]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-mq.c
blk-mq: wire up completion notifier for laptop mode
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static void blk_mq_poll_stats_start(struct request_queue *q);
41 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
42
43 static int blk_mq_poll_stats_bkt(const struct request *rq)
44 {
45 int ddir, bytes, bucket;
46
47 ddir = rq_data_dir(rq);
48 bytes = blk_rq_bytes(rq);
49
50 bucket = ddir + 2*(ilog2(bytes) - 9);
51
52 if (bucket < 0)
53 return -1;
54 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
55 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
56
57 return bucket;
58 }
59
60 /*
61 * Check if any of the ctx's have pending work in this hardware queue
62 */
63 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
64 {
65 return sbitmap_any_bit_set(&hctx->ctx_map) ||
66 !list_empty_careful(&hctx->dispatch) ||
67 blk_mq_sched_has_work(hctx);
68 }
69
70 /*
71 * Mark this ctx as having pending work in this hardware queue
72 */
73 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
74 struct blk_mq_ctx *ctx)
75 {
76 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
77 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
78 }
79
80 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
81 struct blk_mq_ctx *ctx)
82 {
83 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
84 }
85
86 struct mq_inflight {
87 struct hd_struct *part;
88 unsigned int *inflight;
89 };
90
91 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
92 struct request *rq, void *priv,
93 bool reserved)
94 {
95 struct mq_inflight *mi = priv;
96
97 if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
98 !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
99 /*
100 * index[0] counts the specific partition that was asked
101 * for. index[1] counts the ones that are active on the
102 * whole device, so increment that if mi->part is indeed
103 * a partition, and not a whole device.
104 */
105 if (rq->part == mi->part)
106 mi->inflight[0]++;
107 if (mi->part->partno)
108 mi->inflight[1]++;
109 }
110 }
111
112 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
113 unsigned int inflight[2])
114 {
115 struct mq_inflight mi = { .part = part, .inflight = inflight, };
116
117 inflight[0] = inflight[1] = 0;
118 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119 }
120
121 void blk_freeze_queue_start(struct request_queue *q)
122 {
123 int freeze_depth;
124
125 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
126 if (freeze_depth == 1) {
127 percpu_ref_kill(&q->q_usage_counter);
128 blk_mq_run_hw_queues(q, false);
129 }
130 }
131 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
132
133 void blk_mq_freeze_queue_wait(struct request_queue *q)
134 {
135 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
136 }
137 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
138
139 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
140 unsigned long timeout)
141 {
142 return wait_event_timeout(q->mq_freeze_wq,
143 percpu_ref_is_zero(&q->q_usage_counter),
144 timeout);
145 }
146 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
147
148 /*
149 * Guarantee no request is in use, so we can change any data structure of
150 * the queue afterward.
151 */
152 void blk_freeze_queue(struct request_queue *q)
153 {
154 /*
155 * In the !blk_mq case we are only calling this to kill the
156 * q_usage_counter, otherwise this increases the freeze depth
157 * and waits for it to return to zero. For this reason there is
158 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
159 * exported to drivers as the only user for unfreeze is blk_mq.
160 */
161 blk_freeze_queue_start(q);
162 blk_mq_freeze_queue_wait(q);
163 }
164
165 void blk_mq_freeze_queue(struct request_queue *q)
166 {
167 /*
168 * ...just an alias to keep freeze and unfreeze actions balanced
169 * in the blk_mq_* namespace
170 */
171 blk_freeze_queue(q);
172 }
173 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
174
175 void blk_mq_unfreeze_queue(struct request_queue *q)
176 {
177 int freeze_depth;
178
179 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
180 WARN_ON_ONCE(freeze_depth < 0);
181 if (!freeze_depth) {
182 percpu_ref_reinit(&q->q_usage_counter);
183 wake_up_all(&q->mq_freeze_wq);
184 }
185 }
186 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
187
188 /*
189 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
190 * mpt3sas driver such that this function can be removed.
191 */
192 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
193 {
194 unsigned long flags;
195
196 spin_lock_irqsave(q->queue_lock, flags);
197 queue_flag_set(QUEUE_FLAG_QUIESCED, q);
198 spin_unlock_irqrestore(q->queue_lock, flags);
199 }
200 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
201
202 /**
203 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
204 * @q: request queue.
205 *
206 * Note: this function does not prevent that the struct request end_io()
207 * callback function is invoked. Once this function is returned, we make
208 * sure no dispatch can happen until the queue is unquiesced via
209 * blk_mq_unquiesce_queue().
210 */
211 void blk_mq_quiesce_queue(struct request_queue *q)
212 {
213 struct blk_mq_hw_ctx *hctx;
214 unsigned int i;
215 bool rcu = false;
216
217 blk_mq_quiesce_queue_nowait(q);
218
219 queue_for_each_hw_ctx(q, hctx, i) {
220 if (hctx->flags & BLK_MQ_F_BLOCKING)
221 synchronize_srcu(hctx->queue_rq_srcu);
222 else
223 rcu = true;
224 }
225 if (rcu)
226 synchronize_rcu();
227 }
228 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
229
230 /*
231 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
232 * @q: request queue.
233 *
234 * This function recovers queue into the state before quiescing
235 * which is done by blk_mq_quiesce_queue.
236 */
237 void blk_mq_unquiesce_queue(struct request_queue *q)
238 {
239 unsigned long flags;
240
241 spin_lock_irqsave(q->queue_lock, flags);
242 queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
243 spin_unlock_irqrestore(q->queue_lock, flags);
244
245 /* dispatch requests which are inserted during quiescing */
246 blk_mq_run_hw_queues(q, true);
247 }
248 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
249
250 void blk_mq_wake_waiters(struct request_queue *q)
251 {
252 struct blk_mq_hw_ctx *hctx;
253 unsigned int i;
254
255 queue_for_each_hw_ctx(q, hctx, i)
256 if (blk_mq_hw_queue_mapped(hctx))
257 blk_mq_tag_wakeup_all(hctx->tags, true);
258
259 /*
260 * If we are called because the queue has now been marked as
261 * dying, we need to ensure that processes currently waiting on
262 * the queue are notified as well.
263 */
264 wake_up_all(&q->mq_freeze_wq);
265 }
266
267 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
268 {
269 return blk_mq_has_free_tags(hctx->tags);
270 }
271 EXPORT_SYMBOL(blk_mq_can_queue);
272
273 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
274 unsigned int tag, unsigned int op)
275 {
276 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
277 struct request *rq = tags->static_rqs[tag];
278
279 rq->rq_flags = 0;
280
281 if (data->flags & BLK_MQ_REQ_INTERNAL) {
282 rq->tag = -1;
283 rq->internal_tag = tag;
284 } else {
285 if (blk_mq_tag_busy(data->hctx)) {
286 rq->rq_flags = RQF_MQ_INFLIGHT;
287 atomic_inc(&data->hctx->nr_active);
288 }
289 rq->tag = tag;
290 rq->internal_tag = -1;
291 data->hctx->tags->rqs[rq->tag] = rq;
292 }
293
294 INIT_LIST_HEAD(&rq->queuelist);
295 /* csd/requeue_work/fifo_time is initialized before use */
296 rq->q = data->q;
297 rq->mq_ctx = data->ctx;
298 rq->cmd_flags = op;
299 if (blk_queue_io_stat(data->q))
300 rq->rq_flags |= RQF_IO_STAT;
301 /* do not touch atomic flags, it needs atomic ops against the timer */
302 rq->cpu = -1;
303 INIT_HLIST_NODE(&rq->hash);
304 RB_CLEAR_NODE(&rq->rb_node);
305 rq->rq_disk = NULL;
306 rq->part = NULL;
307 rq->start_time = jiffies;
308 #ifdef CONFIG_BLK_CGROUP
309 rq->rl = NULL;
310 set_start_time_ns(rq);
311 rq->io_start_time_ns = 0;
312 #endif
313 rq->nr_phys_segments = 0;
314 #if defined(CONFIG_BLK_DEV_INTEGRITY)
315 rq->nr_integrity_segments = 0;
316 #endif
317 rq->special = NULL;
318 /* tag was already set */
319 rq->extra_len = 0;
320
321 INIT_LIST_HEAD(&rq->timeout_list);
322 rq->timeout = 0;
323
324 rq->end_io = NULL;
325 rq->end_io_data = NULL;
326 rq->next_rq = NULL;
327
328 data->ctx->rq_dispatched[op_is_sync(op)]++;
329 return rq;
330 }
331
332 static struct request *blk_mq_get_request(struct request_queue *q,
333 struct bio *bio, unsigned int op,
334 struct blk_mq_alloc_data *data)
335 {
336 struct elevator_queue *e = q->elevator;
337 struct request *rq;
338 unsigned int tag;
339 struct blk_mq_ctx *local_ctx = NULL;
340
341 blk_queue_enter_live(q);
342 data->q = q;
343 if (likely(!data->ctx))
344 data->ctx = local_ctx = blk_mq_get_ctx(q);
345 if (likely(!data->hctx))
346 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
347 if (op & REQ_NOWAIT)
348 data->flags |= BLK_MQ_REQ_NOWAIT;
349
350 if (e) {
351 data->flags |= BLK_MQ_REQ_INTERNAL;
352
353 /*
354 * Flush requests are special and go directly to the
355 * dispatch list.
356 */
357 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
358 e->type->ops.mq.limit_depth(op, data);
359 }
360
361 tag = blk_mq_get_tag(data);
362 if (tag == BLK_MQ_TAG_FAIL) {
363 if (local_ctx) {
364 blk_mq_put_ctx(local_ctx);
365 data->ctx = NULL;
366 }
367 blk_queue_exit(q);
368 return NULL;
369 }
370
371 rq = blk_mq_rq_ctx_init(data, tag, op);
372 if (!op_is_flush(op)) {
373 rq->elv.icq = NULL;
374 if (e && e->type->ops.mq.prepare_request) {
375 if (e->type->icq_cache && rq_ioc(bio))
376 blk_mq_sched_assign_ioc(rq, bio);
377
378 e->type->ops.mq.prepare_request(rq, bio);
379 rq->rq_flags |= RQF_ELVPRIV;
380 }
381 }
382 data->hctx->queued++;
383 return rq;
384 }
385
386 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
387 unsigned int flags)
388 {
389 struct blk_mq_alloc_data alloc_data = { .flags = flags };
390 struct request *rq;
391 int ret;
392
393 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
394 if (ret)
395 return ERR_PTR(ret);
396
397 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
398 blk_queue_exit(q);
399
400 if (!rq)
401 return ERR_PTR(-EWOULDBLOCK);
402
403 blk_mq_put_ctx(alloc_data.ctx);
404
405 rq->__data_len = 0;
406 rq->__sector = (sector_t) -1;
407 rq->bio = rq->biotail = NULL;
408 return rq;
409 }
410 EXPORT_SYMBOL(blk_mq_alloc_request);
411
412 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
413 unsigned int op, unsigned int flags, unsigned int hctx_idx)
414 {
415 struct blk_mq_alloc_data alloc_data = { .flags = flags };
416 struct request *rq;
417 unsigned int cpu;
418 int ret;
419
420 /*
421 * If the tag allocator sleeps we could get an allocation for a
422 * different hardware context. No need to complicate the low level
423 * allocator for this for the rare use case of a command tied to
424 * a specific queue.
425 */
426 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
427 return ERR_PTR(-EINVAL);
428
429 if (hctx_idx >= q->nr_hw_queues)
430 return ERR_PTR(-EIO);
431
432 ret = blk_queue_enter(q, true);
433 if (ret)
434 return ERR_PTR(ret);
435
436 /*
437 * Check if the hardware context is actually mapped to anything.
438 * If not tell the caller that it should skip this queue.
439 */
440 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
441 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
442 blk_queue_exit(q);
443 return ERR_PTR(-EXDEV);
444 }
445 cpu = cpumask_first(alloc_data.hctx->cpumask);
446 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
447
448 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
449 blk_queue_exit(q);
450
451 if (!rq)
452 return ERR_PTR(-EWOULDBLOCK);
453
454 return rq;
455 }
456 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
457
458 void blk_mq_free_request(struct request *rq)
459 {
460 struct request_queue *q = rq->q;
461 struct elevator_queue *e = q->elevator;
462 struct blk_mq_ctx *ctx = rq->mq_ctx;
463 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
464 const int sched_tag = rq->internal_tag;
465
466 if (rq->rq_flags & RQF_ELVPRIV) {
467 if (e && e->type->ops.mq.finish_request)
468 e->type->ops.mq.finish_request(rq);
469 if (rq->elv.icq) {
470 put_io_context(rq->elv.icq->ioc);
471 rq->elv.icq = NULL;
472 }
473 }
474
475 ctx->rq_completed[rq_is_sync(rq)]++;
476 if (rq->rq_flags & RQF_MQ_INFLIGHT)
477 atomic_dec(&hctx->nr_active);
478
479 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
480 laptop_io_completion(q->backing_dev_info);
481
482 wbt_done(q->rq_wb, &rq->issue_stat);
483
484 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
485 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
486 if (rq->tag != -1)
487 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
488 if (sched_tag != -1)
489 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
490 blk_mq_sched_restart(hctx);
491 blk_queue_exit(q);
492 }
493 EXPORT_SYMBOL_GPL(blk_mq_free_request);
494
495 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
496 {
497 blk_account_io_done(rq);
498
499 if (rq->end_io) {
500 wbt_done(rq->q->rq_wb, &rq->issue_stat);
501 rq->end_io(rq, error);
502 } else {
503 if (unlikely(blk_bidi_rq(rq)))
504 blk_mq_free_request(rq->next_rq);
505 blk_mq_free_request(rq);
506 }
507 }
508 EXPORT_SYMBOL(__blk_mq_end_request);
509
510 void blk_mq_end_request(struct request *rq, blk_status_t error)
511 {
512 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
513 BUG();
514 __blk_mq_end_request(rq, error);
515 }
516 EXPORT_SYMBOL(blk_mq_end_request);
517
518 static void __blk_mq_complete_request_remote(void *data)
519 {
520 struct request *rq = data;
521
522 rq->q->softirq_done_fn(rq);
523 }
524
525 static void __blk_mq_complete_request(struct request *rq)
526 {
527 struct blk_mq_ctx *ctx = rq->mq_ctx;
528 bool shared = false;
529 int cpu;
530
531 if (rq->internal_tag != -1)
532 blk_mq_sched_completed_request(rq);
533 if (rq->rq_flags & RQF_STATS) {
534 blk_mq_poll_stats_start(rq->q);
535 blk_stat_add(rq);
536 }
537
538 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
539 rq->q->softirq_done_fn(rq);
540 return;
541 }
542
543 cpu = get_cpu();
544 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
545 shared = cpus_share_cache(cpu, ctx->cpu);
546
547 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
548 rq->csd.func = __blk_mq_complete_request_remote;
549 rq->csd.info = rq;
550 rq->csd.flags = 0;
551 smp_call_function_single_async(ctx->cpu, &rq->csd);
552 } else {
553 rq->q->softirq_done_fn(rq);
554 }
555 put_cpu();
556 }
557
558 /**
559 * blk_mq_complete_request - end I/O on a request
560 * @rq: the request being processed
561 *
562 * Description:
563 * Ends all I/O on a request. It does not handle partial completions.
564 * The actual completion happens out-of-order, through a IPI handler.
565 **/
566 void blk_mq_complete_request(struct request *rq)
567 {
568 struct request_queue *q = rq->q;
569
570 if (unlikely(blk_should_fake_timeout(q)))
571 return;
572 if (!blk_mark_rq_complete(rq))
573 __blk_mq_complete_request(rq);
574 }
575 EXPORT_SYMBOL(blk_mq_complete_request);
576
577 int blk_mq_request_started(struct request *rq)
578 {
579 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
580 }
581 EXPORT_SYMBOL_GPL(blk_mq_request_started);
582
583 void blk_mq_start_request(struct request *rq)
584 {
585 struct request_queue *q = rq->q;
586
587 blk_mq_sched_started_request(rq);
588
589 trace_block_rq_issue(q, rq);
590
591 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
592 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
593 rq->rq_flags |= RQF_STATS;
594 wbt_issue(q->rq_wb, &rq->issue_stat);
595 }
596
597 blk_add_timer(rq);
598
599 /*
600 * Ensure that ->deadline is visible before set the started
601 * flag and clear the completed flag.
602 */
603 smp_mb__before_atomic();
604
605 /*
606 * Mark us as started and clear complete. Complete might have been
607 * set if requeue raced with timeout, which then marked it as
608 * complete. So be sure to clear complete again when we start
609 * the request, otherwise we'll ignore the completion event.
610 */
611 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
612 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
613 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
614 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
615
616 if (q->dma_drain_size && blk_rq_bytes(rq)) {
617 /*
618 * Make sure space for the drain appears. We know we can do
619 * this because max_hw_segments has been adjusted to be one
620 * fewer than the device can handle.
621 */
622 rq->nr_phys_segments++;
623 }
624 }
625 EXPORT_SYMBOL(blk_mq_start_request);
626
627 /*
628 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
629 * flag isn't set yet, so there may be race with timeout handler,
630 * but given rq->deadline is just set in .queue_rq() under
631 * this situation, the race won't be possible in reality because
632 * rq->timeout should be set as big enough to cover the window
633 * between blk_mq_start_request() called from .queue_rq() and
634 * clearing REQ_ATOM_STARTED here.
635 */
636 static void __blk_mq_requeue_request(struct request *rq)
637 {
638 struct request_queue *q = rq->q;
639
640 trace_block_rq_requeue(q, rq);
641 wbt_requeue(q->rq_wb, &rq->issue_stat);
642 blk_mq_sched_requeue_request(rq);
643
644 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
645 if (q->dma_drain_size && blk_rq_bytes(rq))
646 rq->nr_phys_segments--;
647 }
648 }
649
650 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
651 {
652 __blk_mq_requeue_request(rq);
653
654 BUG_ON(blk_queued_rq(rq));
655 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
656 }
657 EXPORT_SYMBOL(blk_mq_requeue_request);
658
659 static void blk_mq_requeue_work(struct work_struct *work)
660 {
661 struct request_queue *q =
662 container_of(work, struct request_queue, requeue_work.work);
663 LIST_HEAD(rq_list);
664 struct request *rq, *next;
665
666 spin_lock_irq(&q->requeue_lock);
667 list_splice_init(&q->requeue_list, &rq_list);
668 spin_unlock_irq(&q->requeue_lock);
669
670 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
671 if (!(rq->rq_flags & RQF_SOFTBARRIER))
672 continue;
673
674 rq->rq_flags &= ~RQF_SOFTBARRIER;
675 list_del_init(&rq->queuelist);
676 blk_mq_sched_insert_request(rq, true, false, false, true);
677 }
678
679 while (!list_empty(&rq_list)) {
680 rq = list_entry(rq_list.next, struct request, queuelist);
681 list_del_init(&rq->queuelist);
682 blk_mq_sched_insert_request(rq, false, false, false, true);
683 }
684
685 blk_mq_run_hw_queues(q, false);
686 }
687
688 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
689 bool kick_requeue_list)
690 {
691 struct request_queue *q = rq->q;
692 unsigned long flags;
693
694 /*
695 * We abuse this flag that is otherwise used by the I/O scheduler to
696 * request head insertation from the workqueue.
697 */
698 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
699
700 spin_lock_irqsave(&q->requeue_lock, flags);
701 if (at_head) {
702 rq->rq_flags |= RQF_SOFTBARRIER;
703 list_add(&rq->queuelist, &q->requeue_list);
704 } else {
705 list_add_tail(&rq->queuelist, &q->requeue_list);
706 }
707 spin_unlock_irqrestore(&q->requeue_lock, flags);
708
709 if (kick_requeue_list)
710 blk_mq_kick_requeue_list(q);
711 }
712 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
713
714 void blk_mq_kick_requeue_list(struct request_queue *q)
715 {
716 kblockd_schedule_delayed_work(&q->requeue_work, 0);
717 }
718 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
719
720 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
721 unsigned long msecs)
722 {
723 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
724 msecs_to_jiffies(msecs));
725 }
726 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
727
728 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
729 {
730 if (tag < tags->nr_tags) {
731 prefetch(tags->rqs[tag]);
732 return tags->rqs[tag];
733 }
734
735 return NULL;
736 }
737 EXPORT_SYMBOL(blk_mq_tag_to_rq);
738
739 struct blk_mq_timeout_data {
740 unsigned long next;
741 unsigned int next_set;
742 };
743
744 void blk_mq_rq_timed_out(struct request *req, bool reserved)
745 {
746 const struct blk_mq_ops *ops = req->q->mq_ops;
747 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
748
749 /*
750 * We know that complete is set at this point. If STARTED isn't set
751 * anymore, then the request isn't active and the "timeout" should
752 * just be ignored. This can happen due to the bitflag ordering.
753 * Timeout first checks if STARTED is set, and if it is, assumes
754 * the request is active. But if we race with completion, then
755 * both flags will get cleared. So check here again, and ignore
756 * a timeout event with a request that isn't active.
757 */
758 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
759 return;
760
761 if (ops->timeout)
762 ret = ops->timeout(req, reserved);
763
764 switch (ret) {
765 case BLK_EH_HANDLED:
766 __blk_mq_complete_request(req);
767 break;
768 case BLK_EH_RESET_TIMER:
769 blk_add_timer(req);
770 blk_clear_rq_complete(req);
771 break;
772 case BLK_EH_NOT_HANDLED:
773 break;
774 default:
775 printk(KERN_ERR "block: bad eh return: %d\n", ret);
776 break;
777 }
778 }
779
780 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
781 struct request *rq, void *priv, bool reserved)
782 {
783 struct blk_mq_timeout_data *data = priv;
784
785 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
786 return;
787
788 /*
789 * The rq being checked may have been freed and reallocated
790 * out already here, we avoid this race by checking rq->deadline
791 * and REQ_ATOM_COMPLETE flag together:
792 *
793 * - if rq->deadline is observed as new value because of
794 * reusing, the rq won't be timed out because of timing.
795 * - if rq->deadline is observed as previous value,
796 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
797 * because we put a barrier between setting rq->deadline
798 * and clearing the flag in blk_mq_start_request(), so
799 * this rq won't be timed out too.
800 */
801 if (time_after_eq(jiffies, rq->deadline)) {
802 if (!blk_mark_rq_complete(rq))
803 blk_mq_rq_timed_out(rq, reserved);
804 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
805 data->next = rq->deadline;
806 data->next_set = 1;
807 }
808 }
809
810 static void blk_mq_timeout_work(struct work_struct *work)
811 {
812 struct request_queue *q =
813 container_of(work, struct request_queue, timeout_work);
814 struct blk_mq_timeout_data data = {
815 .next = 0,
816 .next_set = 0,
817 };
818 int i;
819
820 /* A deadlock might occur if a request is stuck requiring a
821 * timeout at the same time a queue freeze is waiting
822 * completion, since the timeout code would not be able to
823 * acquire the queue reference here.
824 *
825 * That's why we don't use blk_queue_enter here; instead, we use
826 * percpu_ref_tryget directly, because we need to be able to
827 * obtain a reference even in the short window between the queue
828 * starting to freeze, by dropping the first reference in
829 * blk_freeze_queue_start, and the moment the last request is
830 * consumed, marked by the instant q_usage_counter reaches
831 * zero.
832 */
833 if (!percpu_ref_tryget(&q->q_usage_counter))
834 return;
835
836 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
837
838 if (data.next_set) {
839 data.next = blk_rq_timeout(round_jiffies_up(data.next));
840 mod_timer(&q->timeout, data.next);
841 } else {
842 struct blk_mq_hw_ctx *hctx;
843
844 queue_for_each_hw_ctx(q, hctx, i) {
845 /* the hctx may be unmapped, so check it here */
846 if (blk_mq_hw_queue_mapped(hctx))
847 blk_mq_tag_idle(hctx);
848 }
849 }
850 blk_queue_exit(q);
851 }
852
853 struct flush_busy_ctx_data {
854 struct blk_mq_hw_ctx *hctx;
855 struct list_head *list;
856 };
857
858 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
859 {
860 struct flush_busy_ctx_data *flush_data = data;
861 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
862 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
863
864 sbitmap_clear_bit(sb, bitnr);
865 spin_lock(&ctx->lock);
866 list_splice_tail_init(&ctx->rq_list, flush_data->list);
867 spin_unlock(&ctx->lock);
868 return true;
869 }
870
871 /*
872 * Process software queues that have been marked busy, splicing them
873 * to the for-dispatch
874 */
875 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
876 {
877 struct flush_busy_ctx_data data = {
878 .hctx = hctx,
879 .list = list,
880 };
881
882 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
883 }
884 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
885
886 static inline unsigned int queued_to_index(unsigned int queued)
887 {
888 if (!queued)
889 return 0;
890
891 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
892 }
893
894 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
895 bool wait)
896 {
897 struct blk_mq_alloc_data data = {
898 .q = rq->q,
899 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
900 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
901 };
902
903 might_sleep_if(wait);
904
905 if (rq->tag != -1)
906 goto done;
907
908 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
909 data.flags |= BLK_MQ_REQ_RESERVED;
910
911 rq->tag = blk_mq_get_tag(&data);
912 if (rq->tag >= 0) {
913 if (blk_mq_tag_busy(data.hctx)) {
914 rq->rq_flags |= RQF_MQ_INFLIGHT;
915 atomic_inc(&data.hctx->nr_active);
916 }
917 data.hctx->tags->rqs[rq->tag] = rq;
918 }
919
920 done:
921 if (hctx)
922 *hctx = data.hctx;
923 return rq->tag != -1;
924 }
925
926 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
927 struct request *rq)
928 {
929 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
930 rq->tag = -1;
931
932 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
933 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
934 atomic_dec(&hctx->nr_active);
935 }
936 }
937
938 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
939 struct request *rq)
940 {
941 if (rq->tag == -1 || rq->internal_tag == -1)
942 return;
943
944 __blk_mq_put_driver_tag(hctx, rq);
945 }
946
947 static void blk_mq_put_driver_tag(struct request *rq)
948 {
949 struct blk_mq_hw_ctx *hctx;
950
951 if (rq->tag == -1 || rq->internal_tag == -1)
952 return;
953
954 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
955 __blk_mq_put_driver_tag(hctx, rq);
956 }
957
958 /*
959 * If we fail getting a driver tag because all the driver tags are already
960 * assigned and on the dispatch list, BUT the first entry does not have a
961 * tag, then we could deadlock. For that case, move entries with assigned
962 * driver tags to the front, leaving the set of tagged requests in the
963 * same order, and the untagged set in the same order.
964 */
965 static bool reorder_tags_to_front(struct list_head *list)
966 {
967 struct request *rq, *tmp, *first = NULL;
968
969 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
970 if (rq == first)
971 break;
972 if (rq->tag != -1) {
973 list_move(&rq->queuelist, list);
974 if (!first)
975 first = rq;
976 }
977 }
978
979 return first != NULL;
980 }
981
982 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
983 void *key)
984 {
985 struct blk_mq_hw_ctx *hctx;
986
987 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
988
989 list_del(&wait->entry);
990 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
991 blk_mq_run_hw_queue(hctx, true);
992 return 1;
993 }
994
995 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
996 {
997 struct sbq_wait_state *ws;
998
999 /*
1000 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
1001 * The thread which wins the race to grab this bit adds the hardware
1002 * queue to the wait queue.
1003 */
1004 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
1005 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
1006 return false;
1007
1008 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
1009 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
1010
1011 /*
1012 * As soon as this returns, it's no longer safe to fiddle with
1013 * hctx->dispatch_wait, since a completion can wake up the wait queue
1014 * and unlock the bit.
1015 */
1016 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
1017 return true;
1018 }
1019
1020 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
1021 {
1022 struct blk_mq_hw_ctx *hctx;
1023 struct request *rq;
1024 int errors, queued;
1025
1026 if (list_empty(list))
1027 return false;
1028
1029 /*
1030 * Now process all the entries, sending them to the driver.
1031 */
1032 errors = queued = 0;
1033 do {
1034 struct blk_mq_queue_data bd;
1035 blk_status_t ret;
1036
1037 rq = list_first_entry(list, struct request, queuelist);
1038 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1039 if (!queued && reorder_tags_to_front(list))
1040 continue;
1041
1042 /*
1043 * The initial allocation attempt failed, so we need to
1044 * rerun the hardware queue when a tag is freed.
1045 */
1046 if (!blk_mq_dispatch_wait_add(hctx))
1047 break;
1048
1049 /*
1050 * It's possible that a tag was freed in the window
1051 * between the allocation failure and adding the
1052 * hardware queue to the wait queue.
1053 */
1054 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1055 break;
1056 }
1057
1058 list_del_init(&rq->queuelist);
1059
1060 bd.rq = rq;
1061
1062 /*
1063 * Flag last if we have no more requests, or if we have more
1064 * but can't assign a driver tag to it.
1065 */
1066 if (list_empty(list))
1067 bd.last = true;
1068 else {
1069 struct request *nxt;
1070
1071 nxt = list_first_entry(list, struct request, queuelist);
1072 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1073 }
1074
1075 ret = q->mq_ops->queue_rq(hctx, &bd);
1076 if (ret == BLK_STS_RESOURCE) {
1077 blk_mq_put_driver_tag_hctx(hctx, rq);
1078 list_add(&rq->queuelist, list);
1079 __blk_mq_requeue_request(rq);
1080 break;
1081 }
1082
1083 if (unlikely(ret != BLK_STS_OK)) {
1084 errors++;
1085 blk_mq_end_request(rq, BLK_STS_IOERR);
1086 continue;
1087 }
1088
1089 queued++;
1090 } while (!list_empty(list));
1091
1092 hctx->dispatched[queued_to_index(queued)]++;
1093
1094 /*
1095 * Any items that need requeuing? Stuff them into hctx->dispatch,
1096 * that is where we will continue on next queue run.
1097 */
1098 if (!list_empty(list)) {
1099 /*
1100 * If an I/O scheduler has been configured and we got a driver
1101 * tag for the next request already, free it again.
1102 */
1103 rq = list_first_entry(list, struct request, queuelist);
1104 blk_mq_put_driver_tag(rq);
1105
1106 spin_lock(&hctx->lock);
1107 list_splice_init(list, &hctx->dispatch);
1108 spin_unlock(&hctx->lock);
1109
1110 /*
1111 * If SCHED_RESTART was set by the caller of this function and
1112 * it is no longer set that means that it was cleared by another
1113 * thread and hence that a queue rerun is needed.
1114 *
1115 * If TAG_WAITING is set that means that an I/O scheduler has
1116 * been configured and another thread is waiting for a driver
1117 * tag. To guarantee fairness, do not rerun this hardware queue
1118 * but let the other thread grab the driver tag.
1119 *
1120 * If no I/O scheduler has been configured it is possible that
1121 * the hardware queue got stopped and restarted before requests
1122 * were pushed back onto the dispatch list. Rerun the queue to
1123 * avoid starvation. Notes:
1124 * - blk_mq_run_hw_queue() checks whether or not a queue has
1125 * been stopped before rerunning a queue.
1126 * - Some but not all block drivers stop a queue before
1127 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1128 * and dm-rq.
1129 */
1130 if (!blk_mq_sched_needs_restart(hctx) &&
1131 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1132 blk_mq_run_hw_queue(hctx, true);
1133 }
1134
1135 return (queued + errors) != 0;
1136 }
1137
1138 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1139 {
1140 int srcu_idx;
1141
1142 /*
1143 * We should be running this queue from one of the CPUs that
1144 * are mapped to it.
1145 */
1146 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1147 cpu_online(hctx->next_cpu));
1148
1149 /*
1150 * We can't run the queue inline with ints disabled. Ensure that
1151 * we catch bad users of this early.
1152 */
1153 WARN_ON_ONCE(in_interrupt());
1154
1155 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1156 rcu_read_lock();
1157 blk_mq_sched_dispatch_requests(hctx);
1158 rcu_read_unlock();
1159 } else {
1160 might_sleep();
1161
1162 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1163 blk_mq_sched_dispatch_requests(hctx);
1164 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1165 }
1166 }
1167
1168 /*
1169 * It'd be great if the workqueue API had a way to pass
1170 * in a mask and had some smarts for more clever placement.
1171 * For now we just round-robin here, switching for every
1172 * BLK_MQ_CPU_WORK_BATCH queued items.
1173 */
1174 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1175 {
1176 if (hctx->queue->nr_hw_queues == 1)
1177 return WORK_CPU_UNBOUND;
1178
1179 if (--hctx->next_cpu_batch <= 0) {
1180 int next_cpu;
1181
1182 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1183 if (next_cpu >= nr_cpu_ids)
1184 next_cpu = cpumask_first(hctx->cpumask);
1185
1186 hctx->next_cpu = next_cpu;
1187 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1188 }
1189
1190 return hctx->next_cpu;
1191 }
1192
1193 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1194 unsigned long msecs)
1195 {
1196 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1197 return;
1198
1199 if (unlikely(blk_mq_hctx_stopped(hctx)))
1200 return;
1201
1202 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1203 int cpu = get_cpu();
1204 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1205 __blk_mq_run_hw_queue(hctx);
1206 put_cpu();
1207 return;
1208 }
1209
1210 put_cpu();
1211 }
1212
1213 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1214 &hctx->run_work,
1215 msecs_to_jiffies(msecs));
1216 }
1217
1218 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1219 {
1220 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1221 }
1222 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1223
1224 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1225 {
1226 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1227 }
1228 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1229
1230 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1231 {
1232 struct blk_mq_hw_ctx *hctx;
1233 int i;
1234
1235 queue_for_each_hw_ctx(q, hctx, i) {
1236 if (!blk_mq_hctx_has_pending(hctx) ||
1237 blk_mq_hctx_stopped(hctx))
1238 continue;
1239
1240 blk_mq_run_hw_queue(hctx, async);
1241 }
1242 }
1243 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1244
1245 /**
1246 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1247 * @q: request queue.
1248 *
1249 * The caller is responsible for serializing this function against
1250 * blk_mq_{start,stop}_hw_queue().
1251 */
1252 bool blk_mq_queue_stopped(struct request_queue *q)
1253 {
1254 struct blk_mq_hw_ctx *hctx;
1255 int i;
1256
1257 queue_for_each_hw_ctx(q, hctx, i)
1258 if (blk_mq_hctx_stopped(hctx))
1259 return true;
1260
1261 return false;
1262 }
1263 EXPORT_SYMBOL(blk_mq_queue_stopped);
1264
1265 /*
1266 * This function is often used for pausing .queue_rq() by driver when
1267 * there isn't enough resource or some conditions aren't satisfied, and
1268 * BLK_STS_RESOURCE is usually returned.
1269 *
1270 * We do not guarantee that dispatch can be drained or blocked
1271 * after blk_mq_stop_hw_queue() returns. Please use
1272 * blk_mq_quiesce_queue() for that requirement.
1273 */
1274 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1275 {
1276 cancel_delayed_work(&hctx->run_work);
1277
1278 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1279 }
1280 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1281
1282 /*
1283 * This function is often used for pausing .queue_rq() by driver when
1284 * there isn't enough resource or some conditions aren't satisfied, and
1285 * BLK_STS_RESOURCE is usually returned.
1286 *
1287 * We do not guarantee that dispatch can be drained or blocked
1288 * after blk_mq_stop_hw_queues() returns. Please use
1289 * blk_mq_quiesce_queue() for that requirement.
1290 */
1291 void blk_mq_stop_hw_queues(struct request_queue *q)
1292 {
1293 struct blk_mq_hw_ctx *hctx;
1294 int i;
1295
1296 queue_for_each_hw_ctx(q, hctx, i)
1297 blk_mq_stop_hw_queue(hctx);
1298 }
1299 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1300
1301 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1302 {
1303 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1304
1305 blk_mq_run_hw_queue(hctx, false);
1306 }
1307 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1308
1309 void blk_mq_start_hw_queues(struct request_queue *q)
1310 {
1311 struct blk_mq_hw_ctx *hctx;
1312 int i;
1313
1314 queue_for_each_hw_ctx(q, hctx, i)
1315 blk_mq_start_hw_queue(hctx);
1316 }
1317 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1318
1319 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1320 {
1321 if (!blk_mq_hctx_stopped(hctx))
1322 return;
1323
1324 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1325 blk_mq_run_hw_queue(hctx, async);
1326 }
1327 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1328
1329 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1330 {
1331 struct blk_mq_hw_ctx *hctx;
1332 int i;
1333
1334 queue_for_each_hw_ctx(q, hctx, i)
1335 blk_mq_start_stopped_hw_queue(hctx, async);
1336 }
1337 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1338
1339 static void blk_mq_run_work_fn(struct work_struct *work)
1340 {
1341 struct blk_mq_hw_ctx *hctx;
1342
1343 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1344
1345 /*
1346 * If we are stopped, don't run the queue. The exception is if
1347 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1348 * the STOPPED bit and run it.
1349 */
1350 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1351 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1352 return;
1353
1354 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1355 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1356 }
1357
1358 __blk_mq_run_hw_queue(hctx);
1359 }
1360
1361
1362 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1363 {
1364 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1365 return;
1366
1367 /*
1368 * Stop the hw queue, then modify currently delayed work.
1369 * This should prevent us from running the queue prematurely.
1370 * Mark the queue as auto-clearing STOPPED when it runs.
1371 */
1372 blk_mq_stop_hw_queue(hctx);
1373 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1374 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1375 &hctx->run_work,
1376 msecs_to_jiffies(msecs));
1377 }
1378 EXPORT_SYMBOL(blk_mq_delay_queue);
1379
1380 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1381 struct request *rq,
1382 bool at_head)
1383 {
1384 struct blk_mq_ctx *ctx = rq->mq_ctx;
1385
1386 lockdep_assert_held(&ctx->lock);
1387
1388 trace_block_rq_insert(hctx->queue, rq);
1389
1390 if (at_head)
1391 list_add(&rq->queuelist, &ctx->rq_list);
1392 else
1393 list_add_tail(&rq->queuelist, &ctx->rq_list);
1394 }
1395
1396 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1397 bool at_head)
1398 {
1399 struct blk_mq_ctx *ctx = rq->mq_ctx;
1400
1401 lockdep_assert_held(&ctx->lock);
1402
1403 __blk_mq_insert_req_list(hctx, rq, at_head);
1404 blk_mq_hctx_mark_pending(hctx, ctx);
1405 }
1406
1407 /*
1408 * Should only be used carefully, when the caller knows we want to
1409 * bypass a potential IO scheduler on the target device.
1410 */
1411 void blk_mq_request_bypass_insert(struct request *rq)
1412 {
1413 struct blk_mq_ctx *ctx = rq->mq_ctx;
1414 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1415
1416 spin_lock(&hctx->lock);
1417 list_add_tail(&rq->queuelist, &hctx->dispatch);
1418 spin_unlock(&hctx->lock);
1419
1420 blk_mq_run_hw_queue(hctx, false);
1421 }
1422
1423 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1424 struct list_head *list)
1425
1426 {
1427 /*
1428 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1429 * offline now
1430 */
1431 spin_lock(&ctx->lock);
1432 while (!list_empty(list)) {
1433 struct request *rq;
1434
1435 rq = list_first_entry(list, struct request, queuelist);
1436 BUG_ON(rq->mq_ctx != ctx);
1437 list_del_init(&rq->queuelist);
1438 __blk_mq_insert_req_list(hctx, rq, false);
1439 }
1440 blk_mq_hctx_mark_pending(hctx, ctx);
1441 spin_unlock(&ctx->lock);
1442 }
1443
1444 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1445 {
1446 struct request *rqa = container_of(a, struct request, queuelist);
1447 struct request *rqb = container_of(b, struct request, queuelist);
1448
1449 return !(rqa->mq_ctx < rqb->mq_ctx ||
1450 (rqa->mq_ctx == rqb->mq_ctx &&
1451 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1452 }
1453
1454 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1455 {
1456 struct blk_mq_ctx *this_ctx;
1457 struct request_queue *this_q;
1458 struct request *rq;
1459 LIST_HEAD(list);
1460 LIST_HEAD(ctx_list);
1461 unsigned int depth;
1462
1463 list_splice_init(&plug->mq_list, &list);
1464
1465 list_sort(NULL, &list, plug_ctx_cmp);
1466
1467 this_q = NULL;
1468 this_ctx = NULL;
1469 depth = 0;
1470
1471 while (!list_empty(&list)) {
1472 rq = list_entry_rq(list.next);
1473 list_del_init(&rq->queuelist);
1474 BUG_ON(!rq->q);
1475 if (rq->mq_ctx != this_ctx) {
1476 if (this_ctx) {
1477 trace_block_unplug(this_q, depth, from_schedule);
1478 blk_mq_sched_insert_requests(this_q, this_ctx,
1479 &ctx_list,
1480 from_schedule);
1481 }
1482
1483 this_ctx = rq->mq_ctx;
1484 this_q = rq->q;
1485 depth = 0;
1486 }
1487
1488 depth++;
1489 list_add_tail(&rq->queuelist, &ctx_list);
1490 }
1491
1492 /*
1493 * If 'this_ctx' is set, we know we have entries to complete
1494 * on 'ctx_list'. Do those.
1495 */
1496 if (this_ctx) {
1497 trace_block_unplug(this_q, depth, from_schedule);
1498 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1499 from_schedule);
1500 }
1501 }
1502
1503 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1504 {
1505 blk_init_request_from_bio(rq, bio);
1506
1507 blk_account_io_start(rq, true);
1508 }
1509
1510 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1511 struct blk_mq_ctx *ctx,
1512 struct request *rq)
1513 {
1514 spin_lock(&ctx->lock);
1515 __blk_mq_insert_request(hctx, rq, false);
1516 spin_unlock(&ctx->lock);
1517 }
1518
1519 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1520 {
1521 if (rq->tag != -1)
1522 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1523
1524 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1525 }
1526
1527 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1528 struct request *rq,
1529 blk_qc_t *cookie, bool may_sleep)
1530 {
1531 struct request_queue *q = rq->q;
1532 struct blk_mq_queue_data bd = {
1533 .rq = rq,
1534 .last = true,
1535 };
1536 blk_qc_t new_cookie;
1537 blk_status_t ret;
1538 bool run_queue = true;
1539
1540 /* RCU or SRCU read lock is needed before checking quiesced flag */
1541 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1542 run_queue = false;
1543 goto insert;
1544 }
1545
1546 if (q->elevator)
1547 goto insert;
1548
1549 if (!blk_mq_get_driver_tag(rq, NULL, false))
1550 goto insert;
1551
1552 new_cookie = request_to_qc_t(hctx, rq);
1553
1554 /*
1555 * For OK queue, we are done. For error, kill it. Any other
1556 * error (busy), just add it to our list as we previously
1557 * would have done
1558 */
1559 ret = q->mq_ops->queue_rq(hctx, &bd);
1560 switch (ret) {
1561 case BLK_STS_OK:
1562 *cookie = new_cookie;
1563 return;
1564 case BLK_STS_RESOURCE:
1565 __blk_mq_requeue_request(rq);
1566 goto insert;
1567 default:
1568 *cookie = BLK_QC_T_NONE;
1569 blk_mq_end_request(rq, ret);
1570 return;
1571 }
1572
1573 insert:
1574 blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1575 }
1576
1577 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1578 struct request *rq, blk_qc_t *cookie)
1579 {
1580 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1581 rcu_read_lock();
1582 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1583 rcu_read_unlock();
1584 } else {
1585 unsigned int srcu_idx;
1586
1587 might_sleep();
1588
1589 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1590 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
1591 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1592 }
1593 }
1594
1595 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1596 {
1597 const int is_sync = op_is_sync(bio->bi_opf);
1598 const int is_flush_fua = op_is_flush(bio->bi_opf);
1599 struct blk_mq_alloc_data data = { .flags = 0 };
1600 struct request *rq;
1601 unsigned int request_count = 0;
1602 struct blk_plug *plug;
1603 struct request *same_queue_rq = NULL;
1604 blk_qc_t cookie;
1605 unsigned int wb_acct;
1606
1607 blk_queue_bounce(q, &bio);
1608
1609 blk_queue_split(q, &bio);
1610
1611 if (!bio_integrity_prep(bio))
1612 return BLK_QC_T_NONE;
1613
1614 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1615 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1616 return BLK_QC_T_NONE;
1617
1618 if (blk_mq_sched_bio_merge(q, bio))
1619 return BLK_QC_T_NONE;
1620
1621 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1622
1623 trace_block_getrq(q, bio, bio->bi_opf);
1624
1625 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1626 if (unlikely(!rq)) {
1627 __wbt_done(q->rq_wb, wb_acct);
1628 if (bio->bi_opf & REQ_NOWAIT)
1629 bio_wouldblock_error(bio);
1630 return BLK_QC_T_NONE;
1631 }
1632
1633 wbt_track(&rq->issue_stat, wb_acct);
1634
1635 cookie = request_to_qc_t(data.hctx, rq);
1636
1637 plug = current->plug;
1638 if (unlikely(is_flush_fua)) {
1639 blk_mq_put_ctx(data.ctx);
1640 blk_mq_bio_to_request(rq, bio);
1641 if (q->elevator) {
1642 blk_mq_sched_insert_request(rq, false, true, true,
1643 true);
1644 } else {
1645 blk_insert_flush(rq);
1646 blk_mq_run_hw_queue(data.hctx, true);
1647 }
1648 } else if (plug && q->nr_hw_queues == 1) {
1649 struct request *last = NULL;
1650
1651 blk_mq_put_ctx(data.ctx);
1652 blk_mq_bio_to_request(rq, bio);
1653
1654 /*
1655 * @request_count may become stale because of schedule
1656 * out, so check the list again.
1657 */
1658 if (list_empty(&plug->mq_list))
1659 request_count = 0;
1660 else if (blk_queue_nomerges(q))
1661 request_count = blk_plug_queued_count(q);
1662
1663 if (!request_count)
1664 trace_block_plug(q);
1665 else
1666 last = list_entry_rq(plug->mq_list.prev);
1667
1668 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1669 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1670 blk_flush_plug_list(plug, false);
1671 trace_block_plug(q);
1672 }
1673
1674 list_add_tail(&rq->queuelist, &plug->mq_list);
1675 } else if (plug && !blk_queue_nomerges(q)) {
1676 blk_mq_bio_to_request(rq, bio);
1677
1678 /*
1679 * We do limited plugging. If the bio can be merged, do that.
1680 * Otherwise the existing request in the plug list will be
1681 * issued. So the plug list will have one request at most
1682 * The plug list might get flushed before this. If that happens,
1683 * the plug list is empty, and same_queue_rq is invalid.
1684 */
1685 if (list_empty(&plug->mq_list))
1686 same_queue_rq = NULL;
1687 if (same_queue_rq)
1688 list_del_init(&same_queue_rq->queuelist);
1689 list_add_tail(&rq->queuelist, &plug->mq_list);
1690
1691 blk_mq_put_ctx(data.ctx);
1692
1693 if (same_queue_rq) {
1694 data.hctx = blk_mq_map_queue(q,
1695 same_queue_rq->mq_ctx->cpu);
1696 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1697 &cookie);
1698 }
1699 } else if (q->nr_hw_queues > 1 && is_sync) {
1700 blk_mq_put_ctx(data.ctx);
1701 blk_mq_bio_to_request(rq, bio);
1702 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1703 } else if (q->elevator) {
1704 blk_mq_put_ctx(data.ctx);
1705 blk_mq_bio_to_request(rq, bio);
1706 blk_mq_sched_insert_request(rq, false, true, true, true);
1707 } else {
1708 blk_mq_put_ctx(data.ctx);
1709 blk_mq_bio_to_request(rq, bio);
1710 blk_mq_queue_io(data.hctx, data.ctx, rq);
1711 blk_mq_run_hw_queue(data.hctx, true);
1712 }
1713
1714 return cookie;
1715 }
1716
1717 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1718 unsigned int hctx_idx)
1719 {
1720 struct page *page;
1721
1722 if (tags->rqs && set->ops->exit_request) {
1723 int i;
1724
1725 for (i = 0; i < tags->nr_tags; i++) {
1726 struct request *rq = tags->static_rqs[i];
1727
1728 if (!rq)
1729 continue;
1730 set->ops->exit_request(set, rq, hctx_idx);
1731 tags->static_rqs[i] = NULL;
1732 }
1733 }
1734
1735 while (!list_empty(&tags->page_list)) {
1736 page = list_first_entry(&tags->page_list, struct page, lru);
1737 list_del_init(&page->lru);
1738 /*
1739 * Remove kmemleak object previously allocated in
1740 * blk_mq_init_rq_map().
1741 */
1742 kmemleak_free(page_address(page));
1743 __free_pages(page, page->private);
1744 }
1745 }
1746
1747 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1748 {
1749 kfree(tags->rqs);
1750 tags->rqs = NULL;
1751 kfree(tags->static_rqs);
1752 tags->static_rqs = NULL;
1753
1754 blk_mq_free_tags(tags);
1755 }
1756
1757 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1758 unsigned int hctx_idx,
1759 unsigned int nr_tags,
1760 unsigned int reserved_tags)
1761 {
1762 struct blk_mq_tags *tags;
1763 int node;
1764
1765 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1766 if (node == NUMA_NO_NODE)
1767 node = set->numa_node;
1768
1769 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1770 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1771 if (!tags)
1772 return NULL;
1773
1774 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1775 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1776 node);
1777 if (!tags->rqs) {
1778 blk_mq_free_tags(tags);
1779 return NULL;
1780 }
1781
1782 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1783 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1784 node);
1785 if (!tags->static_rqs) {
1786 kfree(tags->rqs);
1787 blk_mq_free_tags(tags);
1788 return NULL;
1789 }
1790
1791 return tags;
1792 }
1793
1794 static size_t order_to_size(unsigned int order)
1795 {
1796 return (size_t)PAGE_SIZE << order;
1797 }
1798
1799 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1800 unsigned int hctx_idx, unsigned int depth)
1801 {
1802 unsigned int i, j, entries_per_page, max_order = 4;
1803 size_t rq_size, left;
1804 int node;
1805
1806 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1807 if (node == NUMA_NO_NODE)
1808 node = set->numa_node;
1809
1810 INIT_LIST_HEAD(&tags->page_list);
1811
1812 /*
1813 * rq_size is the size of the request plus driver payload, rounded
1814 * to the cacheline size
1815 */
1816 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1817 cache_line_size());
1818 left = rq_size * depth;
1819
1820 for (i = 0; i < depth; ) {
1821 int this_order = max_order;
1822 struct page *page;
1823 int to_do;
1824 void *p;
1825
1826 while (this_order && left < order_to_size(this_order - 1))
1827 this_order--;
1828
1829 do {
1830 page = alloc_pages_node(node,
1831 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1832 this_order);
1833 if (page)
1834 break;
1835 if (!this_order--)
1836 break;
1837 if (order_to_size(this_order) < rq_size)
1838 break;
1839 } while (1);
1840
1841 if (!page)
1842 goto fail;
1843
1844 page->private = this_order;
1845 list_add_tail(&page->lru, &tags->page_list);
1846
1847 p = page_address(page);
1848 /*
1849 * Allow kmemleak to scan these pages as they contain pointers
1850 * to additional allocations like via ops->init_request().
1851 */
1852 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1853 entries_per_page = order_to_size(this_order) / rq_size;
1854 to_do = min(entries_per_page, depth - i);
1855 left -= to_do * rq_size;
1856 for (j = 0; j < to_do; j++) {
1857 struct request *rq = p;
1858
1859 tags->static_rqs[i] = rq;
1860 if (set->ops->init_request) {
1861 if (set->ops->init_request(set, rq, hctx_idx,
1862 node)) {
1863 tags->static_rqs[i] = NULL;
1864 goto fail;
1865 }
1866 }
1867
1868 p += rq_size;
1869 i++;
1870 }
1871 }
1872 return 0;
1873
1874 fail:
1875 blk_mq_free_rqs(set, tags, hctx_idx);
1876 return -ENOMEM;
1877 }
1878
1879 /*
1880 * 'cpu' is going away. splice any existing rq_list entries from this
1881 * software queue to the hw queue dispatch list, and ensure that it
1882 * gets run.
1883 */
1884 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1885 {
1886 struct blk_mq_hw_ctx *hctx;
1887 struct blk_mq_ctx *ctx;
1888 LIST_HEAD(tmp);
1889
1890 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1891 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1892
1893 spin_lock(&ctx->lock);
1894 if (!list_empty(&ctx->rq_list)) {
1895 list_splice_init(&ctx->rq_list, &tmp);
1896 blk_mq_hctx_clear_pending(hctx, ctx);
1897 }
1898 spin_unlock(&ctx->lock);
1899
1900 if (list_empty(&tmp))
1901 return 0;
1902
1903 spin_lock(&hctx->lock);
1904 list_splice_tail_init(&tmp, &hctx->dispatch);
1905 spin_unlock(&hctx->lock);
1906
1907 blk_mq_run_hw_queue(hctx, true);
1908 return 0;
1909 }
1910
1911 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1912 {
1913 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1914 &hctx->cpuhp_dead);
1915 }
1916
1917 /* hctx->ctxs will be freed in queue's release handler */
1918 static void blk_mq_exit_hctx(struct request_queue *q,
1919 struct blk_mq_tag_set *set,
1920 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1921 {
1922 blk_mq_debugfs_unregister_hctx(hctx);
1923
1924 blk_mq_tag_idle(hctx);
1925
1926 if (set->ops->exit_request)
1927 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1928
1929 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1930
1931 if (set->ops->exit_hctx)
1932 set->ops->exit_hctx(hctx, hctx_idx);
1933
1934 if (hctx->flags & BLK_MQ_F_BLOCKING)
1935 cleanup_srcu_struct(hctx->queue_rq_srcu);
1936
1937 blk_mq_remove_cpuhp(hctx);
1938 blk_free_flush_queue(hctx->fq);
1939 sbitmap_free(&hctx->ctx_map);
1940 }
1941
1942 static void blk_mq_exit_hw_queues(struct request_queue *q,
1943 struct blk_mq_tag_set *set, int nr_queue)
1944 {
1945 struct blk_mq_hw_ctx *hctx;
1946 unsigned int i;
1947
1948 queue_for_each_hw_ctx(q, hctx, i) {
1949 if (i == nr_queue)
1950 break;
1951 blk_mq_exit_hctx(q, set, hctx, i);
1952 }
1953 }
1954
1955 static int blk_mq_init_hctx(struct request_queue *q,
1956 struct blk_mq_tag_set *set,
1957 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1958 {
1959 int node;
1960
1961 node = hctx->numa_node;
1962 if (node == NUMA_NO_NODE)
1963 node = hctx->numa_node = set->numa_node;
1964
1965 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1966 spin_lock_init(&hctx->lock);
1967 INIT_LIST_HEAD(&hctx->dispatch);
1968 hctx->queue = q;
1969 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1970
1971 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1972
1973 hctx->tags = set->tags[hctx_idx];
1974
1975 /*
1976 * Allocate space for all possible cpus to avoid allocation at
1977 * runtime
1978 */
1979 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1980 GFP_KERNEL, node);
1981 if (!hctx->ctxs)
1982 goto unregister_cpu_notifier;
1983
1984 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1985 node))
1986 goto free_ctxs;
1987
1988 hctx->nr_ctx = 0;
1989
1990 if (set->ops->init_hctx &&
1991 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1992 goto free_bitmap;
1993
1994 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
1995 goto exit_hctx;
1996
1997 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1998 if (!hctx->fq)
1999 goto sched_exit_hctx;
2000
2001 if (set->ops->init_request &&
2002 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
2003 node))
2004 goto free_fq;
2005
2006 if (hctx->flags & BLK_MQ_F_BLOCKING)
2007 init_srcu_struct(hctx->queue_rq_srcu);
2008
2009 blk_mq_debugfs_register_hctx(q, hctx);
2010
2011 return 0;
2012
2013 free_fq:
2014 kfree(hctx->fq);
2015 sched_exit_hctx:
2016 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2017 exit_hctx:
2018 if (set->ops->exit_hctx)
2019 set->ops->exit_hctx(hctx, hctx_idx);
2020 free_bitmap:
2021 sbitmap_free(&hctx->ctx_map);
2022 free_ctxs:
2023 kfree(hctx->ctxs);
2024 unregister_cpu_notifier:
2025 blk_mq_remove_cpuhp(hctx);
2026 return -1;
2027 }
2028
2029 static void blk_mq_init_cpu_queues(struct request_queue *q,
2030 unsigned int nr_hw_queues)
2031 {
2032 unsigned int i;
2033
2034 for_each_possible_cpu(i) {
2035 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2036 struct blk_mq_hw_ctx *hctx;
2037
2038 __ctx->cpu = i;
2039 spin_lock_init(&__ctx->lock);
2040 INIT_LIST_HEAD(&__ctx->rq_list);
2041 __ctx->queue = q;
2042
2043 /* If the cpu isn't present, the cpu is mapped to first hctx */
2044 if (!cpu_present(i))
2045 continue;
2046
2047 hctx = blk_mq_map_queue(q, i);
2048
2049 /*
2050 * Set local node, IFF we have more than one hw queue. If
2051 * not, we remain on the home node of the device
2052 */
2053 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2054 hctx->numa_node = local_memory_node(cpu_to_node(i));
2055 }
2056 }
2057
2058 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2059 {
2060 int ret = 0;
2061
2062 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2063 set->queue_depth, set->reserved_tags);
2064 if (!set->tags[hctx_idx])
2065 return false;
2066
2067 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2068 set->queue_depth);
2069 if (!ret)
2070 return true;
2071
2072 blk_mq_free_rq_map(set->tags[hctx_idx]);
2073 set->tags[hctx_idx] = NULL;
2074 return false;
2075 }
2076
2077 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2078 unsigned int hctx_idx)
2079 {
2080 if (set->tags[hctx_idx]) {
2081 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2082 blk_mq_free_rq_map(set->tags[hctx_idx]);
2083 set->tags[hctx_idx] = NULL;
2084 }
2085 }
2086
2087 static void blk_mq_map_swqueue(struct request_queue *q)
2088 {
2089 unsigned int i, hctx_idx;
2090 struct blk_mq_hw_ctx *hctx;
2091 struct blk_mq_ctx *ctx;
2092 struct blk_mq_tag_set *set = q->tag_set;
2093
2094 /*
2095 * Avoid others reading imcomplete hctx->cpumask through sysfs
2096 */
2097 mutex_lock(&q->sysfs_lock);
2098
2099 queue_for_each_hw_ctx(q, hctx, i) {
2100 cpumask_clear(hctx->cpumask);
2101 hctx->nr_ctx = 0;
2102 }
2103
2104 /*
2105 * Map software to hardware queues.
2106 *
2107 * If the cpu isn't present, the cpu is mapped to first hctx.
2108 */
2109 for_each_present_cpu(i) {
2110 hctx_idx = q->mq_map[i];
2111 /* unmapped hw queue can be remapped after CPU topo changed */
2112 if (!set->tags[hctx_idx] &&
2113 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2114 /*
2115 * If tags initialization fail for some hctx,
2116 * that hctx won't be brought online. In this
2117 * case, remap the current ctx to hctx[0] which
2118 * is guaranteed to always have tags allocated
2119 */
2120 q->mq_map[i] = 0;
2121 }
2122
2123 ctx = per_cpu_ptr(q->queue_ctx, i);
2124 hctx = blk_mq_map_queue(q, i);
2125
2126 cpumask_set_cpu(i, hctx->cpumask);
2127 ctx->index_hw = hctx->nr_ctx;
2128 hctx->ctxs[hctx->nr_ctx++] = ctx;
2129 }
2130
2131 mutex_unlock(&q->sysfs_lock);
2132
2133 queue_for_each_hw_ctx(q, hctx, i) {
2134 /*
2135 * If no software queues are mapped to this hardware queue,
2136 * disable it and free the request entries.
2137 */
2138 if (!hctx->nr_ctx) {
2139 /* Never unmap queue 0. We need it as a
2140 * fallback in case of a new remap fails
2141 * allocation
2142 */
2143 if (i && set->tags[i])
2144 blk_mq_free_map_and_requests(set, i);
2145
2146 hctx->tags = NULL;
2147 continue;
2148 }
2149
2150 hctx->tags = set->tags[i];
2151 WARN_ON(!hctx->tags);
2152
2153 /*
2154 * Set the map size to the number of mapped software queues.
2155 * This is more accurate and more efficient than looping
2156 * over all possibly mapped software queues.
2157 */
2158 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2159
2160 /*
2161 * Initialize batch roundrobin counts
2162 */
2163 hctx->next_cpu = cpumask_first(hctx->cpumask);
2164 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2165 }
2166 }
2167
2168 /*
2169 * Caller needs to ensure that we're either frozen/quiesced, or that
2170 * the queue isn't live yet.
2171 */
2172 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2173 {
2174 struct blk_mq_hw_ctx *hctx;
2175 int i;
2176
2177 queue_for_each_hw_ctx(q, hctx, i) {
2178 if (shared) {
2179 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2180 atomic_inc(&q->shared_hctx_restart);
2181 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2182 } else {
2183 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2184 atomic_dec(&q->shared_hctx_restart);
2185 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2186 }
2187 }
2188 }
2189
2190 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2191 bool shared)
2192 {
2193 struct request_queue *q;
2194
2195 lockdep_assert_held(&set->tag_list_lock);
2196
2197 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2198 blk_mq_freeze_queue(q);
2199 queue_set_hctx_shared(q, shared);
2200 blk_mq_unfreeze_queue(q);
2201 }
2202 }
2203
2204 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2205 {
2206 struct blk_mq_tag_set *set = q->tag_set;
2207
2208 mutex_lock(&set->tag_list_lock);
2209 list_del_rcu(&q->tag_set_list);
2210 INIT_LIST_HEAD(&q->tag_set_list);
2211 if (list_is_singular(&set->tag_list)) {
2212 /* just transitioned to unshared */
2213 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2214 /* update existing queue */
2215 blk_mq_update_tag_set_depth(set, false);
2216 }
2217 mutex_unlock(&set->tag_list_lock);
2218
2219 synchronize_rcu();
2220 }
2221
2222 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2223 struct request_queue *q)
2224 {
2225 q->tag_set = set;
2226
2227 mutex_lock(&set->tag_list_lock);
2228
2229 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2230 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2231 set->flags |= BLK_MQ_F_TAG_SHARED;
2232 /* update existing queue */
2233 blk_mq_update_tag_set_depth(set, true);
2234 }
2235 if (set->flags & BLK_MQ_F_TAG_SHARED)
2236 queue_set_hctx_shared(q, true);
2237 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2238
2239 mutex_unlock(&set->tag_list_lock);
2240 }
2241
2242 /*
2243 * It is the actual release handler for mq, but we do it from
2244 * request queue's release handler for avoiding use-after-free
2245 * and headache because q->mq_kobj shouldn't have been introduced,
2246 * but we can't group ctx/kctx kobj without it.
2247 */
2248 void blk_mq_release(struct request_queue *q)
2249 {
2250 struct blk_mq_hw_ctx *hctx;
2251 unsigned int i;
2252
2253 /* hctx kobj stays in hctx */
2254 queue_for_each_hw_ctx(q, hctx, i) {
2255 if (!hctx)
2256 continue;
2257 kobject_put(&hctx->kobj);
2258 }
2259
2260 q->mq_map = NULL;
2261
2262 kfree(q->queue_hw_ctx);
2263
2264 /*
2265 * release .mq_kobj and sw queue's kobject now because
2266 * both share lifetime with request queue.
2267 */
2268 blk_mq_sysfs_deinit(q);
2269
2270 free_percpu(q->queue_ctx);
2271 }
2272
2273 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2274 {
2275 struct request_queue *uninit_q, *q;
2276
2277 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2278 if (!uninit_q)
2279 return ERR_PTR(-ENOMEM);
2280
2281 q = blk_mq_init_allocated_queue(set, uninit_q);
2282 if (IS_ERR(q))
2283 blk_cleanup_queue(uninit_q);
2284
2285 return q;
2286 }
2287 EXPORT_SYMBOL(blk_mq_init_queue);
2288
2289 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2290 {
2291 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2292
2293 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
2294 __alignof__(struct blk_mq_hw_ctx)) !=
2295 sizeof(struct blk_mq_hw_ctx));
2296
2297 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2298 hw_ctx_size += sizeof(struct srcu_struct);
2299
2300 return hw_ctx_size;
2301 }
2302
2303 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2304 struct request_queue *q)
2305 {
2306 int i, j;
2307 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2308
2309 blk_mq_sysfs_unregister(q);
2310 for (i = 0; i < set->nr_hw_queues; i++) {
2311 int node;
2312
2313 if (hctxs[i])
2314 continue;
2315
2316 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2317 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2318 GFP_KERNEL, node);
2319 if (!hctxs[i])
2320 break;
2321
2322 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2323 node)) {
2324 kfree(hctxs[i]);
2325 hctxs[i] = NULL;
2326 break;
2327 }
2328
2329 atomic_set(&hctxs[i]->nr_active, 0);
2330 hctxs[i]->numa_node = node;
2331 hctxs[i]->queue_num = i;
2332
2333 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2334 free_cpumask_var(hctxs[i]->cpumask);
2335 kfree(hctxs[i]);
2336 hctxs[i] = NULL;
2337 break;
2338 }
2339 blk_mq_hctx_kobj_init(hctxs[i]);
2340 }
2341 for (j = i; j < q->nr_hw_queues; j++) {
2342 struct blk_mq_hw_ctx *hctx = hctxs[j];
2343
2344 if (hctx) {
2345 if (hctx->tags)
2346 blk_mq_free_map_and_requests(set, j);
2347 blk_mq_exit_hctx(q, set, hctx, j);
2348 kobject_put(&hctx->kobj);
2349 hctxs[j] = NULL;
2350
2351 }
2352 }
2353 q->nr_hw_queues = i;
2354 blk_mq_sysfs_register(q);
2355 }
2356
2357 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2358 struct request_queue *q)
2359 {
2360 /* mark the queue as mq asap */
2361 q->mq_ops = set->ops;
2362
2363 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2364 blk_mq_poll_stats_bkt,
2365 BLK_MQ_POLL_STATS_BKTS, q);
2366 if (!q->poll_cb)
2367 goto err_exit;
2368
2369 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2370 if (!q->queue_ctx)
2371 goto err_exit;
2372
2373 /* init q->mq_kobj and sw queues' kobjects */
2374 blk_mq_sysfs_init(q);
2375
2376 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2377 GFP_KERNEL, set->numa_node);
2378 if (!q->queue_hw_ctx)
2379 goto err_percpu;
2380
2381 q->mq_map = set->mq_map;
2382
2383 blk_mq_realloc_hw_ctxs(set, q);
2384 if (!q->nr_hw_queues)
2385 goto err_hctxs;
2386
2387 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2388 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2389
2390 q->nr_queues = nr_cpu_ids;
2391
2392 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2393
2394 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2395 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2396
2397 q->sg_reserved_size = INT_MAX;
2398
2399 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2400 INIT_LIST_HEAD(&q->requeue_list);
2401 spin_lock_init(&q->requeue_lock);
2402
2403 blk_queue_make_request(q, blk_mq_make_request);
2404
2405 /*
2406 * Do this after blk_queue_make_request() overrides it...
2407 */
2408 q->nr_requests = set->queue_depth;
2409
2410 /*
2411 * Default to classic polling
2412 */
2413 q->poll_nsec = -1;
2414
2415 if (set->ops->complete)
2416 blk_queue_softirq_done(q, set->ops->complete);
2417
2418 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2419 blk_mq_add_queue_tag_set(set, q);
2420 blk_mq_map_swqueue(q);
2421
2422 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2423 int ret;
2424
2425 ret = blk_mq_sched_init(q);
2426 if (ret)
2427 return ERR_PTR(ret);
2428 }
2429
2430 return q;
2431
2432 err_hctxs:
2433 kfree(q->queue_hw_ctx);
2434 err_percpu:
2435 free_percpu(q->queue_ctx);
2436 err_exit:
2437 q->mq_ops = NULL;
2438 return ERR_PTR(-ENOMEM);
2439 }
2440 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2441
2442 void blk_mq_free_queue(struct request_queue *q)
2443 {
2444 struct blk_mq_tag_set *set = q->tag_set;
2445
2446 blk_mq_del_queue_tag_set(q);
2447 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2448 }
2449
2450 /* Basically redo blk_mq_init_queue with queue frozen */
2451 static void blk_mq_queue_reinit(struct request_queue *q)
2452 {
2453 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2454
2455 blk_mq_debugfs_unregister_hctxs(q);
2456 blk_mq_sysfs_unregister(q);
2457
2458 /*
2459 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2460 * we should change hctx numa_node according to new topology (this
2461 * involves free and re-allocate memory, worthy doing?)
2462 */
2463
2464 blk_mq_map_swqueue(q);
2465
2466 blk_mq_sysfs_register(q);
2467 blk_mq_debugfs_register_hctxs(q);
2468 }
2469
2470 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2471 {
2472 int i;
2473
2474 for (i = 0; i < set->nr_hw_queues; i++)
2475 if (!__blk_mq_alloc_rq_map(set, i))
2476 goto out_unwind;
2477
2478 return 0;
2479
2480 out_unwind:
2481 while (--i >= 0)
2482 blk_mq_free_rq_map(set->tags[i]);
2483
2484 return -ENOMEM;
2485 }
2486
2487 /*
2488 * Allocate the request maps associated with this tag_set. Note that this
2489 * may reduce the depth asked for, if memory is tight. set->queue_depth
2490 * will be updated to reflect the allocated depth.
2491 */
2492 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2493 {
2494 unsigned int depth;
2495 int err;
2496
2497 depth = set->queue_depth;
2498 do {
2499 err = __blk_mq_alloc_rq_maps(set);
2500 if (!err)
2501 break;
2502
2503 set->queue_depth >>= 1;
2504 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2505 err = -ENOMEM;
2506 break;
2507 }
2508 } while (set->queue_depth);
2509
2510 if (!set->queue_depth || err) {
2511 pr_err("blk-mq: failed to allocate request map\n");
2512 return -ENOMEM;
2513 }
2514
2515 if (depth != set->queue_depth)
2516 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2517 depth, set->queue_depth);
2518
2519 return 0;
2520 }
2521
2522 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2523 {
2524 if (set->ops->map_queues)
2525 return set->ops->map_queues(set);
2526 else
2527 return blk_mq_map_queues(set);
2528 }
2529
2530 /*
2531 * Alloc a tag set to be associated with one or more request queues.
2532 * May fail with EINVAL for various error conditions. May adjust the
2533 * requested depth down, if if it too large. In that case, the set
2534 * value will be stored in set->queue_depth.
2535 */
2536 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2537 {
2538 int ret;
2539
2540 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2541
2542 if (!set->nr_hw_queues)
2543 return -EINVAL;
2544 if (!set->queue_depth)
2545 return -EINVAL;
2546 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2547 return -EINVAL;
2548
2549 if (!set->ops->queue_rq)
2550 return -EINVAL;
2551
2552 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2553 pr_info("blk-mq: reduced tag depth to %u\n",
2554 BLK_MQ_MAX_DEPTH);
2555 set->queue_depth = BLK_MQ_MAX_DEPTH;
2556 }
2557
2558 /*
2559 * If a crashdump is active, then we are potentially in a very
2560 * memory constrained environment. Limit us to 1 queue and
2561 * 64 tags to prevent using too much memory.
2562 */
2563 if (is_kdump_kernel()) {
2564 set->nr_hw_queues = 1;
2565 set->queue_depth = min(64U, set->queue_depth);
2566 }
2567 /*
2568 * There is no use for more h/w queues than cpus.
2569 */
2570 if (set->nr_hw_queues > nr_cpu_ids)
2571 set->nr_hw_queues = nr_cpu_ids;
2572
2573 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2574 GFP_KERNEL, set->numa_node);
2575 if (!set->tags)
2576 return -ENOMEM;
2577
2578 ret = -ENOMEM;
2579 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2580 GFP_KERNEL, set->numa_node);
2581 if (!set->mq_map)
2582 goto out_free_tags;
2583
2584 ret = blk_mq_update_queue_map(set);
2585 if (ret)
2586 goto out_free_mq_map;
2587
2588 ret = blk_mq_alloc_rq_maps(set);
2589 if (ret)
2590 goto out_free_mq_map;
2591
2592 mutex_init(&set->tag_list_lock);
2593 INIT_LIST_HEAD(&set->tag_list);
2594
2595 return 0;
2596
2597 out_free_mq_map:
2598 kfree(set->mq_map);
2599 set->mq_map = NULL;
2600 out_free_tags:
2601 kfree(set->tags);
2602 set->tags = NULL;
2603 return ret;
2604 }
2605 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2606
2607 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2608 {
2609 int i;
2610
2611 for (i = 0; i < nr_cpu_ids; i++)
2612 blk_mq_free_map_and_requests(set, i);
2613
2614 kfree(set->mq_map);
2615 set->mq_map = NULL;
2616
2617 kfree(set->tags);
2618 set->tags = NULL;
2619 }
2620 EXPORT_SYMBOL(blk_mq_free_tag_set);
2621
2622 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2623 {
2624 struct blk_mq_tag_set *set = q->tag_set;
2625 struct blk_mq_hw_ctx *hctx;
2626 int i, ret;
2627
2628 if (!set)
2629 return -EINVAL;
2630
2631 blk_mq_freeze_queue(q);
2632
2633 ret = 0;
2634 queue_for_each_hw_ctx(q, hctx, i) {
2635 if (!hctx->tags)
2636 continue;
2637 /*
2638 * If we're using an MQ scheduler, just update the scheduler
2639 * queue depth. This is similar to what the old code would do.
2640 */
2641 if (!hctx->sched_tags) {
2642 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2643 min(nr, set->queue_depth),
2644 false);
2645 } else {
2646 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2647 nr, true);
2648 }
2649 if (ret)
2650 break;
2651 }
2652
2653 if (!ret)
2654 q->nr_requests = nr;
2655
2656 blk_mq_unfreeze_queue(q);
2657
2658 return ret;
2659 }
2660
2661 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2662 int nr_hw_queues)
2663 {
2664 struct request_queue *q;
2665
2666 lockdep_assert_held(&set->tag_list_lock);
2667
2668 if (nr_hw_queues > nr_cpu_ids)
2669 nr_hw_queues = nr_cpu_ids;
2670 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2671 return;
2672
2673 list_for_each_entry(q, &set->tag_list, tag_set_list)
2674 blk_mq_freeze_queue(q);
2675
2676 set->nr_hw_queues = nr_hw_queues;
2677 blk_mq_update_queue_map(set);
2678 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2679 blk_mq_realloc_hw_ctxs(set, q);
2680 blk_mq_queue_reinit(q);
2681 }
2682
2683 list_for_each_entry(q, &set->tag_list, tag_set_list)
2684 blk_mq_unfreeze_queue(q);
2685 }
2686
2687 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2688 {
2689 mutex_lock(&set->tag_list_lock);
2690 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2691 mutex_unlock(&set->tag_list_lock);
2692 }
2693 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2694
2695 /* Enable polling stats and return whether they were already enabled. */
2696 static bool blk_poll_stats_enable(struct request_queue *q)
2697 {
2698 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2699 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2700 return true;
2701 blk_stat_add_callback(q, q->poll_cb);
2702 return false;
2703 }
2704
2705 static void blk_mq_poll_stats_start(struct request_queue *q)
2706 {
2707 /*
2708 * We don't arm the callback if polling stats are not enabled or the
2709 * callback is already active.
2710 */
2711 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2712 blk_stat_is_active(q->poll_cb))
2713 return;
2714
2715 blk_stat_activate_msecs(q->poll_cb, 100);
2716 }
2717
2718 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2719 {
2720 struct request_queue *q = cb->data;
2721 int bucket;
2722
2723 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2724 if (cb->stat[bucket].nr_samples)
2725 q->poll_stat[bucket] = cb->stat[bucket];
2726 }
2727 }
2728
2729 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2730 struct blk_mq_hw_ctx *hctx,
2731 struct request *rq)
2732 {
2733 unsigned long ret = 0;
2734 int bucket;
2735
2736 /*
2737 * If stats collection isn't on, don't sleep but turn it on for
2738 * future users
2739 */
2740 if (!blk_poll_stats_enable(q))
2741 return 0;
2742
2743 /*
2744 * As an optimistic guess, use half of the mean service time
2745 * for this type of request. We can (and should) make this smarter.
2746 * For instance, if the completion latencies are tight, we can
2747 * get closer than just half the mean. This is especially
2748 * important on devices where the completion latencies are longer
2749 * than ~10 usec. We do use the stats for the relevant IO size
2750 * if available which does lead to better estimates.
2751 */
2752 bucket = blk_mq_poll_stats_bkt(rq);
2753 if (bucket < 0)
2754 return ret;
2755
2756 if (q->poll_stat[bucket].nr_samples)
2757 ret = (q->poll_stat[bucket].mean + 1) / 2;
2758
2759 return ret;
2760 }
2761
2762 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2763 struct blk_mq_hw_ctx *hctx,
2764 struct request *rq)
2765 {
2766 struct hrtimer_sleeper hs;
2767 enum hrtimer_mode mode;
2768 unsigned int nsecs;
2769 ktime_t kt;
2770
2771 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2772 return false;
2773
2774 /*
2775 * poll_nsec can be:
2776 *
2777 * -1: don't ever hybrid sleep
2778 * 0: use half of prev avg
2779 * >0: use this specific value
2780 */
2781 if (q->poll_nsec == -1)
2782 return false;
2783 else if (q->poll_nsec > 0)
2784 nsecs = q->poll_nsec;
2785 else
2786 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2787
2788 if (!nsecs)
2789 return false;
2790
2791 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2792
2793 /*
2794 * This will be replaced with the stats tracking code, using
2795 * 'avg_completion_time / 2' as the pre-sleep target.
2796 */
2797 kt = nsecs;
2798
2799 mode = HRTIMER_MODE_REL;
2800 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2801 hrtimer_set_expires(&hs.timer, kt);
2802
2803 hrtimer_init_sleeper(&hs, current);
2804 do {
2805 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2806 break;
2807 set_current_state(TASK_UNINTERRUPTIBLE);
2808 hrtimer_start_expires(&hs.timer, mode);
2809 if (hs.task)
2810 io_schedule();
2811 hrtimer_cancel(&hs.timer);
2812 mode = HRTIMER_MODE_ABS;
2813 } while (hs.task && !signal_pending(current));
2814
2815 __set_current_state(TASK_RUNNING);
2816 destroy_hrtimer_on_stack(&hs.timer);
2817 return true;
2818 }
2819
2820 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2821 {
2822 struct request_queue *q = hctx->queue;
2823 long state;
2824
2825 /*
2826 * If we sleep, have the caller restart the poll loop to reset
2827 * the state. Like for the other success return cases, the
2828 * caller is responsible for checking if the IO completed. If
2829 * the IO isn't complete, we'll get called again and will go
2830 * straight to the busy poll loop.
2831 */
2832 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2833 return true;
2834
2835 hctx->poll_considered++;
2836
2837 state = current->state;
2838 while (!need_resched()) {
2839 int ret;
2840
2841 hctx->poll_invoked++;
2842
2843 ret = q->mq_ops->poll(hctx, rq->tag);
2844 if (ret > 0) {
2845 hctx->poll_success++;
2846 set_current_state(TASK_RUNNING);
2847 return true;
2848 }
2849
2850 if (signal_pending_state(state, current))
2851 set_current_state(TASK_RUNNING);
2852
2853 if (current->state == TASK_RUNNING)
2854 return true;
2855 if (ret < 0)
2856 break;
2857 cpu_relax();
2858 }
2859
2860 return false;
2861 }
2862
2863 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2864 {
2865 struct blk_mq_hw_ctx *hctx;
2866 struct blk_plug *plug;
2867 struct request *rq;
2868
2869 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2870 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2871 return false;
2872
2873 plug = current->plug;
2874 if (plug)
2875 blk_flush_plug_list(plug, false);
2876
2877 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2878 if (!blk_qc_t_is_internal(cookie))
2879 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2880 else {
2881 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2882 /*
2883 * With scheduling, if the request has completed, we'll
2884 * get a NULL return here, as we clear the sched tag when
2885 * that happens. The request still remains valid, like always,
2886 * so we should be safe with just the NULL check.
2887 */
2888 if (!rq)
2889 return false;
2890 }
2891
2892 return __blk_mq_poll(hctx, rq);
2893 }
2894 EXPORT_SYMBOL_GPL(blk_mq_poll);
2895
2896 static int __init blk_mq_init(void)
2897 {
2898 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2899 blk_mq_hctx_notify_dead);
2900 return 0;
2901 }
2902 subsys_initcall(blk_mq_init);