]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - block/blk-mq.c
Merge tag 'selinux-pr-20210322' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-jammy-kernel.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Block multiqueue core code
4 *
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
7 */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30
31 #include <trace/events/block.h>
32
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43
44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
45
46 static void blk_mq_poll_stats_start(struct request_queue *q);
47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48
49 static int blk_mq_poll_stats_bkt(const struct request *rq)
50 {
51 int ddir, sectors, bucket;
52
53 ddir = rq_data_dir(rq);
54 sectors = blk_rq_stats_sectors(rq);
55
56 bucket = ddir + 2 * ilog2(sectors);
57
58 if (bucket < 0)
59 return -1;
60 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62
63 return bucket;
64 }
65
66 /*
67 * Check if any of the ctx, dispatch list or elevator
68 * have pending work in this hardware queue.
69 */
70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
71 {
72 return !list_empty_careful(&hctx->dispatch) ||
73 sbitmap_any_bit_set(&hctx->ctx_map) ||
74 blk_mq_sched_has_work(hctx);
75 }
76
77 /*
78 * Mark this ctx as having pending work in this hardware queue
79 */
80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81 struct blk_mq_ctx *ctx)
82 {
83 const int bit = ctx->index_hw[hctx->type];
84
85 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86 sbitmap_set_bit(&hctx->ctx_map, bit);
87 }
88
89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90 struct blk_mq_ctx *ctx)
91 {
92 const int bit = ctx->index_hw[hctx->type];
93
94 sbitmap_clear_bit(&hctx->ctx_map, bit);
95 }
96
97 struct mq_inflight {
98 struct block_device *part;
99 unsigned int inflight[2];
100 };
101
102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103 struct request *rq, void *priv,
104 bool reserved)
105 {
106 struct mq_inflight *mi = priv;
107
108 if ((!mi->part->bd_partno || rq->part == mi->part) &&
109 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
110 mi->inflight[rq_data_dir(rq)]++;
111
112 return true;
113 }
114
115 unsigned int blk_mq_in_flight(struct request_queue *q,
116 struct block_device *part)
117 {
118 struct mq_inflight mi = { .part = part };
119
120 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
121
122 return mi.inflight[0] + mi.inflight[1];
123 }
124
125 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
126 unsigned int inflight[2])
127 {
128 struct mq_inflight mi = { .part = part };
129
130 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
131 inflight[0] = mi.inflight[0];
132 inflight[1] = mi.inflight[1];
133 }
134
135 void blk_freeze_queue_start(struct request_queue *q)
136 {
137 mutex_lock(&q->mq_freeze_lock);
138 if (++q->mq_freeze_depth == 1) {
139 percpu_ref_kill(&q->q_usage_counter);
140 mutex_unlock(&q->mq_freeze_lock);
141 if (queue_is_mq(q))
142 blk_mq_run_hw_queues(q, false);
143 } else {
144 mutex_unlock(&q->mq_freeze_lock);
145 }
146 }
147 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
148
149 void blk_mq_freeze_queue_wait(struct request_queue *q)
150 {
151 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
152 }
153 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
154
155 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
156 unsigned long timeout)
157 {
158 return wait_event_timeout(q->mq_freeze_wq,
159 percpu_ref_is_zero(&q->q_usage_counter),
160 timeout);
161 }
162 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
163
164 /*
165 * Guarantee no request is in use, so we can change any data structure of
166 * the queue afterward.
167 */
168 void blk_freeze_queue(struct request_queue *q)
169 {
170 /*
171 * In the !blk_mq case we are only calling this to kill the
172 * q_usage_counter, otherwise this increases the freeze depth
173 * and waits for it to return to zero. For this reason there is
174 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
175 * exported to drivers as the only user for unfreeze is blk_mq.
176 */
177 blk_freeze_queue_start(q);
178 blk_mq_freeze_queue_wait(q);
179 }
180
181 void blk_mq_freeze_queue(struct request_queue *q)
182 {
183 /*
184 * ...just an alias to keep freeze and unfreeze actions balanced
185 * in the blk_mq_* namespace
186 */
187 blk_freeze_queue(q);
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
190
191 void blk_mq_unfreeze_queue(struct request_queue *q)
192 {
193 mutex_lock(&q->mq_freeze_lock);
194 q->mq_freeze_depth--;
195 WARN_ON_ONCE(q->mq_freeze_depth < 0);
196 if (!q->mq_freeze_depth) {
197 percpu_ref_resurrect(&q->q_usage_counter);
198 wake_up_all(&q->mq_freeze_wq);
199 }
200 mutex_unlock(&q->mq_freeze_lock);
201 }
202 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
203
204 /*
205 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
206 * mpt3sas driver such that this function can be removed.
207 */
208 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
209 {
210 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
211 }
212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
213
214 /**
215 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
216 * @q: request queue.
217 *
218 * Note: this function does not prevent that the struct request end_io()
219 * callback function is invoked. Once this function is returned, we make
220 * sure no dispatch can happen until the queue is unquiesced via
221 * blk_mq_unquiesce_queue().
222 */
223 void blk_mq_quiesce_queue(struct request_queue *q)
224 {
225 struct blk_mq_hw_ctx *hctx;
226 unsigned int i;
227 bool rcu = false;
228
229 blk_mq_quiesce_queue_nowait(q);
230
231 queue_for_each_hw_ctx(q, hctx, i) {
232 if (hctx->flags & BLK_MQ_F_BLOCKING)
233 synchronize_srcu(hctx->srcu);
234 else
235 rcu = true;
236 }
237 if (rcu)
238 synchronize_rcu();
239 }
240 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
241
242 /*
243 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
244 * @q: request queue.
245 *
246 * This function recovers queue into the state before quiescing
247 * which is done by blk_mq_quiesce_queue.
248 */
249 void blk_mq_unquiesce_queue(struct request_queue *q)
250 {
251 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
252
253 /* dispatch requests which are inserted during quiescing */
254 blk_mq_run_hw_queues(q, true);
255 }
256 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
257
258 void blk_mq_wake_waiters(struct request_queue *q)
259 {
260 struct blk_mq_hw_ctx *hctx;
261 unsigned int i;
262
263 queue_for_each_hw_ctx(q, hctx, i)
264 if (blk_mq_hw_queue_mapped(hctx))
265 blk_mq_tag_wakeup_all(hctx->tags, true);
266 }
267
268 /*
269 * Only need start/end time stamping if we have iostat or
270 * blk stats enabled, or using an IO scheduler.
271 */
272 static inline bool blk_mq_need_time_stamp(struct request *rq)
273 {
274 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
275 }
276
277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
278 unsigned int tag, u64 alloc_time_ns)
279 {
280 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
281 struct request *rq = tags->static_rqs[tag];
282
283 if (data->q->elevator) {
284 rq->tag = BLK_MQ_NO_TAG;
285 rq->internal_tag = tag;
286 } else {
287 rq->tag = tag;
288 rq->internal_tag = BLK_MQ_NO_TAG;
289 }
290
291 /* csd/requeue_work/fifo_time is initialized before use */
292 rq->q = data->q;
293 rq->mq_ctx = data->ctx;
294 rq->mq_hctx = data->hctx;
295 rq->rq_flags = 0;
296 rq->cmd_flags = data->cmd_flags;
297 if (data->flags & BLK_MQ_REQ_PM)
298 rq->rq_flags |= RQF_PM;
299 if (blk_queue_io_stat(data->q))
300 rq->rq_flags |= RQF_IO_STAT;
301 INIT_LIST_HEAD(&rq->queuelist);
302 INIT_HLIST_NODE(&rq->hash);
303 RB_CLEAR_NODE(&rq->rb_node);
304 rq->rq_disk = NULL;
305 rq->part = NULL;
306 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
307 rq->alloc_time_ns = alloc_time_ns;
308 #endif
309 if (blk_mq_need_time_stamp(rq))
310 rq->start_time_ns = ktime_get_ns();
311 else
312 rq->start_time_ns = 0;
313 rq->io_start_time_ns = 0;
314 rq->stats_sectors = 0;
315 rq->nr_phys_segments = 0;
316 #if defined(CONFIG_BLK_DEV_INTEGRITY)
317 rq->nr_integrity_segments = 0;
318 #endif
319 blk_crypto_rq_set_defaults(rq);
320 /* tag was already set */
321 WRITE_ONCE(rq->deadline, 0);
322
323 rq->timeout = 0;
324
325 rq->end_io = NULL;
326 rq->end_io_data = NULL;
327
328 data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
329 refcount_set(&rq->ref, 1);
330
331 if (!op_is_flush(data->cmd_flags)) {
332 struct elevator_queue *e = data->q->elevator;
333
334 rq->elv.icq = NULL;
335 if (e && e->type->ops.prepare_request) {
336 if (e->type->icq_cache)
337 blk_mq_sched_assign_ioc(rq);
338
339 e->type->ops.prepare_request(rq);
340 rq->rq_flags |= RQF_ELVPRIV;
341 }
342 }
343
344 data->hctx->queued++;
345 return rq;
346 }
347
348 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
349 {
350 struct request_queue *q = data->q;
351 struct elevator_queue *e = q->elevator;
352 u64 alloc_time_ns = 0;
353 unsigned int tag;
354
355 /* alloc_time includes depth and tag waits */
356 if (blk_queue_rq_alloc_time(q))
357 alloc_time_ns = ktime_get_ns();
358
359 if (data->cmd_flags & REQ_NOWAIT)
360 data->flags |= BLK_MQ_REQ_NOWAIT;
361
362 if (e) {
363 /*
364 * Flush requests are special and go directly to the
365 * dispatch list. Don't include reserved tags in the
366 * limiting, as it isn't useful.
367 */
368 if (!op_is_flush(data->cmd_flags) &&
369 e->type->ops.limit_depth &&
370 !(data->flags & BLK_MQ_REQ_RESERVED))
371 e->type->ops.limit_depth(data->cmd_flags, data);
372 }
373
374 retry:
375 data->ctx = blk_mq_get_ctx(q);
376 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
377 if (!e)
378 blk_mq_tag_busy(data->hctx);
379
380 /*
381 * Waiting allocations only fail because of an inactive hctx. In that
382 * case just retry the hctx assignment and tag allocation as CPU hotplug
383 * should have migrated us to an online CPU by now.
384 */
385 tag = blk_mq_get_tag(data);
386 if (tag == BLK_MQ_NO_TAG) {
387 if (data->flags & BLK_MQ_REQ_NOWAIT)
388 return NULL;
389
390 /*
391 * Give up the CPU and sleep for a random short time to ensure
392 * that thread using a realtime scheduling class are migrated
393 * off the CPU, and thus off the hctx that is going away.
394 */
395 msleep(3);
396 goto retry;
397 }
398 return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
399 }
400
401 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
402 blk_mq_req_flags_t flags)
403 {
404 struct blk_mq_alloc_data data = {
405 .q = q,
406 .flags = flags,
407 .cmd_flags = op,
408 };
409 struct request *rq;
410 int ret;
411
412 ret = blk_queue_enter(q, flags);
413 if (ret)
414 return ERR_PTR(ret);
415
416 rq = __blk_mq_alloc_request(&data);
417 if (!rq)
418 goto out_queue_exit;
419 rq->__data_len = 0;
420 rq->__sector = (sector_t) -1;
421 rq->bio = rq->biotail = NULL;
422 return rq;
423 out_queue_exit:
424 blk_queue_exit(q);
425 return ERR_PTR(-EWOULDBLOCK);
426 }
427 EXPORT_SYMBOL(blk_mq_alloc_request);
428
429 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
430 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
431 {
432 struct blk_mq_alloc_data data = {
433 .q = q,
434 .flags = flags,
435 .cmd_flags = op,
436 };
437 u64 alloc_time_ns = 0;
438 unsigned int cpu;
439 unsigned int tag;
440 int ret;
441
442 /* alloc_time includes depth and tag waits */
443 if (blk_queue_rq_alloc_time(q))
444 alloc_time_ns = ktime_get_ns();
445
446 /*
447 * If the tag allocator sleeps we could get an allocation for a
448 * different hardware context. No need to complicate the low level
449 * allocator for this for the rare use case of a command tied to
450 * a specific queue.
451 */
452 if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
453 return ERR_PTR(-EINVAL);
454
455 if (hctx_idx >= q->nr_hw_queues)
456 return ERR_PTR(-EIO);
457
458 ret = blk_queue_enter(q, flags);
459 if (ret)
460 return ERR_PTR(ret);
461
462 /*
463 * Check if the hardware context is actually mapped to anything.
464 * If not tell the caller that it should skip this queue.
465 */
466 ret = -EXDEV;
467 data.hctx = q->queue_hw_ctx[hctx_idx];
468 if (!blk_mq_hw_queue_mapped(data.hctx))
469 goto out_queue_exit;
470 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
471 data.ctx = __blk_mq_get_ctx(q, cpu);
472
473 if (!q->elevator)
474 blk_mq_tag_busy(data.hctx);
475
476 ret = -EWOULDBLOCK;
477 tag = blk_mq_get_tag(&data);
478 if (tag == BLK_MQ_NO_TAG)
479 goto out_queue_exit;
480 return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
481
482 out_queue_exit:
483 blk_queue_exit(q);
484 return ERR_PTR(ret);
485 }
486 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
487
488 static void __blk_mq_free_request(struct request *rq)
489 {
490 struct request_queue *q = rq->q;
491 struct blk_mq_ctx *ctx = rq->mq_ctx;
492 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
493 const int sched_tag = rq->internal_tag;
494
495 blk_crypto_free_request(rq);
496 blk_pm_mark_last_busy(rq);
497 rq->mq_hctx = NULL;
498 if (rq->tag != BLK_MQ_NO_TAG)
499 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
500 if (sched_tag != BLK_MQ_NO_TAG)
501 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
502 blk_mq_sched_restart(hctx);
503 blk_queue_exit(q);
504 }
505
506 void blk_mq_free_request(struct request *rq)
507 {
508 struct request_queue *q = rq->q;
509 struct elevator_queue *e = q->elevator;
510 struct blk_mq_ctx *ctx = rq->mq_ctx;
511 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
512
513 if (rq->rq_flags & RQF_ELVPRIV) {
514 if (e && e->type->ops.finish_request)
515 e->type->ops.finish_request(rq);
516 if (rq->elv.icq) {
517 put_io_context(rq->elv.icq->ioc);
518 rq->elv.icq = NULL;
519 }
520 }
521
522 ctx->rq_completed[rq_is_sync(rq)]++;
523 if (rq->rq_flags & RQF_MQ_INFLIGHT)
524 __blk_mq_dec_active_requests(hctx);
525
526 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
527 laptop_io_completion(q->backing_dev_info);
528
529 rq_qos_done(q, rq);
530
531 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
532 if (refcount_dec_and_test(&rq->ref))
533 __blk_mq_free_request(rq);
534 }
535 EXPORT_SYMBOL_GPL(blk_mq_free_request);
536
537 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
538 {
539 u64 now = 0;
540
541 if (blk_mq_need_time_stamp(rq))
542 now = ktime_get_ns();
543
544 if (rq->rq_flags & RQF_STATS) {
545 blk_mq_poll_stats_start(rq->q);
546 blk_stat_add(rq, now);
547 }
548
549 blk_mq_sched_completed_request(rq, now);
550
551 blk_account_io_done(rq, now);
552
553 if (rq->end_io) {
554 rq_qos_done(rq->q, rq);
555 rq->end_io(rq, error);
556 } else {
557 blk_mq_free_request(rq);
558 }
559 }
560 EXPORT_SYMBOL(__blk_mq_end_request);
561
562 void blk_mq_end_request(struct request *rq, blk_status_t error)
563 {
564 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
565 BUG();
566 __blk_mq_end_request(rq, error);
567 }
568 EXPORT_SYMBOL(blk_mq_end_request);
569
570 static void blk_complete_reqs(struct llist_head *list)
571 {
572 struct llist_node *entry = llist_reverse_order(llist_del_all(list));
573 struct request *rq, *next;
574
575 llist_for_each_entry_safe(rq, next, entry, ipi_list)
576 rq->q->mq_ops->complete(rq);
577 }
578
579 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
580 {
581 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
582 }
583
584 static int blk_softirq_cpu_dead(unsigned int cpu)
585 {
586 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
587 return 0;
588 }
589
590 static void __blk_mq_complete_request_remote(void *data)
591 {
592 __raise_softirq_irqoff(BLOCK_SOFTIRQ);
593 }
594
595 static inline bool blk_mq_complete_need_ipi(struct request *rq)
596 {
597 int cpu = raw_smp_processor_id();
598
599 if (!IS_ENABLED(CONFIG_SMP) ||
600 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
601 return false;
602 /*
603 * With force threaded interrupts enabled, raising softirq from an SMP
604 * function call will always result in waking the ksoftirqd thread.
605 * This is probably worse than completing the request on a different
606 * cache domain.
607 */
608 if (force_irqthreads)
609 return false;
610
611 /* same CPU or cache domain? Complete locally */
612 if (cpu == rq->mq_ctx->cpu ||
613 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
614 cpus_share_cache(cpu, rq->mq_ctx->cpu)))
615 return false;
616
617 /* don't try to IPI to an offline CPU */
618 return cpu_online(rq->mq_ctx->cpu);
619 }
620
621 static void blk_mq_complete_send_ipi(struct request *rq)
622 {
623 struct llist_head *list;
624 unsigned int cpu;
625
626 cpu = rq->mq_ctx->cpu;
627 list = &per_cpu(blk_cpu_done, cpu);
628 if (llist_add(&rq->ipi_list, list)) {
629 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
630 smp_call_function_single_async(cpu, &rq->csd);
631 }
632 }
633
634 static void blk_mq_raise_softirq(struct request *rq)
635 {
636 struct llist_head *list;
637
638 preempt_disable();
639 list = this_cpu_ptr(&blk_cpu_done);
640 if (llist_add(&rq->ipi_list, list))
641 raise_softirq(BLOCK_SOFTIRQ);
642 preempt_enable();
643 }
644
645 bool blk_mq_complete_request_remote(struct request *rq)
646 {
647 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
648
649 /*
650 * For a polled request, always complete locallly, it's pointless
651 * to redirect the completion.
652 */
653 if (rq->cmd_flags & REQ_HIPRI)
654 return false;
655
656 if (blk_mq_complete_need_ipi(rq)) {
657 blk_mq_complete_send_ipi(rq);
658 return true;
659 }
660
661 if (rq->q->nr_hw_queues == 1) {
662 blk_mq_raise_softirq(rq);
663 return true;
664 }
665 return false;
666 }
667 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
668
669 /**
670 * blk_mq_complete_request - end I/O on a request
671 * @rq: the request being processed
672 *
673 * Description:
674 * Complete a request by scheduling the ->complete_rq operation.
675 **/
676 void blk_mq_complete_request(struct request *rq)
677 {
678 if (!blk_mq_complete_request_remote(rq))
679 rq->q->mq_ops->complete(rq);
680 }
681 EXPORT_SYMBOL(blk_mq_complete_request);
682
683 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
684 __releases(hctx->srcu)
685 {
686 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
687 rcu_read_unlock();
688 else
689 srcu_read_unlock(hctx->srcu, srcu_idx);
690 }
691
692 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
693 __acquires(hctx->srcu)
694 {
695 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
696 /* shut up gcc false positive */
697 *srcu_idx = 0;
698 rcu_read_lock();
699 } else
700 *srcu_idx = srcu_read_lock(hctx->srcu);
701 }
702
703 /**
704 * blk_mq_start_request - Start processing a request
705 * @rq: Pointer to request to be started
706 *
707 * Function used by device drivers to notify the block layer that a request
708 * is going to be processed now, so blk layer can do proper initializations
709 * such as starting the timeout timer.
710 */
711 void blk_mq_start_request(struct request *rq)
712 {
713 struct request_queue *q = rq->q;
714
715 trace_block_rq_issue(rq);
716
717 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
718 rq->io_start_time_ns = ktime_get_ns();
719 rq->stats_sectors = blk_rq_sectors(rq);
720 rq->rq_flags |= RQF_STATS;
721 rq_qos_issue(q, rq);
722 }
723
724 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
725
726 blk_add_timer(rq);
727 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
728
729 #ifdef CONFIG_BLK_DEV_INTEGRITY
730 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
731 q->integrity.profile->prepare_fn(rq);
732 #endif
733 }
734 EXPORT_SYMBOL(blk_mq_start_request);
735
736 static void __blk_mq_requeue_request(struct request *rq)
737 {
738 struct request_queue *q = rq->q;
739
740 blk_mq_put_driver_tag(rq);
741
742 trace_block_rq_requeue(rq);
743 rq_qos_requeue(q, rq);
744
745 if (blk_mq_request_started(rq)) {
746 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
747 rq->rq_flags &= ~RQF_TIMED_OUT;
748 }
749 }
750
751 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
752 {
753 __blk_mq_requeue_request(rq);
754
755 /* this request will be re-inserted to io scheduler queue */
756 blk_mq_sched_requeue_request(rq);
757
758 BUG_ON(!list_empty(&rq->queuelist));
759 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
760 }
761 EXPORT_SYMBOL(blk_mq_requeue_request);
762
763 static void blk_mq_requeue_work(struct work_struct *work)
764 {
765 struct request_queue *q =
766 container_of(work, struct request_queue, requeue_work.work);
767 LIST_HEAD(rq_list);
768 struct request *rq, *next;
769
770 spin_lock_irq(&q->requeue_lock);
771 list_splice_init(&q->requeue_list, &rq_list);
772 spin_unlock_irq(&q->requeue_lock);
773
774 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
775 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
776 continue;
777
778 rq->rq_flags &= ~RQF_SOFTBARRIER;
779 list_del_init(&rq->queuelist);
780 /*
781 * If RQF_DONTPREP, rq has contained some driver specific
782 * data, so insert it to hctx dispatch list to avoid any
783 * merge.
784 */
785 if (rq->rq_flags & RQF_DONTPREP)
786 blk_mq_request_bypass_insert(rq, false, false);
787 else
788 blk_mq_sched_insert_request(rq, true, false, false);
789 }
790
791 while (!list_empty(&rq_list)) {
792 rq = list_entry(rq_list.next, struct request, queuelist);
793 list_del_init(&rq->queuelist);
794 blk_mq_sched_insert_request(rq, false, false, false);
795 }
796
797 blk_mq_run_hw_queues(q, false);
798 }
799
800 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
801 bool kick_requeue_list)
802 {
803 struct request_queue *q = rq->q;
804 unsigned long flags;
805
806 /*
807 * We abuse this flag that is otherwise used by the I/O scheduler to
808 * request head insertion from the workqueue.
809 */
810 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
811
812 spin_lock_irqsave(&q->requeue_lock, flags);
813 if (at_head) {
814 rq->rq_flags |= RQF_SOFTBARRIER;
815 list_add(&rq->queuelist, &q->requeue_list);
816 } else {
817 list_add_tail(&rq->queuelist, &q->requeue_list);
818 }
819 spin_unlock_irqrestore(&q->requeue_lock, flags);
820
821 if (kick_requeue_list)
822 blk_mq_kick_requeue_list(q);
823 }
824
825 void blk_mq_kick_requeue_list(struct request_queue *q)
826 {
827 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
828 }
829 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
830
831 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
832 unsigned long msecs)
833 {
834 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
835 msecs_to_jiffies(msecs));
836 }
837 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
838
839 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
840 {
841 if (tag < tags->nr_tags) {
842 prefetch(tags->rqs[tag]);
843 return tags->rqs[tag];
844 }
845
846 return NULL;
847 }
848 EXPORT_SYMBOL(blk_mq_tag_to_rq);
849
850 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
851 void *priv, bool reserved)
852 {
853 /*
854 * If we find a request that isn't idle and the queue matches,
855 * we know the queue is busy. Return false to stop the iteration.
856 */
857 if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
858 bool *busy = priv;
859
860 *busy = true;
861 return false;
862 }
863
864 return true;
865 }
866
867 bool blk_mq_queue_inflight(struct request_queue *q)
868 {
869 bool busy = false;
870
871 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
872 return busy;
873 }
874 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
875
876 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
877 {
878 req->rq_flags |= RQF_TIMED_OUT;
879 if (req->q->mq_ops->timeout) {
880 enum blk_eh_timer_return ret;
881
882 ret = req->q->mq_ops->timeout(req, reserved);
883 if (ret == BLK_EH_DONE)
884 return;
885 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
886 }
887
888 blk_add_timer(req);
889 }
890
891 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
892 {
893 unsigned long deadline;
894
895 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
896 return false;
897 if (rq->rq_flags & RQF_TIMED_OUT)
898 return false;
899
900 deadline = READ_ONCE(rq->deadline);
901 if (time_after_eq(jiffies, deadline))
902 return true;
903
904 if (*next == 0)
905 *next = deadline;
906 else if (time_after(*next, deadline))
907 *next = deadline;
908 return false;
909 }
910
911 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
912 struct request *rq, void *priv, bool reserved)
913 {
914 unsigned long *next = priv;
915
916 /*
917 * Just do a quick check if it is expired before locking the request in
918 * so we're not unnecessarilly synchronizing across CPUs.
919 */
920 if (!blk_mq_req_expired(rq, next))
921 return true;
922
923 /*
924 * We have reason to believe the request may be expired. Take a
925 * reference on the request to lock this request lifetime into its
926 * currently allocated context to prevent it from being reallocated in
927 * the event the completion by-passes this timeout handler.
928 *
929 * If the reference was already released, then the driver beat the
930 * timeout handler to posting a natural completion.
931 */
932 if (!refcount_inc_not_zero(&rq->ref))
933 return true;
934
935 /*
936 * The request is now locked and cannot be reallocated underneath the
937 * timeout handler's processing. Re-verify this exact request is truly
938 * expired; if it is not expired, then the request was completed and
939 * reallocated as a new request.
940 */
941 if (blk_mq_req_expired(rq, next))
942 blk_mq_rq_timed_out(rq, reserved);
943
944 if (is_flush_rq(rq, hctx))
945 rq->end_io(rq, 0);
946 else if (refcount_dec_and_test(&rq->ref))
947 __blk_mq_free_request(rq);
948
949 return true;
950 }
951
952 static void blk_mq_timeout_work(struct work_struct *work)
953 {
954 struct request_queue *q =
955 container_of(work, struct request_queue, timeout_work);
956 unsigned long next = 0;
957 struct blk_mq_hw_ctx *hctx;
958 int i;
959
960 /* A deadlock might occur if a request is stuck requiring a
961 * timeout at the same time a queue freeze is waiting
962 * completion, since the timeout code would not be able to
963 * acquire the queue reference here.
964 *
965 * That's why we don't use blk_queue_enter here; instead, we use
966 * percpu_ref_tryget directly, because we need to be able to
967 * obtain a reference even in the short window between the queue
968 * starting to freeze, by dropping the first reference in
969 * blk_freeze_queue_start, and the moment the last request is
970 * consumed, marked by the instant q_usage_counter reaches
971 * zero.
972 */
973 if (!percpu_ref_tryget(&q->q_usage_counter))
974 return;
975
976 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
977
978 if (next != 0) {
979 mod_timer(&q->timeout, next);
980 } else {
981 /*
982 * Request timeouts are handled as a forward rolling timer. If
983 * we end up here it means that no requests are pending and
984 * also that no request has been pending for a while. Mark
985 * each hctx as idle.
986 */
987 queue_for_each_hw_ctx(q, hctx, i) {
988 /* the hctx may be unmapped, so check it here */
989 if (blk_mq_hw_queue_mapped(hctx))
990 blk_mq_tag_idle(hctx);
991 }
992 }
993 blk_queue_exit(q);
994 }
995
996 struct flush_busy_ctx_data {
997 struct blk_mq_hw_ctx *hctx;
998 struct list_head *list;
999 };
1000
1001 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1002 {
1003 struct flush_busy_ctx_data *flush_data = data;
1004 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1005 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1006 enum hctx_type type = hctx->type;
1007
1008 spin_lock(&ctx->lock);
1009 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1010 sbitmap_clear_bit(sb, bitnr);
1011 spin_unlock(&ctx->lock);
1012 return true;
1013 }
1014
1015 /*
1016 * Process software queues that have been marked busy, splicing them
1017 * to the for-dispatch
1018 */
1019 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1020 {
1021 struct flush_busy_ctx_data data = {
1022 .hctx = hctx,
1023 .list = list,
1024 };
1025
1026 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1027 }
1028 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1029
1030 struct dispatch_rq_data {
1031 struct blk_mq_hw_ctx *hctx;
1032 struct request *rq;
1033 };
1034
1035 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1036 void *data)
1037 {
1038 struct dispatch_rq_data *dispatch_data = data;
1039 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1040 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1041 enum hctx_type type = hctx->type;
1042
1043 spin_lock(&ctx->lock);
1044 if (!list_empty(&ctx->rq_lists[type])) {
1045 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1046 list_del_init(&dispatch_data->rq->queuelist);
1047 if (list_empty(&ctx->rq_lists[type]))
1048 sbitmap_clear_bit(sb, bitnr);
1049 }
1050 spin_unlock(&ctx->lock);
1051
1052 return !dispatch_data->rq;
1053 }
1054
1055 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1056 struct blk_mq_ctx *start)
1057 {
1058 unsigned off = start ? start->index_hw[hctx->type] : 0;
1059 struct dispatch_rq_data data = {
1060 .hctx = hctx,
1061 .rq = NULL,
1062 };
1063
1064 __sbitmap_for_each_set(&hctx->ctx_map, off,
1065 dispatch_rq_from_ctx, &data);
1066
1067 return data.rq;
1068 }
1069
1070 static inline unsigned int queued_to_index(unsigned int queued)
1071 {
1072 if (!queued)
1073 return 0;
1074
1075 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1076 }
1077
1078 static bool __blk_mq_get_driver_tag(struct request *rq)
1079 {
1080 struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1081 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1082 int tag;
1083
1084 blk_mq_tag_busy(rq->mq_hctx);
1085
1086 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1087 bt = rq->mq_hctx->tags->breserved_tags;
1088 tag_offset = 0;
1089 } else {
1090 if (!hctx_may_queue(rq->mq_hctx, bt))
1091 return false;
1092 }
1093
1094 tag = __sbitmap_queue_get(bt);
1095 if (tag == BLK_MQ_NO_TAG)
1096 return false;
1097
1098 rq->tag = tag + tag_offset;
1099 return true;
1100 }
1101
1102 static bool blk_mq_get_driver_tag(struct request *rq)
1103 {
1104 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1105
1106 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1107 return false;
1108
1109 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1110 !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1111 rq->rq_flags |= RQF_MQ_INFLIGHT;
1112 __blk_mq_inc_active_requests(hctx);
1113 }
1114 hctx->tags->rqs[rq->tag] = rq;
1115 return true;
1116 }
1117
1118 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1119 int flags, void *key)
1120 {
1121 struct blk_mq_hw_ctx *hctx;
1122
1123 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1124
1125 spin_lock(&hctx->dispatch_wait_lock);
1126 if (!list_empty(&wait->entry)) {
1127 struct sbitmap_queue *sbq;
1128
1129 list_del_init(&wait->entry);
1130 sbq = hctx->tags->bitmap_tags;
1131 atomic_dec(&sbq->ws_active);
1132 }
1133 spin_unlock(&hctx->dispatch_wait_lock);
1134
1135 blk_mq_run_hw_queue(hctx, true);
1136 return 1;
1137 }
1138
1139 /*
1140 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1141 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1142 * restart. For both cases, take care to check the condition again after
1143 * marking us as waiting.
1144 */
1145 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1146 struct request *rq)
1147 {
1148 struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1149 struct wait_queue_head *wq;
1150 wait_queue_entry_t *wait;
1151 bool ret;
1152
1153 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1154 blk_mq_sched_mark_restart_hctx(hctx);
1155
1156 /*
1157 * It's possible that a tag was freed in the window between the
1158 * allocation failure and adding the hardware queue to the wait
1159 * queue.
1160 *
1161 * Don't clear RESTART here, someone else could have set it.
1162 * At most this will cost an extra queue run.
1163 */
1164 return blk_mq_get_driver_tag(rq);
1165 }
1166
1167 wait = &hctx->dispatch_wait;
1168 if (!list_empty_careful(&wait->entry))
1169 return false;
1170
1171 wq = &bt_wait_ptr(sbq, hctx)->wait;
1172
1173 spin_lock_irq(&wq->lock);
1174 spin_lock(&hctx->dispatch_wait_lock);
1175 if (!list_empty(&wait->entry)) {
1176 spin_unlock(&hctx->dispatch_wait_lock);
1177 spin_unlock_irq(&wq->lock);
1178 return false;
1179 }
1180
1181 atomic_inc(&sbq->ws_active);
1182 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1183 __add_wait_queue(wq, wait);
1184
1185 /*
1186 * It's possible that a tag was freed in the window between the
1187 * allocation failure and adding the hardware queue to the wait
1188 * queue.
1189 */
1190 ret = blk_mq_get_driver_tag(rq);
1191 if (!ret) {
1192 spin_unlock(&hctx->dispatch_wait_lock);
1193 spin_unlock_irq(&wq->lock);
1194 return false;
1195 }
1196
1197 /*
1198 * We got a tag, remove ourselves from the wait queue to ensure
1199 * someone else gets the wakeup.
1200 */
1201 list_del_init(&wait->entry);
1202 atomic_dec(&sbq->ws_active);
1203 spin_unlock(&hctx->dispatch_wait_lock);
1204 spin_unlock_irq(&wq->lock);
1205
1206 return true;
1207 }
1208
1209 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1210 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1211 /*
1212 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1213 * - EWMA is one simple way to compute running average value
1214 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1215 * - take 4 as factor for avoiding to get too small(0) result, and this
1216 * factor doesn't matter because EWMA decreases exponentially
1217 */
1218 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1219 {
1220 unsigned int ewma;
1221
1222 if (hctx->queue->elevator)
1223 return;
1224
1225 ewma = hctx->dispatch_busy;
1226
1227 if (!ewma && !busy)
1228 return;
1229
1230 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1231 if (busy)
1232 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1233 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1234
1235 hctx->dispatch_busy = ewma;
1236 }
1237
1238 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1239
1240 static void blk_mq_handle_dev_resource(struct request *rq,
1241 struct list_head *list)
1242 {
1243 struct request *next =
1244 list_first_entry_or_null(list, struct request, queuelist);
1245
1246 /*
1247 * If an I/O scheduler has been configured and we got a driver tag for
1248 * the next request already, free it.
1249 */
1250 if (next)
1251 blk_mq_put_driver_tag(next);
1252
1253 list_add(&rq->queuelist, list);
1254 __blk_mq_requeue_request(rq);
1255 }
1256
1257 static void blk_mq_handle_zone_resource(struct request *rq,
1258 struct list_head *zone_list)
1259 {
1260 /*
1261 * If we end up here it is because we cannot dispatch a request to a
1262 * specific zone due to LLD level zone-write locking or other zone
1263 * related resource not being available. In this case, set the request
1264 * aside in zone_list for retrying it later.
1265 */
1266 list_add(&rq->queuelist, zone_list);
1267 __blk_mq_requeue_request(rq);
1268 }
1269
1270 enum prep_dispatch {
1271 PREP_DISPATCH_OK,
1272 PREP_DISPATCH_NO_TAG,
1273 PREP_DISPATCH_NO_BUDGET,
1274 };
1275
1276 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1277 bool need_budget)
1278 {
1279 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1280
1281 if (need_budget && !blk_mq_get_dispatch_budget(rq->q)) {
1282 blk_mq_put_driver_tag(rq);
1283 return PREP_DISPATCH_NO_BUDGET;
1284 }
1285
1286 if (!blk_mq_get_driver_tag(rq)) {
1287 /*
1288 * The initial allocation attempt failed, so we need to
1289 * rerun the hardware queue when a tag is freed. The
1290 * waitqueue takes care of that. If the queue is run
1291 * before we add this entry back on the dispatch list,
1292 * we'll re-run it below.
1293 */
1294 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1295 /*
1296 * All budgets not got from this function will be put
1297 * together during handling partial dispatch
1298 */
1299 if (need_budget)
1300 blk_mq_put_dispatch_budget(rq->q);
1301 return PREP_DISPATCH_NO_TAG;
1302 }
1303 }
1304
1305 return PREP_DISPATCH_OK;
1306 }
1307
1308 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1309 static void blk_mq_release_budgets(struct request_queue *q,
1310 unsigned int nr_budgets)
1311 {
1312 int i;
1313
1314 for (i = 0; i < nr_budgets; i++)
1315 blk_mq_put_dispatch_budget(q);
1316 }
1317
1318 /*
1319 * Returns true if we did some work AND can potentially do more.
1320 */
1321 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1322 unsigned int nr_budgets)
1323 {
1324 enum prep_dispatch prep;
1325 struct request_queue *q = hctx->queue;
1326 struct request *rq, *nxt;
1327 int errors, queued;
1328 blk_status_t ret = BLK_STS_OK;
1329 LIST_HEAD(zone_list);
1330
1331 if (list_empty(list))
1332 return false;
1333
1334 /*
1335 * Now process all the entries, sending them to the driver.
1336 */
1337 errors = queued = 0;
1338 do {
1339 struct blk_mq_queue_data bd;
1340
1341 rq = list_first_entry(list, struct request, queuelist);
1342
1343 WARN_ON_ONCE(hctx != rq->mq_hctx);
1344 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1345 if (prep != PREP_DISPATCH_OK)
1346 break;
1347
1348 list_del_init(&rq->queuelist);
1349
1350 bd.rq = rq;
1351
1352 /*
1353 * Flag last if we have no more requests, or if we have more
1354 * but can't assign a driver tag to it.
1355 */
1356 if (list_empty(list))
1357 bd.last = true;
1358 else {
1359 nxt = list_first_entry(list, struct request, queuelist);
1360 bd.last = !blk_mq_get_driver_tag(nxt);
1361 }
1362
1363 /*
1364 * once the request is queued to lld, no need to cover the
1365 * budget any more
1366 */
1367 if (nr_budgets)
1368 nr_budgets--;
1369 ret = q->mq_ops->queue_rq(hctx, &bd);
1370 switch (ret) {
1371 case BLK_STS_OK:
1372 queued++;
1373 break;
1374 case BLK_STS_RESOURCE:
1375 case BLK_STS_DEV_RESOURCE:
1376 blk_mq_handle_dev_resource(rq, list);
1377 goto out;
1378 case BLK_STS_ZONE_RESOURCE:
1379 /*
1380 * Move the request to zone_list and keep going through
1381 * the dispatch list to find more requests the drive can
1382 * accept.
1383 */
1384 blk_mq_handle_zone_resource(rq, &zone_list);
1385 break;
1386 default:
1387 errors++;
1388 blk_mq_end_request(rq, ret);
1389 }
1390 } while (!list_empty(list));
1391 out:
1392 if (!list_empty(&zone_list))
1393 list_splice_tail_init(&zone_list, list);
1394
1395 hctx->dispatched[queued_to_index(queued)]++;
1396
1397 /* If we didn't flush the entire list, we could have told the driver
1398 * there was more coming, but that turned out to be a lie.
1399 */
1400 if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1401 q->mq_ops->commit_rqs(hctx);
1402 /*
1403 * Any items that need requeuing? Stuff them into hctx->dispatch,
1404 * that is where we will continue on next queue run.
1405 */
1406 if (!list_empty(list)) {
1407 bool needs_restart;
1408 /* For non-shared tags, the RESTART check will suffice */
1409 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1410 (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1411 bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET;
1412
1413 blk_mq_release_budgets(q, nr_budgets);
1414
1415 spin_lock(&hctx->lock);
1416 list_splice_tail_init(list, &hctx->dispatch);
1417 spin_unlock(&hctx->lock);
1418
1419 /*
1420 * Order adding requests to hctx->dispatch and checking
1421 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1422 * in blk_mq_sched_restart(). Avoid restart code path to
1423 * miss the new added requests to hctx->dispatch, meantime
1424 * SCHED_RESTART is observed here.
1425 */
1426 smp_mb();
1427
1428 /*
1429 * If SCHED_RESTART was set by the caller of this function and
1430 * it is no longer set that means that it was cleared by another
1431 * thread and hence that a queue rerun is needed.
1432 *
1433 * If 'no_tag' is set, that means that we failed getting
1434 * a driver tag with an I/O scheduler attached. If our dispatch
1435 * waitqueue is no longer active, ensure that we run the queue
1436 * AFTER adding our entries back to the list.
1437 *
1438 * If no I/O scheduler has been configured it is possible that
1439 * the hardware queue got stopped and restarted before requests
1440 * were pushed back onto the dispatch list. Rerun the queue to
1441 * avoid starvation. Notes:
1442 * - blk_mq_run_hw_queue() checks whether or not a queue has
1443 * been stopped before rerunning a queue.
1444 * - Some but not all block drivers stop a queue before
1445 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1446 * and dm-rq.
1447 *
1448 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1449 * bit is set, run queue after a delay to avoid IO stalls
1450 * that could otherwise occur if the queue is idle. We'll do
1451 * similar if we couldn't get budget and SCHED_RESTART is set.
1452 */
1453 needs_restart = blk_mq_sched_needs_restart(hctx);
1454 if (!needs_restart ||
1455 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1456 blk_mq_run_hw_queue(hctx, true);
1457 else if (needs_restart && (ret == BLK_STS_RESOURCE ||
1458 no_budget_avail))
1459 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1460
1461 blk_mq_update_dispatch_busy(hctx, true);
1462 return false;
1463 } else
1464 blk_mq_update_dispatch_busy(hctx, false);
1465
1466 return (queued + errors) != 0;
1467 }
1468
1469 /**
1470 * __blk_mq_run_hw_queue - Run a hardware queue.
1471 * @hctx: Pointer to the hardware queue to run.
1472 *
1473 * Send pending requests to the hardware.
1474 */
1475 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1476 {
1477 int srcu_idx;
1478
1479 /*
1480 * We can't run the queue inline with ints disabled. Ensure that
1481 * we catch bad users of this early.
1482 */
1483 WARN_ON_ONCE(in_interrupt());
1484
1485 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1486
1487 hctx_lock(hctx, &srcu_idx);
1488 blk_mq_sched_dispatch_requests(hctx);
1489 hctx_unlock(hctx, srcu_idx);
1490 }
1491
1492 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1493 {
1494 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1495
1496 if (cpu >= nr_cpu_ids)
1497 cpu = cpumask_first(hctx->cpumask);
1498 return cpu;
1499 }
1500
1501 /*
1502 * It'd be great if the workqueue API had a way to pass
1503 * in a mask and had some smarts for more clever placement.
1504 * For now we just round-robin here, switching for every
1505 * BLK_MQ_CPU_WORK_BATCH queued items.
1506 */
1507 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1508 {
1509 bool tried = false;
1510 int next_cpu = hctx->next_cpu;
1511
1512 if (hctx->queue->nr_hw_queues == 1)
1513 return WORK_CPU_UNBOUND;
1514
1515 if (--hctx->next_cpu_batch <= 0) {
1516 select_cpu:
1517 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1518 cpu_online_mask);
1519 if (next_cpu >= nr_cpu_ids)
1520 next_cpu = blk_mq_first_mapped_cpu(hctx);
1521 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1522 }
1523
1524 /*
1525 * Do unbound schedule if we can't find a online CPU for this hctx,
1526 * and it should only happen in the path of handling CPU DEAD.
1527 */
1528 if (!cpu_online(next_cpu)) {
1529 if (!tried) {
1530 tried = true;
1531 goto select_cpu;
1532 }
1533
1534 /*
1535 * Make sure to re-select CPU next time once after CPUs
1536 * in hctx->cpumask become online again.
1537 */
1538 hctx->next_cpu = next_cpu;
1539 hctx->next_cpu_batch = 1;
1540 return WORK_CPU_UNBOUND;
1541 }
1542
1543 hctx->next_cpu = next_cpu;
1544 return next_cpu;
1545 }
1546
1547 /**
1548 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1549 * @hctx: Pointer to the hardware queue to run.
1550 * @async: If we want to run the queue asynchronously.
1551 * @msecs: Milliseconds of delay to wait before running the queue.
1552 *
1553 * If !@async, try to run the queue now. Else, run the queue asynchronously and
1554 * with a delay of @msecs.
1555 */
1556 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1557 unsigned long msecs)
1558 {
1559 if (unlikely(blk_mq_hctx_stopped(hctx)))
1560 return;
1561
1562 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1563 int cpu = get_cpu();
1564 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1565 __blk_mq_run_hw_queue(hctx);
1566 put_cpu();
1567 return;
1568 }
1569
1570 put_cpu();
1571 }
1572
1573 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1574 msecs_to_jiffies(msecs));
1575 }
1576
1577 /**
1578 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1579 * @hctx: Pointer to the hardware queue to run.
1580 * @msecs: Milliseconds of delay to wait before running the queue.
1581 *
1582 * Run a hardware queue asynchronously with a delay of @msecs.
1583 */
1584 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1585 {
1586 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1587 }
1588 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1589
1590 /**
1591 * blk_mq_run_hw_queue - Start to run a hardware queue.
1592 * @hctx: Pointer to the hardware queue to run.
1593 * @async: If we want to run the queue asynchronously.
1594 *
1595 * Check if the request queue is not in a quiesced state and if there are
1596 * pending requests to be sent. If this is true, run the queue to send requests
1597 * to hardware.
1598 */
1599 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1600 {
1601 int srcu_idx;
1602 bool need_run;
1603
1604 /*
1605 * When queue is quiesced, we may be switching io scheduler, or
1606 * updating nr_hw_queues, or other things, and we can't run queue
1607 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1608 *
1609 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1610 * quiesced.
1611 */
1612 hctx_lock(hctx, &srcu_idx);
1613 need_run = !blk_queue_quiesced(hctx->queue) &&
1614 blk_mq_hctx_has_pending(hctx);
1615 hctx_unlock(hctx, srcu_idx);
1616
1617 if (need_run)
1618 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1619 }
1620 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1621
1622 /*
1623 * Is the request queue handled by an IO scheduler that does not respect
1624 * hardware queues when dispatching?
1625 */
1626 static bool blk_mq_has_sqsched(struct request_queue *q)
1627 {
1628 struct elevator_queue *e = q->elevator;
1629
1630 if (e && e->type->ops.dispatch_request &&
1631 !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
1632 return true;
1633 return false;
1634 }
1635
1636 /*
1637 * Return prefered queue to dispatch from (if any) for non-mq aware IO
1638 * scheduler.
1639 */
1640 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
1641 {
1642 struct blk_mq_hw_ctx *hctx;
1643
1644 /*
1645 * If the IO scheduler does not respect hardware queues when
1646 * dispatching, we just don't bother with multiple HW queues and
1647 * dispatch from hctx for the current CPU since running multiple queues
1648 * just causes lock contention inside the scheduler and pointless cache
1649 * bouncing.
1650 */
1651 hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
1652 raw_smp_processor_id());
1653 if (!blk_mq_hctx_stopped(hctx))
1654 return hctx;
1655 return NULL;
1656 }
1657
1658 /**
1659 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1660 * @q: Pointer to the request queue to run.
1661 * @async: If we want to run the queue asynchronously.
1662 */
1663 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1664 {
1665 struct blk_mq_hw_ctx *hctx, *sq_hctx;
1666 int i;
1667
1668 sq_hctx = NULL;
1669 if (blk_mq_has_sqsched(q))
1670 sq_hctx = blk_mq_get_sq_hctx(q);
1671 queue_for_each_hw_ctx(q, hctx, i) {
1672 if (blk_mq_hctx_stopped(hctx))
1673 continue;
1674 /*
1675 * Dispatch from this hctx either if there's no hctx preferred
1676 * by IO scheduler or if it has requests that bypass the
1677 * scheduler.
1678 */
1679 if (!sq_hctx || sq_hctx == hctx ||
1680 !list_empty_careful(&hctx->dispatch))
1681 blk_mq_run_hw_queue(hctx, async);
1682 }
1683 }
1684 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1685
1686 /**
1687 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1688 * @q: Pointer to the request queue to run.
1689 * @msecs: Milliseconds of delay to wait before running the queues.
1690 */
1691 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1692 {
1693 struct blk_mq_hw_ctx *hctx, *sq_hctx;
1694 int i;
1695
1696 sq_hctx = NULL;
1697 if (blk_mq_has_sqsched(q))
1698 sq_hctx = blk_mq_get_sq_hctx(q);
1699 queue_for_each_hw_ctx(q, hctx, i) {
1700 if (blk_mq_hctx_stopped(hctx))
1701 continue;
1702 /*
1703 * Dispatch from this hctx either if there's no hctx preferred
1704 * by IO scheduler or if it has requests that bypass the
1705 * scheduler.
1706 */
1707 if (!sq_hctx || sq_hctx == hctx ||
1708 !list_empty_careful(&hctx->dispatch))
1709 blk_mq_delay_run_hw_queue(hctx, msecs);
1710 }
1711 }
1712 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1713
1714 /**
1715 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1716 * @q: request queue.
1717 *
1718 * The caller is responsible for serializing this function against
1719 * blk_mq_{start,stop}_hw_queue().
1720 */
1721 bool blk_mq_queue_stopped(struct request_queue *q)
1722 {
1723 struct blk_mq_hw_ctx *hctx;
1724 int i;
1725
1726 queue_for_each_hw_ctx(q, hctx, i)
1727 if (blk_mq_hctx_stopped(hctx))
1728 return true;
1729
1730 return false;
1731 }
1732 EXPORT_SYMBOL(blk_mq_queue_stopped);
1733
1734 /*
1735 * This function is often used for pausing .queue_rq() by driver when
1736 * there isn't enough resource or some conditions aren't satisfied, and
1737 * BLK_STS_RESOURCE is usually returned.
1738 *
1739 * We do not guarantee that dispatch can be drained or blocked
1740 * after blk_mq_stop_hw_queue() returns. Please use
1741 * blk_mq_quiesce_queue() for that requirement.
1742 */
1743 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1744 {
1745 cancel_delayed_work(&hctx->run_work);
1746
1747 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1748 }
1749 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1750
1751 /*
1752 * This function is often used for pausing .queue_rq() by driver when
1753 * there isn't enough resource or some conditions aren't satisfied, and
1754 * BLK_STS_RESOURCE is usually returned.
1755 *
1756 * We do not guarantee that dispatch can be drained or blocked
1757 * after blk_mq_stop_hw_queues() returns. Please use
1758 * blk_mq_quiesce_queue() for that requirement.
1759 */
1760 void blk_mq_stop_hw_queues(struct request_queue *q)
1761 {
1762 struct blk_mq_hw_ctx *hctx;
1763 int i;
1764
1765 queue_for_each_hw_ctx(q, hctx, i)
1766 blk_mq_stop_hw_queue(hctx);
1767 }
1768 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1769
1770 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1771 {
1772 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1773
1774 blk_mq_run_hw_queue(hctx, false);
1775 }
1776 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1777
1778 void blk_mq_start_hw_queues(struct request_queue *q)
1779 {
1780 struct blk_mq_hw_ctx *hctx;
1781 int i;
1782
1783 queue_for_each_hw_ctx(q, hctx, i)
1784 blk_mq_start_hw_queue(hctx);
1785 }
1786 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1787
1788 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1789 {
1790 if (!blk_mq_hctx_stopped(hctx))
1791 return;
1792
1793 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1794 blk_mq_run_hw_queue(hctx, async);
1795 }
1796 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1797
1798 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1799 {
1800 struct blk_mq_hw_ctx *hctx;
1801 int i;
1802
1803 queue_for_each_hw_ctx(q, hctx, i)
1804 blk_mq_start_stopped_hw_queue(hctx, async);
1805 }
1806 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1807
1808 static void blk_mq_run_work_fn(struct work_struct *work)
1809 {
1810 struct blk_mq_hw_ctx *hctx;
1811
1812 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1813
1814 /*
1815 * If we are stopped, don't run the queue.
1816 */
1817 if (blk_mq_hctx_stopped(hctx))
1818 return;
1819
1820 __blk_mq_run_hw_queue(hctx);
1821 }
1822
1823 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1824 struct request *rq,
1825 bool at_head)
1826 {
1827 struct blk_mq_ctx *ctx = rq->mq_ctx;
1828 enum hctx_type type = hctx->type;
1829
1830 lockdep_assert_held(&ctx->lock);
1831
1832 trace_block_rq_insert(rq);
1833
1834 if (at_head)
1835 list_add(&rq->queuelist, &ctx->rq_lists[type]);
1836 else
1837 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1838 }
1839
1840 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1841 bool at_head)
1842 {
1843 struct blk_mq_ctx *ctx = rq->mq_ctx;
1844
1845 lockdep_assert_held(&ctx->lock);
1846
1847 __blk_mq_insert_req_list(hctx, rq, at_head);
1848 blk_mq_hctx_mark_pending(hctx, ctx);
1849 }
1850
1851 /**
1852 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1853 * @rq: Pointer to request to be inserted.
1854 * @at_head: true if the request should be inserted at the head of the list.
1855 * @run_queue: If we should run the hardware queue after inserting the request.
1856 *
1857 * Should only be used carefully, when the caller knows we want to
1858 * bypass a potential IO scheduler on the target device.
1859 */
1860 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1861 bool run_queue)
1862 {
1863 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1864
1865 spin_lock(&hctx->lock);
1866 if (at_head)
1867 list_add(&rq->queuelist, &hctx->dispatch);
1868 else
1869 list_add_tail(&rq->queuelist, &hctx->dispatch);
1870 spin_unlock(&hctx->lock);
1871
1872 if (run_queue)
1873 blk_mq_run_hw_queue(hctx, false);
1874 }
1875
1876 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1877 struct list_head *list)
1878
1879 {
1880 struct request *rq;
1881 enum hctx_type type = hctx->type;
1882
1883 /*
1884 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1885 * offline now
1886 */
1887 list_for_each_entry(rq, list, queuelist) {
1888 BUG_ON(rq->mq_ctx != ctx);
1889 trace_block_rq_insert(rq);
1890 }
1891
1892 spin_lock(&ctx->lock);
1893 list_splice_tail_init(list, &ctx->rq_lists[type]);
1894 blk_mq_hctx_mark_pending(hctx, ctx);
1895 spin_unlock(&ctx->lock);
1896 }
1897
1898 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1899 {
1900 struct request *rqa = container_of(a, struct request, queuelist);
1901 struct request *rqb = container_of(b, struct request, queuelist);
1902
1903 if (rqa->mq_ctx != rqb->mq_ctx)
1904 return rqa->mq_ctx > rqb->mq_ctx;
1905 if (rqa->mq_hctx != rqb->mq_hctx)
1906 return rqa->mq_hctx > rqb->mq_hctx;
1907
1908 return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1909 }
1910
1911 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1912 {
1913 LIST_HEAD(list);
1914
1915 if (list_empty(&plug->mq_list))
1916 return;
1917 list_splice_init(&plug->mq_list, &list);
1918
1919 if (plug->rq_count > 2 && plug->multiple_queues)
1920 list_sort(NULL, &list, plug_rq_cmp);
1921
1922 plug->rq_count = 0;
1923
1924 do {
1925 struct list_head rq_list;
1926 struct request *rq, *head_rq = list_entry_rq(list.next);
1927 struct list_head *pos = &head_rq->queuelist; /* skip first */
1928 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1929 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1930 unsigned int depth = 1;
1931
1932 list_for_each_continue(pos, &list) {
1933 rq = list_entry_rq(pos);
1934 BUG_ON(!rq->q);
1935 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1936 break;
1937 depth++;
1938 }
1939
1940 list_cut_before(&rq_list, &list, pos);
1941 trace_block_unplug(head_rq->q, depth, !from_schedule);
1942 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1943 from_schedule);
1944 } while(!list_empty(&list));
1945 }
1946
1947 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1948 unsigned int nr_segs)
1949 {
1950 int err;
1951
1952 if (bio->bi_opf & REQ_RAHEAD)
1953 rq->cmd_flags |= REQ_FAILFAST_MASK;
1954
1955 rq->__sector = bio->bi_iter.bi_sector;
1956 rq->write_hint = bio->bi_write_hint;
1957 blk_rq_bio_prep(rq, bio, nr_segs);
1958
1959 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
1960 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1961 WARN_ON_ONCE(err);
1962
1963 blk_account_io_start(rq);
1964 }
1965
1966 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1967 struct request *rq,
1968 blk_qc_t *cookie, bool last)
1969 {
1970 struct request_queue *q = rq->q;
1971 struct blk_mq_queue_data bd = {
1972 .rq = rq,
1973 .last = last,
1974 };
1975 blk_qc_t new_cookie;
1976 blk_status_t ret;
1977
1978 new_cookie = request_to_qc_t(hctx, rq);
1979
1980 /*
1981 * For OK queue, we are done. For error, caller may kill it.
1982 * Any other error (busy), just add it to our list as we
1983 * previously would have done.
1984 */
1985 ret = q->mq_ops->queue_rq(hctx, &bd);
1986 switch (ret) {
1987 case BLK_STS_OK:
1988 blk_mq_update_dispatch_busy(hctx, false);
1989 *cookie = new_cookie;
1990 break;
1991 case BLK_STS_RESOURCE:
1992 case BLK_STS_DEV_RESOURCE:
1993 blk_mq_update_dispatch_busy(hctx, true);
1994 __blk_mq_requeue_request(rq);
1995 break;
1996 default:
1997 blk_mq_update_dispatch_busy(hctx, false);
1998 *cookie = BLK_QC_T_NONE;
1999 break;
2000 }
2001
2002 return ret;
2003 }
2004
2005 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2006 struct request *rq,
2007 blk_qc_t *cookie,
2008 bool bypass_insert, bool last)
2009 {
2010 struct request_queue *q = rq->q;
2011 bool run_queue = true;
2012
2013 /*
2014 * RCU or SRCU read lock is needed before checking quiesced flag.
2015 *
2016 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2017 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2018 * and avoid driver to try to dispatch again.
2019 */
2020 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2021 run_queue = false;
2022 bypass_insert = false;
2023 goto insert;
2024 }
2025
2026 if (q->elevator && !bypass_insert)
2027 goto insert;
2028
2029 if (!blk_mq_get_dispatch_budget(q))
2030 goto insert;
2031
2032 if (!blk_mq_get_driver_tag(rq)) {
2033 blk_mq_put_dispatch_budget(q);
2034 goto insert;
2035 }
2036
2037 return __blk_mq_issue_directly(hctx, rq, cookie, last);
2038 insert:
2039 if (bypass_insert)
2040 return BLK_STS_RESOURCE;
2041
2042 blk_mq_sched_insert_request(rq, false, run_queue, false);
2043
2044 return BLK_STS_OK;
2045 }
2046
2047 /**
2048 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2049 * @hctx: Pointer of the associated hardware queue.
2050 * @rq: Pointer to request to be sent.
2051 * @cookie: Request queue cookie.
2052 *
2053 * If the device has enough resources to accept a new request now, send the
2054 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2055 * we can try send it another time in the future. Requests inserted at this
2056 * queue have higher priority.
2057 */
2058 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2059 struct request *rq, blk_qc_t *cookie)
2060 {
2061 blk_status_t ret;
2062 int srcu_idx;
2063
2064 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2065
2066 hctx_lock(hctx, &srcu_idx);
2067
2068 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2069 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2070 blk_mq_request_bypass_insert(rq, false, true);
2071 else if (ret != BLK_STS_OK)
2072 blk_mq_end_request(rq, ret);
2073
2074 hctx_unlock(hctx, srcu_idx);
2075 }
2076
2077 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2078 {
2079 blk_status_t ret;
2080 int srcu_idx;
2081 blk_qc_t unused_cookie;
2082 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2083
2084 hctx_lock(hctx, &srcu_idx);
2085 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2086 hctx_unlock(hctx, srcu_idx);
2087
2088 return ret;
2089 }
2090
2091 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2092 struct list_head *list)
2093 {
2094 int queued = 0;
2095 int errors = 0;
2096
2097 while (!list_empty(list)) {
2098 blk_status_t ret;
2099 struct request *rq = list_first_entry(list, struct request,
2100 queuelist);
2101
2102 list_del_init(&rq->queuelist);
2103 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2104 if (ret != BLK_STS_OK) {
2105 if (ret == BLK_STS_RESOURCE ||
2106 ret == BLK_STS_DEV_RESOURCE) {
2107 blk_mq_request_bypass_insert(rq, false,
2108 list_empty(list));
2109 break;
2110 }
2111 blk_mq_end_request(rq, ret);
2112 errors++;
2113 } else
2114 queued++;
2115 }
2116
2117 /*
2118 * If we didn't flush the entire list, we could have told
2119 * the driver there was more coming, but that turned out to
2120 * be a lie.
2121 */
2122 if ((!list_empty(list) || errors) &&
2123 hctx->queue->mq_ops->commit_rqs && queued)
2124 hctx->queue->mq_ops->commit_rqs(hctx);
2125 }
2126
2127 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2128 {
2129 list_add_tail(&rq->queuelist, &plug->mq_list);
2130 plug->rq_count++;
2131 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2132 struct request *tmp;
2133
2134 tmp = list_first_entry(&plug->mq_list, struct request,
2135 queuelist);
2136 if (tmp->q != rq->q)
2137 plug->multiple_queues = true;
2138 }
2139 }
2140
2141 /**
2142 * blk_mq_submit_bio - Create and send a request to block device.
2143 * @bio: Bio pointer.
2144 *
2145 * Builds up a request structure from @q and @bio and send to the device. The
2146 * request may not be queued directly to hardware if:
2147 * * This request can be merged with another one
2148 * * We want to place request at plug queue for possible future merging
2149 * * There is an IO scheduler active at this queue
2150 *
2151 * It will not queue the request if there is an error with the bio, or at the
2152 * request creation.
2153 *
2154 * Returns: Request queue cookie.
2155 */
2156 blk_qc_t blk_mq_submit_bio(struct bio *bio)
2157 {
2158 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
2159 const int is_sync = op_is_sync(bio->bi_opf);
2160 const int is_flush_fua = op_is_flush(bio->bi_opf);
2161 struct blk_mq_alloc_data data = {
2162 .q = q,
2163 };
2164 struct request *rq;
2165 struct blk_plug *plug;
2166 struct request *same_queue_rq = NULL;
2167 unsigned int nr_segs;
2168 blk_qc_t cookie;
2169 blk_status_t ret;
2170 bool hipri;
2171
2172 blk_queue_bounce(q, &bio);
2173 __blk_queue_split(&bio, &nr_segs);
2174
2175 if (!bio_integrity_prep(bio))
2176 goto queue_exit;
2177
2178 if (!is_flush_fua && !blk_queue_nomerges(q) &&
2179 blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2180 goto queue_exit;
2181
2182 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2183 goto queue_exit;
2184
2185 rq_qos_throttle(q, bio);
2186
2187 hipri = bio->bi_opf & REQ_HIPRI;
2188
2189 data.cmd_flags = bio->bi_opf;
2190 rq = __blk_mq_alloc_request(&data);
2191 if (unlikely(!rq)) {
2192 rq_qos_cleanup(q, bio);
2193 if (bio->bi_opf & REQ_NOWAIT)
2194 bio_wouldblock_error(bio);
2195 goto queue_exit;
2196 }
2197
2198 trace_block_getrq(bio);
2199
2200 rq_qos_track(q, rq, bio);
2201
2202 cookie = request_to_qc_t(data.hctx, rq);
2203
2204 blk_mq_bio_to_request(rq, bio, nr_segs);
2205
2206 ret = blk_crypto_init_request(rq);
2207 if (ret != BLK_STS_OK) {
2208 bio->bi_status = ret;
2209 bio_endio(bio);
2210 blk_mq_free_request(rq);
2211 return BLK_QC_T_NONE;
2212 }
2213
2214 plug = blk_mq_plug(q, bio);
2215 if (unlikely(is_flush_fua)) {
2216 /* Bypass scheduler for flush requests */
2217 blk_insert_flush(rq);
2218 blk_mq_run_hw_queue(data.hctx, true);
2219 } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs ||
2220 !blk_queue_nonrot(q))) {
2221 /*
2222 * Use plugging if we have a ->commit_rqs() hook as well, as
2223 * we know the driver uses bd->last in a smart fashion.
2224 *
2225 * Use normal plugging if this disk is slow HDD, as sequential
2226 * IO may benefit a lot from plug merging.
2227 */
2228 unsigned int request_count = plug->rq_count;
2229 struct request *last = NULL;
2230
2231 if (!request_count)
2232 trace_block_plug(q);
2233 else
2234 last = list_entry_rq(plug->mq_list.prev);
2235
2236 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2237 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2238 blk_flush_plug_list(plug, false);
2239 trace_block_plug(q);
2240 }
2241
2242 blk_add_rq_to_plug(plug, rq);
2243 } else if (q->elevator) {
2244 /* Insert the request at the IO scheduler queue */
2245 blk_mq_sched_insert_request(rq, false, true, true);
2246 } else if (plug && !blk_queue_nomerges(q)) {
2247 /*
2248 * We do limited plugging. If the bio can be merged, do that.
2249 * Otherwise the existing request in the plug list will be
2250 * issued. So the plug list will have one request at most
2251 * The plug list might get flushed before this. If that happens,
2252 * the plug list is empty, and same_queue_rq is invalid.
2253 */
2254 if (list_empty(&plug->mq_list))
2255 same_queue_rq = NULL;
2256 if (same_queue_rq) {
2257 list_del_init(&same_queue_rq->queuelist);
2258 plug->rq_count--;
2259 }
2260 blk_add_rq_to_plug(plug, rq);
2261 trace_block_plug(q);
2262
2263 if (same_queue_rq) {
2264 data.hctx = same_queue_rq->mq_hctx;
2265 trace_block_unplug(q, 1, true);
2266 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2267 &cookie);
2268 }
2269 } else if ((q->nr_hw_queues > 1 && is_sync) ||
2270 !data.hctx->dispatch_busy) {
2271 /*
2272 * There is no scheduler and we can try to send directly
2273 * to the hardware.
2274 */
2275 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2276 } else {
2277 /* Default case. */
2278 blk_mq_sched_insert_request(rq, false, true, true);
2279 }
2280
2281 if (!hipri)
2282 return BLK_QC_T_NONE;
2283 return cookie;
2284 queue_exit:
2285 blk_queue_exit(q);
2286 return BLK_QC_T_NONE;
2287 }
2288
2289 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2290 unsigned int hctx_idx)
2291 {
2292 struct page *page;
2293
2294 if (tags->rqs && set->ops->exit_request) {
2295 int i;
2296
2297 for (i = 0; i < tags->nr_tags; i++) {
2298 struct request *rq = tags->static_rqs[i];
2299
2300 if (!rq)
2301 continue;
2302 set->ops->exit_request(set, rq, hctx_idx);
2303 tags->static_rqs[i] = NULL;
2304 }
2305 }
2306
2307 while (!list_empty(&tags->page_list)) {
2308 page = list_first_entry(&tags->page_list, struct page, lru);
2309 list_del_init(&page->lru);
2310 /*
2311 * Remove kmemleak object previously allocated in
2312 * blk_mq_alloc_rqs().
2313 */
2314 kmemleak_free(page_address(page));
2315 __free_pages(page, page->private);
2316 }
2317 }
2318
2319 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2320 {
2321 kfree(tags->rqs);
2322 tags->rqs = NULL;
2323 kfree(tags->static_rqs);
2324 tags->static_rqs = NULL;
2325
2326 blk_mq_free_tags(tags, flags);
2327 }
2328
2329 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2330 unsigned int hctx_idx,
2331 unsigned int nr_tags,
2332 unsigned int reserved_tags,
2333 unsigned int flags)
2334 {
2335 struct blk_mq_tags *tags;
2336 int node;
2337
2338 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2339 if (node == NUMA_NO_NODE)
2340 node = set->numa_node;
2341
2342 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2343 if (!tags)
2344 return NULL;
2345
2346 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2347 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2348 node);
2349 if (!tags->rqs) {
2350 blk_mq_free_tags(tags, flags);
2351 return NULL;
2352 }
2353
2354 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2355 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2356 node);
2357 if (!tags->static_rqs) {
2358 kfree(tags->rqs);
2359 blk_mq_free_tags(tags, flags);
2360 return NULL;
2361 }
2362
2363 return tags;
2364 }
2365
2366 static size_t order_to_size(unsigned int order)
2367 {
2368 return (size_t)PAGE_SIZE << order;
2369 }
2370
2371 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2372 unsigned int hctx_idx, int node)
2373 {
2374 int ret;
2375
2376 if (set->ops->init_request) {
2377 ret = set->ops->init_request(set, rq, hctx_idx, node);
2378 if (ret)
2379 return ret;
2380 }
2381
2382 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2383 return 0;
2384 }
2385
2386 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2387 unsigned int hctx_idx, unsigned int depth)
2388 {
2389 unsigned int i, j, entries_per_page, max_order = 4;
2390 size_t rq_size, left;
2391 int node;
2392
2393 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2394 if (node == NUMA_NO_NODE)
2395 node = set->numa_node;
2396
2397 INIT_LIST_HEAD(&tags->page_list);
2398
2399 /*
2400 * rq_size is the size of the request plus driver payload, rounded
2401 * to the cacheline size
2402 */
2403 rq_size = round_up(sizeof(struct request) + set->cmd_size,
2404 cache_line_size());
2405 left = rq_size * depth;
2406
2407 for (i = 0; i < depth; ) {
2408 int this_order = max_order;
2409 struct page *page;
2410 int to_do;
2411 void *p;
2412
2413 while (this_order && left < order_to_size(this_order - 1))
2414 this_order--;
2415
2416 do {
2417 page = alloc_pages_node(node,
2418 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2419 this_order);
2420 if (page)
2421 break;
2422 if (!this_order--)
2423 break;
2424 if (order_to_size(this_order) < rq_size)
2425 break;
2426 } while (1);
2427
2428 if (!page)
2429 goto fail;
2430
2431 page->private = this_order;
2432 list_add_tail(&page->lru, &tags->page_list);
2433
2434 p = page_address(page);
2435 /*
2436 * Allow kmemleak to scan these pages as they contain pointers
2437 * to additional allocations like via ops->init_request().
2438 */
2439 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2440 entries_per_page = order_to_size(this_order) / rq_size;
2441 to_do = min(entries_per_page, depth - i);
2442 left -= to_do * rq_size;
2443 for (j = 0; j < to_do; j++) {
2444 struct request *rq = p;
2445
2446 tags->static_rqs[i] = rq;
2447 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2448 tags->static_rqs[i] = NULL;
2449 goto fail;
2450 }
2451
2452 p += rq_size;
2453 i++;
2454 }
2455 }
2456 return 0;
2457
2458 fail:
2459 blk_mq_free_rqs(set, tags, hctx_idx);
2460 return -ENOMEM;
2461 }
2462
2463 struct rq_iter_data {
2464 struct blk_mq_hw_ctx *hctx;
2465 bool has_rq;
2466 };
2467
2468 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2469 {
2470 struct rq_iter_data *iter_data = data;
2471
2472 if (rq->mq_hctx != iter_data->hctx)
2473 return true;
2474 iter_data->has_rq = true;
2475 return false;
2476 }
2477
2478 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2479 {
2480 struct blk_mq_tags *tags = hctx->sched_tags ?
2481 hctx->sched_tags : hctx->tags;
2482 struct rq_iter_data data = {
2483 .hctx = hctx,
2484 };
2485
2486 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2487 return data.has_rq;
2488 }
2489
2490 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2491 struct blk_mq_hw_ctx *hctx)
2492 {
2493 if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2494 return false;
2495 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2496 return false;
2497 return true;
2498 }
2499
2500 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2501 {
2502 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2503 struct blk_mq_hw_ctx, cpuhp_online);
2504
2505 if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2506 !blk_mq_last_cpu_in_hctx(cpu, hctx))
2507 return 0;
2508
2509 /*
2510 * Prevent new request from being allocated on the current hctx.
2511 *
2512 * The smp_mb__after_atomic() Pairs with the implied barrier in
2513 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is
2514 * seen once we return from the tag allocator.
2515 */
2516 set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2517 smp_mb__after_atomic();
2518
2519 /*
2520 * Try to grab a reference to the queue and wait for any outstanding
2521 * requests. If we could not grab a reference the queue has been
2522 * frozen and there are no requests.
2523 */
2524 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2525 while (blk_mq_hctx_has_requests(hctx))
2526 msleep(5);
2527 percpu_ref_put(&hctx->queue->q_usage_counter);
2528 }
2529
2530 return 0;
2531 }
2532
2533 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2534 {
2535 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2536 struct blk_mq_hw_ctx, cpuhp_online);
2537
2538 if (cpumask_test_cpu(cpu, hctx->cpumask))
2539 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2540 return 0;
2541 }
2542
2543 /*
2544 * 'cpu' is going away. splice any existing rq_list entries from this
2545 * software queue to the hw queue dispatch list, and ensure that it
2546 * gets run.
2547 */
2548 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2549 {
2550 struct blk_mq_hw_ctx *hctx;
2551 struct blk_mq_ctx *ctx;
2552 LIST_HEAD(tmp);
2553 enum hctx_type type;
2554
2555 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2556 if (!cpumask_test_cpu(cpu, hctx->cpumask))
2557 return 0;
2558
2559 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2560 type = hctx->type;
2561
2562 spin_lock(&ctx->lock);
2563 if (!list_empty(&ctx->rq_lists[type])) {
2564 list_splice_init(&ctx->rq_lists[type], &tmp);
2565 blk_mq_hctx_clear_pending(hctx, ctx);
2566 }
2567 spin_unlock(&ctx->lock);
2568
2569 if (list_empty(&tmp))
2570 return 0;
2571
2572 spin_lock(&hctx->lock);
2573 list_splice_tail_init(&tmp, &hctx->dispatch);
2574 spin_unlock(&hctx->lock);
2575
2576 blk_mq_run_hw_queue(hctx, true);
2577 return 0;
2578 }
2579
2580 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2581 {
2582 if (!(hctx->flags & BLK_MQ_F_STACKING))
2583 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2584 &hctx->cpuhp_online);
2585 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2586 &hctx->cpuhp_dead);
2587 }
2588
2589 /* hctx->ctxs will be freed in queue's release handler */
2590 static void blk_mq_exit_hctx(struct request_queue *q,
2591 struct blk_mq_tag_set *set,
2592 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2593 {
2594 if (blk_mq_hw_queue_mapped(hctx))
2595 blk_mq_tag_idle(hctx);
2596
2597 if (set->ops->exit_request)
2598 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2599
2600 if (set->ops->exit_hctx)
2601 set->ops->exit_hctx(hctx, hctx_idx);
2602
2603 blk_mq_remove_cpuhp(hctx);
2604
2605 spin_lock(&q->unused_hctx_lock);
2606 list_add(&hctx->hctx_list, &q->unused_hctx_list);
2607 spin_unlock(&q->unused_hctx_lock);
2608 }
2609
2610 static void blk_mq_exit_hw_queues(struct request_queue *q,
2611 struct blk_mq_tag_set *set, int nr_queue)
2612 {
2613 struct blk_mq_hw_ctx *hctx;
2614 unsigned int i;
2615
2616 queue_for_each_hw_ctx(q, hctx, i) {
2617 if (i == nr_queue)
2618 break;
2619 blk_mq_debugfs_unregister_hctx(hctx);
2620 blk_mq_exit_hctx(q, set, hctx, i);
2621 }
2622 }
2623
2624 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2625 {
2626 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2627
2628 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2629 __alignof__(struct blk_mq_hw_ctx)) !=
2630 sizeof(struct blk_mq_hw_ctx));
2631
2632 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2633 hw_ctx_size += sizeof(struct srcu_struct);
2634
2635 return hw_ctx_size;
2636 }
2637
2638 static int blk_mq_init_hctx(struct request_queue *q,
2639 struct blk_mq_tag_set *set,
2640 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2641 {
2642 hctx->queue_num = hctx_idx;
2643
2644 if (!(hctx->flags & BLK_MQ_F_STACKING))
2645 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2646 &hctx->cpuhp_online);
2647 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2648
2649 hctx->tags = set->tags[hctx_idx];
2650
2651 if (set->ops->init_hctx &&
2652 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2653 goto unregister_cpu_notifier;
2654
2655 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2656 hctx->numa_node))
2657 goto exit_hctx;
2658 return 0;
2659
2660 exit_hctx:
2661 if (set->ops->exit_hctx)
2662 set->ops->exit_hctx(hctx, hctx_idx);
2663 unregister_cpu_notifier:
2664 blk_mq_remove_cpuhp(hctx);
2665 return -1;
2666 }
2667
2668 static struct blk_mq_hw_ctx *
2669 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2670 int node)
2671 {
2672 struct blk_mq_hw_ctx *hctx;
2673 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2674
2675 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2676 if (!hctx)
2677 goto fail_alloc_hctx;
2678
2679 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2680 goto free_hctx;
2681
2682 atomic_set(&hctx->nr_active, 0);
2683 if (node == NUMA_NO_NODE)
2684 node = set->numa_node;
2685 hctx->numa_node = node;
2686
2687 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2688 spin_lock_init(&hctx->lock);
2689 INIT_LIST_HEAD(&hctx->dispatch);
2690 hctx->queue = q;
2691 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2692
2693 INIT_LIST_HEAD(&hctx->hctx_list);
2694
2695 /*
2696 * Allocate space for all possible cpus to avoid allocation at
2697 * runtime
2698 */
2699 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2700 gfp, node);
2701 if (!hctx->ctxs)
2702 goto free_cpumask;
2703
2704 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2705 gfp, node))
2706 goto free_ctxs;
2707 hctx->nr_ctx = 0;
2708
2709 spin_lock_init(&hctx->dispatch_wait_lock);
2710 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2711 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2712
2713 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2714 if (!hctx->fq)
2715 goto free_bitmap;
2716
2717 if (hctx->flags & BLK_MQ_F_BLOCKING)
2718 init_srcu_struct(hctx->srcu);
2719 blk_mq_hctx_kobj_init(hctx);
2720
2721 return hctx;
2722
2723 free_bitmap:
2724 sbitmap_free(&hctx->ctx_map);
2725 free_ctxs:
2726 kfree(hctx->ctxs);
2727 free_cpumask:
2728 free_cpumask_var(hctx->cpumask);
2729 free_hctx:
2730 kfree(hctx);
2731 fail_alloc_hctx:
2732 return NULL;
2733 }
2734
2735 static void blk_mq_init_cpu_queues(struct request_queue *q,
2736 unsigned int nr_hw_queues)
2737 {
2738 struct blk_mq_tag_set *set = q->tag_set;
2739 unsigned int i, j;
2740
2741 for_each_possible_cpu(i) {
2742 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2743 struct blk_mq_hw_ctx *hctx;
2744 int k;
2745
2746 __ctx->cpu = i;
2747 spin_lock_init(&__ctx->lock);
2748 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2749 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2750
2751 __ctx->queue = q;
2752
2753 /*
2754 * Set local node, IFF we have more than one hw queue. If
2755 * not, we remain on the home node of the device
2756 */
2757 for (j = 0; j < set->nr_maps; j++) {
2758 hctx = blk_mq_map_queue_type(q, j, i);
2759 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2760 hctx->numa_node = cpu_to_node(i);
2761 }
2762 }
2763 }
2764
2765 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2766 int hctx_idx)
2767 {
2768 unsigned int flags = set->flags;
2769 int ret = 0;
2770
2771 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2772 set->queue_depth, set->reserved_tags, flags);
2773 if (!set->tags[hctx_idx])
2774 return false;
2775
2776 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2777 set->queue_depth);
2778 if (!ret)
2779 return true;
2780
2781 blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2782 set->tags[hctx_idx] = NULL;
2783 return false;
2784 }
2785
2786 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2787 unsigned int hctx_idx)
2788 {
2789 unsigned int flags = set->flags;
2790
2791 if (set->tags && set->tags[hctx_idx]) {
2792 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2793 blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2794 set->tags[hctx_idx] = NULL;
2795 }
2796 }
2797
2798 static void blk_mq_map_swqueue(struct request_queue *q)
2799 {
2800 unsigned int i, j, hctx_idx;
2801 struct blk_mq_hw_ctx *hctx;
2802 struct blk_mq_ctx *ctx;
2803 struct blk_mq_tag_set *set = q->tag_set;
2804
2805 queue_for_each_hw_ctx(q, hctx, i) {
2806 cpumask_clear(hctx->cpumask);
2807 hctx->nr_ctx = 0;
2808 hctx->dispatch_from = NULL;
2809 }
2810
2811 /*
2812 * Map software to hardware queues.
2813 *
2814 * If the cpu isn't present, the cpu is mapped to first hctx.
2815 */
2816 for_each_possible_cpu(i) {
2817
2818 ctx = per_cpu_ptr(q->queue_ctx, i);
2819 for (j = 0; j < set->nr_maps; j++) {
2820 if (!set->map[j].nr_queues) {
2821 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2822 HCTX_TYPE_DEFAULT, i);
2823 continue;
2824 }
2825 hctx_idx = set->map[j].mq_map[i];
2826 /* unmapped hw queue can be remapped after CPU topo changed */
2827 if (!set->tags[hctx_idx] &&
2828 !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2829 /*
2830 * If tags initialization fail for some hctx,
2831 * that hctx won't be brought online. In this
2832 * case, remap the current ctx to hctx[0] which
2833 * is guaranteed to always have tags allocated
2834 */
2835 set->map[j].mq_map[i] = 0;
2836 }
2837
2838 hctx = blk_mq_map_queue_type(q, j, i);
2839 ctx->hctxs[j] = hctx;
2840 /*
2841 * If the CPU is already set in the mask, then we've
2842 * mapped this one already. This can happen if
2843 * devices share queues across queue maps.
2844 */
2845 if (cpumask_test_cpu(i, hctx->cpumask))
2846 continue;
2847
2848 cpumask_set_cpu(i, hctx->cpumask);
2849 hctx->type = j;
2850 ctx->index_hw[hctx->type] = hctx->nr_ctx;
2851 hctx->ctxs[hctx->nr_ctx++] = ctx;
2852
2853 /*
2854 * If the nr_ctx type overflows, we have exceeded the
2855 * amount of sw queues we can support.
2856 */
2857 BUG_ON(!hctx->nr_ctx);
2858 }
2859
2860 for (; j < HCTX_MAX_TYPES; j++)
2861 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2862 HCTX_TYPE_DEFAULT, i);
2863 }
2864
2865 queue_for_each_hw_ctx(q, hctx, i) {
2866 /*
2867 * If no software queues are mapped to this hardware queue,
2868 * disable it and free the request entries.
2869 */
2870 if (!hctx->nr_ctx) {
2871 /* Never unmap queue 0. We need it as a
2872 * fallback in case of a new remap fails
2873 * allocation
2874 */
2875 if (i && set->tags[i])
2876 blk_mq_free_map_and_requests(set, i);
2877
2878 hctx->tags = NULL;
2879 continue;
2880 }
2881
2882 hctx->tags = set->tags[i];
2883 WARN_ON(!hctx->tags);
2884
2885 /*
2886 * Set the map size to the number of mapped software queues.
2887 * This is more accurate and more efficient than looping
2888 * over all possibly mapped software queues.
2889 */
2890 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2891
2892 /*
2893 * Initialize batch roundrobin counts
2894 */
2895 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2896 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2897 }
2898 }
2899
2900 /*
2901 * Caller needs to ensure that we're either frozen/quiesced, or that
2902 * the queue isn't live yet.
2903 */
2904 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2905 {
2906 struct blk_mq_hw_ctx *hctx;
2907 int i;
2908
2909 queue_for_each_hw_ctx(q, hctx, i) {
2910 if (shared)
2911 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2912 else
2913 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2914 }
2915 }
2916
2917 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
2918 bool shared)
2919 {
2920 struct request_queue *q;
2921
2922 lockdep_assert_held(&set->tag_list_lock);
2923
2924 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2925 blk_mq_freeze_queue(q);
2926 queue_set_hctx_shared(q, shared);
2927 blk_mq_unfreeze_queue(q);
2928 }
2929 }
2930
2931 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2932 {
2933 struct blk_mq_tag_set *set = q->tag_set;
2934
2935 mutex_lock(&set->tag_list_lock);
2936 list_del(&q->tag_set_list);
2937 if (list_is_singular(&set->tag_list)) {
2938 /* just transitioned to unshared */
2939 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2940 /* update existing queue */
2941 blk_mq_update_tag_set_shared(set, false);
2942 }
2943 mutex_unlock(&set->tag_list_lock);
2944 INIT_LIST_HEAD(&q->tag_set_list);
2945 }
2946
2947 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2948 struct request_queue *q)
2949 {
2950 mutex_lock(&set->tag_list_lock);
2951
2952 /*
2953 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2954 */
2955 if (!list_empty(&set->tag_list) &&
2956 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2957 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2958 /* update existing queue */
2959 blk_mq_update_tag_set_shared(set, true);
2960 }
2961 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
2962 queue_set_hctx_shared(q, true);
2963 list_add_tail(&q->tag_set_list, &set->tag_list);
2964
2965 mutex_unlock(&set->tag_list_lock);
2966 }
2967
2968 /* All allocations will be freed in release handler of q->mq_kobj */
2969 static int blk_mq_alloc_ctxs(struct request_queue *q)
2970 {
2971 struct blk_mq_ctxs *ctxs;
2972 int cpu;
2973
2974 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2975 if (!ctxs)
2976 return -ENOMEM;
2977
2978 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2979 if (!ctxs->queue_ctx)
2980 goto fail;
2981
2982 for_each_possible_cpu(cpu) {
2983 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2984 ctx->ctxs = ctxs;
2985 }
2986
2987 q->mq_kobj = &ctxs->kobj;
2988 q->queue_ctx = ctxs->queue_ctx;
2989
2990 return 0;
2991 fail:
2992 kfree(ctxs);
2993 return -ENOMEM;
2994 }
2995
2996 /*
2997 * It is the actual release handler for mq, but we do it from
2998 * request queue's release handler for avoiding use-after-free
2999 * and headache because q->mq_kobj shouldn't have been introduced,
3000 * but we can't group ctx/kctx kobj without it.
3001 */
3002 void blk_mq_release(struct request_queue *q)
3003 {
3004 struct blk_mq_hw_ctx *hctx, *next;
3005 int i;
3006
3007 queue_for_each_hw_ctx(q, hctx, i)
3008 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3009
3010 /* all hctx are in .unused_hctx_list now */
3011 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3012 list_del_init(&hctx->hctx_list);
3013 kobject_put(&hctx->kobj);
3014 }
3015
3016 kfree(q->queue_hw_ctx);
3017
3018 /*
3019 * release .mq_kobj and sw queue's kobject now because
3020 * both share lifetime with request queue.
3021 */
3022 blk_mq_sysfs_deinit(q);
3023 }
3024
3025 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3026 void *queuedata)
3027 {
3028 struct request_queue *uninit_q, *q;
3029
3030 uninit_q = blk_alloc_queue(set->numa_node);
3031 if (!uninit_q)
3032 return ERR_PTR(-ENOMEM);
3033 uninit_q->queuedata = queuedata;
3034
3035 /*
3036 * Initialize the queue without an elevator. device_add_disk() will do
3037 * the initialization.
3038 */
3039 q = blk_mq_init_allocated_queue(set, uninit_q, false);
3040 if (IS_ERR(q))
3041 blk_cleanup_queue(uninit_q);
3042
3043 return q;
3044 }
3045 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
3046
3047 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3048 {
3049 return blk_mq_init_queue_data(set, NULL);
3050 }
3051 EXPORT_SYMBOL(blk_mq_init_queue);
3052
3053 /*
3054 * Helper for setting up a queue with mq ops, given queue depth, and
3055 * the passed in mq ops flags.
3056 */
3057 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
3058 const struct blk_mq_ops *ops,
3059 unsigned int queue_depth,
3060 unsigned int set_flags)
3061 {
3062 struct request_queue *q;
3063 int ret;
3064
3065 memset(set, 0, sizeof(*set));
3066 set->ops = ops;
3067 set->nr_hw_queues = 1;
3068 set->nr_maps = 1;
3069 set->queue_depth = queue_depth;
3070 set->numa_node = NUMA_NO_NODE;
3071 set->flags = set_flags;
3072
3073 ret = blk_mq_alloc_tag_set(set);
3074 if (ret)
3075 return ERR_PTR(ret);
3076
3077 q = blk_mq_init_queue(set);
3078 if (IS_ERR(q)) {
3079 blk_mq_free_tag_set(set);
3080 return q;
3081 }
3082
3083 return q;
3084 }
3085 EXPORT_SYMBOL(blk_mq_init_sq_queue);
3086
3087 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3088 struct blk_mq_tag_set *set, struct request_queue *q,
3089 int hctx_idx, int node)
3090 {
3091 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3092
3093 /* reuse dead hctx first */
3094 spin_lock(&q->unused_hctx_lock);
3095 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3096 if (tmp->numa_node == node) {
3097 hctx = tmp;
3098 break;
3099 }
3100 }
3101 if (hctx)
3102 list_del_init(&hctx->hctx_list);
3103 spin_unlock(&q->unused_hctx_lock);
3104
3105 if (!hctx)
3106 hctx = blk_mq_alloc_hctx(q, set, node);
3107 if (!hctx)
3108 goto fail;
3109
3110 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3111 goto free_hctx;
3112
3113 return hctx;
3114
3115 free_hctx:
3116 kobject_put(&hctx->kobj);
3117 fail:
3118 return NULL;
3119 }
3120
3121 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3122 struct request_queue *q)
3123 {
3124 int i, j, end;
3125 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3126
3127 if (q->nr_hw_queues < set->nr_hw_queues) {
3128 struct blk_mq_hw_ctx **new_hctxs;
3129
3130 new_hctxs = kcalloc_node(set->nr_hw_queues,
3131 sizeof(*new_hctxs), GFP_KERNEL,
3132 set->numa_node);
3133 if (!new_hctxs)
3134 return;
3135 if (hctxs)
3136 memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3137 sizeof(*hctxs));
3138 q->queue_hw_ctx = new_hctxs;
3139 kfree(hctxs);
3140 hctxs = new_hctxs;
3141 }
3142
3143 /* protect against switching io scheduler */
3144 mutex_lock(&q->sysfs_lock);
3145 for (i = 0; i < set->nr_hw_queues; i++) {
3146 int node;
3147 struct blk_mq_hw_ctx *hctx;
3148
3149 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3150 /*
3151 * If the hw queue has been mapped to another numa node,
3152 * we need to realloc the hctx. If allocation fails, fallback
3153 * to use the previous one.
3154 */
3155 if (hctxs[i] && (hctxs[i]->numa_node == node))
3156 continue;
3157
3158 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3159 if (hctx) {
3160 if (hctxs[i])
3161 blk_mq_exit_hctx(q, set, hctxs[i], i);
3162 hctxs[i] = hctx;
3163 } else {
3164 if (hctxs[i])
3165 pr_warn("Allocate new hctx on node %d fails,\
3166 fallback to previous one on node %d\n",
3167 node, hctxs[i]->numa_node);
3168 else
3169 break;
3170 }
3171 }
3172 /*
3173 * Increasing nr_hw_queues fails. Free the newly allocated
3174 * hctxs and keep the previous q->nr_hw_queues.
3175 */
3176 if (i != set->nr_hw_queues) {
3177 j = q->nr_hw_queues;
3178 end = i;
3179 } else {
3180 j = i;
3181 end = q->nr_hw_queues;
3182 q->nr_hw_queues = set->nr_hw_queues;
3183 }
3184
3185 for (; j < end; j++) {
3186 struct blk_mq_hw_ctx *hctx = hctxs[j];
3187
3188 if (hctx) {
3189 if (hctx->tags)
3190 blk_mq_free_map_and_requests(set, j);
3191 blk_mq_exit_hctx(q, set, hctx, j);
3192 hctxs[j] = NULL;
3193 }
3194 }
3195 mutex_unlock(&q->sysfs_lock);
3196 }
3197
3198 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3199 struct request_queue *q,
3200 bool elevator_init)
3201 {
3202 /* mark the queue as mq asap */
3203 q->mq_ops = set->ops;
3204
3205 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3206 blk_mq_poll_stats_bkt,
3207 BLK_MQ_POLL_STATS_BKTS, q);
3208 if (!q->poll_cb)
3209 goto err_exit;
3210
3211 if (blk_mq_alloc_ctxs(q))
3212 goto err_poll;
3213
3214 /* init q->mq_kobj and sw queues' kobjects */
3215 blk_mq_sysfs_init(q);
3216
3217 INIT_LIST_HEAD(&q->unused_hctx_list);
3218 spin_lock_init(&q->unused_hctx_lock);
3219
3220 blk_mq_realloc_hw_ctxs(set, q);
3221 if (!q->nr_hw_queues)
3222 goto err_hctxs;
3223
3224 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3225 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3226
3227 q->tag_set = set;
3228
3229 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3230 if (set->nr_maps > HCTX_TYPE_POLL &&
3231 set->map[HCTX_TYPE_POLL].nr_queues)
3232 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3233
3234 q->sg_reserved_size = INT_MAX;
3235
3236 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3237 INIT_LIST_HEAD(&q->requeue_list);
3238 spin_lock_init(&q->requeue_lock);
3239
3240 q->nr_requests = set->queue_depth;
3241
3242 /*
3243 * Default to classic polling
3244 */
3245 q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3246
3247 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3248 blk_mq_add_queue_tag_set(set, q);
3249 blk_mq_map_swqueue(q);
3250
3251 if (elevator_init)
3252 elevator_init_mq(q);
3253
3254 return q;
3255
3256 err_hctxs:
3257 kfree(q->queue_hw_ctx);
3258 q->nr_hw_queues = 0;
3259 blk_mq_sysfs_deinit(q);
3260 err_poll:
3261 blk_stat_free_callback(q->poll_cb);
3262 q->poll_cb = NULL;
3263 err_exit:
3264 q->mq_ops = NULL;
3265 return ERR_PTR(-ENOMEM);
3266 }
3267 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3268
3269 /* tags can _not_ be used after returning from blk_mq_exit_queue */
3270 void blk_mq_exit_queue(struct request_queue *q)
3271 {
3272 struct blk_mq_tag_set *set = q->tag_set;
3273
3274 blk_mq_del_queue_tag_set(q);
3275 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3276 }
3277
3278 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3279 {
3280 int i;
3281
3282 for (i = 0; i < set->nr_hw_queues; i++) {
3283 if (!__blk_mq_alloc_map_and_request(set, i))
3284 goto out_unwind;
3285 cond_resched();
3286 }
3287
3288 return 0;
3289
3290 out_unwind:
3291 while (--i >= 0)
3292 blk_mq_free_map_and_requests(set, i);
3293
3294 return -ENOMEM;
3295 }
3296
3297 /*
3298 * Allocate the request maps associated with this tag_set. Note that this
3299 * may reduce the depth asked for, if memory is tight. set->queue_depth
3300 * will be updated to reflect the allocated depth.
3301 */
3302 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3303 {
3304 unsigned int depth;
3305 int err;
3306
3307 depth = set->queue_depth;
3308 do {
3309 err = __blk_mq_alloc_rq_maps(set);
3310 if (!err)
3311 break;
3312
3313 set->queue_depth >>= 1;
3314 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3315 err = -ENOMEM;
3316 break;
3317 }
3318 } while (set->queue_depth);
3319
3320 if (!set->queue_depth || err) {
3321 pr_err("blk-mq: failed to allocate request map\n");
3322 return -ENOMEM;
3323 }
3324
3325 if (depth != set->queue_depth)
3326 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3327 depth, set->queue_depth);
3328
3329 return 0;
3330 }
3331
3332 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3333 {
3334 /*
3335 * blk_mq_map_queues() and multiple .map_queues() implementations
3336 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3337 * number of hardware queues.
3338 */
3339 if (set->nr_maps == 1)
3340 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3341
3342 if (set->ops->map_queues && !is_kdump_kernel()) {
3343 int i;
3344
3345 /*
3346 * transport .map_queues is usually done in the following
3347 * way:
3348 *
3349 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3350 * mask = get_cpu_mask(queue)
3351 * for_each_cpu(cpu, mask)
3352 * set->map[x].mq_map[cpu] = queue;
3353 * }
3354 *
3355 * When we need to remap, the table has to be cleared for
3356 * killing stale mapping since one CPU may not be mapped
3357 * to any hw queue.
3358 */
3359 for (i = 0; i < set->nr_maps; i++)
3360 blk_mq_clear_mq_map(&set->map[i]);
3361
3362 return set->ops->map_queues(set);
3363 } else {
3364 BUG_ON(set->nr_maps > 1);
3365 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3366 }
3367 }
3368
3369 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3370 int cur_nr_hw_queues, int new_nr_hw_queues)
3371 {
3372 struct blk_mq_tags **new_tags;
3373
3374 if (cur_nr_hw_queues >= new_nr_hw_queues)
3375 return 0;
3376
3377 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3378 GFP_KERNEL, set->numa_node);
3379 if (!new_tags)
3380 return -ENOMEM;
3381
3382 if (set->tags)
3383 memcpy(new_tags, set->tags, cur_nr_hw_queues *
3384 sizeof(*set->tags));
3385 kfree(set->tags);
3386 set->tags = new_tags;
3387 set->nr_hw_queues = new_nr_hw_queues;
3388
3389 return 0;
3390 }
3391
3392 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
3393 int new_nr_hw_queues)
3394 {
3395 return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
3396 }
3397
3398 /*
3399 * Alloc a tag set to be associated with one or more request queues.
3400 * May fail with EINVAL for various error conditions. May adjust the
3401 * requested depth down, if it's too large. In that case, the set
3402 * value will be stored in set->queue_depth.
3403 */
3404 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3405 {
3406 int i, ret;
3407
3408 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3409
3410 if (!set->nr_hw_queues)
3411 return -EINVAL;
3412 if (!set->queue_depth)
3413 return -EINVAL;
3414 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3415 return -EINVAL;
3416
3417 if (!set->ops->queue_rq)
3418 return -EINVAL;
3419
3420 if (!set->ops->get_budget ^ !set->ops->put_budget)
3421 return -EINVAL;
3422
3423 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3424 pr_info("blk-mq: reduced tag depth to %u\n",
3425 BLK_MQ_MAX_DEPTH);
3426 set->queue_depth = BLK_MQ_MAX_DEPTH;
3427 }
3428
3429 if (!set->nr_maps)
3430 set->nr_maps = 1;
3431 else if (set->nr_maps > HCTX_MAX_TYPES)
3432 return -EINVAL;
3433
3434 /*
3435 * If a crashdump is active, then we are potentially in a very
3436 * memory constrained environment. Limit us to 1 queue and
3437 * 64 tags to prevent using too much memory.
3438 */
3439 if (is_kdump_kernel()) {
3440 set->nr_hw_queues = 1;
3441 set->nr_maps = 1;
3442 set->queue_depth = min(64U, set->queue_depth);
3443 }
3444 /*
3445 * There is no use for more h/w queues than cpus if we just have
3446 * a single map
3447 */
3448 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3449 set->nr_hw_queues = nr_cpu_ids;
3450
3451 if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
3452 return -ENOMEM;
3453
3454 ret = -ENOMEM;
3455 for (i = 0; i < set->nr_maps; i++) {
3456 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3457 sizeof(set->map[i].mq_map[0]),
3458 GFP_KERNEL, set->numa_node);
3459 if (!set->map[i].mq_map)
3460 goto out_free_mq_map;
3461 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3462 }
3463
3464 ret = blk_mq_update_queue_map(set);
3465 if (ret)
3466 goto out_free_mq_map;
3467
3468 ret = blk_mq_alloc_map_and_requests(set);
3469 if (ret)
3470 goto out_free_mq_map;
3471
3472 if (blk_mq_is_sbitmap_shared(set->flags)) {
3473 atomic_set(&set->active_queues_shared_sbitmap, 0);
3474
3475 if (blk_mq_init_shared_sbitmap(set, set->flags)) {
3476 ret = -ENOMEM;
3477 goto out_free_mq_rq_maps;
3478 }
3479 }
3480
3481 mutex_init(&set->tag_list_lock);
3482 INIT_LIST_HEAD(&set->tag_list);
3483
3484 return 0;
3485
3486 out_free_mq_rq_maps:
3487 for (i = 0; i < set->nr_hw_queues; i++)
3488 blk_mq_free_map_and_requests(set, i);
3489 out_free_mq_map:
3490 for (i = 0; i < set->nr_maps; i++) {
3491 kfree(set->map[i].mq_map);
3492 set->map[i].mq_map = NULL;
3493 }
3494 kfree(set->tags);
3495 set->tags = NULL;
3496 return ret;
3497 }
3498 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3499
3500 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3501 {
3502 int i, j;
3503
3504 for (i = 0; i < set->nr_hw_queues; i++)
3505 blk_mq_free_map_and_requests(set, i);
3506
3507 if (blk_mq_is_sbitmap_shared(set->flags))
3508 blk_mq_exit_shared_sbitmap(set);
3509
3510 for (j = 0; j < set->nr_maps; j++) {
3511 kfree(set->map[j].mq_map);
3512 set->map[j].mq_map = NULL;
3513 }
3514
3515 kfree(set->tags);
3516 set->tags = NULL;
3517 }
3518 EXPORT_SYMBOL(blk_mq_free_tag_set);
3519
3520 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3521 {
3522 struct blk_mq_tag_set *set = q->tag_set;
3523 struct blk_mq_hw_ctx *hctx;
3524 int i, ret;
3525
3526 if (!set)
3527 return -EINVAL;
3528
3529 if (q->nr_requests == nr)
3530 return 0;
3531
3532 blk_mq_freeze_queue(q);
3533 blk_mq_quiesce_queue(q);
3534
3535 ret = 0;
3536 queue_for_each_hw_ctx(q, hctx, i) {
3537 if (!hctx->tags)
3538 continue;
3539 /*
3540 * If we're using an MQ scheduler, just update the scheduler
3541 * queue depth. This is similar to what the old code would do.
3542 */
3543 if (!hctx->sched_tags) {
3544 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3545 false);
3546 if (!ret && blk_mq_is_sbitmap_shared(set->flags))
3547 blk_mq_tag_resize_shared_sbitmap(set, nr);
3548 } else {
3549 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3550 nr, true);
3551 }
3552 if (ret)
3553 break;
3554 if (q->elevator && q->elevator->type->ops.depth_updated)
3555 q->elevator->type->ops.depth_updated(hctx);
3556 }
3557
3558 if (!ret)
3559 q->nr_requests = nr;
3560
3561 blk_mq_unquiesce_queue(q);
3562 blk_mq_unfreeze_queue(q);
3563
3564 return ret;
3565 }
3566
3567 /*
3568 * request_queue and elevator_type pair.
3569 * It is just used by __blk_mq_update_nr_hw_queues to cache
3570 * the elevator_type associated with a request_queue.
3571 */
3572 struct blk_mq_qe_pair {
3573 struct list_head node;
3574 struct request_queue *q;
3575 struct elevator_type *type;
3576 };
3577
3578 /*
3579 * Cache the elevator_type in qe pair list and switch the
3580 * io scheduler to 'none'
3581 */
3582 static bool blk_mq_elv_switch_none(struct list_head *head,
3583 struct request_queue *q)
3584 {
3585 struct blk_mq_qe_pair *qe;
3586
3587 if (!q->elevator)
3588 return true;
3589
3590 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3591 if (!qe)
3592 return false;
3593
3594 INIT_LIST_HEAD(&qe->node);
3595 qe->q = q;
3596 qe->type = q->elevator->type;
3597 list_add(&qe->node, head);
3598
3599 mutex_lock(&q->sysfs_lock);
3600 /*
3601 * After elevator_switch_mq, the previous elevator_queue will be
3602 * released by elevator_release. The reference of the io scheduler
3603 * module get by elevator_get will also be put. So we need to get
3604 * a reference of the io scheduler module here to prevent it to be
3605 * removed.
3606 */
3607 __module_get(qe->type->elevator_owner);
3608 elevator_switch_mq(q, NULL);
3609 mutex_unlock(&q->sysfs_lock);
3610
3611 return true;
3612 }
3613
3614 static void blk_mq_elv_switch_back(struct list_head *head,
3615 struct request_queue *q)
3616 {
3617 struct blk_mq_qe_pair *qe;
3618 struct elevator_type *t = NULL;
3619
3620 list_for_each_entry(qe, head, node)
3621 if (qe->q == q) {
3622 t = qe->type;
3623 break;
3624 }
3625
3626 if (!t)
3627 return;
3628
3629 list_del(&qe->node);
3630 kfree(qe);
3631
3632 mutex_lock(&q->sysfs_lock);
3633 elevator_switch_mq(q, t);
3634 mutex_unlock(&q->sysfs_lock);
3635 }
3636
3637 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3638 int nr_hw_queues)
3639 {
3640 struct request_queue *q;
3641 LIST_HEAD(head);
3642 int prev_nr_hw_queues;
3643
3644 lockdep_assert_held(&set->tag_list_lock);
3645
3646 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3647 nr_hw_queues = nr_cpu_ids;
3648 if (nr_hw_queues < 1)
3649 return;
3650 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3651 return;
3652
3653 list_for_each_entry(q, &set->tag_list, tag_set_list)
3654 blk_mq_freeze_queue(q);
3655 /*
3656 * Switch IO scheduler to 'none', cleaning up the data associated
3657 * with the previous scheduler. We will switch back once we are done
3658 * updating the new sw to hw queue mappings.
3659 */
3660 list_for_each_entry(q, &set->tag_list, tag_set_list)
3661 if (!blk_mq_elv_switch_none(&head, q))
3662 goto switch_back;
3663
3664 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3665 blk_mq_debugfs_unregister_hctxs(q);
3666 blk_mq_sysfs_unregister(q);
3667 }
3668
3669 prev_nr_hw_queues = set->nr_hw_queues;
3670 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3671 0)
3672 goto reregister;
3673
3674 set->nr_hw_queues = nr_hw_queues;
3675 fallback:
3676 blk_mq_update_queue_map(set);
3677 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3678 blk_mq_realloc_hw_ctxs(set, q);
3679 if (q->nr_hw_queues != set->nr_hw_queues) {
3680 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3681 nr_hw_queues, prev_nr_hw_queues);
3682 set->nr_hw_queues = prev_nr_hw_queues;
3683 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3684 goto fallback;
3685 }
3686 blk_mq_map_swqueue(q);
3687 }
3688
3689 reregister:
3690 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3691 blk_mq_sysfs_register(q);
3692 blk_mq_debugfs_register_hctxs(q);
3693 }
3694
3695 switch_back:
3696 list_for_each_entry(q, &set->tag_list, tag_set_list)
3697 blk_mq_elv_switch_back(&head, q);
3698
3699 list_for_each_entry(q, &set->tag_list, tag_set_list)
3700 blk_mq_unfreeze_queue(q);
3701 }
3702
3703 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3704 {
3705 mutex_lock(&set->tag_list_lock);
3706 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3707 mutex_unlock(&set->tag_list_lock);
3708 }
3709 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3710
3711 /* Enable polling stats and return whether they were already enabled. */
3712 static bool blk_poll_stats_enable(struct request_queue *q)
3713 {
3714 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3715 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3716 return true;
3717 blk_stat_add_callback(q, q->poll_cb);
3718 return false;
3719 }
3720
3721 static void blk_mq_poll_stats_start(struct request_queue *q)
3722 {
3723 /*
3724 * We don't arm the callback if polling stats are not enabled or the
3725 * callback is already active.
3726 */
3727 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3728 blk_stat_is_active(q->poll_cb))
3729 return;
3730
3731 blk_stat_activate_msecs(q->poll_cb, 100);
3732 }
3733
3734 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3735 {
3736 struct request_queue *q = cb->data;
3737 int bucket;
3738
3739 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3740 if (cb->stat[bucket].nr_samples)
3741 q->poll_stat[bucket] = cb->stat[bucket];
3742 }
3743 }
3744
3745 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3746 struct request *rq)
3747 {
3748 unsigned long ret = 0;
3749 int bucket;
3750
3751 /*
3752 * If stats collection isn't on, don't sleep but turn it on for
3753 * future users
3754 */
3755 if (!blk_poll_stats_enable(q))
3756 return 0;
3757
3758 /*
3759 * As an optimistic guess, use half of the mean service time
3760 * for this type of request. We can (and should) make this smarter.
3761 * For instance, if the completion latencies are tight, we can
3762 * get closer than just half the mean. This is especially
3763 * important on devices where the completion latencies are longer
3764 * than ~10 usec. We do use the stats for the relevant IO size
3765 * if available which does lead to better estimates.
3766 */
3767 bucket = blk_mq_poll_stats_bkt(rq);
3768 if (bucket < 0)
3769 return ret;
3770
3771 if (q->poll_stat[bucket].nr_samples)
3772 ret = (q->poll_stat[bucket].mean + 1) / 2;
3773
3774 return ret;
3775 }
3776
3777 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3778 struct request *rq)
3779 {
3780 struct hrtimer_sleeper hs;
3781 enum hrtimer_mode mode;
3782 unsigned int nsecs;
3783 ktime_t kt;
3784
3785 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3786 return false;
3787
3788 /*
3789 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3790 *
3791 * 0: use half of prev avg
3792 * >0: use this specific value
3793 */
3794 if (q->poll_nsec > 0)
3795 nsecs = q->poll_nsec;
3796 else
3797 nsecs = blk_mq_poll_nsecs(q, rq);
3798
3799 if (!nsecs)
3800 return false;
3801
3802 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3803
3804 /*
3805 * This will be replaced with the stats tracking code, using
3806 * 'avg_completion_time / 2' as the pre-sleep target.
3807 */
3808 kt = nsecs;
3809
3810 mode = HRTIMER_MODE_REL;
3811 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3812 hrtimer_set_expires(&hs.timer, kt);
3813
3814 do {
3815 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3816 break;
3817 set_current_state(TASK_UNINTERRUPTIBLE);
3818 hrtimer_sleeper_start_expires(&hs, mode);
3819 if (hs.task)
3820 io_schedule();
3821 hrtimer_cancel(&hs.timer);
3822 mode = HRTIMER_MODE_ABS;
3823 } while (hs.task && !signal_pending(current));
3824
3825 __set_current_state(TASK_RUNNING);
3826 destroy_hrtimer_on_stack(&hs.timer);
3827 return true;
3828 }
3829
3830 static bool blk_mq_poll_hybrid(struct request_queue *q,
3831 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3832 {
3833 struct request *rq;
3834
3835 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3836 return false;
3837
3838 if (!blk_qc_t_is_internal(cookie))
3839 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3840 else {
3841 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3842 /*
3843 * With scheduling, if the request has completed, we'll
3844 * get a NULL return here, as we clear the sched tag when
3845 * that happens. The request still remains valid, like always,
3846 * so we should be safe with just the NULL check.
3847 */
3848 if (!rq)
3849 return false;
3850 }
3851
3852 return blk_mq_poll_hybrid_sleep(q, rq);
3853 }
3854
3855 /**
3856 * blk_poll - poll for IO completions
3857 * @q: the queue
3858 * @cookie: cookie passed back at IO submission time
3859 * @spin: whether to spin for completions
3860 *
3861 * Description:
3862 * Poll for completions on the passed in queue. Returns number of
3863 * completed entries found. If @spin is true, then blk_poll will continue
3864 * looping until at least one completion is found, unless the task is
3865 * otherwise marked running (or we need to reschedule).
3866 */
3867 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3868 {
3869 struct blk_mq_hw_ctx *hctx;
3870 long state;
3871
3872 if (!blk_qc_t_valid(cookie) ||
3873 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3874 return 0;
3875
3876 if (current->plug)
3877 blk_flush_plug_list(current->plug, false);
3878
3879 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3880
3881 /*
3882 * If we sleep, have the caller restart the poll loop to reset
3883 * the state. Like for the other success return cases, the
3884 * caller is responsible for checking if the IO completed. If
3885 * the IO isn't complete, we'll get called again and will go
3886 * straight to the busy poll loop. If specified not to spin,
3887 * we also should not sleep.
3888 */
3889 if (spin && blk_mq_poll_hybrid(q, hctx, cookie))
3890 return 1;
3891
3892 hctx->poll_considered++;
3893
3894 state = current->state;
3895 do {
3896 int ret;
3897
3898 hctx->poll_invoked++;
3899
3900 ret = q->mq_ops->poll(hctx);
3901 if (ret > 0) {
3902 hctx->poll_success++;
3903 __set_current_state(TASK_RUNNING);
3904 return ret;
3905 }
3906
3907 if (signal_pending_state(state, current))
3908 __set_current_state(TASK_RUNNING);
3909
3910 if (current->state == TASK_RUNNING)
3911 return 1;
3912 if (ret < 0 || !spin)
3913 break;
3914 cpu_relax();
3915 } while (!need_resched());
3916
3917 __set_current_state(TASK_RUNNING);
3918 return 0;
3919 }
3920 EXPORT_SYMBOL_GPL(blk_poll);
3921
3922 unsigned int blk_mq_rq_cpu(struct request *rq)
3923 {
3924 return rq->mq_ctx->cpu;
3925 }
3926 EXPORT_SYMBOL(blk_mq_rq_cpu);
3927
3928 static int __init blk_mq_init(void)
3929 {
3930 int i;
3931
3932 for_each_possible_cpu(i)
3933 init_llist_head(&per_cpu(blk_cpu_done, i));
3934 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
3935
3936 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
3937 "block/softirq:dead", NULL,
3938 blk_softirq_cpu_dead);
3939 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3940 blk_mq_hctx_notify_dead);
3941 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
3942 blk_mq_hctx_notify_online,
3943 blk_mq_hctx_notify_offline);
3944 return 0;
3945 }
3946 subsys_initcall(blk_mq_init);