]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-mq.c
block: split scsi_request out of struct request
[mirror_ubuntu-artful-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
25 #include <linux/prefetch.h>
26
27 #include <trace/events/block.h>
28
29 #include <linux/blk-mq.h>
30 #include "blk.h"
31 #include "blk-mq.h"
32 #include "blk-mq-tag.h"
33 #include "blk-stat.h"
34 #include "blk-wbt.h"
35 #include "blk-mq-sched.h"
36
37 static DEFINE_MUTEX(all_q_mutex);
38 static LIST_HEAD(all_q_list);
39
40 /*
41 * Check if any of the ctx's have pending work in this hardware queue
42 */
43 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
44 {
45 return sbitmap_any_bit_set(&hctx->ctx_map) ||
46 !list_empty_careful(&hctx->dispatch) ||
47 blk_mq_sched_has_work(hctx);
48 }
49
50 /*
51 * Mark this ctx as having pending work in this hardware queue
52 */
53 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
54 struct blk_mq_ctx *ctx)
55 {
56 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
57 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
58 }
59
60 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
61 struct blk_mq_ctx *ctx)
62 {
63 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
64 }
65
66 void blk_mq_freeze_queue_start(struct request_queue *q)
67 {
68 int freeze_depth;
69
70 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
71 if (freeze_depth == 1) {
72 percpu_ref_kill(&q->q_usage_counter);
73 blk_mq_run_hw_queues(q, false);
74 }
75 }
76 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
77
78 static void blk_mq_freeze_queue_wait(struct request_queue *q)
79 {
80 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
81 }
82
83 /*
84 * Guarantee no request is in use, so we can change any data structure of
85 * the queue afterward.
86 */
87 void blk_freeze_queue(struct request_queue *q)
88 {
89 /*
90 * In the !blk_mq case we are only calling this to kill the
91 * q_usage_counter, otherwise this increases the freeze depth
92 * and waits for it to return to zero. For this reason there is
93 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
94 * exported to drivers as the only user for unfreeze is blk_mq.
95 */
96 blk_mq_freeze_queue_start(q);
97 blk_mq_freeze_queue_wait(q);
98 }
99
100 void blk_mq_freeze_queue(struct request_queue *q)
101 {
102 /*
103 * ...just an alias to keep freeze and unfreeze actions balanced
104 * in the blk_mq_* namespace
105 */
106 blk_freeze_queue(q);
107 }
108 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
109
110 void blk_mq_unfreeze_queue(struct request_queue *q)
111 {
112 int freeze_depth;
113
114 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
115 WARN_ON_ONCE(freeze_depth < 0);
116 if (!freeze_depth) {
117 percpu_ref_reinit(&q->q_usage_counter);
118 wake_up_all(&q->mq_freeze_wq);
119 }
120 }
121 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
122
123 /**
124 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
125 * @q: request queue.
126 *
127 * Note: this function does not prevent that the struct request end_io()
128 * callback function is invoked. Additionally, it is not prevented that
129 * new queue_rq() calls occur unless the queue has been stopped first.
130 */
131 void blk_mq_quiesce_queue(struct request_queue *q)
132 {
133 struct blk_mq_hw_ctx *hctx;
134 unsigned int i;
135 bool rcu = false;
136
137 blk_mq_stop_hw_queues(q);
138
139 queue_for_each_hw_ctx(q, hctx, i) {
140 if (hctx->flags & BLK_MQ_F_BLOCKING)
141 synchronize_srcu(&hctx->queue_rq_srcu);
142 else
143 rcu = true;
144 }
145 if (rcu)
146 synchronize_rcu();
147 }
148 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
149
150 void blk_mq_wake_waiters(struct request_queue *q)
151 {
152 struct blk_mq_hw_ctx *hctx;
153 unsigned int i;
154
155 queue_for_each_hw_ctx(q, hctx, i)
156 if (blk_mq_hw_queue_mapped(hctx))
157 blk_mq_tag_wakeup_all(hctx->tags, true);
158
159 /*
160 * If we are called because the queue has now been marked as
161 * dying, we need to ensure that processes currently waiting on
162 * the queue are notified as well.
163 */
164 wake_up_all(&q->mq_freeze_wq);
165 }
166
167 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
168 {
169 return blk_mq_has_free_tags(hctx->tags);
170 }
171 EXPORT_SYMBOL(blk_mq_can_queue);
172
173 void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
174 struct request *rq, unsigned int op)
175 {
176 INIT_LIST_HEAD(&rq->queuelist);
177 /* csd/requeue_work/fifo_time is initialized before use */
178 rq->q = q;
179 rq->mq_ctx = ctx;
180 rq->cmd_flags = op;
181 if (blk_queue_io_stat(q))
182 rq->rq_flags |= RQF_IO_STAT;
183 /* do not touch atomic flags, it needs atomic ops against the timer */
184 rq->cpu = -1;
185 INIT_HLIST_NODE(&rq->hash);
186 RB_CLEAR_NODE(&rq->rb_node);
187 rq->rq_disk = NULL;
188 rq->part = NULL;
189 rq->start_time = jiffies;
190 #ifdef CONFIG_BLK_CGROUP
191 rq->rl = NULL;
192 set_start_time_ns(rq);
193 rq->io_start_time_ns = 0;
194 #endif
195 rq->nr_phys_segments = 0;
196 #if defined(CONFIG_BLK_DEV_INTEGRITY)
197 rq->nr_integrity_segments = 0;
198 #endif
199 rq->special = NULL;
200 /* tag was already set */
201 rq->errors = 0;
202 rq->extra_len = 0;
203
204 INIT_LIST_HEAD(&rq->timeout_list);
205 rq->timeout = 0;
206
207 rq->end_io = NULL;
208 rq->end_io_data = NULL;
209 rq->next_rq = NULL;
210
211 ctx->rq_dispatched[op_is_sync(op)]++;
212 }
213 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
214
215 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
216 unsigned int op)
217 {
218 struct request *rq;
219 unsigned int tag;
220
221 tag = blk_mq_get_tag(data);
222 if (tag != BLK_MQ_TAG_FAIL) {
223 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
224
225 rq = tags->static_rqs[tag];
226
227 if (data->flags & BLK_MQ_REQ_INTERNAL) {
228 rq->tag = -1;
229 rq->internal_tag = tag;
230 } else {
231 if (blk_mq_tag_busy(data->hctx)) {
232 rq->rq_flags = RQF_MQ_INFLIGHT;
233 atomic_inc(&data->hctx->nr_active);
234 }
235 rq->tag = tag;
236 rq->internal_tag = -1;
237 }
238
239 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
240 return rq;
241 }
242
243 return NULL;
244 }
245 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
246
247 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
248 unsigned int flags)
249 {
250 struct blk_mq_alloc_data alloc_data = { .flags = flags };
251 struct request *rq;
252 int ret;
253
254 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
255 if (ret)
256 return ERR_PTR(ret);
257
258 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
259
260 blk_mq_put_ctx(alloc_data.ctx);
261 blk_queue_exit(q);
262
263 if (!rq)
264 return ERR_PTR(-EWOULDBLOCK);
265
266 rq->__data_len = 0;
267 rq->__sector = (sector_t) -1;
268 rq->bio = rq->biotail = NULL;
269 return rq;
270 }
271 EXPORT_SYMBOL(blk_mq_alloc_request);
272
273 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
274 unsigned int flags, unsigned int hctx_idx)
275 {
276 struct blk_mq_hw_ctx *hctx;
277 struct blk_mq_ctx *ctx;
278 struct request *rq;
279 struct blk_mq_alloc_data alloc_data;
280 int ret;
281
282 /*
283 * If the tag allocator sleeps we could get an allocation for a
284 * different hardware context. No need to complicate the low level
285 * allocator for this for the rare use case of a command tied to
286 * a specific queue.
287 */
288 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
289 return ERR_PTR(-EINVAL);
290
291 if (hctx_idx >= q->nr_hw_queues)
292 return ERR_PTR(-EIO);
293
294 ret = blk_queue_enter(q, true);
295 if (ret)
296 return ERR_PTR(ret);
297
298 /*
299 * Check if the hardware context is actually mapped to anything.
300 * If not tell the caller that it should skip this queue.
301 */
302 hctx = q->queue_hw_ctx[hctx_idx];
303 if (!blk_mq_hw_queue_mapped(hctx)) {
304 ret = -EXDEV;
305 goto out_queue_exit;
306 }
307 ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));
308
309 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
310 rq = __blk_mq_alloc_request(&alloc_data, rw);
311 if (!rq) {
312 ret = -EWOULDBLOCK;
313 goto out_queue_exit;
314 }
315
316 return rq;
317
318 out_queue_exit:
319 blk_queue_exit(q);
320 return ERR_PTR(ret);
321 }
322 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
323
324 void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
325 struct request *rq)
326 {
327 const int sched_tag = rq->internal_tag;
328 struct request_queue *q = rq->q;
329
330 if (rq->rq_flags & RQF_MQ_INFLIGHT)
331 atomic_dec(&hctx->nr_active);
332
333 wbt_done(q->rq_wb, &rq->issue_stat);
334 rq->rq_flags = 0;
335
336 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
337 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
338 if (rq->tag != -1)
339 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
340 if (sched_tag != -1)
341 blk_mq_sched_completed_request(hctx, rq);
342 blk_mq_sched_restart_queues(hctx);
343 blk_queue_exit(q);
344 }
345
346 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
347 struct request *rq)
348 {
349 struct blk_mq_ctx *ctx = rq->mq_ctx;
350
351 ctx->rq_completed[rq_is_sync(rq)]++;
352 __blk_mq_finish_request(hctx, ctx, rq);
353 }
354
355 void blk_mq_finish_request(struct request *rq)
356 {
357 blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
358 }
359
360 void blk_mq_free_request(struct request *rq)
361 {
362 blk_mq_sched_put_request(rq);
363 }
364 EXPORT_SYMBOL_GPL(blk_mq_free_request);
365
366 inline void __blk_mq_end_request(struct request *rq, int error)
367 {
368 blk_account_io_done(rq);
369
370 if (rq->end_io) {
371 wbt_done(rq->q->rq_wb, &rq->issue_stat);
372 rq->end_io(rq, error);
373 } else {
374 if (unlikely(blk_bidi_rq(rq)))
375 blk_mq_free_request(rq->next_rq);
376 blk_mq_free_request(rq);
377 }
378 }
379 EXPORT_SYMBOL(__blk_mq_end_request);
380
381 void blk_mq_end_request(struct request *rq, int error)
382 {
383 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
384 BUG();
385 __blk_mq_end_request(rq, error);
386 }
387 EXPORT_SYMBOL(blk_mq_end_request);
388
389 static void __blk_mq_complete_request_remote(void *data)
390 {
391 struct request *rq = data;
392
393 rq->q->softirq_done_fn(rq);
394 }
395
396 static void blk_mq_ipi_complete_request(struct request *rq)
397 {
398 struct blk_mq_ctx *ctx = rq->mq_ctx;
399 bool shared = false;
400 int cpu;
401
402 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
403 rq->q->softirq_done_fn(rq);
404 return;
405 }
406
407 cpu = get_cpu();
408 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
409 shared = cpus_share_cache(cpu, ctx->cpu);
410
411 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
412 rq->csd.func = __blk_mq_complete_request_remote;
413 rq->csd.info = rq;
414 rq->csd.flags = 0;
415 smp_call_function_single_async(ctx->cpu, &rq->csd);
416 } else {
417 rq->q->softirq_done_fn(rq);
418 }
419 put_cpu();
420 }
421
422 static void blk_mq_stat_add(struct request *rq)
423 {
424 if (rq->rq_flags & RQF_STATS) {
425 /*
426 * We could rq->mq_ctx here, but there's less of a risk
427 * of races if we have the completion event add the stats
428 * to the local software queue.
429 */
430 struct blk_mq_ctx *ctx;
431
432 ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
433 blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
434 }
435 }
436
437 static void __blk_mq_complete_request(struct request *rq)
438 {
439 struct request_queue *q = rq->q;
440
441 blk_mq_stat_add(rq);
442
443 if (!q->softirq_done_fn)
444 blk_mq_end_request(rq, rq->errors);
445 else
446 blk_mq_ipi_complete_request(rq);
447 }
448
449 /**
450 * blk_mq_complete_request - end I/O on a request
451 * @rq: the request being processed
452 *
453 * Description:
454 * Ends all I/O on a request. It does not handle partial completions.
455 * The actual completion happens out-of-order, through a IPI handler.
456 **/
457 void blk_mq_complete_request(struct request *rq, int error)
458 {
459 struct request_queue *q = rq->q;
460
461 if (unlikely(blk_should_fake_timeout(q)))
462 return;
463 if (!blk_mark_rq_complete(rq)) {
464 rq->errors = error;
465 __blk_mq_complete_request(rq);
466 }
467 }
468 EXPORT_SYMBOL(blk_mq_complete_request);
469
470 int blk_mq_request_started(struct request *rq)
471 {
472 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
473 }
474 EXPORT_SYMBOL_GPL(blk_mq_request_started);
475
476 void blk_mq_start_request(struct request *rq)
477 {
478 struct request_queue *q = rq->q;
479
480 blk_mq_sched_started_request(rq);
481
482 trace_block_rq_issue(q, rq);
483
484 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
485 blk_stat_set_issue_time(&rq->issue_stat);
486 rq->rq_flags |= RQF_STATS;
487 wbt_issue(q->rq_wb, &rq->issue_stat);
488 }
489
490 blk_add_timer(rq);
491
492 /*
493 * Ensure that ->deadline is visible before set the started
494 * flag and clear the completed flag.
495 */
496 smp_mb__before_atomic();
497
498 /*
499 * Mark us as started and clear complete. Complete might have been
500 * set if requeue raced with timeout, which then marked it as
501 * complete. So be sure to clear complete again when we start
502 * the request, otherwise we'll ignore the completion event.
503 */
504 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
505 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
506 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
507 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
508
509 if (q->dma_drain_size && blk_rq_bytes(rq)) {
510 /*
511 * Make sure space for the drain appears. We know we can do
512 * this because max_hw_segments has been adjusted to be one
513 * fewer than the device can handle.
514 */
515 rq->nr_phys_segments++;
516 }
517 }
518 EXPORT_SYMBOL(blk_mq_start_request);
519
520 static void __blk_mq_requeue_request(struct request *rq)
521 {
522 struct request_queue *q = rq->q;
523
524 trace_block_rq_requeue(q, rq);
525 wbt_requeue(q->rq_wb, &rq->issue_stat);
526 blk_mq_sched_requeue_request(rq);
527
528 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
529 if (q->dma_drain_size && blk_rq_bytes(rq))
530 rq->nr_phys_segments--;
531 }
532 }
533
534 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
535 {
536 __blk_mq_requeue_request(rq);
537
538 BUG_ON(blk_queued_rq(rq));
539 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
540 }
541 EXPORT_SYMBOL(blk_mq_requeue_request);
542
543 static void blk_mq_requeue_work(struct work_struct *work)
544 {
545 struct request_queue *q =
546 container_of(work, struct request_queue, requeue_work.work);
547 LIST_HEAD(rq_list);
548 struct request *rq, *next;
549 unsigned long flags;
550
551 spin_lock_irqsave(&q->requeue_lock, flags);
552 list_splice_init(&q->requeue_list, &rq_list);
553 spin_unlock_irqrestore(&q->requeue_lock, flags);
554
555 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
556 if (!(rq->rq_flags & RQF_SOFTBARRIER))
557 continue;
558
559 rq->rq_flags &= ~RQF_SOFTBARRIER;
560 list_del_init(&rq->queuelist);
561 blk_mq_sched_insert_request(rq, true, false, false, true);
562 }
563
564 while (!list_empty(&rq_list)) {
565 rq = list_entry(rq_list.next, struct request, queuelist);
566 list_del_init(&rq->queuelist);
567 blk_mq_sched_insert_request(rq, false, false, false, true);
568 }
569
570 blk_mq_run_hw_queues(q, false);
571 }
572
573 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
574 bool kick_requeue_list)
575 {
576 struct request_queue *q = rq->q;
577 unsigned long flags;
578
579 /*
580 * We abuse this flag that is otherwise used by the I/O scheduler to
581 * request head insertation from the workqueue.
582 */
583 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
584
585 spin_lock_irqsave(&q->requeue_lock, flags);
586 if (at_head) {
587 rq->rq_flags |= RQF_SOFTBARRIER;
588 list_add(&rq->queuelist, &q->requeue_list);
589 } else {
590 list_add_tail(&rq->queuelist, &q->requeue_list);
591 }
592 spin_unlock_irqrestore(&q->requeue_lock, flags);
593
594 if (kick_requeue_list)
595 blk_mq_kick_requeue_list(q);
596 }
597 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
598
599 void blk_mq_kick_requeue_list(struct request_queue *q)
600 {
601 kblockd_schedule_delayed_work(&q->requeue_work, 0);
602 }
603 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
604
605 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
606 unsigned long msecs)
607 {
608 kblockd_schedule_delayed_work(&q->requeue_work,
609 msecs_to_jiffies(msecs));
610 }
611 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
612
613 void blk_mq_abort_requeue_list(struct request_queue *q)
614 {
615 unsigned long flags;
616 LIST_HEAD(rq_list);
617
618 spin_lock_irqsave(&q->requeue_lock, flags);
619 list_splice_init(&q->requeue_list, &rq_list);
620 spin_unlock_irqrestore(&q->requeue_lock, flags);
621
622 while (!list_empty(&rq_list)) {
623 struct request *rq;
624
625 rq = list_first_entry(&rq_list, struct request, queuelist);
626 list_del_init(&rq->queuelist);
627 rq->errors = -EIO;
628 blk_mq_end_request(rq, rq->errors);
629 }
630 }
631 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
632
633 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
634 {
635 if (tag < tags->nr_tags) {
636 prefetch(tags->rqs[tag]);
637 return tags->rqs[tag];
638 }
639
640 return NULL;
641 }
642 EXPORT_SYMBOL(blk_mq_tag_to_rq);
643
644 struct blk_mq_timeout_data {
645 unsigned long next;
646 unsigned int next_set;
647 };
648
649 void blk_mq_rq_timed_out(struct request *req, bool reserved)
650 {
651 const struct blk_mq_ops *ops = req->q->mq_ops;
652 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
653
654 /*
655 * We know that complete is set at this point. If STARTED isn't set
656 * anymore, then the request isn't active and the "timeout" should
657 * just be ignored. This can happen due to the bitflag ordering.
658 * Timeout first checks if STARTED is set, and if it is, assumes
659 * the request is active. But if we race with completion, then
660 * we both flags will get cleared. So check here again, and ignore
661 * a timeout event with a request that isn't active.
662 */
663 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
664 return;
665
666 if (ops->timeout)
667 ret = ops->timeout(req, reserved);
668
669 switch (ret) {
670 case BLK_EH_HANDLED:
671 __blk_mq_complete_request(req);
672 break;
673 case BLK_EH_RESET_TIMER:
674 blk_add_timer(req);
675 blk_clear_rq_complete(req);
676 break;
677 case BLK_EH_NOT_HANDLED:
678 break;
679 default:
680 printk(KERN_ERR "block: bad eh return: %d\n", ret);
681 break;
682 }
683 }
684
685 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
686 struct request *rq, void *priv, bool reserved)
687 {
688 struct blk_mq_timeout_data *data = priv;
689
690 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
691 /*
692 * If a request wasn't started before the queue was
693 * marked dying, kill it here or it'll go unnoticed.
694 */
695 if (unlikely(blk_queue_dying(rq->q))) {
696 rq->errors = -EIO;
697 blk_mq_end_request(rq, rq->errors);
698 }
699 return;
700 }
701
702 if (time_after_eq(jiffies, rq->deadline)) {
703 if (!blk_mark_rq_complete(rq))
704 blk_mq_rq_timed_out(rq, reserved);
705 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
706 data->next = rq->deadline;
707 data->next_set = 1;
708 }
709 }
710
711 static void blk_mq_timeout_work(struct work_struct *work)
712 {
713 struct request_queue *q =
714 container_of(work, struct request_queue, timeout_work);
715 struct blk_mq_timeout_data data = {
716 .next = 0,
717 .next_set = 0,
718 };
719 int i;
720
721 /* A deadlock might occur if a request is stuck requiring a
722 * timeout at the same time a queue freeze is waiting
723 * completion, since the timeout code would not be able to
724 * acquire the queue reference here.
725 *
726 * That's why we don't use blk_queue_enter here; instead, we use
727 * percpu_ref_tryget directly, because we need to be able to
728 * obtain a reference even in the short window between the queue
729 * starting to freeze, by dropping the first reference in
730 * blk_mq_freeze_queue_start, and the moment the last request is
731 * consumed, marked by the instant q_usage_counter reaches
732 * zero.
733 */
734 if (!percpu_ref_tryget(&q->q_usage_counter))
735 return;
736
737 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
738
739 if (data.next_set) {
740 data.next = blk_rq_timeout(round_jiffies_up(data.next));
741 mod_timer(&q->timeout, data.next);
742 } else {
743 struct blk_mq_hw_ctx *hctx;
744
745 queue_for_each_hw_ctx(q, hctx, i) {
746 /* the hctx may be unmapped, so check it here */
747 if (blk_mq_hw_queue_mapped(hctx))
748 blk_mq_tag_idle(hctx);
749 }
750 }
751 blk_queue_exit(q);
752 }
753
754 /*
755 * Reverse check our software queue for entries that we could potentially
756 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
757 * too much time checking for merges.
758 */
759 static bool blk_mq_attempt_merge(struct request_queue *q,
760 struct blk_mq_ctx *ctx, struct bio *bio)
761 {
762 struct request *rq;
763 int checked = 8;
764
765 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
766 int el_ret;
767
768 if (!checked--)
769 break;
770
771 if (!blk_rq_merge_ok(rq, bio))
772 continue;
773
774 el_ret = blk_try_merge(rq, bio);
775 if (el_ret == ELEVATOR_NO_MERGE)
776 continue;
777
778 if (!blk_mq_sched_allow_merge(q, rq, bio))
779 break;
780
781 if (el_ret == ELEVATOR_BACK_MERGE) {
782 if (bio_attempt_back_merge(q, rq, bio)) {
783 ctx->rq_merged++;
784 return true;
785 }
786 break;
787 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
788 if (bio_attempt_front_merge(q, rq, bio)) {
789 ctx->rq_merged++;
790 return true;
791 }
792 break;
793 }
794 }
795
796 return false;
797 }
798
799 struct flush_busy_ctx_data {
800 struct blk_mq_hw_ctx *hctx;
801 struct list_head *list;
802 };
803
804 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
805 {
806 struct flush_busy_ctx_data *flush_data = data;
807 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
808 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
809
810 sbitmap_clear_bit(sb, bitnr);
811 spin_lock(&ctx->lock);
812 list_splice_tail_init(&ctx->rq_list, flush_data->list);
813 spin_unlock(&ctx->lock);
814 return true;
815 }
816
817 /*
818 * Process software queues that have been marked busy, splicing them
819 * to the for-dispatch
820 */
821 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
822 {
823 struct flush_busy_ctx_data data = {
824 .hctx = hctx,
825 .list = list,
826 };
827
828 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
829 }
830 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
831
832 static inline unsigned int queued_to_index(unsigned int queued)
833 {
834 if (!queued)
835 return 0;
836
837 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
838 }
839
840 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
841 bool wait)
842 {
843 struct blk_mq_alloc_data data = {
844 .q = rq->q,
845 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
846 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
847 };
848
849 if (blk_mq_hctx_stopped(data.hctx))
850 return false;
851
852 if (rq->tag != -1) {
853 done:
854 if (hctx)
855 *hctx = data.hctx;
856 return true;
857 }
858
859 rq->tag = blk_mq_get_tag(&data);
860 if (rq->tag >= 0) {
861 if (blk_mq_tag_busy(data.hctx)) {
862 rq->rq_flags |= RQF_MQ_INFLIGHT;
863 atomic_inc(&data.hctx->nr_active);
864 }
865 data.hctx->tags->rqs[rq->tag] = rq;
866 goto done;
867 }
868
869 return false;
870 }
871
872 static void blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
873 struct request *rq)
874 {
875 if (rq->tag == -1 || rq->internal_tag == -1)
876 return;
877
878 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
879 rq->tag = -1;
880
881 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
882 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
883 atomic_dec(&hctx->nr_active);
884 }
885 }
886
887 /*
888 * If we fail getting a driver tag because all the driver tags are already
889 * assigned and on the dispatch list, BUT the first entry does not have a
890 * tag, then we could deadlock. For that case, move entries with assigned
891 * driver tags to the front, leaving the set of tagged requests in the
892 * same order, and the untagged set in the same order.
893 */
894 static bool reorder_tags_to_front(struct list_head *list)
895 {
896 struct request *rq, *tmp, *first = NULL;
897
898 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
899 if (rq == first)
900 break;
901 if (rq->tag != -1) {
902 list_move(&rq->queuelist, list);
903 if (!first)
904 first = rq;
905 }
906 }
907
908 return first != NULL;
909 }
910
911 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
912 {
913 struct request_queue *q = hctx->queue;
914 struct request *rq;
915 LIST_HEAD(driver_list);
916 struct list_head *dptr;
917 int queued, ret = BLK_MQ_RQ_QUEUE_OK;
918
919 /*
920 * Start off with dptr being NULL, so we start the first request
921 * immediately, even if we have more pending.
922 */
923 dptr = NULL;
924
925 /*
926 * Now process all the entries, sending them to the driver.
927 */
928 queued = 0;
929 while (!list_empty(list)) {
930 struct blk_mq_queue_data bd;
931
932 rq = list_first_entry(list, struct request, queuelist);
933 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
934 if (!queued && reorder_tags_to_front(list))
935 continue;
936
937 /*
938 * We failed getting a driver tag. Mark the queue(s)
939 * as needing a restart. Retry getting a tag again,
940 * in case the needed IO completed right before we
941 * marked the queue as needing a restart.
942 */
943 blk_mq_sched_mark_restart(hctx);
944 if (!blk_mq_get_driver_tag(rq, &hctx, false))
945 break;
946 }
947 list_del_init(&rq->queuelist);
948
949 bd.rq = rq;
950 bd.list = dptr;
951 bd.last = list_empty(list);
952
953 ret = q->mq_ops->queue_rq(hctx, &bd);
954 switch (ret) {
955 case BLK_MQ_RQ_QUEUE_OK:
956 queued++;
957 break;
958 case BLK_MQ_RQ_QUEUE_BUSY:
959 blk_mq_put_driver_tag(hctx, rq);
960 list_add(&rq->queuelist, list);
961 __blk_mq_requeue_request(rq);
962 break;
963 default:
964 pr_err("blk-mq: bad return on queue: %d\n", ret);
965 case BLK_MQ_RQ_QUEUE_ERROR:
966 rq->errors = -EIO;
967 blk_mq_end_request(rq, rq->errors);
968 break;
969 }
970
971 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
972 break;
973
974 /*
975 * We've done the first request. If we have more than 1
976 * left in the list, set dptr to defer issue.
977 */
978 if (!dptr && list->next != list->prev)
979 dptr = &driver_list;
980 }
981
982 hctx->dispatched[queued_to_index(queued)]++;
983
984 /*
985 * Any items that need requeuing? Stuff them into hctx->dispatch,
986 * that is where we will continue on next queue run.
987 */
988 if (!list_empty(list)) {
989 spin_lock(&hctx->lock);
990 list_splice_init(list, &hctx->dispatch);
991 spin_unlock(&hctx->lock);
992
993 /*
994 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
995 * it's possible the queue is stopped and restarted again
996 * before this. Queue restart will dispatch requests. And since
997 * requests in rq_list aren't added into hctx->dispatch yet,
998 * the requests in rq_list might get lost.
999 *
1000 * blk_mq_run_hw_queue() already checks the STOPPED bit
1001 *
1002 * If RESTART is set, then let completion restart the queue
1003 * instead of potentially looping here.
1004 */
1005 if (!blk_mq_sched_needs_restart(hctx))
1006 blk_mq_run_hw_queue(hctx, true);
1007 }
1008
1009 return ret != BLK_MQ_RQ_QUEUE_BUSY;
1010 }
1011
1012 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1013 {
1014 int srcu_idx;
1015
1016 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1017 cpu_online(hctx->next_cpu));
1018
1019 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1020 rcu_read_lock();
1021 blk_mq_sched_dispatch_requests(hctx);
1022 rcu_read_unlock();
1023 } else {
1024 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1025 blk_mq_sched_dispatch_requests(hctx);
1026 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1027 }
1028 }
1029
1030 /*
1031 * It'd be great if the workqueue API had a way to pass
1032 * in a mask and had some smarts for more clever placement.
1033 * For now we just round-robin here, switching for every
1034 * BLK_MQ_CPU_WORK_BATCH queued items.
1035 */
1036 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1037 {
1038 if (hctx->queue->nr_hw_queues == 1)
1039 return WORK_CPU_UNBOUND;
1040
1041 if (--hctx->next_cpu_batch <= 0) {
1042 int next_cpu;
1043
1044 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1045 if (next_cpu >= nr_cpu_ids)
1046 next_cpu = cpumask_first(hctx->cpumask);
1047
1048 hctx->next_cpu = next_cpu;
1049 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1050 }
1051
1052 return hctx->next_cpu;
1053 }
1054
1055 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1056 {
1057 if (unlikely(blk_mq_hctx_stopped(hctx) ||
1058 !blk_mq_hw_queue_mapped(hctx)))
1059 return;
1060
1061 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1062 int cpu = get_cpu();
1063 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1064 __blk_mq_run_hw_queue(hctx);
1065 put_cpu();
1066 return;
1067 }
1068
1069 put_cpu();
1070 }
1071
1072 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
1073 }
1074
1075 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1076 {
1077 struct blk_mq_hw_ctx *hctx;
1078 int i;
1079
1080 queue_for_each_hw_ctx(q, hctx, i) {
1081 if (!blk_mq_hctx_has_pending(hctx) ||
1082 blk_mq_hctx_stopped(hctx))
1083 continue;
1084
1085 blk_mq_run_hw_queue(hctx, async);
1086 }
1087 }
1088 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1089
1090 /**
1091 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1092 * @q: request queue.
1093 *
1094 * The caller is responsible for serializing this function against
1095 * blk_mq_{start,stop}_hw_queue().
1096 */
1097 bool blk_mq_queue_stopped(struct request_queue *q)
1098 {
1099 struct blk_mq_hw_ctx *hctx;
1100 int i;
1101
1102 queue_for_each_hw_ctx(q, hctx, i)
1103 if (blk_mq_hctx_stopped(hctx))
1104 return true;
1105
1106 return false;
1107 }
1108 EXPORT_SYMBOL(blk_mq_queue_stopped);
1109
1110 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1111 {
1112 cancel_work(&hctx->run_work);
1113 cancel_delayed_work(&hctx->delay_work);
1114 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1115 }
1116 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1117
1118 void blk_mq_stop_hw_queues(struct request_queue *q)
1119 {
1120 struct blk_mq_hw_ctx *hctx;
1121 int i;
1122
1123 queue_for_each_hw_ctx(q, hctx, i)
1124 blk_mq_stop_hw_queue(hctx);
1125 }
1126 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1127
1128 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1129 {
1130 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1131
1132 blk_mq_run_hw_queue(hctx, false);
1133 }
1134 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1135
1136 void blk_mq_start_hw_queues(struct request_queue *q)
1137 {
1138 struct blk_mq_hw_ctx *hctx;
1139 int i;
1140
1141 queue_for_each_hw_ctx(q, hctx, i)
1142 blk_mq_start_hw_queue(hctx);
1143 }
1144 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1145
1146 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1147 {
1148 if (!blk_mq_hctx_stopped(hctx))
1149 return;
1150
1151 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1152 blk_mq_run_hw_queue(hctx, async);
1153 }
1154 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1155
1156 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1157 {
1158 struct blk_mq_hw_ctx *hctx;
1159 int i;
1160
1161 queue_for_each_hw_ctx(q, hctx, i)
1162 blk_mq_start_stopped_hw_queue(hctx, async);
1163 }
1164 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1165
1166 static void blk_mq_run_work_fn(struct work_struct *work)
1167 {
1168 struct blk_mq_hw_ctx *hctx;
1169
1170 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1171
1172 __blk_mq_run_hw_queue(hctx);
1173 }
1174
1175 static void blk_mq_delay_work_fn(struct work_struct *work)
1176 {
1177 struct blk_mq_hw_ctx *hctx;
1178
1179 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1180
1181 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1182 __blk_mq_run_hw_queue(hctx);
1183 }
1184
1185 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1186 {
1187 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1188 return;
1189
1190 blk_mq_stop_hw_queue(hctx);
1191 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1192 &hctx->delay_work, msecs_to_jiffies(msecs));
1193 }
1194 EXPORT_SYMBOL(blk_mq_delay_queue);
1195
1196 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1197 struct request *rq,
1198 bool at_head)
1199 {
1200 struct blk_mq_ctx *ctx = rq->mq_ctx;
1201
1202 trace_block_rq_insert(hctx->queue, rq);
1203
1204 if (at_head)
1205 list_add(&rq->queuelist, &ctx->rq_list);
1206 else
1207 list_add_tail(&rq->queuelist, &ctx->rq_list);
1208 }
1209
1210 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1211 bool at_head)
1212 {
1213 struct blk_mq_ctx *ctx = rq->mq_ctx;
1214
1215 __blk_mq_insert_req_list(hctx, rq, at_head);
1216 blk_mq_hctx_mark_pending(hctx, ctx);
1217 }
1218
1219 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1220 struct list_head *list)
1221
1222 {
1223 /*
1224 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1225 * offline now
1226 */
1227 spin_lock(&ctx->lock);
1228 while (!list_empty(list)) {
1229 struct request *rq;
1230
1231 rq = list_first_entry(list, struct request, queuelist);
1232 BUG_ON(rq->mq_ctx != ctx);
1233 list_del_init(&rq->queuelist);
1234 __blk_mq_insert_req_list(hctx, rq, false);
1235 }
1236 blk_mq_hctx_mark_pending(hctx, ctx);
1237 spin_unlock(&ctx->lock);
1238 }
1239
1240 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1241 {
1242 struct request *rqa = container_of(a, struct request, queuelist);
1243 struct request *rqb = container_of(b, struct request, queuelist);
1244
1245 return !(rqa->mq_ctx < rqb->mq_ctx ||
1246 (rqa->mq_ctx == rqb->mq_ctx &&
1247 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1248 }
1249
1250 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1251 {
1252 struct blk_mq_ctx *this_ctx;
1253 struct request_queue *this_q;
1254 struct request *rq;
1255 LIST_HEAD(list);
1256 LIST_HEAD(ctx_list);
1257 unsigned int depth;
1258
1259 list_splice_init(&plug->mq_list, &list);
1260
1261 list_sort(NULL, &list, plug_ctx_cmp);
1262
1263 this_q = NULL;
1264 this_ctx = NULL;
1265 depth = 0;
1266
1267 while (!list_empty(&list)) {
1268 rq = list_entry_rq(list.next);
1269 list_del_init(&rq->queuelist);
1270 BUG_ON(!rq->q);
1271 if (rq->mq_ctx != this_ctx) {
1272 if (this_ctx) {
1273 trace_block_unplug(this_q, depth, from_schedule);
1274 blk_mq_sched_insert_requests(this_q, this_ctx,
1275 &ctx_list,
1276 from_schedule);
1277 }
1278
1279 this_ctx = rq->mq_ctx;
1280 this_q = rq->q;
1281 depth = 0;
1282 }
1283
1284 depth++;
1285 list_add_tail(&rq->queuelist, &ctx_list);
1286 }
1287
1288 /*
1289 * If 'this_ctx' is set, we know we have entries to complete
1290 * on 'ctx_list'. Do those.
1291 */
1292 if (this_ctx) {
1293 trace_block_unplug(this_q, depth, from_schedule);
1294 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1295 from_schedule);
1296 }
1297 }
1298
1299 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1300 {
1301 init_request_from_bio(rq, bio);
1302
1303 blk_account_io_start(rq, true);
1304 }
1305
1306 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1307 {
1308 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1309 !blk_queue_nomerges(hctx->queue);
1310 }
1311
1312 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1313 struct blk_mq_ctx *ctx,
1314 struct request *rq, struct bio *bio)
1315 {
1316 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1317 blk_mq_bio_to_request(rq, bio);
1318 spin_lock(&ctx->lock);
1319 insert_rq:
1320 __blk_mq_insert_request(hctx, rq, false);
1321 spin_unlock(&ctx->lock);
1322 return false;
1323 } else {
1324 struct request_queue *q = hctx->queue;
1325
1326 spin_lock(&ctx->lock);
1327 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1328 blk_mq_bio_to_request(rq, bio);
1329 goto insert_rq;
1330 }
1331
1332 spin_unlock(&ctx->lock);
1333 __blk_mq_finish_request(hctx, ctx, rq);
1334 return true;
1335 }
1336 }
1337
1338 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1339 {
1340 if (rq->tag != -1)
1341 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1342
1343 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1344 }
1345
1346 static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie)
1347 {
1348 struct request_queue *q = rq->q;
1349 struct blk_mq_queue_data bd = {
1350 .rq = rq,
1351 .list = NULL,
1352 .last = 1
1353 };
1354 struct blk_mq_hw_ctx *hctx;
1355 blk_qc_t new_cookie;
1356 int ret;
1357
1358 if (q->elevator)
1359 goto insert;
1360
1361 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1362 goto insert;
1363
1364 new_cookie = request_to_qc_t(hctx, rq);
1365
1366 /*
1367 * For OK queue, we are done. For error, kill it. Any other
1368 * error (busy), just add it to our list as we previously
1369 * would have done
1370 */
1371 ret = q->mq_ops->queue_rq(hctx, &bd);
1372 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1373 *cookie = new_cookie;
1374 return;
1375 }
1376
1377 __blk_mq_requeue_request(rq);
1378
1379 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1380 *cookie = BLK_QC_T_NONE;
1381 rq->errors = -EIO;
1382 blk_mq_end_request(rq, rq->errors);
1383 return;
1384 }
1385
1386 insert:
1387 blk_mq_sched_insert_request(rq, false, true, true, false);
1388 }
1389
1390 /*
1391 * Multiple hardware queue variant. This will not use per-process plugs,
1392 * but will attempt to bypass the hctx queueing if we can go straight to
1393 * hardware for SYNC IO.
1394 */
1395 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1396 {
1397 const int is_sync = op_is_sync(bio->bi_opf);
1398 const int is_flush_fua = op_is_flush(bio->bi_opf);
1399 struct blk_mq_alloc_data data = { .flags = 0 };
1400 struct request *rq;
1401 unsigned int request_count = 0, srcu_idx;
1402 struct blk_plug *plug;
1403 struct request *same_queue_rq = NULL;
1404 blk_qc_t cookie;
1405 unsigned int wb_acct;
1406
1407 blk_queue_bounce(q, &bio);
1408
1409 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1410 bio_io_error(bio);
1411 return BLK_QC_T_NONE;
1412 }
1413
1414 blk_queue_split(q, &bio, q->bio_split);
1415
1416 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1417 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1418 return BLK_QC_T_NONE;
1419
1420 if (blk_mq_sched_bio_merge(q, bio))
1421 return BLK_QC_T_NONE;
1422
1423 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1424
1425 trace_block_getrq(q, bio, bio->bi_opf);
1426
1427 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1428 if (unlikely(!rq)) {
1429 __wbt_done(q->rq_wb, wb_acct);
1430 return BLK_QC_T_NONE;
1431 }
1432
1433 wbt_track(&rq->issue_stat, wb_acct);
1434
1435 cookie = request_to_qc_t(data.hctx, rq);
1436
1437 if (unlikely(is_flush_fua)) {
1438 blk_mq_put_ctx(data.ctx);
1439 blk_mq_bio_to_request(rq, bio);
1440 blk_mq_get_driver_tag(rq, NULL, true);
1441 blk_insert_flush(rq);
1442 blk_mq_run_hw_queue(data.hctx, true);
1443 goto done;
1444 }
1445
1446 plug = current->plug;
1447 /*
1448 * If the driver supports defer issued based on 'last', then
1449 * queue it up like normal since we can potentially save some
1450 * CPU this way.
1451 */
1452 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1453 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1454 struct request *old_rq = NULL;
1455
1456 blk_mq_bio_to_request(rq, bio);
1457
1458 /*
1459 * We do limited plugging. If the bio can be merged, do that.
1460 * Otherwise the existing request in the plug list will be
1461 * issued. So the plug list will have one request at most
1462 */
1463 if (plug) {
1464 /*
1465 * The plug list might get flushed before this. If that
1466 * happens, same_queue_rq is invalid and plug list is
1467 * empty
1468 */
1469 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1470 old_rq = same_queue_rq;
1471 list_del_init(&old_rq->queuelist);
1472 }
1473 list_add_tail(&rq->queuelist, &plug->mq_list);
1474 } else /* is_sync */
1475 old_rq = rq;
1476 blk_mq_put_ctx(data.ctx);
1477 if (!old_rq)
1478 goto done;
1479
1480 if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
1481 rcu_read_lock();
1482 blk_mq_try_issue_directly(old_rq, &cookie);
1483 rcu_read_unlock();
1484 } else {
1485 srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
1486 blk_mq_try_issue_directly(old_rq, &cookie);
1487 srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
1488 }
1489 goto done;
1490 }
1491
1492 if (q->elevator) {
1493 blk_mq_put_ctx(data.ctx);
1494 blk_mq_bio_to_request(rq, bio);
1495 blk_mq_sched_insert_request(rq, false, true,
1496 !is_sync || is_flush_fua, true);
1497 goto done;
1498 }
1499 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1500 /*
1501 * For a SYNC request, send it to the hardware immediately. For
1502 * an ASYNC request, just ensure that we run it later on. The
1503 * latter allows for merging opportunities and more efficient
1504 * dispatching.
1505 */
1506 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1507 }
1508 blk_mq_put_ctx(data.ctx);
1509 done:
1510 return cookie;
1511 }
1512
1513 /*
1514 * Single hardware queue variant. This will attempt to use any per-process
1515 * plug for merging and IO deferral.
1516 */
1517 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1518 {
1519 const int is_sync = op_is_sync(bio->bi_opf);
1520 const int is_flush_fua = op_is_flush(bio->bi_opf);
1521 struct blk_plug *plug;
1522 unsigned int request_count = 0;
1523 struct blk_mq_alloc_data data = { .flags = 0 };
1524 struct request *rq;
1525 blk_qc_t cookie;
1526 unsigned int wb_acct;
1527
1528 blk_queue_bounce(q, &bio);
1529
1530 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1531 bio_io_error(bio);
1532 return BLK_QC_T_NONE;
1533 }
1534
1535 blk_queue_split(q, &bio, q->bio_split);
1536
1537 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1538 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1539 return BLK_QC_T_NONE;
1540 } else
1541 request_count = blk_plug_queued_count(q);
1542
1543 if (blk_mq_sched_bio_merge(q, bio))
1544 return BLK_QC_T_NONE;
1545
1546 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1547
1548 trace_block_getrq(q, bio, bio->bi_opf);
1549
1550 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1551 if (unlikely(!rq)) {
1552 __wbt_done(q->rq_wb, wb_acct);
1553 return BLK_QC_T_NONE;
1554 }
1555
1556 wbt_track(&rq->issue_stat, wb_acct);
1557
1558 cookie = request_to_qc_t(data.hctx, rq);
1559
1560 if (unlikely(is_flush_fua)) {
1561 blk_mq_put_ctx(data.ctx);
1562 blk_mq_bio_to_request(rq, bio);
1563 blk_mq_get_driver_tag(rq, NULL, true);
1564 blk_insert_flush(rq);
1565 blk_mq_run_hw_queue(data.hctx, true);
1566 goto done;
1567 }
1568
1569 /*
1570 * A task plug currently exists. Since this is completely lockless,
1571 * utilize that to temporarily store requests until the task is
1572 * either done or scheduled away.
1573 */
1574 plug = current->plug;
1575 if (plug) {
1576 struct request *last = NULL;
1577
1578 blk_mq_bio_to_request(rq, bio);
1579
1580 /*
1581 * @request_count may become stale because of schedule
1582 * out, so check the list again.
1583 */
1584 if (list_empty(&plug->mq_list))
1585 request_count = 0;
1586 if (!request_count)
1587 trace_block_plug(q);
1588 else
1589 last = list_entry_rq(plug->mq_list.prev);
1590
1591 blk_mq_put_ctx(data.ctx);
1592
1593 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1594 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1595 blk_flush_plug_list(plug, false);
1596 trace_block_plug(q);
1597 }
1598
1599 list_add_tail(&rq->queuelist, &plug->mq_list);
1600 return cookie;
1601 }
1602
1603 if (q->elevator) {
1604 blk_mq_put_ctx(data.ctx);
1605 blk_mq_bio_to_request(rq, bio);
1606 blk_mq_sched_insert_request(rq, false, true,
1607 !is_sync || is_flush_fua, true);
1608 goto done;
1609 }
1610 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1611 /*
1612 * For a SYNC request, send it to the hardware immediately. For
1613 * an ASYNC request, just ensure that we run it later on. The
1614 * latter allows for merging opportunities and more efficient
1615 * dispatching.
1616 */
1617 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1618 }
1619
1620 blk_mq_put_ctx(data.ctx);
1621 done:
1622 return cookie;
1623 }
1624
1625 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1626 unsigned int hctx_idx)
1627 {
1628 struct page *page;
1629
1630 if (tags->rqs && set->ops->exit_request) {
1631 int i;
1632
1633 for (i = 0; i < tags->nr_tags; i++) {
1634 struct request *rq = tags->static_rqs[i];
1635
1636 if (!rq)
1637 continue;
1638 set->ops->exit_request(set->driver_data, rq,
1639 hctx_idx, i);
1640 tags->static_rqs[i] = NULL;
1641 }
1642 }
1643
1644 while (!list_empty(&tags->page_list)) {
1645 page = list_first_entry(&tags->page_list, struct page, lru);
1646 list_del_init(&page->lru);
1647 /*
1648 * Remove kmemleak object previously allocated in
1649 * blk_mq_init_rq_map().
1650 */
1651 kmemleak_free(page_address(page));
1652 __free_pages(page, page->private);
1653 }
1654 }
1655
1656 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1657 {
1658 kfree(tags->rqs);
1659 tags->rqs = NULL;
1660 kfree(tags->static_rqs);
1661 tags->static_rqs = NULL;
1662
1663 blk_mq_free_tags(tags);
1664 }
1665
1666 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1667 unsigned int hctx_idx,
1668 unsigned int nr_tags,
1669 unsigned int reserved_tags)
1670 {
1671 struct blk_mq_tags *tags;
1672
1673 tags = blk_mq_init_tags(nr_tags, reserved_tags,
1674 set->numa_node,
1675 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1676 if (!tags)
1677 return NULL;
1678
1679 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1680 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1681 set->numa_node);
1682 if (!tags->rqs) {
1683 blk_mq_free_tags(tags);
1684 return NULL;
1685 }
1686
1687 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1688 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1689 set->numa_node);
1690 if (!tags->static_rqs) {
1691 kfree(tags->rqs);
1692 blk_mq_free_tags(tags);
1693 return NULL;
1694 }
1695
1696 return tags;
1697 }
1698
1699 static size_t order_to_size(unsigned int order)
1700 {
1701 return (size_t)PAGE_SIZE << order;
1702 }
1703
1704 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1705 unsigned int hctx_idx, unsigned int depth)
1706 {
1707 unsigned int i, j, entries_per_page, max_order = 4;
1708 size_t rq_size, left;
1709
1710 INIT_LIST_HEAD(&tags->page_list);
1711
1712 /*
1713 * rq_size is the size of the request plus driver payload, rounded
1714 * to the cacheline size
1715 */
1716 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1717 cache_line_size());
1718 left = rq_size * depth;
1719
1720 for (i = 0; i < depth; ) {
1721 int this_order = max_order;
1722 struct page *page;
1723 int to_do;
1724 void *p;
1725
1726 while (this_order && left < order_to_size(this_order - 1))
1727 this_order--;
1728
1729 do {
1730 page = alloc_pages_node(set->numa_node,
1731 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1732 this_order);
1733 if (page)
1734 break;
1735 if (!this_order--)
1736 break;
1737 if (order_to_size(this_order) < rq_size)
1738 break;
1739 } while (1);
1740
1741 if (!page)
1742 goto fail;
1743
1744 page->private = this_order;
1745 list_add_tail(&page->lru, &tags->page_list);
1746
1747 p = page_address(page);
1748 /*
1749 * Allow kmemleak to scan these pages as they contain pointers
1750 * to additional allocations like via ops->init_request().
1751 */
1752 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1753 entries_per_page = order_to_size(this_order) / rq_size;
1754 to_do = min(entries_per_page, depth - i);
1755 left -= to_do * rq_size;
1756 for (j = 0; j < to_do; j++) {
1757 struct request *rq = p;
1758
1759 tags->static_rqs[i] = rq;
1760 if (set->ops->init_request) {
1761 if (set->ops->init_request(set->driver_data,
1762 rq, hctx_idx, i,
1763 set->numa_node)) {
1764 tags->static_rqs[i] = NULL;
1765 goto fail;
1766 }
1767 }
1768
1769 p += rq_size;
1770 i++;
1771 }
1772 }
1773 return 0;
1774
1775 fail:
1776 blk_mq_free_rqs(set, tags, hctx_idx);
1777 return -ENOMEM;
1778 }
1779
1780 /*
1781 * 'cpu' is going away. splice any existing rq_list entries from this
1782 * software queue to the hw queue dispatch list, and ensure that it
1783 * gets run.
1784 */
1785 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1786 {
1787 struct blk_mq_hw_ctx *hctx;
1788 struct blk_mq_ctx *ctx;
1789 LIST_HEAD(tmp);
1790
1791 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1792 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1793
1794 spin_lock(&ctx->lock);
1795 if (!list_empty(&ctx->rq_list)) {
1796 list_splice_init(&ctx->rq_list, &tmp);
1797 blk_mq_hctx_clear_pending(hctx, ctx);
1798 }
1799 spin_unlock(&ctx->lock);
1800
1801 if (list_empty(&tmp))
1802 return 0;
1803
1804 spin_lock(&hctx->lock);
1805 list_splice_tail_init(&tmp, &hctx->dispatch);
1806 spin_unlock(&hctx->lock);
1807
1808 blk_mq_run_hw_queue(hctx, true);
1809 return 0;
1810 }
1811
1812 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1813 {
1814 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1815 &hctx->cpuhp_dead);
1816 }
1817
1818 /* hctx->ctxs will be freed in queue's release handler */
1819 static void blk_mq_exit_hctx(struct request_queue *q,
1820 struct blk_mq_tag_set *set,
1821 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1822 {
1823 unsigned flush_start_tag = set->queue_depth;
1824
1825 blk_mq_tag_idle(hctx);
1826
1827 if (set->ops->exit_request)
1828 set->ops->exit_request(set->driver_data,
1829 hctx->fq->flush_rq, hctx_idx,
1830 flush_start_tag + hctx_idx);
1831
1832 if (set->ops->exit_hctx)
1833 set->ops->exit_hctx(hctx, hctx_idx);
1834
1835 if (hctx->flags & BLK_MQ_F_BLOCKING)
1836 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1837
1838 blk_mq_remove_cpuhp(hctx);
1839 blk_free_flush_queue(hctx->fq);
1840 sbitmap_free(&hctx->ctx_map);
1841 }
1842
1843 static void blk_mq_exit_hw_queues(struct request_queue *q,
1844 struct blk_mq_tag_set *set, int nr_queue)
1845 {
1846 struct blk_mq_hw_ctx *hctx;
1847 unsigned int i;
1848
1849 queue_for_each_hw_ctx(q, hctx, i) {
1850 if (i == nr_queue)
1851 break;
1852 blk_mq_exit_hctx(q, set, hctx, i);
1853 }
1854 }
1855
1856 static void blk_mq_free_hw_queues(struct request_queue *q,
1857 struct blk_mq_tag_set *set)
1858 {
1859 struct blk_mq_hw_ctx *hctx;
1860 unsigned int i;
1861
1862 queue_for_each_hw_ctx(q, hctx, i)
1863 free_cpumask_var(hctx->cpumask);
1864 }
1865
1866 static int blk_mq_init_hctx(struct request_queue *q,
1867 struct blk_mq_tag_set *set,
1868 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1869 {
1870 int node;
1871 unsigned flush_start_tag = set->queue_depth;
1872
1873 node = hctx->numa_node;
1874 if (node == NUMA_NO_NODE)
1875 node = hctx->numa_node = set->numa_node;
1876
1877 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1878 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1879 spin_lock_init(&hctx->lock);
1880 INIT_LIST_HEAD(&hctx->dispatch);
1881 hctx->queue = q;
1882 hctx->queue_num = hctx_idx;
1883 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1884
1885 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1886
1887 hctx->tags = set->tags[hctx_idx];
1888
1889 /*
1890 * Allocate space for all possible cpus to avoid allocation at
1891 * runtime
1892 */
1893 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1894 GFP_KERNEL, node);
1895 if (!hctx->ctxs)
1896 goto unregister_cpu_notifier;
1897
1898 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1899 node))
1900 goto free_ctxs;
1901
1902 hctx->nr_ctx = 0;
1903
1904 if (set->ops->init_hctx &&
1905 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1906 goto free_bitmap;
1907
1908 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1909 if (!hctx->fq)
1910 goto exit_hctx;
1911
1912 if (set->ops->init_request &&
1913 set->ops->init_request(set->driver_data,
1914 hctx->fq->flush_rq, hctx_idx,
1915 flush_start_tag + hctx_idx, node))
1916 goto free_fq;
1917
1918 if (hctx->flags & BLK_MQ_F_BLOCKING)
1919 init_srcu_struct(&hctx->queue_rq_srcu);
1920
1921 return 0;
1922
1923 free_fq:
1924 kfree(hctx->fq);
1925 exit_hctx:
1926 if (set->ops->exit_hctx)
1927 set->ops->exit_hctx(hctx, hctx_idx);
1928 free_bitmap:
1929 sbitmap_free(&hctx->ctx_map);
1930 free_ctxs:
1931 kfree(hctx->ctxs);
1932 unregister_cpu_notifier:
1933 blk_mq_remove_cpuhp(hctx);
1934 return -1;
1935 }
1936
1937 static void blk_mq_init_cpu_queues(struct request_queue *q,
1938 unsigned int nr_hw_queues)
1939 {
1940 unsigned int i;
1941
1942 for_each_possible_cpu(i) {
1943 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1944 struct blk_mq_hw_ctx *hctx;
1945
1946 memset(__ctx, 0, sizeof(*__ctx));
1947 __ctx->cpu = i;
1948 spin_lock_init(&__ctx->lock);
1949 INIT_LIST_HEAD(&__ctx->rq_list);
1950 __ctx->queue = q;
1951 blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
1952 blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
1953
1954 /* If the cpu isn't online, the cpu is mapped to first hctx */
1955 if (!cpu_online(i))
1956 continue;
1957
1958 hctx = blk_mq_map_queue(q, i);
1959
1960 /*
1961 * Set local node, IFF we have more than one hw queue. If
1962 * not, we remain on the home node of the device
1963 */
1964 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1965 hctx->numa_node = local_memory_node(cpu_to_node(i));
1966 }
1967 }
1968
1969 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1970 {
1971 int ret = 0;
1972
1973 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1974 set->queue_depth, set->reserved_tags);
1975 if (!set->tags[hctx_idx])
1976 return false;
1977
1978 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
1979 set->queue_depth);
1980 if (!ret)
1981 return true;
1982
1983 blk_mq_free_rq_map(set->tags[hctx_idx]);
1984 set->tags[hctx_idx] = NULL;
1985 return false;
1986 }
1987
1988 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
1989 unsigned int hctx_idx)
1990 {
1991 if (set->tags[hctx_idx]) {
1992 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
1993 blk_mq_free_rq_map(set->tags[hctx_idx]);
1994 set->tags[hctx_idx] = NULL;
1995 }
1996 }
1997
1998 static void blk_mq_map_swqueue(struct request_queue *q,
1999 const struct cpumask *online_mask)
2000 {
2001 unsigned int i, hctx_idx;
2002 struct blk_mq_hw_ctx *hctx;
2003 struct blk_mq_ctx *ctx;
2004 struct blk_mq_tag_set *set = q->tag_set;
2005
2006 /*
2007 * Avoid others reading imcomplete hctx->cpumask through sysfs
2008 */
2009 mutex_lock(&q->sysfs_lock);
2010
2011 queue_for_each_hw_ctx(q, hctx, i) {
2012 cpumask_clear(hctx->cpumask);
2013 hctx->nr_ctx = 0;
2014 }
2015
2016 /*
2017 * Map software to hardware queues
2018 */
2019 for_each_possible_cpu(i) {
2020 /* If the cpu isn't online, the cpu is mapped to first hctx */
2021 if (!cpumask_test_cpu(i, online_mask))
2022 continue;
2023
2024 hctx_idx = q->mq_map[i];
2025 /* unmapped hw queue can be remapped after CPU topo changed */
2026 if (!set->tags[hctx_idx] &&
2027 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2028 /*
2029 * If tags initialization fail for some hctx,
2030 * that hctx won't be brought online. In this
2031 * case, remap the current ctx to hctx[0] which
2032 * is guaranteed to always have tags allocated
2033 */
2034 q->mq_map[i] = 0;
2035 }
2036
2037 ctx = per_cpu_ptr(q->queue_ctx, i);
2038 hctx = blk_mq_map_queue(q, i);
2039
2040 cpumask_set_cpu(i, hctx->cpumask);
2041 ctx->index_hw = hctx->nr_ctx;
2042 hctx->ctxs[hctx->nr_ctx++] = ctx;
2043 }
2044
2045 mutex_unlock(&q->sysfs_lock);
2046
2047 queue_for_each_hw_ctx(q, hctx, i) {
2048 /*
2049 * If no software queues are mapped to this hardware queue,
2050 * disable it and free the request entries.
2051 */
2052 if (!hctx->nr_ctx) {
2053 /* Never unmap queue 0. We need it as a
2054 * fallback in case of a new remap fails
2055 * allocation
2056 */
2057 if (i && set->tags[i])
2058 blk_mq_free_map_and_requests(set, i);
2059
2060 hctx->tags = NULL;
2061 continue;
2062 }
2063
2064 hctx->tags = set->tags[i];
2065 WARN_ON(!hctx->tags);
2066
2067 /*
2068 * Set the map size to the number of mapped software queues.
2069 * This is more accurate and more efficient than looping
2070 * over all possibly mapped software queues.
2071 */
2072 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2073
2074 /*
2075 * Initialize batch roundrobin counts
2076 */
2077 hctx->next_cpu = cpumask_first(hctx->cpumask);
2078 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2079 }
2080 }
2081
2082 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2083 {
2084 struct blk_mq_hw_ctx *hctx;
2085 int i;
2086
2087 queue_for_each_hw_ctx(q, hctx, i) {
2088 if (shared)
2089 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2090 else
2091 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2092 }
2093 }
2094
2095 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2096 {
2097 struct request_queue *q;
2098
2099 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2100 blk_mq_freeze_queue(q);
2101 queue_set_hctx_shared(q, shared);
2102 blk_mq_unfreeze_queue(q);
2103 }
2104 }
2105
2106 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2107 {
2108 struct blk_mq_tag_set *set = q->tag_set;
2109
2110 mutex_lock(&set->tag_list_lock);
2111 list_del_init(&q->tag_set_list);
2112 if (list_is_singular(&set->tag_list)) {
2113 /* just transitioned to unshared */
2114 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2115 /* update existing queue */
2116 blk_mq_update_tag_set_depth(set, false);
2117 }
2118 mutex_unlock(&set->tag_list_lock);
2119 }
2120
2121 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2122 struct request_queue *q)
2123 {
2124 q->tag_set = set;
2125
2126 mutex_lock(&set->tag_list_lock);
2127
2128 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2129 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2130 set->flags |= BLK_MQ_F_TAG_SHARED;
2131 /* update existing queue */
2132 blk_mq_update_tag_set_depth(set, true);
2133 }
2134 if (set->flags & BLK_MQ_F_TAG_SHARED)
2135 queue_set_hctx_shared(q, true);
2136 list_add_tail(&q->tag_set_list, &set->tag_list);
2137
2138 mutex_unlock(&set->tag_list_lock);
2139 }
2140
2141 /*
2142 * It is the actual release handler for mq, but we do it from
2143 * request queue's release handler for avoiding use-after-free
2144 * and headache because q->mq_kobj shouldn't have been introduced,
2145 * but we can't group ctx/kctx kobj without it.
2146 */
2147 void blk_mq_release(struct request_queue *q)
2148 {
2149 struct blk_mq_hw_ctx *hctx;
2150 unsigned int i;
2151
2152 blk_mq_sched_teardown(q);
2153
2154 /* hctx kobj stays in hctx */
2155 queue_for_each_hw_ctx(q, hctx, i) {
2156 if (!hctx)
2157 continue;
2158 kfree(hctx->ctxs);
2159 kfree(hctx);
2160 }
2161
2162 q->mq_map = NULL;
2163
2164 kfree(q->queue_hw_ctx);
2165
2166 /* ctx kobj stays in queue_ctx */
2167 free_percpu(q->queue_ctx);
2168 }
2169
2170 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2171 {
2172 struct request_queue *uninit_q, *q;
2173
2174 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2175 if (!uninit_q)
2176 return ERR_PTR(-ENOMEM);
2177
2178 q = blk_mq_init_allocated_queue(set, uninit_q);
2179 if (IS_ERR(q))
2180 blk_cleanup_queue(uninit_q);
2181
2182 return q;
2183 }
2184 EXPORT_SYMBOL(blk_mq_init_queue);
2185
2186 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2187 struct request_queue *q)
2188 {
2189 int i, j;
2190 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2191
2192 blk_mq_sysfs_unregister(q);
2193 for (i = 0; i < set->nr_hw_queues; i++) {
2194 int node;
2195
2196 if (hctxs[i])
2197 continue;
2198
2199 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2200 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2201 GFP_KERNEL, node);
2202 if (!hctxs[i])
2203 break;
2204
2205 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2206 node)) {
2207 kfree(hctxs[i]);
2208 hctxs[i] = NULL;
2209 break;
2210 }
2211
2212 atomic_set(&hctxs[i]->nr_active, 0);
2213 hctxs[i]->numa_node = node;
2214 hctxs[i]->queue_num = i;
2215
2216 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2217 free_cpumask_var(hctxs[i]->cpumask);
2218 kfree(hctxs[i]);
2219 hctxs[i] = NULL;
2220 break;
2221 }
2222 blk_mq_hctx_kobj_init(hctxs[i]);
2223 }
2224 for (j = i; j < q->nr_hw_queues; j++) {
2225 struct blk_mq_hw_ctx *hctx = hctxs[j];
2226
2227 if (hctx) {
2228 if (hctx->tags)
2229 blk_mq_free_map_and_requests(set, j);
2230 blk_mq_exit_hctx(q, set, hctx, j);
2231 free_cpumask_var(hctx->cpumask);
2232 kobject_put(&hctx->kobj);
2233 kfree(hctx->ctxs);
2234 kfree(hctx);
2235 hctxs[j] = NULL;
2236
2237 }
2238 }
2239 q->nr_hw_queues = i;
2240 blk_mq_sysfs_register(q);
2241 }
2242
2243 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2244 struct request_queue *q)
2245 {
2246 /* mark the queue as mq asap */
2247 q->mq_ops = set->ops;
2248
2249 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2250 if (!q->queue_ctx)
2251 goto err_exit;
2252
2253 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2254 GFP_KERNEL, set->numa_node);
2255 if (!q->queue_hw_ctx)
2256 goto err_percpu;
2257
2258 q->mq_map = set->mq_map;
2259
2260 blk_mq_realloc_hw_ctxs(set, q);
2261 if (!q->nr_hw_queues)
2262 goto err_hctxs;
2263
2264 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2265 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2266
2267 q->nr_queues = nr_cpu_ids;
2268
2269 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2270
2271 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2272 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2273
2274 q->sg_reserved_size = INT_MAX;
2275
2276 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2277 INIT_LIST_HEAD(&q->requeue_list);
2278 spin_lock_init(&q->requeue_lock);
2279
2280 if (q->nr_hw_queues > 1)
2281 blk_queue_make_request(q, blk_mq_make_request);
2282 else
2283 blk_queue_make_request(q, blk_sq_make_request);
2284
2285 /*
2286 * Do this after blk_queue_make_request() overrides it...
2287 */
2288 q->nr_requests = set->queue_depth;
2289
2290 /*
2291 * Default to classic polling
2292 */
2293 q->poll_nsec = -1;
2294
2295 if (set->ops->complete)
2296 blk_queue_softirq_done(q, set->ops->complete);
2297
2298 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2299
2300 get_online_cpus();
2301 mutex_lock(&all_q_mutex);
2302
2303 list_add_tail(&q->all_q_node, &all_q_list);
2304 blk_mq_add_queue_tag_set(set, q);
2305 blk_mq_map_swqueue(q, cpu_online_mask);
2306
2307 mutex_unlock(&all_q_mutex);
2308 put_online_cpus();
2309
2310 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2311 int ret;
2312
2313 ret = blk_mq_sched_init(q);
2314 if (ret)
2315 return ERR_PTR(ret);
2316 }
2317
2318 return q;
2319
2320 err_hctxs:
2321 kfree(q->queue_hw_ctx);
2322 err_percpu:
2323 free_percpu(q->queue_ctx);
2324 err_exit:
2325 q->mq_ops = NULL;
2326 return ERR_PTR(-ENOMEM);
2327 }
2328 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2329
2330 void blk_mq_free_queue(struct request_queue *q)
2331 {
2332 struct blk_mq_tag_set *set = q->tag_set;
2333
2334 mutex_lock(&all_q_mutex);
2335 list_del_init(&q->all_q_node);
2336 mutex_unlock(&all_q_mutex);
2337
2338 wbt_exit(q);
2339
2340 blk_mq_del_queue_tag_set(q);
2341
2342 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2343 blk_mq_free_hw_queues(q, set);
2344 }
2345
2346 /* Basically redo blk_mq_init_queue with queue frozen */
2347 static void blk_mq_queue_reinit(struct request_queue *q,
2348 const struct cpumask *online_mask)
2349 {
2350 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2351
2352 blk_mq_sysfs_unregister(q);
2353
2354 /*
2355 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2356 * we should change hctx numa_node according to new topology (this
2357 * involves free and re-allocate memory, worthy doing?)
2358 */
2359
2360 blk_mq_map_swqueue(q, online_mask);
2361
2362 blk_mq_sysfs_register(q);
2363 }
2364
2365 /*
2366 * New online cpumask which is going to be set in this hotplug event.
2367 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2368 * one-by-one and dynamically allocating this could result in a failure.
2369 */
2370 static struct cpumask cpuhp_online_new;
2371
2372 static void blk_mq_queue_reinit_work(void)
2373 {
2374 struct request_queue *q;
2375
2376 mutex_lock(&all_q_mutex);
2377 /*
2378 * We need to freeze and reinit all existing queues. Freezing
2379 * involves synchronous wait for an RCU grace period and doing it
2380 * one by one may take a long time. Start freezing all queues in
2381 * one swoop and then wait for the completions so that freezing can
2382 * take place in parallel.
2383 */
2384 list_for_each_entry(q, &all_q_list, all_q_node)
2385 blk_mq_freeze_queue_start(q);
2386 list_for_each_entry(q, &all_q_list, all_q_node)
2387 blk_mq_freeze_queue_wait(q);
2388
2389 list_for_each_entry(q, &all_q_list, all_q_node)
2390 blk_mq_queue_reinit(q, &cpuhp_online_new);
2391
2392 list_for_each_entry(q, &all_q_list, all_q_node)
2393 blk_mq_unfreeze_queue(q);
2394
2395 mutex_unlock(&all_q_mutex);
2396 }
2397
2398 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2399 {
2400 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2401 blk_mq_queue_reinit_work();
2402 return 0;
2403 }
2404
2405 /*
2406 * Before hotadded cpu starts handling requests, new mappings must be
2407 * established. Otherwise, these requests in hw queue might never be
2408 * dispatched.
2409 *
2410 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2411 * for CPU0, and ctx1 for CPU1).
2412 *
2413 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2414 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2415 *
2416 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2417 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2418 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2419 * ignored.
2420 */
2421 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2422 {
2423 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2424 cpumask_set_cpu(cpu, &cpuhp_online_new);
2425 blk_mq_queue_reinit_work();
2426 return 0;
2427 }
2428
2429 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2430 {
2431 int i;
2432
2433 for (i = 0; i < set->nr_hw_queues; i++)
2434 if (!__blk_mq_alloc_rq_map(set, i))
2435 goto out_unwind;
2436
2437 return 0;
2438
2439 out_unwind:
2440 while (--i >= 0)
2441 blk_mq_free_rq_map(set->tags[i]);
2442
2443 return -ENOMEM;
2444 }
2445
2446 /*
2447 * Allocate the request maps associated with this tag_set. Note that this
2448 * may reduce the depth asked for, if memory is tight. set->queue_depth
2449 * will be updated to reflect the allocated depth.
2450 */
2451 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2452 {
2453 unsigned int depth;
2454 int err;
2455
2456 depth = set->queue_depth;
2457 do {
2458 err = __blk_mq_alloc_rq_maps(set);
2459 if (!err)
2460 break;
2461
2462 set->queue_depth >>= 1;
2463 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2464 err = -ENOMEM;
2465 break;
2466 }
2467 } while (set->queue_depth);
2468
2469 if (!set->queue_depth || err) {
2470 pr_err("blk-mq: failed to allocate request map\n");
2471 return -ENOMEM;
2472 }
2473
2474 if (depth != set->queue_depth)
2475 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2476 depth, set->queue_depth);
2477
2478 return 0;
2479 }
2480
2481 /*
2482 * Alloc a tag set to be associated with one or more request queues.
2483 * May fail with EINVAL for various error conditions. May adjust the
2484 * requested depth down, if if it too large. In that case, the set
2485 * value will be stored in set->queue_depth.
2486 */
2487 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2488 {
2489 int ret;
2490
2491 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2492
2493 if (!set->nr_hw_queues)
2494 return -EINVAL;
2495 if (!set->queue_depth)
2496 return -EINVAL;
2497 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2498 return -EINVAL;
2499
2500 if (!set->ops->queue_rq)
2501 return -EINVAL;
2502
2503 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2504 pr_info("blk-mq: reduced tag depth to %u\n",
2505 BLK_MQ_MAX_DEPTH);
2506 set->queue_depth = BLK_MQ_MAX_DEPTH;
2507 }
2508
2509 /*
2510 * If a crashdump is active, then we are potentially in a very
2511 * memory constrained environment. Limit us to 1 queue and
2512 * 64 tags to prevent using too much memory.
2513 */
2514 if (is_kdump_kernel()) {
2515 set->nr_hw_queues = 1;
2516 set->queue_depth = min(64U, set->queue_depth);
2517 }
2518 /*
2519 * There is no use for more h/w queues than cpus.
2520 */
2521 if (set->nr_hw_queues > nr_cpu_ids)
2522 set->nr_hw_queues = nr_cpu_ids;
2523
2524 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2525 GFP_KERNEL, set->numa_node);
2526 if (!set->tags)
2527 return -ENOMEM;
2528
2529 ret = -ENOMEM;
2530 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2531 GFP_KERNEL, set->numa_node);
2532 if (!set->mq_map)
2533 goto out_free_tags;
2534
2535 if (set->ops->map_queues)
2536 ret = set->ops->map_queues(set);
2537 else
2538 ret = blk_mq_map_queues(set);
2539 if (ret)
2540 goto out_free_mq_map;
2541
2542 ret = blk_mq_alloc_rq_maps(set);
2543 if (ret)
2544 goto out_free_mq_map;
2545
2546 mutex_init(&set->tag_list_lock);
2547 INIT_LIST_HEAD(&set->tag_list);
2548
2549 return 0;
2550
2551 out_free_mq_map:
2552 kfree(set->mq_map);
2553 set->mq_map = NULL;
2554 out_free_tags:
2555 kfree(set->tags);
2556 set->tags = NULL;
2557 return ret;
2558 }
2559 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2560
2561 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2562 {
2563 int i;
2564
2565 for (i = 0; i < nr_cpu_ids; i++)
2566 blk_mq_free_map_and_requests(set, i);
2567
2568 kfree(set->mq_map);
2569 set->mq_map = NULL;
2570
2571 kfree(set->tags);
2572 set->tags = NULL;
2573 }
2574 EXPORT_SYMBOL(blk_mq_free_tag_set);
2575
2576 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2577 {
2578 struct blk_mq_tag_set *set = q->tag_set;
2579 struct blk_mq_hw_ctx *hctx;
2580 int i, ret;
2581
2582 if (!set)
2583 return -EINVAL;
2584
2585 blk_mq_freeze_queue(q);
2586 blk_mq_quiesce_queue(q);
2587
2588 ret = 0;
2589 queue_for_each_hw_ctx(q, hctx, i) {
2590 if (!hctx->tags)
2591 continue;
2592 /*
2593 * If we're using an MQ scheduler, just update the scheduler
2594 * queue depth. This is similar to what the old code would do.
2595 */
2596 if (!hctx->sched_tags) {
2597 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2598 min(nr, set->queue_depth),
2599 false);
2600 } else {
2601 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2602 nr, true);
2603 }
2604 if (ret)
2605 break;
2606 }
2607
2608 if (!ret)
2609 q->nr_requests = nr;
2610
2611 blk_mq_unfreeze_queue(q);
2612 blk_mq_start_stopped_hw_queues(q, true);
2613
2614 return ret;
2615 }
2616
2617 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2618 {
2619 struct request_queue *q;
2620
2621 if (nr_hw_queues > nr_cpu_ids)
2622 nr_hw_queues = nr_cpu_ids;
2623 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2624 return;
2625
2626 list_for_each_entry(q, &set->tag_list, tag_set_list)
2627 blk_mq_freeze_queue(q);
2628
2629 set->nr_hw_queues = nr_hw_queues;
2630 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2631 blk_mq_realloc_hw_ctxs(set, q);
2632
2633 if (q->nr_hw_queues > 1)
2634 blk_queue_make_request(q, blk_mq_make_request);
2635 else
2636 blk_queue_make_request(q, blk_sq_make_request);
2637
2638 blk_mq_queue_reinit(q, cpu_online_mask);
2639 }
2640
2641 list_for_each_entry(q, &set->tag_list, tag_set_list)
2642 blk_mq_unfreeze_queue(q);
2643 }
2644 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2645
2646 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2647 struct blk_mq_hw_ctx *hctx,
2648 struct request *rq)
2649 {
2650 struct blk_rq_stat stat[2];
2651 unsigned long ret = 0;
2652
2653 /*
2654 * If stats collection isn't on, don't sleep but turn it on for
2655 * future users
2656 */
2657 if (!blk_stat_enable(q))
2658 return 0;
2659
2660 /*
2661 * We don't have to do this once per IO, should optimize this
2662 * to just use the current window of stats until it changes
2663 */
2664 memset(&stat, 0, sizeof(stat));
2665 blk_hctx_stat_get(hctx, stat);
2666
2667 /*
2668 * As an optimistic guess, use half of the mean service time
2669 * for this type of request. We can (and should) make this smarter.
2670 * For instance, if the completion latencies are tight, we can
2671 * get closer than just half the mean. This is especially
2672 * important on devices where the completion latencies are longer
2673 * than ~10 usec.
2674 */
2675 if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
2676 ret = (stat[BLK_STAT_READ].mean + 1) / 2;
2677 else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
2678 ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;
2679
2680 return ret;
2681 }
2682
2683 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2684 struct blk_mq_hw_ctx *hctx,
2685 struct request *rq)
2686 {
2687 struct hrtimer_sleeper hs;
2688 enum hrtimer_mode mode;
2689 unsigned int nsecs;
2690 ktime_t kt;
2691
2692 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2693 return false;
2694
2695 /*
2696 * poll_nsec can be:
2697 *
2698 * -1: don't ever hybrid sleep
2699 * 0: use half of prev avg
2700 * >0: use this specific value
2701 */
2702 if (q->poll_nsec == -1)
2703 return false;
2704 else if (q->poll_nsec > 0)
2705 nsecs = q->poll_nsec;
2706 else
2707 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2708
2709 if (!nsecs)
2710 return false;
2711
2712 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2713
2714 /*
2715 * This will be replaced with the stats tracking code, using
2716 * 'avg_completion_time / 2' as the pre-sleep target.
2717 */
2718 kt = nsecs;
2719
2720 mode = HRTIMER_MODE_REL;
2721 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2722 hrtimer_set_expires(&hs.timer, kt);
2723
2724 hrtimer_init_sleeper(&hs, current);
2725 do {
2726 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2727 break;
2728 set_current_state(TASK_UNINTERRUPTIBLE);
2729 hrtimer_start_expires(&hs.timer, mode);
2730 if (hs.task)
2731 io_schedule();
2732 hrtimer_cancel(&hs.timer);
2733 mode = HRTIMER_MODE_ABS;
2734 } while (hs.task && !signal_pending(current));
2735
2736 __set_current_state(TASK_RUNNING);
2737 destroy_hrtimer_on_stack(&hs.timer);
2738 return true;
2739 }
2740
2741 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2742 {
2743 struct request_queue *q = hctx->queue;
2744 long state;
2745
2746 /*
2747 * If we sleep, have the caller restart the poll loop to reset
2748 * the state. Like for the other success return cases, the
2749 * caller is responsible for checking if the IO completed. If
2750 * the IO isn't complete, we'll get called again and will go
2751 * straight to the busy poll loop.
2752 */
2753 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2754 return true;
2755
2756 hctx->poll_considered++;
2757
2758 state = current->state;
2759 while (!need_resched()) {
2760 int ret;
2761
2762 hctx->poll_invoked++;
2763
2764 ret = q->mq_ops->poll(hctx, rq->tag);
2765 if (ret > 0) {
2766 hctx->poll_success++;
2767 set_current_state(TASK_RUNNING);
2768 return true;
2769 }
2770
2771 if (signal_pending_state(state, current))
2772 set_current_state(TASK_RUNNING);
2773
2774 if (current->state == TASK_RUNNING)
2775 return true;
2776 if (ret < 0)
2777 break;
2778 cpu_relax();
2779 }
2780
2781 return false;
2782 }
2783
2784 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2785 {
2786 struct blk_mq_hw_ctx *hctx;
2787 struct blk_plug *plug;
2788 struct request *rq;
2789
2790 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2791 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2792 return false;
2793
2794 plug = current->plug;
2795 if (plug)
2796 blk_flush_plug_list(plug, false);
2797
2798 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2799 if (!blk_qc_t_is_internal(cookie))
2800 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2801 else
2802 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2803
2804 return __blk_mq_poll(hctx, rq);
2805 }
2806 EXPORT_SYMBOL_GPL(blk_mq_poll);
2807
2808 void blk_mq_disable_hotplug(void)
2809 {
2810 mutex_lock(&all_q_mutex);
2811 }
2812
2813 void blk_mq_enable_hotplug(void)
2814 {
2815 mutex_unlock(&all_q_mutex);
2816 }
2817
2818 static int __init blk_mq_init(void)
2819 {
2820 blk_mq_debugfs_init();
2821
2822 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2823 blk_mq_hctx_notify_dead);
2824
2825 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2826 blk_mq_queue_reinit_prepare,
2827 blk_mq_queue_reinit_dead);
2828 return 0;
2829 }
2830 subsys_initcall(blk_mq_init);