]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-mq.c
blk-mq: do not use blk_mq_alloc_request_pinned in blk_mq_map_request
[mirror_ubuntu-artful-kernel.git] / block / blk-mq.c
1 #include <linux/kernel.h>
2 #include <linux/module.h>
3 #include <linux/backing-dev.h>
4 #include <linux/bio.h>
5 #include <linux/blkdev.h>
6 #include <linux/mm.h>
7 #include <linux/init.h>
8 #include <linux/slab.h>
9 #include <linux/workqueue.h>
10 #include <linux/smp.h>
11 #include <linux/llist.h>
12 #include <linux/list_sort.h>
13 #include <linux/cpu.h>
14 #include <linux/cache.h>
15 #include <linux/sched/sysctl.h>
16 #include <linux/delay.h>
17
18 #include <trace/events/block.h>
19
20 #include <linux/blk-mq.h>
21 #include "blk.h"
22 #include "blk-mq.h"
23 #include "blk-mq-tag.h"
24
25 static DEFINE_MUTEX(all_q_mutex);
26 static LIST_HEAD(all_q_list);
27
28 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
29
30 static struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
31 unsigned int cpu)
32 {
33 return per_cpu_ptr(q->queue_ctx, cpu);
34 }
35
36 /*
37 * This assumes per-cpu software queueing queues. They could be per-node
38 * as well, for instance. For now this is hardcoded as-is. Note that we don't
39 * care about preemption, since we know the ctx's are persistent. This does
40 * mean that we can't rely on ctx always matching the currently running CPU.
41 */
42 static struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
43 {
44 return __blk_mq_get_ctx(q, get_cpu());
45 }
46
47 static void blk_mq_put_ctx(struct blk_mq_ctx *ctx)
48 {
49 put_cpu();
50 }
51
52 /*
53 * Check if any of the ctx's have pending work in this hardware queue
54 */
55 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
56 {
57 unsigned int i;
58
59 for (i = 0; i < hctx->ctx_map.map_size; i++)
60 if (hctx->ctx_map.map[i].word)
61 return true;
62
63 return false;
64 }
65
66 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
67 struct blk_mq_ctx *ctx)
68 {
69 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
70 }
71
72 #define CTX_TO_BIT(hctx, ctx) \
73 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
74
75 /*
76 * Mark this ctx as having pending work in this hardware queue
77 */
78 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
79 struct blk_mq_ctx *ctx)
80 {
81 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
82
83 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
84 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
85 }
86
87 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
88 struct blk_mq_ctx *ctx)
89 {
90 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
91
92 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
93 }
94
95 static int blk_mq_queue_enter(struct request_queue *q)
96 {
97 int ret;
98
99 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
100 smp_wmb();
101 /* we have problems to freeze the queue if it's initializing */
102 if (!blk_queue_bypass(q) || !blk_queue_init_done(q))
103 return 0;
104
105 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
106
107 spin_lock_irq(q->queue_lock);
108 ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq,
109 !blk_queue_bypass(q) || blk_queue_dying(q),
110 *q->queue_lock);
111 /* inc usage with lock hold to avoid freeze_queue runs here */
112 if (!ret && !blk_queue_dying(q))
113 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
114 else if (blk_queue_dying(q))
115 ret = -ENODEV;
116 spin_unlock_irq(q->queue_lock);
117
118 return ret;
119 }
120
121 static void blk_mq_queue_exit(struct request_queue *q)
122 {
123 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
124 }
125
126 static void __blk_mq_drain_queue(struct request_queue *q)
127 {
128 while (true) {
129 s64 count;
130
131 spin_lock_irq(q->queue_lock);
132 count = percpu_counter_sum(&q->mq_usage_counter);
133 spin_unlock_irq(q->queue_lock);
134
135 if (count == 0)
136 break;
137 blk_mq_run_queues(q, false);
138 msleep(10);
139 }
140 }
141
142 /*
143 * Guarantee no request is in use, so we can change any data structure of
144 * the queue afterward.
145 */
146 static void blk_mq_freeze_queue(struct request_queue *q)
147 {
148 bool drain;
149
150 spin_lock_irq(q->queue_lock);
151 drain = !q->bypass_depth++;
152 queue_flag_set(QUEUE_FLAG_BYPASS, q);
153 spin_unlock_irq(q->queue_lock);
154
155 if (drain)
156 __blk_mq_drain_queue(q);
157 }
158
159 void blk_mq_drain_queue(struct request_queue *q)
160 {
161 __blk_mq_drain_queue(q);
162 }
163
164 static void blk_mq_unfreeze_queue(struct request_queue *q)
165 {
166 bool wake = false;
167
168 spin_lock_irq(q->queue_lock);
169 if (!--q->bypass_depth) {
170 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
171 wake = true;
172 }
173 WARN_ON_ONCE(q->bypass_depth < 0);
174 spin_unlock_irq(q->queue_lock);
175 if (wake)
176 wake_up_all(&q->mq_freeze_wq);
177 }
178
179 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
180 {
181 return blk_mq_has_free_tags(hctx->tags);
182 }
183 EXPORT_SYMBOL(blk_mq_can_queue);
184
185 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
186 struct request *rq, unsigned int rw_flags)
187 {
188 if (blk_queue_io_stat(q))
189 rw_flags |= REQ_IO_STAT;
190
191 INIT_LIST_HEAD(&rq->queuelist);
192 /* csd/requeue_work/fifo_time is initialized before use */
193 rq->q = q;
194 rq->mq_ctx = ctx;
195 rq->cmd_flags |= rw_flags;
196 rq->cmd_type = 0;
197 /* do not touch atomic flags, it needs atomic ops against the timer */
198 rq->cpu = -1;
199 rq->__data_len = 0;
200 rq->__sector = (sector_t) -1;
201 rq->bio = NULL;
202 rq->biotail = NULL;
203 INIT_HLIST_NODE(&rq->hash);
204 RB_CLEAR_NODE(&rq->rb_node);
205 memset(&rq->flush, 0, max(sizeof(rq->flush), sizeof(rq->elv)));
206 rq->rq_disk = NULL;
207 rq->part = NULL;
208 rq->start_time = jiffies;
209 #ifdef CONFIG_BLK_CGROUP
210 rq->rl = NULL;
211 set_start_time_ns(rq);
212 rq->io_start_time_ns = 0;
213 #endif
214 rq->nr_phys_segments = 0;
215 #if defined(CONFIG_BLK_DEV_INTEGRITY)
216 rq->nr_integrity_segments = 0;
217 #endif
218 rq->ioprio = 0;
219 rq->special = NULL;
220 /* tag was already set */
221 rq->errors = 0;
222 memset(rq->__cmd, 0, sizeof(rq->__cmd));
223 rq->cmd = rq->__cmd;
224 rq->cmd_len = BLK_MAX_CDB;
225
226 rq->extra_len = 0;
227 rq->sense_len = 0;
228 rq->resid_len = 0;
229 rq->sense = NULL;
230
231 rq->deadline = 0;
232 INIT_LIST_HEAD(&rq->timeout_list);
233 rq->timeout = 0;
234 rq->retries = 0;
235 rq->end_io = NULL;
236 rq->end_io_data = NULL;
237 rq->next_rq = NULL;
238
239 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
240 }
241
242 static struct request *
243 __blk_mq_alloc_request(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
244 struct blk_mq_ctx *ctx, int rw, gfp_t gfp, bool reserved)
245 {
246 struct request *rq;
247 unsigned int tag;
248
249 tag = blk_mq_get_tag(hctx, &ctx->last_tag, gfp, reserved);
250 if (tag != BLK_MQ_TAG_FAIL) {
251 rq = hctx->tags->rqs[tag];
252
253 rq->cmd_flags = 0;
254 if (blk_mq_tag_busy(hctx)) {
255 rq->cmd_flags = REQ_MQ_INFLIGHT;
256 atomic_inc(&hctx->nr_active);
257 }
258
259 rq->tag = tag;
260 blk_mq_rq_ctx_init(q, ctx, rq, rw);
261 return rq;
262 }
263
264 return NULL;
265 }
266
267 static struct request *blk_mq_alloc_request_pinned(struct request_queue *q,
268 int rw, gfp_t gfp,
269 bool reserved)
270 {
271 bool gfp_mask = gfp & ~__GFP_WAIT;
272 struct request *rq;
273
274 do {
275 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
276 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, ctx->cpu);
277
278 rq = __blk_mq_alloc_request(q, hctx, ctx, rw, gfp_mask,
279 reserved);
280 if (rq)
281 break;
282
283 if (!(gfp & __GFP_WAIT)) {
284 blk_mq_put_ctx(ctx);
285 break;
286 }
287
288 __blk_mq_run_hw_queue(hctx);
289 blk_mq_put_ctx(ctx);
290 gfp_mask = gfp;
291 } while (1);
292
293 return rq;
294 }
295
296 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
297 bool reserved)
298 {
299 struct request *rq;
300
301 if (blk_mq_queue_enter(q))
302 return NULL;
303
304 rq = blk_mq_alloc_request_pinned(q, rw, gfp, reserved);
305 if (rq)
306 blk_mq_put_ctx(rq->mq_ctx);
307 return rq;
308 }
309 EXPORT_SYMBOL(blk_mq_alloc_request);
310
311 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
312 struct blk_mq_ctx *ctx, struct request *rq)
313 {
314 const int tag = rq->tag;
315 struct request_queue *q = rq->q;
316
317 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
318 atomic_dec(&hctx->nr_active);
319
320 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
321 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
322 blk_mq_queue_exit(q);
323 }
324
325 void blk_mq_free_request(struct request *rq)
326 {
327 struct blk_mq_ctx *ctx = rq->mq_ctx;
328 struct blk_mq_hw_ctx *hctx;
329 struct request_queue *q = rq->q;
330
331 ctx->rq_completed[rq_is_sync(rq)]++;
332
333 hctx = q->mq_ops->map_queue(q, ctx->cpu);
334 __blk_mq_free_request(hctx, ctx, rq);
335 }
336
337 /*
338 * Clone all relevant state from a request that has been put on hold in
339 * the flush state machine into the preallocated flush request that hangs
340 * off the request queue.
341 *
342 * For a driver the flush request should be invisible, that's why we are
343 * impersonating the original request here.
344 */
345 void blk_mq_clone_flush_request(struct request *flush_rq,
346 struct request *orig_rq)
347 {
348 struct blk_mq_hw_ctx *hctx =
349 orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu);
350
351 flush_rq->mq_ctx = orig_rq->mq_ctx;
352 flush_rq->tag = orig_rq->tag;
353 memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq),
354 hctx->cmd_size);
355 }
356
357 inline void __blk_mq_end_io(struct request *rq, int error)
358 {
359 blk_account_io_done(rq);
360
361 if (rq->end_io) {
362 rq->end_io(rq, error);
363 } else {
364 if (unlikely(blk_bidi_rq(rq)))
365 blk_mq_free_request(rq->next_rq);
366 blk_mq_free_request(rq);
367 }
368 }
369 EXPORT_SYMBOL(__blk_mq_end_io);
370
371 void blk_mq_end_io(struct request *rq, int error)
372 {
373 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
374 BUG();
375 __blk_mq_end_io(rq, error);
376 }
377 EXPORT_SYMBOL(blk_mq_end_io);
378
379 static void __blk_mq_complete_request_remote(void *data)
380 {
381 struct request *rq = data;
382
383 rq->q->softirq_done_fn(rq);
384 }
385
386 void __blk_mq_complete_request(struct request *rq)
387 {
388 struct blk_mq_ctx *ctx = rq->mq_ctx;
389 bool shared = false;
390 int cpu;
391
392 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
393 rq->q->softirq_done_fn(rq);
394 return;
395 }
396
397 cpu = get_cpu();
398 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
399 shared = cpus_share_cache(cpu, ctx->cpu);
400
401 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
402 rq->csd.func = __blk_mq_complete_request_remote;
403 rq->csd.info = rq;
404 rq->csd.flags = 0;
405 smp_call_function_single_async(ctx->cpu, &rq->csd);
406 } else {
407 rq->q->softirq_done_fn(rq);
408 }
409 put_cpu();
410 }
411
412 /**
413 * blk_mq_complete_request - end I/O on a request
414 * @rq: the request being processed
415 *
416 * Description:
417 * Ends all I/O on a request. It does not handle partial completions.
418 * The actual completion happens out-of-order, through a IPI handler.
419 **/
420 void blk_mq_complete_request(struct request *rq)
421 {
422 struct request_queue *q = rq->q;
423
424 if (unlikely(blk_should_fake_timeout(q)))
425 return;
426 if (!blk_mark_rq_complete(rq)) {
427 if (q->softirq_done_fn)
428 __blk_mq_complete_request(rq);
429 else
430 blk_mq_end_io(rq, rq->errors);
431 }
432 }
433 EXPORT_SYMBOL(blk_mq_complete_request);
434
435 static void blk_mq_start_request(struct request *rq, bool last)
436 {
437 struct request_queue *q = rq->q;
438
439 trace_block_rq_issue(q, rq);
440
441 rq->resid_len = blk_rq_bytes(rq);
442 if (unlikely(blk_bidi_rq(rq)))
443 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
444
445 /*
446 * Just mark start time and set the started bit. Due to memory
447 * ordering, we know we'll see the correct deadline as long as
448 * REQ_ATOMIC_STARTED is seen. Use the default queue timeout,
449 * unless one has been set in the request.
450 */
451 if (!rq->timeout)
452 rq->deadline = jiffies + q->rq_timeout;
453 else
454 rq->deadline = jiffies + rq->timeout;
455
456 /*
457 * Mark us as started and clear complete. Complete might have been
458 * set if requeue raced with timeout, which then marked it as
459 * complete. So be sure to clear complete again when we start
460 * the request, otherwise we'll ignore the completion event.
461 */
462 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
463 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
464
465 if (q->dma_drain_size && blk_rq_bytes(rq)) {
466 /*
467 * Make sure space for the drain appears. We know we can do
468 * this because max_hw_segments has been adjusted to be one
469 * fewer than the device can handle.
470 */
471 rq->nr_phys_segments++;
472 }
473
474 /*
475 * Flag the last request in the series so that drivers know when IO
476 * should be kicked off, if they don't do it on a per-request basis.
477 *
478 * Note: the flag isn't the only condition drivers should do kick off.
479 * If drive is busy, the last request might not have the bit set.
480 */
481 if (last)
482 rq->cmd_flags |= REQ_END;
483 }
484
485 static void __blk_mq_requeue_request(struct request *rq)
486 {
487 struct request_queue *q = rq->q;
488
489 trace_block_rq_requeue(q, rq);
490 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
491
492 rq->cmd_flags &= ~REQ_END;
493
494 if (q->dma_drain_size && blk_rq_bytes(rq))
495 rq->nr_phys_segments--;
496 }
497
498 void blk_mq_requeue_request(struct request *rq)
499 {
500 __blk_mq_requeue_request(rq);
501 blk_clear_rq_complete(rq);
502
503 BUG_ON(blk_queued_rq(rq));
504 blk_mq_add_to_requeue_list(rq, true);
505 }
506 EXPORT_SYMBOL(blk_mq_requeue_request);
507
508 static void blk_mq_requeue_work(struct work_struct *work)
509 {
510 struct request_queue *q =
511 container_of(work, struct request_queue, requeue_work);
512 LIST_HEAD(rq_list);
513 struct request *rq, *next;
514 unsigned long flags;
515
516 spin_lock_irqsave(&q->requeue_lock, flags);
517 list_splice_init(&q->requeue_list, &rq_list);
518 spin_unlock_irqrestore(&q->requeue_lock, flags);
519
520 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
521 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
522 continue;
523
524 rq->cmd_flags &= ~REQ_SOFTBARRIER;
525 list_del_init(&rq->queuelist);
526 blk_mq_insert_request(rq, true, false, false);
527 }
528
529 while (!list_empty(&rq_list)) {
530 rq = list_entry(rq_list.next, struct request, queuelist);
531 list_del_init(&rq->queuelist);
532 blk_mq_insert_request(rq, false, false, false);
533 }
534
535 blk_mq_run_queues(q, false);
536 }
537
538 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
539 {
540 struct request_queue *q = rq->q;
541 unsigned long flags;
542
543 /*
544 * We abuse this flag that is otherwise used by the I/O scheduler to
545 * request head insertation from the workqueue.
546 */
547 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
548
549 spin_lock_irqsave(&q->requeue_lock, flags);
550 if (at_head) {
551 rq->cmd_flags |= REQ_SOFTBARRIER;
552 list_add(&rq->queuelist, &q->requeue_list);
553 } else {
554 list_add_tail(&rq->queuelist, &q->requeue_list);
555 }
556 spin_unlock_irqrestore(&q->requeue_lock, flags);
557 }
558 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
559
560 void blk_mq_kick_requeue_list(struct request_queue *q)
561 {
562 kblockd_schedule_work(&q->requeue_work);
563 }
564 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
565
566 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
567 {
568 return tags->rqs[tag];
569 }
570 EXPORT_SYMBOL(blk_mq_tag_to_rq);
571
572 struct blk_mq_timeout_data {
573 struct blk_mq_hw_ctx *hctx;
574 unsigned long *next;
575 unsigned int *next_set;
576 };
577
578 static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
579 {
580 struct blk_mq_timeout_data *data = __data;
581 struct blk_mq_hw_ctx *hctx = data->hctx;
582 unsigned int tag;
583
584 /* It may not be in flight yet (this is where
585 * the REQ_ATOMIC_STARTED flag comes in). The requests are
586 * statically allocated, so we know it's always safe to access the
587 * memory associated with a bit offset into ->rqs[].
588 */
589 tag = 0;
590 do {
591 struct request *rq;
592
593 tag = find_next_zero_bit(free_tags, hctx->tags->nr_tags, tag);
594 if (tag >= hctx->tags->nr_tags)
595 break;
596
597 rq = blk_mq_tag_to_rq(hctx->tags, tag++);
598 if (rq->q != hctx->queue)
599 continue;
600 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
601 continue;
602
603 blk_rq_check_expired(rq, data->next, data->next_set);
604 } while (1);
605 }
606
607 static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
608 unsigned long *next,
609 unsigned int *next_set)
610 {
611 struct blk_mq_timeout_data data = {
612 .hctx = hctx,
613 .next = next,
614 .next_set = next_set,
615 };
616
617 /*
618 * Ask the tagging code to iterate busy requests, so we can
619 * check them for timeout.
620 */
621 blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
622 }
623
624 static enum blk_eh_timer_return blk_mq_rq_timed_out(struct request *rq)
625 {
626 struct request_queue *q = rq->q;
627
628 /*
629 * We know that complete is set at this point. If STARTED isn't set
630 * anymore, then the request isn't active and the "timeout" should
631 * just be ignored. This can happen due to the bitflag ordering.
632 * Timeout first checks if STARTED is set, and if it is, assumes
633 * the request is active. But if we race with completion, then
634 * we both flags will get cleared. So check here again, and ignore
635 * a timeout event with a request that isn't active.
636 */
637 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
638 return BLK_EH_NOT_HANDLED;
639
640 if (!q->mq_ops->timeout)
641 return BLK_EH_RESET_TIMER;
642
643 return q->mq_ops->timeout(rq);
644 }
645
646 static void blk_mq_rq_timer(unsigned long data)
647 {
648 struct request_queue *q = (struct request_queue *) data;
649 struct blk_mq_hw_ctx *hctx;
650 unsigned long next = 0;
651 int i, next_set = 0;
652
653 queue_for_each_hw_ctx(q, hctx, i) {
654 /*
655 * If not software queues are currently mapped to this
656 * hardware queue, there's nothing to check
657 */
658 if (!hctx->nr_ctx || !hctx->tags)
659 continue;
660
661 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
662 }
663
664 if (next_set) {
665 next = blk_rq_timeout(round_jiffies_up(next));
666 mod_timer(&q->timeout, next);
667 } else {
668 queue_for_each_hw_ctx(q, hctx, i)
669 blk_mq_tag_idle(hctx);
670 }
671 }
672
673 /*
674 * Reverse check our software queue for entries that we could potentially
675 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
676 * too much time checking for merges.
677 */
678 static bool blk_mq_attempt_merge(struct request_queue *q,
679 struct blk_mq_ctx *ctx, struct bio *bio)
680 {
681 struct request *rq;
682 int checked = 8;
683
684 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
685 int el_ret;
686
687 if (!checked--)
688 break;
689
690 if (!blk_rq_merge_ok(rq, bio))
691 continue;
692
693 el_ret = blk_try_merge(rq, bio);
694 if (el_ret == ELEVATOR_BACK_MERGE) {
695 if (bio_attempt_back_merge(q, rq, bio)) {
696 ctx->rq_merged++;
697 return true;
698 }
699 break;
700 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
701 if (bio_attempt_front_merge(q, rq, bio)) {
702 ctx->rq_merged++;
703 return true;
704 }
705 break;
706 }
707 }
708
709 return false;
710 }
711
712 /*
713 * Process software queues that have been marked busy, splicing them
714 * to the for-dispatch
715 */
716 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
717 {
718 struct blk_mq_ctx *ctx;
719 int i;
720
721 for (i = 0; i < hctx->ctx_map.map_size; i++) {
722 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
723 unsigned int off, bit;
724
725 if (!bm->word)
726 continue;
727
728 bit = 0;
729 off = i * hctx->ctx_map.bits_per_word;
730 do {
731 bit = find_next_bit(&bm->word, bm->depth, bit);
732 if (bit >= bm->depth)
733 break;
734
735 ctx = hctx->ctxs[bit + off];
736 clear_bit(bit, &bm->word);
737 spin_lock(&ctx->lock);
738 list_splice_tail_init(&ctx->rq_list, list);
739 spin_unlock(&ctx->lock);
740
741 bit++;
742 } while (1);
743 }
744 }
745
746 /*
747 * Run this hardware queue, pulling any software queues mapped to it in.
748 * Note that this function currently has various problems around ordering
749 * of IO. In particular, we'd like FIFO behaviour on handling existing
750 * items on the hctx->dispatch list. Ignore that for now.
751 */
752 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
753 {
754 struct request_queue *q = hctx->queue;
755 struct request *rq;
756 LIST_HEAD(rq_list);
757 int queued;
758
759 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
760
761 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
762 return;
763
764 hctx->run++;
765
766 /*
767 * Touch any software queue that has pending entries.
768 */
769 flush_busy_ctxs(hctx, &rq_list);
770
771 /*
772 * If we have previous entries on our dispatch list, grab them
773 * and stuff them at the front for more fair dispatch.
774 */
775 if (!list_empty_careful(&hctx->dispatch)) {
776 spin_lock(&hctx->lock);
777 if (!list_empty(&hctx->dispatch))
778 list_splice_init(&hctx->dispatch, &rq_list);
779 spin_unlock(&hctx->lock);
780 }
781
782 /*
783 * Now process all the entries, sending them to the driver.
784 */
785 queued = 0;
786 while (!list_empty(&rq_list)) {
787 int ret;
788
789 rq = list_first_entry(&rq_list, struct request, queuelist);
790 list_del_init(&rq->queuelist);
791
792 blk_mq_start_request(rq, list_empty(&rq_list));
793
794 ret = q->mq_ops->queue_rq(hctx, rq);
795 switch (ret) {
796 case BLK_MQ_RQ_QUEUE_OK:
797 queued++;
798 continue;
799 case BLK_MQ_RQ_QUEUE_BUSY:
800 list_add(&rq->queuelist, &rq_list);
801 __blk_mq_requeue_request(rq);
802 break;
803 default:
804 pr_err("blk-mq: bad return on queue: %d\n", ret);
805 case BLK_MQ_RQ_QUEUE_ERROR:
806 rq->errors = -EIO;
807 blk_mq_end_io(rq, rq->errors);
808 break;
809 }
810
811 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
812 break;
813 }
814
815 if (!queued)
816 hctx->dispatched[0]++;
817 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
818 hctx->dispatched[ilog2(queued) + 1]++;
819
820 /*
821 * Any items that need requeuing? Stuff them into hctx->dispatch,
822 * that is where we will continue on next queue run.
823 */
824 if (!list_empty(&rq_list)) {
825 spin_lock(&hctx->lock);
826 list_splice(&rq_list, &hctx->dispatch);
827 spin_unlock(&hctx->lock);
828 }
829 }
830
831 /*
832 * It'd be great if the workqueue API had a way to pass
833 * in a mask and had some smarts for more clever placement.
834 * For now we just round-robin here, switching for every
835 * BLK_MQ_CPU_WORK_BATCH queued items.
836 */
837 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
838 {
839 int cpu = hctx->next_cpu;
840
841 if (--hctx->next_cpu_batch <= 0) {
842 int next_cpu;
843
844 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
845 if (next_cpu >= nr_cpu_ids)
846 next_cpu = cpumask_first(hctx->cpumask);
847
848 hctx->next_cpu = next_cpu;
849 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
850 }
851
852 return cpu;
853 }
854
855 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
856 {
857 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
858 return;
859
860 if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
861 __blk_mq_run_hw_queue(hctx);
862 else if (hctx->queue->nr_hw_queues == 1)
863 kblockd_schedule_delayed_work(&hctx->run_work, 0);
864 else {
865 unsigned int cpu;
866
867 cpu = blk_mq_hctx_next_cpu(hctx);
868 kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
869 }
870 }
871
872 void blk_mq_run_queues(struct request_queue *q, bool async)
873 {
874 struct blk_mq_hw_ctx *hctx;
875 int i;
876
877 queue_for_each_hw_ctx(q, hctx, i) {
878 if ((!blk_mq_hctx_has_pending(hctx) &&
879 list_empty_careful(&hctx->dispatch)) ||
880 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
881 continue;
882
883 preempt_disable();
884 blk_mq_run_hw_queue(hctx, async);
885 preempt_enable();
886 }
887 }
888 EXPORT_SYMBOL(blk_mq_run_queues);
889
890 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
891 {
892 cancel_delayed_work(&hctx->run_work);
893 cancel_delayed_work(&hctx->delay_work);
894 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
895 }
896 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
897
898 void blk_mq_stop_hw_queues(struct request_queue *q)
899 {
900 struct blk_mq_hw_ctx *hctx;
901 int i;
902
903 queue_for_each_hw_ctx(q, hctx, i)
904 blk_mq_stop_hw_queue(hctx);
905 }
906 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
907
908 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
909 {
910 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
911
912 preempt_disable();
913 __blk_mq_run_hw_queue(hctx);
914 preempt_enable();
915 }
916 EXPORT_SYMBOL(blk_mq_start_hw_queue);
917
918 void blk_mq_start_hw_queues(struct request_queue *q)
919 {
920 struct blk_mq_hw_ctx *hctx;
921 int i;
922
923 queue_for_each_hw_ctx(q, hctx, i)
924 blk_mq_start_hw_queue(hctx);
925 }
926 EXPORT_SYMBOL(blk_mq_start_hw_queues);
927
928
929 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
930 {
931 struct blk_mq_hw_ctx *hctx;
932 int i;
933
934 queue_for_each_hw_ctx(q, hctx, i) {
935 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
936 continue;
937
938 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
939 preempt_disable();
940 blk_mq_run_hw_queue(hctx, async);
941 preempt_enable();
942 }
943 }
944 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
945
946 static void blk_mq_run_work_fn(struct work_struct *work)
947 {
948 struct blk_mq_hw_ctx *hctx;
949
950 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
951
952 __blk_mq_run_hw_queue(hctx);
953 }
954
955 static void blk_mq_delay_work_fn(struct work_struct *work)
956 {
957 struct blk_mq_hw_ctx *hctx;
958
959 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
960
961 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
962 __blk_mq_run_hw_queue(hctx);
963 }
964
965 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
966 {
967 unsigned long tmo = msecs_to_jiffies(msecs);
968
969 if (hctx->queue->nr_hw_queues == 1)
970 kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
971 else {
972 unsigned int cpu;
973
974 cpu = blk_mq_hctx_next_cpu(hctx);
975 kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
976 }
977 }
978 EXPORT_SYMBOL(blk_mq_delay_queue);
979
980 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
981 struct request *rq, bool at_head)
982 {
983 struct blk_mq_ctx *ctx = rq->mq_ctx;
984
985 trace_block_rq_insert(hctx->queue, rq);
986
987 if (at_head)
988 list_add(&rq->queuelist, &ctx->rq_list);
989 else
990 list_add_tail(&rq->queuelist, &ctx->rq_list);
991
992 blk_mq_hctx_mark_pending(hctx, ctx);
993
994 /*
995 * We do this early, to ensure we are on the right CPU.
996 */
997 blk_add_timer(rq);
998 }
999
1000 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1001 bool async)
1002 {
1003 struct request_queue *q = rq->q;
1004 struct blk_mq_hw_ctx *hctx;
1005 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
1006
1007 current_ctx = blk_mq_get_ctx(q);
1008 if (!cpu_online(ctx->cpu))
1009 rq->mq_ctx = ctx = current_ctx;
1010
1011 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1012
1013 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA) &&
1014 !(rq->cmd_flags & (REQ_FLUSH_SEQ))) {
1015 blk_insert_flush(rq);
1016 } else {
1017 spin_lock(&ctx->lock);
1018 __blk_mq_insert_request(hctx, rq, at_head);
1019 spin_unlock(&ctx->lock);
1020 }
1021
1022 if (run_queue)
1023 blk_mq_run_hw_queue(hctx, async);
1024
1025 blk_mq_put_ctx(current_ctx);
1026 }
1027
1028 static void blk_mq_insert_requests(struct request_queue *q,
1029 struct blk_mq_ctx *ctx,
1030 struct list_head *list,
1031 int depth,
1032 bool from_schedule)
1033
1034 {
1035 struct blk_mq_hw_ctx *hctx;
1036 struct blk_mq_ctx *current_ctx;
1037
1038 trace_block_unplug(q, depth, !from_schedule);
1039
1040 current_ctx = blk_mq_get_ctx(q);
1041
1042 if (!cpu_online(ctx->cpu))
1043 ctx = current_ctx;
1044 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1045
1046 /*
1047 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1048 * offline now
1049 */
1050 spin_lock(&ctx->lock);
1051 while (!list_empty(list)) {
1052 struct request *rq;
1053
1054 rq = list_first_entry(list, struct request, queuelist);
1055 list_del_init(&rq->queuelist);
1056 rq->mq_ctx = ctx;
1057 __blk_mq_insert_request(hctx, rq, false);
1058 }
1059 spin_unlock(&ctx->lock);
1060
1061 blk_mq_run_hw_queue(hctx, from_schedule);
1062 blk_mq_put_ctx(current_ctx);
1063 }
1064
1065 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1066 {
1067 struct request *rqa = container_of(a, struct request, queuelist);
1068 struct request *rqb = container_of(b, struct request, queuelist);
1069
1070 return !(rqa->mq_ctx < rqb->mq_ctx ||
1071 (rqa->mq_ctx == rqb->mq_ctx &&
1072 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1073 }
1074
1075 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1076 {
1077 struct blk_mq_ctx *this_ctx;
1078 struct request_queue *this_q;
1079 struct request *rq;
1080 LIST_HEAD(list);
1081 LIST_HEAD(ctx_list);
1082 unsigned int depth;
1083
1084 list_splice_init(&plug->mq_list, &list);
1085
1086 list_sort(NULL, &list, plug_ctx_cmp);
1087
1088 this_q = NULL;
1089 this_ctx = NULL;
1090 depth = 0;
1091
1092 while (!list_empty(&list)) {
1093 rq = list_entry_rq(list.next);
1094 list_del_init(&rq->queuelist);
1095 BUG_ON(!rq->q);
1096 if (rq->mq_ctx != this_ctx) {
1097 if (this_ctx) {
1098 blk_mq_insert_requests(this_q, this_ctx,
1099 &ctx_list, depth,
1100 from_schedule);
1101 }
1102
1103 this_ctx = rq->mq_ctx;
1104 this_q = rq->q;
1105 depth = 0;
1106 }
1107
1108 depth++;
1109 list_add_tail(&rq->queuelist, &ctx_list);
1110 }
1111
1112 /*
1113 * If 'this_ctx' is set, we know we have entries to complete
1114 * on 'ctx_list'. Do those.
1115 */
1116 if (this_ctx) {
1117 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1118 from_schedule);
1119 }
1120 }
1121
1122 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1123 {
1124 init_request_from_bio(rq, bio);
1125 blk_account_io_start(rq, 1);
1126 }
1127
1128 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1129 struct blk_mq_ctx *ctx,
1130 struct request *rq, struct bio *bio)
1131 {
1132 struct request_queue *q = hctx->queue;
1133
1134 if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE)) {
1135 blk_mq_bio_to_request(rq, bio);
1136 spin_lock(&ctx->lock);
1137 insert_rq:
1138 __blk_mq_insert_request(hctx, rq, false);
1139 spin_unlock(&ctx->lock);
1140 return false;
1141 } else {
1142 spin_lock(&ctx->lock);
1143 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1144 blk_mq_bio_to_request(rq, bio);
1145 goto insert_rq;
1146 }
1147
1148 spin_unlock(&ctx->lock);
1149 __blk_mq_free_request(hctx, ctx, rq);
1150 return true;
1151 }
1152 }
1153
1154 struct blk_map_ctx {
1155 struct blk_mq_hw_ctx *hctx;
1156 struct blk_mq_ctx *ctx;
1157 };
1158
1159 static struct request *blk_mq_map_request(struct request_queue *q,
1160 struct bio *bio,
1161 struct blk_map_ctx *data)
1162 {
1163 struct blk_mq_hw_ctx *hctx;
1164 struct blk_mq_ctx *ctx;
1165 struct request *rq;
1166 int rw = bio_data_dir(bio);
1167
1168 if (unlikely(blk_mq_queue_enter(q))) {
1169 bio_endio(bio, -EIO);
1170 return NULL;
1171 }
1172
1173 ctx = blk_mq_get_ctx(q);
1174 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1175
1176 if (rw_is_sync(bio->bi_rw))
1177 rw |= REQ_SYNC;
1178
1179 trace_block_getrq(q, bio, rw);
1180 rq = __blk_mq_alloc_request(q, hctx, ctx, rw, GFP_ATOMIC, false);
1181 if (unlikely(!rq)) {
1182 __blk_mq_run_hw_queue(hctx);
1183 blk_mq_put_ctx(ctx);
1184 trace_block_sleeprq(q, bio, rw);
1185
1186 ctx = blk_mq_get_ctx(q);
1187 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1188 rq = __blk_mq_alloc_request(q, hctx, ctx, rw,
1189 __GFP_WAIT|GFP_ATOMIC, false);
1190 }
1191
1192 hctx->queued++;
1193 data->hctx = hctx;
1194 data->ctx = ctx;
1195 return rq;
1196 }
1197
1198 /*
1199 * Multiple hardware queue variant. This will not use per-process plugs,
1200 * but will attempt to bypass the hctx queueing if we can go straight to
1201 * hardware for SYNC IO.
1202 */
1203 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1204 {
1205 const int is_sync = rw_is_sync(bio->bi_rw);
1206 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1207 struct blk_map_ctx data;
1208 struct request *rq;
1209
1210 blk_queue_bounce(q, &bio);
1211
1212 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1213 bio_endio(bio, -EIO);
1214 return;
1215 }
1216
1217 rq = blk_mq_map_request(q, bio, &data);
1218 if (unlikely(!rq))
1219 return;
1220
1221 if (unlikely(is_flush_fua)) {
1222 blk_mq_bio_to_request(rq, bio);
1223 blk_insert_flush(rq);
1224 goto run_queue;
1225 }
1226
1227 if (is_sync) {
1228 int ret;
1229
1230 blk_mq_bio_to_request(rq, bio);
1231 blk_mq_start_request(rq, true);
1232
1233 /*
1234 * For OK queue, we are done. For error, kill it. Any other
1235 * error (busy), just add it to our list as we previously
1236 * would have done
1237 */
1238 ret = q->mq_ops->queue_rq(data.hctx, rq);
1239 if (ret == BLK_MQ_RQ_QUEUE_OK)
1240 goto done;
1241 else {
1242 __blk_mq_requeue_request(rq);
1243
1244 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1245 rq->errors = -EIO;
1246 blk_mq_end_io(rq, rq->errors);
1247 goto done;
1248 }
1249 }
1250 }
1251
1252 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1253 /*
1254 * For a SYNC request, send it to the hardware immediately. For
1255 * an ASYNC request, just ensure that we run it later on. The
1256 * latter allows for merging opportunities and more efficient
1257 * dispatching.
1258 */
1259 run_queue:
1260 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1261 }
1262 done:
1263 blk_mq_put_ctx(data.ctx);
1264 }
1265
1266 /*
1267 * Single hardware queue variant. This will attempt to use any per-process
1268 * plug for merging and IO deferral.
1269 */
1270 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1271 {
1272 const int is_sync = rw_is_sync(bio->bi_rw);
1273 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1274 unsigned int use_plug, request_count = 0;
1275 struct blk_map_ctx data;
1276 struct request *rq;
1277
1278 /*
1279 * If we have multiple hardware queues, just go directly to
1280 * one of those for sync IO.
1281 */
1282 use_plug = !is_flush_fua && !is_sync;
1283
1284 blk_queue_bounce(q, &bio);
1285
1286 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1287 bio_endio(bio, -EIO);
1288 return;
1289 }
1290
1291 if (use_plug && !blk_queue_nomerges(q) &&
1292 blk_attempt_plug_merge(q, bio, &request_count))
1293 return;
1294
1295 rq = blk_mq_map_request(q, bio, &data);
1296
1297 if (unlikely(is_flush_fua)) {
1298 blk_mq_bio_to_request(rq, bio);
1299 blk_insert_flush(rq);
1300 goto run_queue;
1301 }
1302
1303 /*
1304 * A task plug currently exists. Since this is completely lockless,
1305 * utilize that to temporarily store requests until the task is
1306 * either done or scheduled away.
1307 */
1308 if (use_plug) {
1309 struct blk_plug *plug = current->plug;
1310
1311 if (plug) {
1312 blk_mq_bio_to_request(rq, bio);
1313 if (list_empty(&plug->mq_list))
1314 trace_block_plug(q);
1315 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1316 blk_flush_plug_list(plug, false);
1317 trace_block_plug(q);
1318 }
1319 list_add_tail(&rq->queuelist, &plug->mq_list);
1320 blk_mq_put_ctx(data.ctx);
1321 return;
1322 }
1323 }
1324
1325 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1326 /*
1327 * For a SYNC request, send it to the hardware immediately. For
1328 * an ASYNC request, just ensure that we run it later on. The
1329 * latter allows for merging opportunities and more efficient
1330 * dispatching.
1331 */
1332 run_queue:
1333 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1334 }
1335
1336 blk_mq_put_ctx(data.ctx);
1337 }
1338
1339 /*
1340 * Default mapping to a software queue, since we use one per CPU.
1341 */
1342 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1343 {
1344 return q->queue_hw_ctx[q->mq_map[cpu]];
1345 }
1346 EXPORT_SYMBOL(blk_mq_map_queue);
1347
1348 struct blk_mq_hw_ctx *blk_mq_alloc_single_hw_queue(struct blk_mq_tag_set *set,
1349 unsigned int hctx_index,
1350 int node)
1351 {
1352 return kzalloc_node(sizeof(struct blk_mq_hw_ctx), GFP_KERNEL, node);
1353 }
1354 EXPORT_SYMBOL(blk_mq_alloc_single_hw_queue);
1355
1356 void blk_mq_free_single_hw_queue(struct blk_mq_hw_ctx *hctx,
1357 unsigned int hctx_index)
1358 {
1359 kfree(hctx);
1360 }
1361 EXPORT_SYMBOL(blk_mq_free_single_hw_queue);
1362
1363 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1364 struct blk_mq_tags *tags, unsigned int hctx_idx)
1365 {
1366 struct page *page;
1367
1368 if (tags->rqs && set->ops->exit_request) {
1369 int i;
1370
1371 for (i = 0; i < tags->nr_tags; i++) {
1372 if (!tags->rqs[i])
1373 continue;
1374 set->ops->exit_request(set->driver_data, tags->rqs[i],
1375 hctx_idx, i);
1376 }
1377 }
1378
1379 while (!list_empty(&tags->page_list)) {
1380 page = list_first_entry(&tags->page_list, struct page, lru);
1381 list_del_init(&page->lru);
1382 __free_pages(page, page->private);
1383 }
1384
1385 kfree(tags->rqs);
1386
1387 blk_mq_free_tags(tags);
1388 }
1389
1390 static size_t order_to_size(unsigned int order)
1391 {
1392 return (size_t)PAGE_SIZE << order;
1393 }
1394
1395 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1396 unsigned int hctx_idx)
1397 {
1398 struct blk_mq_tags *tags;
1399 unsigned int i, j, entries_per_page, max_order = 4;
1400 size_t rq_size, left;
1401
1402 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1403 set->numa_node);
1404 if (!tags)
1405 return NULL;
1406
1407 INIT_LIST_HEAD(&tags->page_list);
1408
1409 tags->rqs = kmalloc_node(set->queue_depth * sizeof(struct request *),
1410 GFP_KERNEL, set->numa_node);
1411 if (!tags->rqs) {
1412 blk_mq_free_tags(tags);
1413 return NULL;
1414 }
1415
1416 /*
1417 * rq_size is the size of the request plus driver payload, rounded
1418 * to the cacheline size
1419 */
1420 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1421 cache_line_size());
1422 left = rq_size * set->queue_depth;
1423
1424 for (i = 0; i < set->queue_depth; ) {
1425 int this_order = max_order;
1426 struct page *page;
1427 int to_do;
1428 void *p;
1429
1430 while (left < order_to_size(this_order - 1) && this_order)
1431 this_order--;
1432
1433 do {
1434 page = alloc_pages_node(set->numa_node, GFP_KERNEL,
1435 this_order);
1436 if (page)
1437 break;
1438 if (!this_order--)
1439 break;
1440 if (order_to_size(this_order) < rq_size)
1441 break;
1442 } while (1);
1443
1444 if (!page)
1445 goto fail;
1446
1447 page->private = this_order;
1448 list_add_tail(&page->lru, &tags->page_list);
1449
1450 p = page_address(page);
1451 entries_per_page = order_to_size(this_order) / rq_size;
1452 to_do = min(entries_per_page, set->queue_depth - i);
1453 left -= to_do * rq_size;
1454 for (j = 0; j < to_do; j++) {
1455 tags->rqs[i] = p;
1456 if (set->ops->init_request) {
1457 if (set->ops->init_request(set->driver_data,
1458 tags->rqs[i], hctx_idx, i,
1459 set->numa_node))
1460 goto fail;
1461 }
1462
1463 p += rq_size;
1464 i++;
1465 }
1466 }
1467
1468 return tags;
1469
1470 fail:
1471 pr_warn("%s: failed to allocate requests\n", __func__);
1472 blk_mq_free_rq_map(set, tags, hctx_idx);
1473 return NULL;
1474 }
1475
1476 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1477 {
1478 kfree(bitmap->map);
1479 }
1480
1481 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1482 {
1483 unsigned int bpw = 8, total, num_maps, i;
1484
1485 bitmap->bits_per_word = bpw;
1486
1487 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1488 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1489 GFP_KERNEL, node);
1490 if (!bitmap->map)
1491 return -ENOMEM;
1492
1493 bitmap->map_size = num_maps;
1494
1495 total = nr_cpu_ids;
1496 for (i = 0; i < num_maps; i++) {
1497 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1498 total -= bitmap->map[i].depth;
1499 }
1500
1501 return 0;
1502 }
1503
1504 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1505 {
1506 struct request_queue *q = hctx->queue;
1507 struct blk_mq_ctx *ctx;
1508 LIST_HEAD(tmp);
1509
1510 /*
1511 * Move ctx entries to new CPU, if this one is going away.
1512 */
1513 ctx = __blk_mq_get_ctx(q, cpu);
1514
1515 spin_lock(&ctx->lock);
1516 if (!list_empty(&ctx->rq_list)) {
1517 list_splice_init(&ctx->rq_list, &tmp);
1518 blk_mq_hctx_clear_pending(hctx, ctx);
1519 }
1520 spin_unlock(&ctx->lock);
1521
1522 if (list_empty(&tmp))
1523 return NOTIFY_OK;
1524
1525 ctx = blk_mq_get_ctx(q);
1526 spin_lock(&ctx->lock);
1527
1528 while (!list_empty(&tmp)) {
1529 struct request *rq;
1530
1531 rq = list_first_entry(&tmp, struct request, queuelist);
1532 rq->mq_ctx = ctx;
1533 list_move_tail(&rq->queuelist, &ctx->rq_list);
1534 }
1535
1536 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1537 blk_mq_hctx_mark_pending(hctx, ctx);
1538
1539 spin_unlock(&ctx->lock);
1540
1541 blk_mq_run_hw_queue(hctx, true);
1542 blk_mq_put_ctx(ctx);
1543 return NOTIFY_OK;
1544 }
1545
1546 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1547 {
1548 struct request_queue *q = hctx->queue;
1549 struct blk_mq_tag_set *set = q->tag_set;
1550
1551 if (set->tags[hctx->queue_num])
1552 return NOTIFY_OK;
1553
1554 set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1555 if (!set->tags[hctx->queue_num])
1556 return NOTIFY_STOP;
1557
1558 hctx->tags = set->tags[hctx->queue_num];
1559 return NOTIFY_OK;
1560 }
1561
1562 static int blk_mq_hctx_notify(void *data, unsigned long action,
1563 unsigned int cpu)
1564 {
1565 struct blk_mq_hw_ctx *hctx = data;
1566
1567 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1568 return blk_mq_hctx_cpu_offline(hctx, cpu);
1569 else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1570 return blk_mq_hctx_cpu_online(hctx, cpu);
1571
1572 return NOTIFY_OK;
1573 }
1574
1575 static void blk_mq_exit_hw_queues(struct request_queue *q,
1576 struct blk_mq_tag_set *set, int nr_queue)
1577 {
1578 struct blk_mq_hw_ctx *hctx;
1579 unsigned int i;
1580
1581 queue_for_each_hw_ctx(q, hctx, i) {
1582 if (i == nr_queue)
1583 break;
1584
1585 if (set->ops->exit_hctx)
1586 set->ops->exit_hctx(hctx, i);
1587
1588 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1589 kfree(hctx->ctxs);
1590 blk_mq_free_bitmap(&hctx->ctx_map);
1591 }
1592
1593 }
1594
1595 static void blk_mq_free_hw_queues(struct request_queue *q,
1596 struct blk_mq_tag_set *set)
1597 {
1598 struct blk_mq_hw_ctx *hctx;
1599 unsigned int i;
1600
1601 queue_for_each_hw_ctx(q, hctx, i) {
1602 free_cpumask_var(hctx->cpumask);
1603 set->ops->free_hctx(hctx, i);
1604 }
1605 }
1606
1607 static int blk_mq_init_hw_queues(struct request_queue *q,
1608 struct blk_mq_tag_set *set)
1609 {
1610 struct blk_mq_hw_ctx *hctx;
1611 unsigned int i;
1612
1613 /*
1614 * Initialize hardware queues
1615 */
1616 queue_for_each_hw_ctx(q, hctx, i) {
1617 int node;
1618
1619 node = hctx->numa_node;
1620 if (node == NUMA_NO_NODE)
1621 node = hctx->numa_node = set->numa_node;
1622
1623 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1624 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1625 spin_lock_init(&hctx->lock);
1626 INIT_LIST_HEAD(&hctx->dispatch);
1627 hctx->queue = q;
1628 hctx->queue_num = i;
1629 hctx->flags = set->flags;
1630 hctx->cmd_size = set->cmd_size;
1631
1632 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1633 blk_mq_hctx_notify, hctx);
1634 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1635
1636 hctx->tags = set->tags[i];
1637
1638 /*
1639 * Allocate space for all possible cpus to avoid allocation in
1640 * runtime
1641 */
1642 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1643 GFP_KERNEL, node);
1644 if (!hctx->ctxs)
1645 break;
1646
1647 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1648 break;
1649
1650 hctx->nr_ctx = 0;
1651
1652 if (set->ops->init_hctx &&
1653 set->ops->init_hctx(hctx, set->driver_data, i))
1654 break;
1655 }
1656
1657 if (i == q->nr_hw_queues)
1658 return 0;
1659
1660 /*
1661 * Init failed
1662 */
1663 blk_mq_exit_hw_queues(q, set, i);
1664
1665 return 1;
1666 }
1667
1668 static void blk_mq_init_cpu_queues(struct request_queue *q,
1669 unsigned int nr_hw_queues)
1670 {
1671 unsigned int i;
1672
1673 for_each_possible_cpu(i) {
1674 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1675 struct blk_mq_hw_ctx *hctx;
1676
1677 memset(__ctx, 0, sizeof(*__ctx));
1678 __ctx->cpu = i;
1679 spin_lock_init(&__ctx->lock);
1680 INIT_LIST_HEAD(&__ctx->rq_list);
1681 __ctx->queue = q;
1682
1683 /* If the cpu isn't online, the cpu is mapped to first hctx */
1684 if (!cpu_online(i))
1685 continue;
1686
1687 hctx = q->mq_ops->map_queue(q, i);
1688 cpumask_set_cpu(i, hctx->cpumask);
1689 hctx->nr_ctx++;
1690
1691 /*
1692 * Set local node, IFF we have more than one hw queue. If
1693 * not, we remain on the home node of the device
1694 */
1695 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1696 hctx->numa_node = cpu_to_node(i);
1697 }
1698 }
1699
1700 static void blk_mq_map_swqueue(struct request_queue *q)
1701 {
1702 unsigned int i;
1703 struct blk_mq_hw_ctx *hctx;
1704 struct blk_mq_ctx *ctx;
1705
1706 queue_for_each_hw_ctx(q, hctx, i) {
1707 cpumask_clear(hctx->cpumask);
1708 hctx->nr_ctx = 0;
1709 }
1710
1711 /*
1712 * Map software to hardware queues
1713 */
1714 queue_for_each_ctx(q, ctx, i) {
1715 /* If the cpu isn't online, the cpu is mapped to first hctx */
1716 if (!cpu_online(i))
1717 continue;
1718
1719 hctx = q->mq_ops->map_queue(q, i);
1720 cpumask_set_cpu(i, hctx->cpumask);
1721 ctx->index_hw = hctx->nr_ctx;
1722 hctx->ctxs[hctx->nr_ctx++] = ctx;
1723 }
1724
1725 queue_for_each_hw_ctx(q, hctx, i) {
1726 /*
1727 * If not software queues are mapped to this hardware queue,
1728 * disable it and free the request entries
1729 */
1730 if (!hctx->nr_ctx) {
1731 struct blk_mq_tag_set *set = q->tag_set;
1732
1733 if (set->tags[i]) {
1734 blk_mq_free_rq_map(set, set->tags[i], i);
1735 set->tags[i] = NULL;
1736 hctx->tags = NULL;
1737 }
1738 continue;
1739 }
1740
1741 /*
1742 * Initialize batch roundrobin counts
1743 */
1744 hctx->next_cpu = cpumask_first(hctx->cpumask);
1745 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1746 }
1747 }
1748
1749 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1750 {
1751 struct blk_mq_hw_ctx *hctx;
1752 struct request_queue *q;
1753 bool shared;
1754 int i;
1755
1756 if (set->tag_list.next == set->tag_list.prev)
1757 shared = false;
1758 else
1759 shared = true;
1760
1761 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1762 blk_mq_freeze_queue(q);
1763
1764 queue_for_each_hw_ctx(q, hctx, i) {
1765 if (shared)
1766 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1767 else
1768 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1769 }
1770 blk_mq_unfreeze_queue(q);
1771 }
1772 }
1773
1774 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1775 {
1776 struct blk_mq_tag_set *set = q->tag_set;
1777
1778 blk_mq_freeze_queue(q);
1779
1780 mutex_lock(&set->tag_list_lock);
1781 list_del_init(&q->tag_set_list);
1782 blk_mq_update_tag_set_depth(set);
1783 mutex_unlock(&set->tag_list_lock);
1784
1785 blk_mq_unfreeze_queue(q);
1786 }
1787
1788 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1789 struct request_queue *q)
1790 {
1791 q->tag_set = set;
1792
1793 mutex_lock(&set->tag_list_lock);
1794 list_add_tail(&q->tag_set_list, &set->tag_list);
1795 blk_mq_update_tag_set_depth(set);
1796 mutex_unlock(&set->tag_list_lock);
1797 }
1798
1799 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1800 {
1801 struct blk_mq_hw_ctx **hctxs;
1802 struct blk_mq_ctx *ctx;
1803 struct request_queue *q;
1804 unsigned int *map;
1805 int i;
1806
1807 ctx = alloc_percpu(struct blk_mq_ctx);
1808 if (!ctx)
1809 return ERR_PTR(-ENOMEM);
1810
1811 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1812 set->numa_node);
1813
1814 if (!hctxs)
1815 goto err_percpu;
1816
1817 map = blk_mq_make_queue_map(set);
1818 if (!map)
1819 goto err_map;
1820
1821 for (i = 0; i < set->nr_hw_queues; i++) {
1822 int node = blk_mq_hw_queue_to_node(map, i);
1823
1824 hctxs[i] = set->ops->alloc_hctx(set, i, node);
1825 if (!hctxs[i])
1826 goto err_hctxs;
1827
1828 if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
1829 goto err_hctxs;
1830
1831 atomic_set(&hctxs[i]->nr_active, 0);
1832 hctxs[i]->numa_node = node;
1833 hctxs[i]->queue_num = i;
1834 }
1835
1836 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1837 if (!q)
1838 goto err_hctxs;
1839
1840 if (percpu_counter_init(&q->mq_usage_counter, 0))
1841 goto err_map;
1842
1843 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1844 blk_queue_rq_timeout(q, 30000);
1845
1846 q->nr_queues = nr_cpu_ids;
1847 q->nr_hw_queues = set->nr_hw_queues;
1848 q->mq_map = map;
1849
1850 q->queue_ctx = ctx;
1851 q->queue_hw_ctx = hctxs;
1852
1853 q->mq_ops = set->ops;
1854 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1855
1856 q->sg_reserved_size = INT_MAX;
1857
1858 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1859 INIT_LIST_HEAD(&q->requeue_list);
1860 spin_lock_init(&q->requeue_lock);
1861
1862 if (q->nr_hw_queues > 1)
1863 blk_queue_make_request(q, blk_mq_make_request);
1864 else
1865 blk_queue_make_request(q, blk_sq_make_request);
1866
1867 blk_queue_rq_timed_out(q, blk_mq_rq_timed_out);
1868 if (set->timeout)
1869 blk_queue_rq_timeout(q, set->timeout);
1870
1871 /*
1872 * Do this after blk_queue_make_request() overrides it...
1873 */
1874 q->nr_requests = set->queue_depth;
1875
1876 if (set->ops->complete)
1877 blk_queue_softirq_done(q, set->ops->complete);
1878
1879 blk_mq_init_flush(q);
1880 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1881
1882 q->flush_rq = kzalloc(round_up(sizeof(struct request) +
1883 set->cmd_size, cache_line_size()),
1884 GFP_KERNEL);
1885 if (!q->flush_rq)
1886 goto err_hw;
1887
1888 if (blk_mq_init_hw_queues(q, set))
1889 goto err_flush_rq;
1890
1891 mutex_lock(&all_q_mutex);
1892 list_add_tail(&q->all_q_node, &all_q_list);
1893 mutex_unlock(&all_q_mutex);
1894
1895 blk_mq_add_queue_tag_set(set, q);
1896
1897 blk_mq_map_swqueue(q);
1898
1899 return q;
1900
1901 err_flush_rq:
1902 kfree(q->flush_rq);
1903 err_hw:
1904 blk_cleanup_queue(q);
1905 err_hctxs:
1906 kfree(map);
1907 for (i = 0; i < set->nr_hw_queues; i++) {
1908 if (!hctxs[i])
1909 break;
1910 free_cpumask_var(hctxs[i]->cpumask);
1911 set->ops->free_hctx(hctxs[i], i);
1912 }
1913 err_map:
1914 kfree(hctxs);
1915 err_percpu:
1916 free_percpu(ctx);
1917 return ERR_PTR(-ENOMEM);
1918 }
1919 EXPORT_SYMBOL(blk_mq_init_queue);
1920
1921 void blk_mq_free_queue(struct request_queue *q)
1922 {
1923 struct blk_mq_tag_set *set = q->tag_set;
1924
1925 blk_mq_del_queue_tag_set(q);
1926
1927 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
1928 blk_mq_free_hw_queues(q, set);
1929
1930 percpu_counter_destroy(&q->mq_usage_counter);
1931
1932 free_percpu(q->queue_ctx);
1933 kfree(q->queue_hw_ctx);
1934 kfree(q->mq_map);
1935
1936 q->queue_ctx = NULL;
1937 q->queue_hw_ctx = NULL;
1938 q->mq_map = NULL;
1939
1940 mutex_lock(&all_q_mutex);
1941 list_del_init(&q->all_q_node);
1942 mutex_unlock(&all_q_mutex);
1943 }
1944
1945 /* Basically redo blk_mq_init_queue with queue frozen */
1946 static void blk_mq_queue_reinit(struct request_queue *q)
1947 {
1948 blk_mq_freeze_queue(q);
1949
1950 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1951
1952 /*
1953 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1954 * we should change hctx numa_node according to new topology (this
1955 * involves free and re-allocate memory, worthy doing?)
1956 */
1957
1958 blk_mq_map_swqueue(q);
1959
1960 blk_mq_unfreeze_queue(q);
1961 }
1962
1963 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1964 unsigned long action, void *hcpu)
1965 {
1966 struct request_queue *q;
1967
1968 /*
1969 * Before new mappings are established, hotadded cpu might already
1970 * start handling requests. This doesn't break anything as we map
1971 * offline CPUs to first hardware queue. We will re-init the queue
1972 * below to get optimal settings.
1973 */
1974 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1975 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1976 return NOTIFY_OK;
1977
1978 mutex_lock(&all_q_mutex);
1979 list_for_each_entry(q, &all_q_list, all_q_node)
1980 blk_mq_queue_reinit(q);
1981 mutex_unlock(&all_q_mutex);
1982 return NOTIFY_OK;
1983 }
1984
1985 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
1986 {
1987 int i;
1988
1989 if (!set->nr_hw_queues)
1990 return -EINVAL;
1991 if (!set->queue_depth || set->queue_depth > BLK_MQ_MAX_DEPTH)
1992 return -EINVAL;
1993 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
1994 return -EINVAL;
1995
1996 if (!set->nr_hw_queues ||
1997 !set->ops->queue_rq || !set->ops->map_queue ||
1998 !set->ops->alloc_hctx || !set->ops->free_hctx)
1999 return -EINVAL;
2000
2001
2002 set->tags = kmalloc_node(set->nr_hw_queues *
2003 sizeof(struct blk_mq_tags *),
2004 GFP_KERNEL, set->numa_node);
2005 if (!set->tags)
2006 goto out;
2007
2008 for (i = 0; i < set->nr_hw_queues; i++) {
2009 set->tags[i] = blk_mq_init_rq_map(set, i);
2010 if (!set->tags[i])
2011 goto out_unwind;
2012 }
2013
2014 mutex_init(&set->tag_list_lock);
2015 INIT_LIST_HEAD(&set->tag_list);
2016
2017 return 0;
2018
2019 out_unwind:
2020 while (--i >= 0)
2021 blk_mq_free_rq_map(set, set->tags[i], i);
2022 out:
2023 return -ENOMEM;
2024 }
2025 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2026
2027 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2028 {
2029 int i;
2030
2031 for (i = 0; i < set->nr_hw_queues; i++) {
2032 if (set->tags[i])
2033 blk_mq_free_rq_map(set, set->tags[i], i);
2034 }
2035
2036 kfree(set->tags);
2037 }
2038 EXPORT_SYMBOL(blk_mq_free_tag_set);
2039
2040 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2041 {
2042 struct blk_mq_tag_set *set = q->tag_set;
2043 struct blk_mq_hw_ctx *hctx;
2044 int i, ret;
2045
2046 if (!set || nr > set->queue_depth)
2047 return -EINVAL;
2048
2049 ret = 0;
2050 queue_for_each_hw_ctx(q, hctx, i) {
2051 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2052 if (ret)
2053 break;
2054 }
2055
2056 if (!ret)
2057 q->nr_requests = nr;
2058
2059 return ret;
2060 }
2061
2062 void blk_mq_disable_hotplug(void)
2063 {
2064 mutex_lock(&all_q_mutex);
2065 }
2066
2067 void blk_mq_enable_hotplug(void)
2068 {
2069 mutex_unlock(&all_q_mutex);
2070 }
2071
2072 static int __init blk_mq_init(void)
2073 {
2074 blk_mq_cpu_init();
2075
2076 /* Must be called after percpu_counter_hotcpu_callback() */
2077 hotcpu_notifier(blk_mq_queue_reinit_notify, -10);
2078
2079 return 0;
2080 }
2081 subsys_initcall(blk_mq_init);