->q;
690
691 blk_mq_put_driver_tag(rq);
692
693 trace_block_rq_requeue(q, rq);
694 wbt_requeue(q->rq_wb, &rq->issue_stat);
695
696 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
697 if (q->dma_drain_size && blk_rq_bytes(rq))
698 rq->nr_phys_segments--;
699 }
700 }
701
702 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
703 {
704 __blk_mq_requeue_request(rq);
705
706 /* this request will be re-inserted to io scheduler queue */
707 blk_mq_sched_requeue_request(rq);
708
709 BUG_ON(blk_queued_rq(rq));
710 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
711 }
712 EXPORT_SYMBOL(blk_mq_requeue_request);
713
714 static void blk_mq_requeue_work(struct work_struct *work)
715 {
716 struct request_queue *q =
717 container_of(work, struct request_queue, requeue_work.work);
718 LIST_HEAD(rq_list);
719 struct request *rq, *next;
720
721 spin_lock_irq(&q->requeue_lock);
722 list_splice_init(&q->requeue_list, &rq_list);
723 spin_unlock_irq(&q->requeue_lock);
724
725 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
726 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
727 continue;
728
729 rq->rq_flags &= ~RQF_SOFTBARRIER;
730 list_del_init(&rq->queuelist);
731 /*
732 * If RQF_DONTPREP, rq has contained some driver specific
733 * data, so insert it to hctx dispatch list to avoid any
734 * merge.
735 */
736 if (rq->rq_flags & RQF_DONTPREP)
737 blk_mq_request_bypass_insert(rq, false);
738 else
739 blk_mq_sched_insert_request(rq, true, false, false, true);
740 }
741
742 while (!list_empty(&rq_list)) {
743 rq = list_entry(rq_list.next, struct request, queuelist);
744 list_del_init(&rq->queuelist);
745 blk_mq_sched_insert_request(rq, false, false, false, true);
746 }
747
748 blk_mq_run_hw_queues(q, false);
749 }
750
751 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
752 bool kick_requeue_list)
753 {
754 struct request_queue *q = rq->q;
755 unsigned long flags;
756
757 /*
758 * We abuse this flag that is otherwise used by the I/O scheduler to
759 * request head insertion from the workqueue.
760 */
761 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
762
763 spin_lock_irqsave(&q->requeue_lock, flags);
764 if (at_head) {
765 rq->rq_flags |= RQF_SOFTBARRIER;
766 list_add(&rq->queuelist, &q->requeue_list);
767 } else {
768 list_add_tail(&rq->queuelist, &q->requeue_list);
769 }
770 spin_unlock_irqrestore(&q->requeue_lock, flags);
771
772 if (kick_requeue_list)
773 blk_mq_kick_requeue_list(q);
774 }
775 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
776
777 void blk_mq_kick_requeue_list(struct request_queue *q)
778 {
779 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
780 }
781 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
782
783 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
784 unsigned long msecs)
785 {
786 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
787 msecs_to_jiffies(msecs));
788 }
789 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
790
791 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
792 {
793 if (tag < tags->nr_tags) {
794 prefetch(tags->rqs[tag]);
795 return tags->rqs[tag];
796 }
797
798 return NULL;
799 }
800 EXPORT_SYMBOL(blk_mq_tag_to_rq);
801
802 struct blk_mq_timeout_data {
803 unsigned long next;
804 unsigned int next_set;
805 };
806
807 void blk_mq_rq_timed_out(struct request *req, bool reserved)
808 {
809 const struct blk_mq_ops *ops = req->q->mq_ops;
810 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
811
812 /*
813 * We know that complete is set at this point. If STARTED isn't set
814 * anymore, then the request isn't active and the "timeout" should
815 * just be ignored. This can happen due to the bitflag ordering.
816 * Timeout first checks if STARTED is set, and if it is, assumes
817 * the request is active. But if we race with completion, then
818 * both flags will get cleared. So check here again, and ignore
819 * a timeout event with a request that isn't active.
820 */
821 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
822 return;
823
824 if (ops->timeout)
825 ret = ops->timeout(req, reserved);
826
827 switch (ret) {
828 case BLK_EH_HANDLED:
829 __blk_mq_complete_request(req);
830 break;
831 case BLK_EH_RESET_TIMER:
832 blk_add_timer(req);
833 blk_clear_rq_complete(req);
834 break;
835 case BLK_EH_NOT_HANDLED:
836 break;
837 default:
838 printk(KERN_ERR "block: bad eh return: %d\n", ret);
839 break;
840 }
841 }
842
843 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
844 struct request *rq, void *priv, bool reserved)
845 {
846 struct blk_mq_timeout_data *data = priv;
847 unsigned long deadline;
848
849 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
850 return;
851
852 /*
853 * Ensures that if we see STARTED we must also see our
854 * up-to-date deadline, see blk_mq_start_request().
855 */
856 smp_rmb();
857
858 deadline = READ_ONCE(rq->deadline);
859
860 /*
861 * The rq being checked may have been freed and reallocated
862 * out already here, we avoid this race by checking rq->deadline
863 * and REQ_ATOM_COMPLETE flag together:
864 *
865 * - if rq->deadline is observed as new value because of
866 * reusing, the rq won't be timed out because of timing.
867 * - if rq->deadline is observed as previous value,
868 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
869 * because we put a barrier between setting rq->deadline
870 * and clearing the flag in blk_mq_start_request(), so
871 * this rq won't be timed out too.
872 */
873 if (time_after_eq(jiffies, deadline)) {
874 if (!blk_mark_rq_complete(rq)) {
875 /*
876 * Again coherence order ensures that consecutive reads
877 * from the same variable must be in that order. This
878 * ensures that if we see COMPLETE clear, we must then
879 * see STARTED set and we'll ignore this timeout.
880 *
881 * (There's also the MB implied by the test_and_clear())
882 */
883 blk_mq_rq_timed_out(rq, reserved);
884 }
885 } else if (!data->next_set || time_after(data->next, deadline)) {
886 data->next = deadline;
887 data->next_set = 1;
888 }
889 }
890
891 static void blk_mq_timeout_work(struct work_struct *work)
892 {
893 struct request_queue *q =
894 container_of(work, struct request_queue, timeout_work);
895 struct blk_mq_timeout_data data = {
896 .next = 0,
897 .next_set = 0,
898 };
899 int i;
900
901 /* A deadlock might occur if a request is stuck requiring a
902 * timeout at the same time a queue freeze is waiting
903 * completion, since the timeout code would not be able to
904 * acquire the queue reference here.
905 *
906 * That's why we don't use blk_queue_enter here; instead, we use
907 * percpu_ref_tryget directly, because we need to be able to
908 * obtain a reference even in the short window between the queue
909 * starting to freeze, by dropping the first reference in
910 * blk_freeze_queue_start, and the moment the last request is
911 * consumed, marked by the instant q_usage_counter reaches
912 * zero.
913 */
914 if (!percpu_ref_tryget(&q->q_usage_counter))
915 return;
916
917 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
918
919 if (data.next_set) {
920 data.next = blk_rq_timeout(round_jiffies_up(data.next));
921 mod_timer(&q->timeout, data.next);
922 } else {
923 struct blk_mq_hw_ctx *hctx;
924
925 queue_for_each_hw_ctx(q, hctx, i) {
926 /* the hctx may be unmapped, so check it here */
927 if (blk_mq_hw_queue_mapped(hctx))
928 blk_mq_tag_idle(hctx);
929 }
930 }
931 blk_queue_exit(q);
932 }
933
934 struct flush_busy_ctx_data {
935 struct blk_mq_hw_ctx *hctx;
936 struct list_head *list;
937 };
938
939 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
940 {
941 struct flush_busy_ctx_data *flush_data = data;
942 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
943 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
944
945 sbitmap_clear_bit(sb, bitnr);
946 spin_lock(&ctx->lock);
947 list_splice_tail_init(&ctx->rq_list, flush_data->list);
948 spin_unlock(&ctx->lock);
949 return true;
950 }
951
952 /*
953 * Process software queues that have been marked busy, splicing them
954 * to the for-dispatch
955 */
956 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
957 {
958 struct flush_busy_ctx_data data = {
959 .hctx = hctx,
960 .list = list,
961 };
962
963 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
964 }
965 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
966
967 struct dispatch_rq_data {
968 struct blk_mq_hw_ctx *hctx;
969 struct request *rq;
970 };
971
972 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
973 void *data)
974 {
975 struct dispatch_rq_data *dispatch_data = data;
976 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
977 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
978
979 spin_lock(&ctx->lock);
980 if (unlikely(!list_empty(&ctx->rq_list))) {
981 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
982 list_del_init(&dispatch_data->rq->queuelist);
983 if (list_empty(&ctx->rq_list))
984 sbitmap_clear_bit(sb, bitnr);
985 }
986 spin_unlock(&ctx->lock);
987
988 return !dispatch_data->rq;
989 }
990
991 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
992 struct blk_mq_ctx *start)
993 {
994 unsigned off = start ? start->index_hw : 0;
995 struct dispatch_rq_data data = {
996 .hctx = hctx,
997 .rq = NULL,
998 };
999
1000 __sbitmap_for_each_set(&hctx->ctx_map, off,
1001 dispatch_rq_from_ctx, &data);
1002
1003 return data.rq;
1004 }
1005
1006 static inline unsigned int queued_to_index(unsigned int queued)
1007 {
1008 if (!queued)
1009 return 0;
1010
1011 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1012 }
1013
1014 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
1015 bool wait)
1016 {
1017 struct blk_mq_alloc_data data = {
1018 .q = rq->q,
1019 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
1020 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
1021 };
1022 bool shared;
1023
1024 might_sleep_if(wait);
1025
1026 if (rq->tag != -1)
1027 goto done;
1028
1029 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1030 data.flags |= BLK_MQ_REQ_RESERVED;
1031
1032 shared = blk_mq_tag_busy(data.hctx);
1033 rq->tag = blk_mq_get_tag(&data);
1034 if (rq->tag >= 0) {
1035 if (shared) {
1036 rq->rq_flags |= RQF_MQ_INFLIGHT;
1037 atomic_inc(&data.hctx->nr_active);
1038 }
1039 data.hctx->tags->rqs[rq->tag] = rq;
1040 }
1041
1042 done:
1043 if (hctx)
1044 *hctx = data.hctx;
1045 return rq->tag != -1;
1046 }
1047
1048 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1049 int flags, void *key)
1050 {
1051 struct blk_mq_hw_ctx *hctx;
1052
1053 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1054
1055 list_del_init(&wait->entry);
1056 blk_mq_run_hw_queue(hctx, true);
1057 return 1;
1058 }
1059
1060 /*
1061 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1062 * the tag wakeups. For non-shared tags, we can simply mark us nedeing a
1063 * restart. For both caes, take care to check the condition again after
1064 * marking us as waiting.
1065 */
1066 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
1067 struct request *rq)
1068 {
1069 struct blk_mq_hw_ctx *this_hctx = *hctx;
1070 bool shared_tags = (this_hctx->flags & BLK_MQ_F_TAG_SHARED) != 0;
1071 struct sbq_wait_state *ws;
1072 wait_queue_entry_t *wait;
1073 bool ret;
1074
1075 if (!shared_tags) {
1076 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
1077 set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
1078 } else {
1079 wait = &this_hctx->dispatch_wait;
1080 if (!list_empty_careful(&wait->entry))
1081 return false;
1082
1083 spin_lock(&this_hctx->lock);
1084 if (!list_empty(&wait->entry)) {
1085 spin_unlock(&this_hctx->lock);
1086 return false;
1087 }
1088
1089 ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
1090 add_wait_queue(&ws->wait, wait);
1091 }
1092
1093 /*
1094 * It's possible that a tag was freed in the window between the
1095 * allocation failure and adding the hardware queue to the wait
1096 * queue.
1097 */
1098 ret = blk_mq_get_driver_tag(rq, hctx, false);
1099
1100 if (!shared_tags) {
1101 /*
1102 * Don't clear RESTART here, someone else could have set it.
1103 * At most this will cost an extra queue run.
1104 */
1105 return ret;
1106 } else {
1107 if (!ret) {
1108 spin_unlock(&this_hctx->lock);
1109 return false;
1110 }
1111
1112 /*
1113 * We got a tag, remove ourselves from the wait queue to ensure
1114 * someone else gets the wakeup.
1115 */
1116 spin_lock_irq(&ws->wait.lock);
1117 list_del_init(&wait->entry);
1118 spin_unlock_irq(&ws->wait.lock);
1119 spin_unlock(&this_hctx->lock);
1120 return true;
1121 }
1122 }
1123
1124 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1125 bool got_budget)
1126 {
1127 struct blk_mq_hw_ctx *hctx;
1128 struct request *rq, *nxt;
1129 bool no_tag = false;
1130 int errors, queued;
1131
1132 if (list_empty(list))
1133 return false;
1134
1135 WARN_ON(!list_is_singular(list) && got_budget);
1136
1137 /*
1138 * Now process all the entries, sending them to the driver.
1139 */
1140 errors = queued = 0;
1141 do {
1142 struct blk_mq_queue_data bd;
1143 blk_status_t ret;
1144
1145 rq = list_first_entry(list, struct request, queuelist);
1146
1147 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1148 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1149 break;
1150
1151 if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1152 /*
1153 * The initial allocation attempt failed, so we need to
1154 * rerun the hardware queue when a tag is freed. The
1155 * waitqueue takes care of that. If the queue is run
1156 * before we add this entry back on the dispatch list,
1157 * we'll re-run it below.
1158 */
1159 if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1160 blk_mq_put_dispatch_budget(hctx);
1161 /*
1162 * For non-shared tags, the RESTART check
1163 * will suffice.
1164 */
1165 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1166 no_tag = true;
1167 break;
1168 }
1169 }
1170
1171 list_del_init(&rq->queuelist);
1172
1173 bd.rq = rq;
1174
1175 /*
1176 * Flag last if we have no more requests, or if we have more
1177 * but can't assign a driver tag to it.
1178 */
1179 if (list_empty(list))
1180 bd.last = true;
1181 else {
1182 nxt = list_first_entry(list, struct request, queuelist);
1183 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1184 }
1185
1186 ret = q->mq_ops->queue_rq(hctx, &bd);
1187 if (ret == BLK_STS_RESOURCE) {
1188 /*
1189 * If an I/O scheduler has been configured and we got a
1190 * driver tag for the next request already, free it
1191 * again.
1192 */
1193 if (!list_empty(list)) {
1194 nxt = list_first_entry(list, struct request, queuelist);
1195 blk_mq_put_driver_tag(nxt);
1196 }
1197 list_add(&rq->queuelist, list);
1198 __blk_mq_requeue_request(rq);
1199 break;
1200 }
1201
1202 if (unlikely(ret != BLK_STS_OK)) {
1203 errors++;
1204 blk_mq_end_request(rq, BLK_STS_IOERR);
1205 continue;
1206 }
1207
1208 queued++;
1209 } while (!list_empty(list));
1210
1211 hctx->dispatched[queued_to_index(queued)]++;
1212
1213 /*
1214 * Any items that need requeuing? Stuff them into hctx->dispatch,
1215 * that is where we will continue on next queue run.
1216 */
1217 if (!list_empty(list)) {
1218 spin_lock(&hctx->lock);
1219 list_splice_init(list, &hctx->dispatch);
1220 spin_unlock(&hctx->lock);
1221
1222 /*
1223 * If SCHED_RESTART was set by the caller of this function and
1224 * it is no longer set that means that it was cleared by another
1225 * thread and hence that a queue rerun is needed.
1226 *
1227 * If 'no_tag' is set, that means that we failed getting
1228 * a driver tag with an I/O scheduler attached. If our dispatch
1229 * waitqueue is no longer active, ensure that we run the queue
1230 * AFTER adding our entries back to the list.
1231 *
1232 * If no I/O scheduler has been configured it is possible that
1233 * the hardware queue got stopped and restarted before requests
1234 * were pushed back onto the dispatch list. Rerun the queue to
1235 * avoid starvation. Notes:
1236 * - blk_mq_run_hw_queue() checks whether or not a queue has
1237 * been stopped before rerunning a queue.
1238 * - Some but not all block drivers stop a queue before
1239 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1240 * and dm-rq.
1241 */
1242 if (!blk_mq_sched_needs_restart(hctx) ||
1243 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1244 blk_mq_run_hw_queue(hctx, true);
1245 }
1246
1247 return (queued + errors) != 0;
1248 }
1249
1250 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1251 {
1252 int srcu_idx;
1253
1254 /*
1255 * We should be running this queue from one of the CPUs that
1256 * are mapped to it.
1257 *
1258 * There are at least two related races now between setting
1259 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1260 * __blk_mq_run_hw_queue():
1261 *
1262 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1263 * but later it becomes online, then this warning is harmless
1264 * at all
1265 *
1266 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1267 * but later it becomes offline, then the warning can't be
1268 * triggered, and we depend on blk-mq timeout handler to
1269 * handle dispatched requests to this hctx
1270 */
1271 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1272 cpu_online(hctx->next_cpu)) {
1273 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1274 raw_smp_processor_id(),
1275 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1276 dump_stack();
1277 }
1278
1279 /*
1280 * We can't run the queue inline with ints disabled. Ensure that
1281 * we catch bad users of this early.
1282 */
1283 WARN_ON_ONCE(in_interrupt());
1284
1285 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1286
1287 hctx_lock(hctx, &srcu_idx);
1288 blk_mq_sched_dispatch_requests(hctx);
1289 hctx_unlock(hctx, srcu_idx);
1290 }
1291
1292 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1293 {
1294 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1295
1296 if (cpu >= nr_cpu_ids)
1297 cpu = cpumask_first(hctx->cpumask);
1298 return cpu;
1299 }
1300
1301 /*
1302 * It'd be great if the workqueue API had a way to pass
1303 * in a mask and had some smarts for more clever placement.
1304 * For now we just round-robin here, switching for every
1305 * BLK_MQ_CPU_WORK_BATCH queued items.
1306 */
1307 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1308 {
1309 bool tried = false;
1310 int next_cpu = hctx->next_cpu;
1311
1312 if (hctx->queue->nr_hw_queues == 1)
1313 return WORK_CPU_UNBOUND;
1314
1315 if (--hctx->next_cpu_batch <= 0) {
1316 select_cpu:
1317 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1318 cpu_online_mask);
1319 if (next_cpu >= nr_cpu_ids)
1320 next_cpu = blk_mq_first_mapped_cpu(hctx);
1321 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1322 }
1323
1324 /*
1325 * Do unbound schedule if we can't find a online CPU for this hctx,
1326 * and it should only happen in the path of handling CPU DEAD.
1327 */
1328 if (!cpu_online(next_cpu)) {
1329 if (!tried) {
1330 tried = true;
1331 goto select_cpu;
1332 }
1333
1334 /*
1335 * Make sure to re-select CPU next time once after CPUs
1336 * in hctx->cpumask become online again.
1337 */
1338 hctx->next_cpu = next_cpu;
1339 hctx->next_cpu_batch = 1;
1340 return WORK_CPU_UNBOUND;
1341 }
1342
1343 hctx->next_cpu = next_cpu;
1344 return next_cpu;
1345 }
1346
1347 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1348 unsigned long msecs)
1349 {
1350 if (unlikely(blk_mq_hctx_stopped(hctx)))
1351 return;
1352
1353 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1354 int cpu = get_cpu();
1355 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1356 __blk_mq_run_hw_queue(hctx);
1357 put_cpu();
1358 return;
1359 }
1360
1361 put_cpu();
1362 }
1363
1364 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1365 msecs_to_jiffies(msecs));
1366 }
1367
1368 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1369 {
1370 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1371 }
1372 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1373
1374 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1375 {
1376 int srcu_idx;
1377 bool need_run;
1378
1379 /*
1380 * When queue is quiesced, we may be switching io scheduler, or
1381 * updating nr_hw_queues, or other things, and we can't run queue
1382 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1383 *
1384 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1385 * quiesced.
1386 */
1387 hctx_lock(hctx, &srcu_idx);
1388 need_run = !blk_queue_quiesced(hctx->queue) &&
1389 blk_mq_hctx_has_pending(hctx);
1390 hctx_unlock(hctx, srcu_idx);
1391
1392 if (need_run) {
1393 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1394 return true;
1395 }
1396
1397 return false;
1398 }
1399 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1400
1401 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1402 {
1403 struct blk_mq_hw_ctx *hctx;
1404 int i;
1405
1406 queue_for_each_hw_ctx(q, hctx, i) {
1407 if (blk_mq_hctx_stopped(hctx))
1408 continue;
1409
1410 blk_mq_run_hw_queue(hctx, async);
1411 }
1412 }
1413 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1414
1415 /**
1416 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1417 * @q: request queue.
1418 *
1419 * The caller is responsible for serializing this function against
1420 * blk_mq_{start,stop}_hw_queue().
1421 */
1422 bool blk_mq_queue_stopped(struct request_queue *q)
1423 {
1424 struct blk_mq_hw_ctx *hctx;
1425 int i;
1426
1427 queue_for_each_hw_ctx(q, hctx, i)
1428 if (blk_mq_hctx_stopped(hctx))
1429 return true;
1430
1431 return false;
1432 }
1433 EXPORT_SYMBOL(blk_mq_queue_stopped);
1434
1435 /*
1436 * This function is often used for pausing .queue_rq() by driver when
1437 * there isn't enough resource or some conditions aren't satisfied, and
1438 * BLK_STS_RESOURCE is usually returned.
1439 *
1440 * We do not guarantee that dispatch can be drained or blocked
1441 * after blk_mq_stop_hw_queue() returns. Please use
1442 * blk_mq_quiesce_queue() for that requirement.
1443 */
1444 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1445 {
1446 cancel_delayed_work(&hctx->run_work);
1447
1448 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1449 }
1450 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1451
1452 /*
1453 * This function is often used for pausing .queue_rq() by driver when
1454 * there isn't enough resource or some conditions aren't satisfied, and
1455 * BLK_STS_RESOURCE is usually returned.
1456 *
1457 * We do not guarantee that dispatch can be drained or blocked
1458 * after blk_mq_stop_hw_queues() returns. Please use
1459 * blk_mq_quiesce_queue() for that requirement.
1460 */
1461 void blk_mq_stop_hw_queues(struct request_queue *q)
1462 {
1463 struct blk_mq_hw_ctx *hctx;
1464 int i;
1465
1466 queue_for_each_hw_ctx(q, hctx, i)
1467 blk_mq_stop_hw_queue(hctx);
1468 }
1469 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1470
1471 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1472 {
1473 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1474
1475 blk_mq_run_hw_queue(hctx, false);
1476 }
1477 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1478
1479 void blk_mq_start_hw_queues(struct request_queue *q)
1480 {
1481 struct blk_mq_hw_ctx *hctx;
1482 int i;
1483
1484 queue_for_each_hw_ctx(q, hctx, i)
1485 blk_mq_start_hw_queue(hctx);
1486 }
1487 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1488
1489 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1490 {
1491 if (!blk_mq_hctx_stopped(hctx))
1492 return;
1493
1494 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1495 blk_mq_run_hw_queue(hctx, async);
1496 }
1497 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1498
1499 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1500 {
1501 struct blk_mq_hw_ctx *hctx;
1502 int i;
1503
1504 queue_for_each_hw_ctx(q, hctx, i)
1505 blk_mq_start_stopped_hw_queue(hctx, async);
1506 }
1507 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1508
1509 static void blk_mq_run_work_fn(struct work_struct *work)
1510 {
1511 struct blk_mq_hw_ctx *hctx;
1512
1513 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1514
1515 /*
1516 * If we are stopped, don't run the queue. The exception is if
1517 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1518 * the STOPPED bit and run it.
1519 */
1520 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1521 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1522 return;
1523
1524 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1525 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1526 }
1527
1528 __blk_mq_run_hw_queue(hctx);
1529 }
1530
1531
1532 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1533 {
1534 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1535 return;
1536
1537 /*
1538 * Stop the hw queue, then modify currently delayed work.
1539 * This should prevent us from running the queue prematurely.
1540 * Mark the queue as auto-clearing STOPPED when it runs.
1541 */
1542 blk_mq_stop_hw_queue(hctx);
1543 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1544 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1545 &hctx->run_work,
1546 msecs_to_jiffies(msecs));
1547 }
1548 EXPORT_SYMBOL(blk_mq_delay_queue);
1549
1550 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1551 struct request *rq,
1552 bool at_head)
1553 {
1554 struct blk_mq_ctx *ctx = rq->mq_ctx;
1555
1556 lockdep_assert_held(&ctx->lock);
1557
1558 trace_block_rq_insert(hctx->queue, rq);
1559
1560 if (at_head)
1561 list_add(&rq->queuelist, &ctx->rq_list);
1562 else
1563 list_add_tail(&rq->queuelist, &ctx->rq_list);
1564 }
1565
1566 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1567 bool at_head)
1568 {
1569 struct blk_mq_ctx *ctx = rq->mq_ctx;
1570
1571 lockdep_assert_held(&ctx->lock);
1572
1573 __blk_mq_insert_req_list(hctx, rq, at_head);
1574 blk_mq_hctx_mark_pending(hctx, ctx);
1575 }
1576
1577 /*
1578 * Should only be used carefully, when the caller knows we want to
1579 * bypass a potential IO scheduler on the target device.
1580 */
1581 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1582 {
1583 struct blk_mq_ctx *ctx = rq->mq_ctx;
1584 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1585
1586 spin_lock(&hctx->lock);
1587 list_add_tail(&rq->queuelist, &hctx->dispatch);
1588 spin_unlock(&hctx->lock);
1589
1590 if (run_queue)
1591 blk_mq_run_hw_queue(hctx, false);
1592 }
1593
1594 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1595 struct list_head *list)
1596
1597 {
1598 /*
1599 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1600 * offline now
1601 */
1602 spin_lock(&ctx->lock);
1603 while (!list_empty(list)) {
1604 struct request *rq;
1605
1606 rq = list_first_entry(list, struct request, queuelist);
1607 BUG_ON(rq->mq_ctx != ctx);
1608 list_del_init(&rq->queuelist);
1609 __blk_mq_insert_req_list(hctx, rq, false);
1610 }
1611 blk_mq_hctx_mark_pending(hctx, ctx);
1612 spin_unlock(&ctx->lock);
1613 }
1614
1615 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1616 {
1617 struct request *rqa = container_of(a, struct request, queuelist);
1618 struct request *rqb = container_of(b, struct request, queuelist);
1619
1620 return !(rqa->mq_ctx < rqb->mq_ctx ||
1621 (rqa->mq_ctx == rqb->mq_ctx &&
1622 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1623 }
1624
1625 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1626 {
1627 struct blk_mq_ctx *this_ctx;
1628 struct request_queue *this_q;
1629 struct request *rq;
1630 LIST_HEAD(list);
1631 LIST_HEAD(ctx_list);
1632 unsigned int depth;
1633
1634 list_splice_init(&plug->mq_list, &list);
1635
1636 list_sort(NULL, &list, plug_ctx_cmp);
1637
1638 this_q = NULL;
1639 this_ctx = NULL;
1640 depth = 0;
1641
1642 while (!list_empty(&list)) {
1643 rq = list_entry_rq(list.next);
1644 list_del_init(&rq->queuelist);
1645 BUG_ON(!rq->q);
1646 if (rq->mq_ctx != this_ctx) {
1647 if (this_ctx) {
1648 trace_block_unplug(this_q, depth, !from_schedule);
1649 blk_mq_sched_insert_requests(this_q, this_ctx,
1650 &ctx_list,
1651 from_schedule);
1652 }
1653
1654 this_ctx = rq->mq_ctx;
1655 this_q = rq->q;
1656 depth = 0;
1657 }
1658
1659 depth++;
1660 list_add_tail(&rq->queuelist, &ctx_list);
1661 }
1662
1663 /*
1664 * If 'this_ctx' is set, we know we have entries to complete
1665 * on 'ctx_list'. Do those.
1666 */
1667 if (this_ctx) {
1668 trace_block_unplug(this_q, depth, !from_schedule);
1669 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1670 from_schedule);
1671 }
1672 }
1673
1674 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1675 {
1676 blk_init_request_from_bio(rq, bio);
1677
1678 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1679
1680 blk_account_io_start(rq, true);
1681 }
1682
1683 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1684 struct blk_mq_ctx *ctx,
1685 struct request *rq)
1686 {
1687 spin_lock(&ctx->lock);
1688 __blk_mq_insert_request(hctx, rq, false);
1689 spin_unlock(&ctx->lock);
1690 }
1691
1692 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1693 {
1694 if (rq->tag != -1)
1695 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1696
1697 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1698 }
1699
1700 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1701 struct request *rq,
1702 blk_qc_t *cookie)
1703 {
1704 struct request_queue *q = rq->q;
1705 struct blk_mq_queue_data bd = {
1706 .rq = rq,
1707 .last = true,
1708 };
1709 blk_qc_t new_cookie;
1710 blk_status_t ret;
1711 bool run_queue = true;
1712
1713 /* RCU or SRCU read lock is needed before checking quiesced flag */
1714 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1715 run_queue = false;
1716 goto insert;
1717 }
1718
1719 if (q->elevator)
1720 goto insert;
1721
1722 if (!blk_mq_get_dispatch_budget(hctx))
1723 goto insert;
1724
1725 if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1726 blk_mq_put_dispatch_budget(hctx);
1727 goto insert;
1728 }
1729
1730 new_cookie = request_to_qc_t(hctx, rq);
1731
1732 /*
1733 * For OK queue, we are done. For error, kill it. Any other
1734 * error (busy), just add it to our list as we previously
1735 * would have done
1736 */
1737 ret = q->mq_ops->queue_rq(hctx, &bd);
1738 switch (ret) {
1739 case BLK_STS_OK:
1740 *cookie = new_cookie;
1741 return;
1742 case BLK_STS_RESOURCE:
1743 __blk_mq_requeue_request(rq);
1744 goto insert;
1745 default:
1746 *cookie = BLK_QC_T_NONE;
1747 blk_mq_end_request(rq, ret);
1748 return;
1749 }
1750
1751 insert:
1752 blk_mq_sched_insert_request(rq, false, run_queue, false,
1753 hctx->flags & BLK_MQ_F_BLOCKING);
1754 }
1755
1756 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1757 struct request *rq, blk_qc_t *cookie)
1758 {
1759 int srcu_idx;
1760
1761 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1762
1763 hctx_lock(hctx, &srcu_idx);
1764 __blk_mq_try_issue_directly(hctx, rq, cookie);
1765 hctx_unlock(hctx, srcu_idx);
1766 }
1767
1768 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1769 {
1770 const int is_sync = op_is_sync(bio->bi_opf);
1771 const int is_flush_fua = op_is_flush(bio->bi_opf);
1772 struct blk_mq_alloc_data data = { .flags = 0 };
1773 struct request *rq;
1774 unsigned int request_count = 0;
1775 struct blk_plug *plug;
1776 struct request *same_queue_rq = NULL;
1777 blk_qc_t cookie;
1778 unsigned int wb_acct;
1779
1780 blk_queue_bounce(q, &bio);
1781
1782 blk_queue_split(q, &bio);
1783
1784 if (!bio_integrity_prep(bio))
1785 return BLK_QC_T_NONE;
1786
1787 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1788 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1789 return BLK_QC_T_NONE;
1790
1791 if (blk_mq_sched_bio_merge(q, bio))
1792 return BLK_QC_T_NONE;
1793
1794 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1795
1796 trace_block_getrq(q, bio, bio->bi_opf);
1797
1798 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1799 if (unlikely(!rq)) {
1800 __wbt_done(q->rq_wb, wb_acct);
1801 if (bio->bi_opf & REQ_NOWAIT)
1802 bio_wouldblock_error(bio);
1803 return BLK_QC_T_NONE;
1804 }
1805
1806 wbt_track(&rq->issue_stat, wb_acct);
1807
1808 cookie = request_to_qc_t(data.hctx, rq);
1809
1810 plug = current->plug;
1811 if (unlikely(is_flush_fua)) {
1812 blk_mq_put_ctx(data.ctx);
1813 blk_mq_bio_to_request(rq, bio);
1814
1815 /* bypass scheduler for flush rq */
1816 blk_insert_flush(rq);
1817 blk_mq_run_hw_queue(data.hctx, true);
1818 } else if (plug && q->nr_hw_queues == 1) {
1819 struct request *last = NULL;
1820
1821 blk_mq_put_ctx(data.ctx);
1822 blk_mq_bio_to_request(rq, bio);
1823
1824 /*
1825 * @request_count may become stale because of schedule
1826 * out, so check the list again.
1827 */
1828 if (list_empty(&plug->mq_list))
1829 request_count = 0;
1830 else if (blk_queue_nomerges(q))
1831 request_count = blk_plug_queued_count(q);
1832
1833 if (!request_count)
1834 trace_block_plug(q);
1835 else
1836 last = list_entry_rq(plug->mq_list.prev);
1837
1838 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1839 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1840 blk_flush_plug_list(plug, false);
1841 trace_block_plug(q);
1842 }
1843
1844 list_add_tail(&rq->queuelist, &plug->mq_list);
1845 } else if (plug && !blk_queue_nomerges(q)) {
1846 blk_mq_bio_to_request(rq, bio);
1847
1848 /*
1849 * We do limited plugging. If the bio can be merged, do that.
1850 * Otherwise the existing request in the plug list will be
1851 * issued. So the plug list will have one request at most
1852 * The plug list might get flushed before this. If that happens,
1853 * the plug list is empty, and same_queue_rq is invalid.
1854 */
1855 if (list_empty(&plug->mq_list))
1856 same_queue_rq = NULL;
1857 if (same_queue_rq)
1858 list_del_init(&same_queue_rq->queuelist);
1859 list_add_tail(&rq->queuelist, &plug->mq_list);
1860
1861 blk_mq_put_ctx(data.ctx);
1862
1863 if (same_queue_rq) {
1864 data.hctx = blk_mq_map_queue(q,
1865 same_queue_rq->mq_ctx->cpu);
1866 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1867 &cookie);
1868 }
1869 } else if (q->nr_hw_queues > 1 && is_sync) {
1870 blk_mq_put_ctx(data.ctx);
1871 blk_mq_bio_to_request(rq, bio);
1872 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1873 } else if (q->elevator) {
1874 blk_mq_put_ctx(data.ctx);
1875 blk_mq_bio_to_request(rq, bio);
1876 blk_mq_sched_insert_request(rq, false, true, true, true);
1877 } else {
1878 blk_mq_put_ctx(data.ctx);
1879 blk_mq_bio_to_request(rq, bio);
1880 blk_mq_queue_io(data.hctx, data.ctx, rq);
1881 blk_mq_run_hw_queue(data.hctx, true);
1882 }
1883
1884 return cookie;
1885 }
1886
1887 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1888 unsigned int hctx_idx)
1889 {
1890 struct page *page;
1891
1892 if (tags->rqs && set->ops->exit_request) {
1893 int i;
1894
1895 for (i = 0; i < tags->nr_tags; i++) {
1896 struct request *rq = tags->static_rqs[i];
1897
1898 if (!rq)
1899 continue;
1900 set->ops->exit_request(set, rq, hctx_idx);
1901 tags->static_rqs[i] = NULL;
1902 }
1903 }
1904
1905 while (!list_empty(&tags->page_list)) {
1906 page = list_first_entry(&tags->page_list, struct page, lru);
1907 list_del_init(&page->lru);
1908 /*
1909 * Remove kmemleak object previously allocated in
1910 * blk_mq_init_rq_map().
1911 */
1912 kmemleak_free(page_address(page));
1913 __free_pages(page, page->private);
1914 }
1915 }
1916
1917 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1918 {
1919 kfree(tags->rqs);
1920 tags->rqs = NULL;
1921 kfree(tags->static_rqs);
1922 tags->static_rqs = NULL;
1923
1924 blk_mq_free_tags(tags);
1925 }
1926
1927 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1928 unsigned int hctx_idx,
1929 unsigned int nr_tags,
1930 unsigned int reserved_tags)
1931 {
1932 struct blk_mq_tags *tags;
1933 int node;
1934
1935 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1936 if (node == NUMA_NO_NODE)
1937 node = set->numa_node;
1938
1939 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1940 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1941 if (!tags)
1942 return NULL;
1943
1944 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1945 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1946 node);
1947 if (!tags->rqs) {
1948 blk_mq_free_tags(tags);
1949 return NULL;
1950 }
1951
1952 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1953 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1954 node);
1955 if (!tags->static_rqs) {
1956 kfree(tags->rqs);
1957 blk_mq_free_tags(tags);
1958 return NULL;
1959 }
1960
1961 return tags;
1962 }
1963
1964 static size_t order_to_size(unsigned int order)
1965 {
1966 return (size_t)PAGE_SIZE << order;
1967 }
1968
1969 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1970 unsigned int hctx_idx, unsigned int depth)
1971 {
1972 unsigned int i, j, entries_per_page, max_order = 4;
1973 size_t rq_size, left;
1974 int node;
1975
1976 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1977 if (node == NUMA_NO_NODE)
1978 node = set->numa_node;
1979
1980 INIT_LIST_HEAD(&tags->page_list);
1981
1982 /*
1983 * rq_size is the size of the request plus driver payload, rounded
1984 * to the cacheline size
1985 */
1986 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1987 cache_line_size());
1988 left = rq_size * depth;
1989
1990 for (i = 0; i < depth; ) {
1991 int this_order = max_order;
1992 struct page *page;
1993 int to_do;
1994 void *p;
1995
1996 while (this_order && left < order_to_size(this_order - 1))
1997 this_order--;
1998
1999 do {
2000 page = alloc_pages_node(node,
2001 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2002 this_order);
2003 if (page)
2004 break;
2005 if (!this_order--)
2006 break;
2007 if (order_to_size(this_order) < rq_size)
2008 break;
2009 } while (1);
2010
2011 if (!page)
2012 goto fail;
2013
2014 page->private = this_order;
2015 list_add_tail(&page->lru, &tags->page_list);
2016
2017 p = page_address(page);
2018 /*
2019 * Allow kmemleak to scan these pages as they contain pointers
2020 * to additional allocations like via ops->init_request().
2021 */
2022 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2023 entries_per_page = order_to_size(this_order) / rq_size;
2024 to_do = min(entries_per_page, depth - i);
2025 left -= to_do * rq_size;
2026 for (j = 0; j < to_do; j++) {
2027 struct request *rq = p;
2028
2029 tags->static_rqs[i] = rq;
2030 if (set->ops->init_request) {
2031 if (set->ops->init_request(set, rq, hctx_idx,
2032 node)) {
2033 tags->static_rqs[i] = NULL;
2034 goto fail;
2035 }
2036 }
2037
2038 p += rq_size;
2039 i++;
2040 }
2041 }
2042 return 0;
2043
2044 fail:
2045 blk_mq_free_rqs(set, tags, hctx_idx);
2046 return -ENOMEM;
2047 }
2048
2049 /*
2050 * 'cpu' is going away. splice any existing rq_list entries from this
2051 * software queue to the hw queue dispatch list, and ensure that it
2052 * gets run.
2053 */
2054 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2055 {
2056 struct blk_mq_hw_ctx *hctx;
2057 struct blk_mq_ctx *ctx;
2058 LIST_HEAD(tmp);
2059
2060 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2061 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2062
2063 spin_lock(&ctx->lock);
2064 if (!list_empty(&ctx->rq_list)) {
2065 list_splice_init(&ctx->rq_list, &tmp);
2066 blk_mq_hctx_clear_pending(hctx, ctx);
2067 }
2068 spin_unlock(&ctx->lock);
2069
2070 if (list_empty(&tmp))
2071 return 0;
2072
2073 spin_lock(&hctx->lock);
2074 list_splice_tail_init(&tmp, &hctx->dispatch);
2075 spin_unlock(&hctx->lock);
2076
2077 blk_mq_run_hw_queue(hctx, true);
2078 return 0;
2079 }
2080
2081 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2082 {
2083 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2084 &hctx->cpuhp_dead);
2085 }
2086
2087 /* hctx->ctxs will be freed in queue's release handler */
2088 static void blk_mq_exit_hctx(struct request_queue *q,
2089 struct blk_mq_tag_set *set,
2090 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2091 {
2092 blk_mq_debugfs_unregister_hctx(hctx);
2093
2094 if (blk_mq_hw_queue_mapped(hctx))
2095 blk_mq_tag_idle(hctx);
2096
2097 if (set->ops->exit_request)
2098 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2099
2100 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2101
2102 if (set->ops->exit_hctx)
2103 set->ops->exit_hctx(hctx, hctx_idx);
2104
2105 blk_mq_remove_cpuhp(hctx);
2106 }
2107
2108 static void blk_mq_exit_hw_queues(struct request_queue *q,
2109 struct blk_mq_tag_set *set, int nr_queue)
2110 {
2111 struct blk_mq_hw_ctx *hctx;
2112 unsigned int i;
2113
2114 queue_for_each_hw_ctx(q, hctx, i) {
2115 if (i == nr_queue)
2116 break;
2117 blk_mq_exit_hctx(q, set, hctx, i);
2118 }
2119 }
2120
2121 static int blk_mq_init_hctx(struct request_queue *q,
2122 struct blk_mq_tag_set *set,
2123 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2124 {
2125 int node;
2126
2127 node = hctx->numa_node;
2128 if (node == NUMA_NO_NODE)
2129 node = hctx->numa_node = set->numa_node;
2130
2131 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2132 spin_lock_init(&hctx->lock);
2133 INIT_LIST_HEAD(&hctx->dispatch);
2134 hctx->queue = q;
2135 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2136
2137 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2138
2139 hctx->tags = set->tags[hctx_idx];
2140
2141 /*
2142 * Allocate space for all possible cpus to avoid allocation at
2143 * runtime
2144 */
2145 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2146 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node);
2147 if (!hctx->ctxs)
2148 goto unregister_cpu_notifier;
2149
2150 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2151 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node))
2152 goto free_ctxs;
2153
2154 hctx->nr_ctx = 0;
2155
2156 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2157 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2158
2159 if (set->ops->init_hctx &&
2160 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2161 goto free_bitmap;
2162
2163 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2164 goto exit_hctx;
2165
2166 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2167 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2168 if (!hctx->fq)
2169 goto sched_exit_hctx;
2170
2171 if (set->ops->init_request &&
2172 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
2173 node))
2174 goto free_fq;
2175
2176 if (hctx->flags & BLK_MQ_F_BLOCKING)
2177 init_srcu_struct(hctx->queue_rq_srcu);
2178
2179 blk_mq_debugfs_register_hctx(q, hctx);
2180
2181 return 0;
2182
2183 free_fq:
2184 blk_free_flush_queue(hctx->fq);
2185 sched_exit_hctx:
2186 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2187 exit_hctx:
2188 if (set->ops->exit_hctx)
2189 set->ops->exit_hctx(hctx, hctx_idx);
2190 free_bitmap:
2191 sbitmap_free(&hctx->ctx_map);
2192 free_ctxs:
2193 kfree(hctx->ctxs);
2194 unregister_cpu_notifier:
2195 blk_mq_remove_cpuhp(hctx);
2196 return -1;
2197 }
2198
2199 static void blk_mq_init_cpu_queues(struct request_queue *q,
2200 unsigned int nr_hw_queues)
2201 {
2202 unsigned int i;
2203
2204 for_each_possible_cpu(i) {
2205 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2206 struct blk_mq_hw_ctx *hctx;
2207
2208 __ctx->cpu = i;
2209 spin_lock_init(&__ctx->lock);
2210 INIT_LIST_HEAD(&__ctx->rq_list);
2211 __ctx->queue = q;
2212
2213 /*
2214 * Set local node, IFF we have more than one hw queue. If
2215 * not, we remain on the home node of the device
2216 */
2217 hctx = blk_mq_map_queue(q, i);
2218 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2219 hctx->numa_node = local_memory_node(cpu_to_node(i));
2220 }
2221 }
2222
2223 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2224 {
2225 int ret = 0;
2226
2227 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2228 set->queue_depth, set->reserved_tags);
2229 if (!set->tags[hctx_idx])
2230 return false;
2231
2232 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2233 set->queue_depth);
2234 if (!ret)
2235 return true;
2236
2237 blk_mq_free_rq_map(set->tags[hctx_idx]);
2238 set->tags[hctx_idx] = NULL;
2239 return false;
2240 }
2241
2242 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2243 unsigned int hctx_idx)
2244 {
2245 if (set->tags[hctx_idx]) {
2246 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2247 blk_mq_free_rq_map(set->tags[hctx_idx]);
2248 set->tags[hctx_idx] = NULL;
2249 }
2250 }
2251
2252 static void blk_mq_map_swqueue(struct request_queue *q)
2253 {
2254 unsigned int i, hctx_idx;
2255 struct blk_mq_hw_ctx *hctx;
2256 struct blk_mq_ctx *ctx;
2257 struct blk_mq_tag_set *set = q->tag_set;
2258
2259 /*
2260 * Avoid others reading imcomplete hctx->cpumask through sysfs
2261 */
2262 mutex_lock(&q->sysfs_lock);
2263
2264 queue_for_each_hw_ctx(q, hctx, i) {
2265 cpumask_clear(hctx->cpumask);
2266 hctx->nr_ctx = 0;
2267 }
2268
2269 /*
2270 * Map software to hardware queues.
2271 *
2272 * If the cpu isn't present, the cpu is mapped to first hctx.
2273 */
2274 for_each_possible_cpu(i) {
2275 hctx_idx = q->mq_map[i];
2276 /* unmapped hw queue can be remapped after CPU topo changed */
2277 if (!set->tags[hctx_idx] &&
2278 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2279 /*
2280 * If tags initialization fail for some hctx,
2281 * that hctx won't be brought online. In this
2282 * case, remap the current ctx to hctx[0] which
2283 * is guaranteed to always have tags allocated
2284 */
2285 q->mq_map[i] = 0;
2286 }
2287
2288 ctx = per_cpu_ptr(q->queue_ctx, i);
2289 hctx = blk_mq_map_queue(q, i);
2290
2291 cpumask_set_cpu(i, hctx->cpumask);
2292 ctx->index_hw = hctx->nr_ctx;
2293 hctx->ctxs[hctx->nr_ctx++] = ctx;
2294 }
2295
2296 mutex_unlock(&q->sysfs_lock);
2297
2298 queue_for_each_hw_ctx(q, hctx, i) {
2299 /*
2300 * If no software queues are mapped to this hardware queue,
2301 * disable it and free the request entries.
2302 */
2303 if (!hctx->nr_ctx) {
2304 /* Never unmap queue 0. We need it as a
2305 * fallback in case of a new remap fails
2306 * allocation
2307 */
2308 if (i && set->tags[i])
2309 blk_mq_free_map_and_requests(set, i);
2310
2311 hctx->tags = NULL;
2312 continue;
2313 }
2314
2315 hctx->tags = set->tags[i];
2316 WARN_ON(!hctx->tags);
2317
2318 /*
2319 * Set the map size to the number of mapped software queues.
2320 * This is more accurate and more efficient than looping
2321 * over all possibly mapped software queues.
2322 */
2323 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2324
2325 /*
2326 * Initialize batch roundrobin counts
2327 */
2328 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2329 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2330 }
2331 }
2332
2333 /*
2334 * Caller needs to ensure that we're either frozen/quiesced, or that
2335 * the queue isn't live yet.
2336 */
2337 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2338 {
2339 struct blk_mq_hw_ctx *hctx;
2340 int i;
2341
2342 queue_for_each_hw_ctx(q, hctx, i) {
2343 if (shared) {
2344 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2345 atomic_inc(&q->shared_hctx_restart);
2346 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2347 } else {
2348 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2349 atomic_dec(&q->shared_hctx_restart);
2350 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2351 }
2352 }
2353 }
2354
2355 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2356 bool shared)
2357 {
2358 struct request_queue *q;
2359
2360 lockdep_assert_held(&set->tag_list_lock);
2361
2362 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2363 blk_mq_freeze_queue(q);
2364 queue_set_hctx_shared(q, shared);
2365 blk_mq_unfreeze_queue(q);
2366 }
2367 }
2368
2369 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2370 {
2371 struct blk_mq_tag_set *set = q->tag_set;
2372
2373 mutex_lock(&set->tag_list_lock);
2374 list_del_rcu(&q->tag_set_list);
2375 if (list_is_singular(&set->tag_list)) {
2376 /* just transitioned to unshared */
2377 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2378 /* update existing queue */
2379 blk_mq_update_tag_set_depth(set, false);
2380 }
2381 mutex_unlock(&set->tag_list_lock);
2382 synchronize_rcu();
2383 INIT_LIST_HEAD(&q->tag_set_list);
2384 }
2385
2386 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2387 struct request_queue *q)
2388 {
2389 q->tag_set = set;
2390
2391 mutex_lock(&set->tag_list_lock);
2392
2393 /*
2394 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2395 */
2396 if (!list_empty(&set->tag_list) &&
2397 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2398 set->flags |= BLK_MQ_F_TAG_SHARED;
2399 /* update existing queue */
2400 blk_mq_update_tag_set_depth(set, true);
2401 }
2402 if (set->flags & BLK_MQ_F_TAG_SHARED)
2403 queue_set_hctx_shared(q, true);
2404 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2405
2406 mutex_unlock(&set->tag_list_lock);
2407 }
2408
2409 /*
2410 * It is the actual release handler for mq, but we do it from
2411 * request queue's release handler for avoiding use-after-free
2412 * and headache because q->mq_kobj shouldn't have been introduced,
2413 * but we can't group ctx/kctx kobj without it.
2414 */
2415 void blk_mq_release(struct request_queue *q)
2416 {
2417 struct blk_mq_hw_ctx *hctx;
2418 unsigned int i;
2419
2420 /* hctx kobj stays in hctx */
2421 queue_for_each_hw_ctx(q, hctx, i) {
2422 if (!hctx)
2423 continue;
2424 kobject_put(&hctx->kobj);
2425 }
2426
2427 q->mq_map = NULL;
2428
2429 kfree(q->queue_hw_ctx);
2430
2431 /*
2432 * release .mq_kobj and sw queue's kobject now because
2433 * both share lifetime with request queue.
2434 */
2435 blk_mq_sysfs_deinit(q);
2436
2437 free_percpu(q->queue_ctx);
2438 }
2439
2440 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2441 {
2442 struct request_queue *uninit_q, *q;
2443
2444 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2445 if (!uninit_q)
2446 return ERR_PTR(-ENOMEM);
2447
2448 q = blk_mq_init_allocated_queue(set, uninit_q);
2449 if (IS_ERR(q))
2450 blk_cleanup_queue(uninit_q);
2451
2452 return q;
2453 }
2454 EXPORT_SYMBOL(blk_mq_init_queue);
2455
2456 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2457 {
2458 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2459
2460 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
2461 __alignof__(struct blk_mq_hw_ctx)) !=
2462 sizeof(struct blk_mq_hw_ctx));
2463
2464 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2465 hw_ctx_size += sizeof(struct srcu_struct);
2466
2467 return hw_ctx_size;
2468 }
2469
2470 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2471 struct request_queue *q)
2472 {
2473 int i, j;
2474 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2475
2476 blk_mq_sysfs_unregister(q);
2477
2478 /* protect against switching io scheduler */
2479 mutex_lock(&q->sysfs_lock);
2480 for (i = 0; i < set->nr_hw_queues; i++) {
2481 int node;
2482
2483 if (hctxs[i])
2484 continue;
2485
2486 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2487 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2488 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2489 node);
2490 if (!hctxs[i])
2491 break;
2492
2493 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask,
2494 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2495 node)) {
2496 kfree(hctxs[i]);
2497 hctxs[i] = NULL;
2498 break;
2499 }
2500
2501 atomic_set(&hctxs[i]->nr_active, 0);
2502 hctxs[i]->numa_node = node;
2503 hctxs[i]->queue_num = i;
2504
2505 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2506 free_cpumask_var(hctxs[i]->cpumask);
2507 kfree(hctxs[i]);
2508 hctxs[i] = NULL;
2509 break;
2510 }
2511 blk_mq_hctx_kobj_init(hctxs[i]);
2512 }
2513 for (j = i; j < q->nr_hw_queues; j++) {
2514 struct blk_mq_hw_ctx *hctx = hctxs[j];
2515
2516 if (hctx) {
2517 if (hctx->tags)
2518 blk_mq_free_map_and_requests(set, j);
2519 blk_mq_exit_hctx(q, set, hctx, j);
2520 kobject_put(&hctx->kobj);
2521 hctxs[j] = NULL;
2522
2523 }
2524 }
2525 q->nr_hw_queues = i;
2526 mutex_unlock(&q->sysfs_lock);
2527 blk_mq_sysfs_register(q);
2528 }
2529
2530 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2531 struct request_queue *q)
2532 {
2533 /* mark the queue as mq asap */
2534 q->mq_ops = set->ops;
2535
2536 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2537 blk_mq_poll_stats_bkt,
2538 BLK_MQ_POLL_STATS_BKTS, q);
2539 if (!q->poll_cb)
2540 goto err_exit;
2541
2542 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2543 if (!q->queue_ctx)
2544 goto err_exit;
2545
2546 /* init q->mq_kobj and sw queues' kobjects */
2547 blk_mq_sysfs_init(q);
2548
2549 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2550 GFP_KERNEL, set->numa_node);
2551 if (!q->queue_hw_ctx)
2552 goto err_percpu;
2553
2554 q->mq_map = set->mq_map;
2555
2556 blk_mq_realloc_hw_ctxs(set, q);
2557 if (!q->nr_hw_queues)
2558 goto err_hctxs;
2559
2560 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2561 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2562
2563 q->nr_queues = nr_cpu_ids;
2564
2565 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2566
2567 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2568 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2569
2570 q->sg_reserved_size = INT_MAX;
2571
2572 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2573 INIT_LIST_HEAD(&q->requeue_list);
2574 spin_lock_init(&q->requeue_lock);
2575
2576 blk_queue_make_request(q, blk_mq_make_request);
2577 if (q->mq_ops->poll)
2578 q->poll_fn = blk_mq_poll;
2579
2580 /*
2581 * Do this after blk_queue_make_request() overrides it...
2582 */
2583 q->nr_requests = set->queue_depth;
2584
2585 /*
2586 * Default to classic polling
2587 */
2588 q->poll_nsec = -1;
2589
2590 if (set->ops->complete)
2591 blk_queue_softirq_done(q, set->ops->complete);
2592
2593 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2594 blk_mq_add_queue_tag_set(set, q);
2595 blk_mq_map_swqueue(q);
2596
2597 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2598 int ret;
2599
2600 ret = blk_mq_sched_init(q);
2601 if (ret)
2602 return ERR_PTR(ret);
2603 }
2604
2605 return q;
2606
2607 err_hctxs:
2608 kfree(q->queue_hw_ctx);
2609 err_percpu:
2610 free_percpu(q->queue_ctx);
2611 err_exit:
2612 q->mq_ops = NULL;
2613 return ERR_PTR(-ENOMEM);
2614 }
2615 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2616
2617 /* tags can _not_ be used after returning from blk_mq_exit_queue */
2618 void blk_mq_exit_queue(struct request_queue *q)
2619 {
2620 struct blk_mq_tag_set *set = q->tag_set;
2621
2622 blk_mq_del_queue_tag_set(q);
2623 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2624 }
2625
2626 /* Basically redo blk_mq_init_queue with queue frozen */
2627 static void blk_mq_queue_reinit(struct request_queue *q)
2628 {
2629 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2630
2631 blk_mq_debugfs_unregister_hctxs(q);
2632 blk_mq_sysfs_unregister(q);
2633
2634 /*
2635 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2636 * we should change hctx numa_node according to the new topology (this
2637 * involves freeing and re-allocating memory, worth doing?)
2638 */
2639 blk_mq_map_swqueue(q);
2640
2641 blk_mq_sysfs_register(q);
2642 blk_mq_debugfs_register_hctxs(q);
2643 }
2644
2645 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2646 {
2647 int i;
2648
2649 for (i = 0; i < set->nr_hw_queues; i++)
2650 if (!__blk_mq_alloc_rq_map(set, i))
2651 goto out_unwind;
2652
2653 return 0;
2654
2655 out_unwind:
2656 while (--i >= 0)
2657 blk_mq_free_rq_map(set->tags[i]);
2658
2659 return -ENOMEM;
2660 }
2661
2662 /*
2663 * Allocate the request maps associated with this tag_set. Note that this
2664 * may reduce the depth asked for, if memory is tight. set->queue_depth
2665 * will be updated to reflect the allocated depth.
2666 */
2667 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2668 {
2669 unsigned int depth;
2670 int err;
2671
2672 depth = set->queue_depth;
2673 do {
2674 err = __blk_mq_alloc_rq_maps(set);
2675 if (!err)
2676 break;
2677
2678 set->queue_depth >>= 1;
2679 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2680 err = -ENOMEM;
2681 break;
2682 }
2683 } while (set->queue_depth);
2684
2685 if (!set->queue_depth || err) {
2686 pr_err("blk-mq: failed to allocate request map\n");
2687 return -ENOMEM;
2688 }
2689
2690 if (depth != set->queue_depth)
2691 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2692 depth, set->queue_depth);
2693
2694 return 0;
2695 }
2696
2697 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2698 {
2699 if (set->ops->map_queues) {
2700 int cpu;
2701 /*
2702 * transport .map_queues is usually done in the following
2703 * way:
2704 *
2705 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2706 * mask = get_cpu_mask(queue)
2707 * for_each_cpu(cpu, mask)
2708 * set->mq_map[cpu] = queue;
2709 * }
2710 *
2711 * When we need to remap, the table has to be cleared for
2712 * killing stale mapping since one CPU may not be mapped
2713 * to any hw queue.
2714 */
2715 for_each_possible_cpu(cpu)
2716 set->mq_map[cpu] = 0;
2717
2718 return set->ops->map_queues(set);
2719 } else
2720 return blk_mq_map_queues(set);
2721 }
2722
2723 /*
2724 * Alloc a tag set to be associated with one or more request queues.
2725 * May fail with EINVAL for various error conditions. May adjust the
2726 * requested depth down, if if it too large. In that case, the set
2727 * value will be stored in set->queue_depth.
2728 */
2729 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2730 {
2731 int ret;
2732
2733 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2734
2735 if (!set->nr_hw_queues)
2736 return -EINVAL;
2737 if (!set->queue_depth)
2738 return -EINVAL;
2739 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2740 return -EINVAL;
2741
2742 if (!set->ops->queue_rq)
2743 return -EINVAL;
2744
2745 if (!set->ops->get_budget ^ !set->ops->put_budget)
2746 return -EINVAL;
2747
2748 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2749 pr_info("blk-mq: reduced tag depth to %u\n",
2750 BLK_MQ_MAX_DEPTH);
2751 set->queue_depth = BLK_MQ_MAX_DEPTH;
2752 }
2753
2754 /*
2755 * If a crashdump is active, then we are potentially in a very
2756 * memory constrained environment. Limit us to 1 queue and
2757 * 64 tags to prevent using too much memory.
2758 */
2759 if (is_kdump_kernel()) {
2760 set->nr_hw_queues = 1;
2761 set->queue_depth = min(64U, set->queue_depth);
2762 }
2763 /*
2764 * There is no use for more h/w queues than cpus.
2765 */
2766 if (set->nr_hw_queues > nr_cpu_ids)
2767 set->nr_hw_queues = nr_cpu_ids;
2768
2769 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2770 GFP_KERNEL, set->numa_node);
2771 if (!set->tags)
2772 return -ENOMEM;
2773
2774 ret = -ENOMEM;
2775 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2776 GFP_KERNEL, set->numa_node);
2777 if (!set->mq_map)
2778 goto out_free_tags;
2779
2780 ret = blk_mq_update_queue_map(set);
2781 if (ret)
2782 goto out_free_mq_map;
2783
2784 ret = blk_mq_alloc_rq_maps(set);
2785 if (ret)
2786 goto out_free_mq_map;
2787
2788 mutex_init(&set->tag_list_lock);
2789 INIT_LIST_HEAD(&set->tag_list);
2790
2791 return 0;
2792
2793 out_free_mq_map:
2794 kfree(set->mq_map);
2795 set->mq_map = NULL;
2796 out_free_tags:
2797 kfree(set->tags);
2798 set->tags = NULL;
2799 return ret;
2800 }
2801 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2802
2803 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2804 {
2805 int i;
2806
2807 for (i = 0; i < nr_cpu_ids; i++)
2808 blk_mq_free_map_and_requests(set, i);
2809
2810 kfree(set->mq_map);
2811 set->mq_map = NULL;
2812
2813 kfree(set->tags);
2814 set->tags = NULL;
2815 }
2816 EXPORT_SYMBOL(blk_mq_free_tag_set);
2817
2818 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2819 {
2820 struct blk_mq_tag_set *set = q->tag_set;
2821 struct blk_mq_hw_ctx *hctx;
2822 int i, ret;
2823
2824 if (!set)
2825 return -EINVAL;
2826
2827 if (q->nr_requests == nr)
2828 return 0;
2829
2830 blk_mq_freeze_queue(q);
2831 blk_mq_quiesce_queue(q);
2832
2833 ret = 0;
2834 queue_for_each_hw_ctx(q, hctx, i) {
2835 if (!hctx->tags)
2836 continue;
2837 /*
2838 * If we're using an MQ scheduler, just update the scheduler
2839 * queue depth. This is similar to what the old code would do.
2840 */
2841 if (!hctx->sched_tags) {
2842 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2843 false);
2844 } else {
2845 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2846 nr, true);
2847 }
2848 if (ret)
2849 break;
2850 }
2851
2852 if (!ret)
2853 q->nr_requests = nr;
2854
2855 blk_mq_unquiesce_queue(q);
2856 blk_mq_unfreeze_queue(q);
2857
2858 return ret;
2859 }
2860
2861 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2862 int nr_hw_queues)
2863 {
2864 struct request_queue *q;
2865
2866 lockdep_assert_held(&set->tag_list_lock);
2867
2868 if (nr_hw_queues > nr_cpu_ids)
2869 nr_hw_queues = nr_cpu_ids;
2870 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2871 return;
2872
2873 list_for_each_entry(q, &set->tag_list, tag_set_list)
2874 blk_mq_freeze_queue(q);
2875
2876 set->nr_hw_queues = nr_hw_queues;
2877 blk_mq_update_queue_map(set);
2878 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2879 blk_mq_realloc_hw_ctxs(set, q);
2880 blk_mq_queue_reinit(q);
2881 }
2882
2883 list_for_each_entry(q, &set->tag_list, tag_set_list)
2884 blk_mq_unfreeze_queue(q);
2885 }
2886
2887 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2888 {
2889 mutex_lock(&set->tag_list_lock);
2890 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2891 mutex_unlock(&set->tag_list_lock);
2892 }
2893 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2894
2895 /* Enable polling stats and return whether they were already enabled. */
2896 static bool blk_poll_stats_enable(struct request_queue *q)
2897 {
2898 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2899 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2900 return true;
2901 blk_stat_add_callback(q, q->poll_cb);
2902 return false;
2903 }
2904
2905 static void blk_mq_poll_stats_start(struct request_queue *q)
2906 {
2907 /*
2908 * We don't arm the callback if polling stats are not enabled or the
2909 * callback is already active.
2910 */
2911 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2912 blk_stat_is_active(q->poll_cb))
2913 return;
2914
2915 blk_stat_activate_msecs(q->poll_cb, 100);
2916 }
2917
2918 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2919 {
2920 struct request_queue *q = cb->data;
2921 int bucket;
2922
2923 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2924 if (cb->stat[bucket].nr_samples)
2925 q->poll_stat[bucket] = cb->stat[bucket];
2926 }
2927 }
2928
2929 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2930 struct blk_mq_hw_ctx *hctx,
2931 struct request *rq)
2932 {
2933 unsigned long ret = 0;
2934 int bucket;
2935
2936 /*
2937 * If stats collection isn't on, don't sleep but turn it on for
2938 * future users
2939 */
2940 if (!blk_poll_stats_enable(q))
2941 return 0;
2942
2943 /*
2944 * As an optimistic guess, use half of the mean service time
2945 * for this type of request. We can (and should) make this smarter.
2946 * For instance, if the completion latencies are tight, we can
2947 * get closer than just half the mean. This is especially
2948 * important on devices where the completion latencies are longer
2949 * than ~10 usec. We do use the stats for the relevant IO size
2950 * if available which does lead to better estimates.
2951 */
2952 bucket = blk_mq_poll_stats_bkt(rq);
2953 if (bucket < 0)
2954 return ret;
2955
2956 if (q->poll_stat[bucket].nr_samples)
2957 ret = (q->poll_stat[bucket].mean + 1) / 2;
2958
2959 return ret;
2960 }
2961
2962 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2963 struct blk_mq_hw_ctx *hctx,
2964 struct request *rq)
2965 {
2966 struct hrtimer_sleeper hs;
2967 enum hrtimer_mode mode;
2968 unsigned int nsecs;
2969 ktime_t kt;
2970
2971 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2972 return false;
2973
2974 /*
2975 * poll_nsec can be:
2976 *
2977 * -1: don't ever hybrid sleep
2978 * 0: use half of prev avg
2979 * >0: use this specific value
2980 */
2981 if (q->poll_nsec == -1)
2982 return false;
2983 else if (q->poll_nsec > 0)
2984 nsecs = q->poll_nsec;
2985 else
2986 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2987
2988 if (!nsecs)
2989 return false;
2990
2991 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2992
2993 /*
2994 * This will be replaced with the stats tracking code, using
2995 * 'avg_completion_time / 2' as the pre-sleep target.
2996 */
2997 kt = nsecs;
2998
2999 mode = HRTIMER_MODE_REL;
3000 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3001 hrtimer_set_expires(&hs.timer, kt);
3002
3003 hrtimer_init_sleeper(&hs, current);
3004 do {
3005 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
3006 break;
3007 set_current_state(TASK_UNINTERRUPTIBLE);
3008 hrtimer_start_expires(&hs.timer, mode);
3009 if (hs.task)
3010 io_schedule();
3011 hrtimer_cancel(&hs.timer);
3012 mode = HRTIMER_MODE_ABS;
3013 } while (hs.task && !signal_pending(current));
3014
3015 __set_current_state(TASK_RUNNING);
3016 destroy_hrtimer_on_stack(&hs.timer);
3017 return true;
3018 }
3019
3020 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
3021 {
3022 struct request_queue *q = hctx->queue;
3023 long state;
3024
3025 /*
3026 * If we sleep, have the caller restart the poll loop to reset
3027 * the state. Like for the other success return cases, the
3028 * caller is responsible for checking if the IO completed. If
3029 * the IO isn't complete, we'll get called again and will go
3030 * straight to the busy poll loop.
3031 */
3032 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3033 return true;
3034
3035 hctx->poll_considered++;
3036
3037 state = current->state;
3038 while (!need_resched()) {
3039 int ret;
3040
3041 hctx->poll_invoked++;
3042
3043 ret = q->mq_ops->poll(hctx, rq->tag);
3044 if (ret > 0) {
3045 hctx->poll_success++;
3046 set_current_state(TASK_RUNNING);
3047 return true;
3048 }
3049
3050 if (signal_pending_state(state, current))
3051 set_current_state(TASK_RUNNING);
3052
3053 if (current->state == TASK_RUNNING)
3054 return true;
3055 if (ret < 0)
3056 break;
3057 cpu_relax();
3058 }
3059
3060 return false;
3061 }
3062
3063 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3064 {
3065 struct blk_mq_hw_ctx *hctx;
3066 struct request *rq;
3067
3068 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3069 return false;
3070
3071 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3072 if (!blk_qc_t_is_internal(cookie))
3073 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3074 else {
3075 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3076 /*
3077 * With scheduling, if the request has completed, we'll
3078 * get a NULL return here, as we clear the sched tag when
3079 * that happens. The request still remains valid, like always,
3080 * so we should be safe with just the NULL check.
3081 */
3082 if (!rq)
3083 return false;
3084 }
3085
3086 return __blk_mq_poll(hctx, rq);
3087 }
3088
3089 static int __init blk_mq_init(void)
3090 {
3091 /*
3092 * See comment in block/blk.h rq_atomic_flags enum
3093 */
3094 BUILD_BUG_ON((REQ_ATOM_STARTED / BITS_PER_BYTE) !=
3095 (REQ_ATOM_COMPLETE / BITS_PER_BYTE));
3096
3097 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3098 blk_mq_hctx_notify_dead);
3099 return 0;
3100 }
3101 subsys_initcall(blk_mq_init);