]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-mq.c
block: introduce GENHD_FL_HIDDEN
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static void blk_mq_poll_stats_start(struct request_queue *q);
41 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
42
43 static int blk_mq_poll_stats_bkt(const struct request *rq)
44 {
45 int ddir, bytes, bucket;
46
47 ddir = rq_data_dir(rq);
48 bytes = blk_rq_bytes(rq);
49
50 bucket = ddir + 2*(ilog2(bytes) - 9);
51
52 if (bucket < 0)
53 return -1;
54 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
55 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
56
57 return bucket;
58 }
59
60 /*
61 * Check if any of the ctx's have pending work in this hardware queue
62 */
63 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
64 {
65 return sbitmap_any_bit_set(&hctx->ctx_map) ||
66 !list_empty_careful(&hctx->dispatch) ||
67 blk_mq_sched_has_work(hctx);
68 }
69
70 /*
71 * Mark this ctx as having pending work in this hardware queue
72 */
73 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
74 struct blk_mq_ctx *ctx)
75 {
76 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
77 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
78 }
79
80 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
81 struct blk_mq_ctx *ctx)
82 {
83 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
84 }
85
86 struct mq_inflight {
87 struct hd_struct *part;
88 unsigned int *inflight;
89 };
90
91 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
92 struct request *rq, void *priv,
93 bool reserved)
94 {
95 struct mq_inflight *mi = priv;
96
97 if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
98 !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
99 /*
100 * index[0] counts the specific partition that was asked
101 * for. index[1] counts the ones that are active on the
102 * whole device, so increment that if mi->part is indeed
103 * a partition, and not a whole device.
104 */
105 if (rq->part == mi->part)
106 mi->inflight[0]++;
107 if (mi->part->partno)
108 mi->inflight[1]++;
109 }
110 }
111
112 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
113 unsigned int inflight[2])
114 {
115 struct mq_inflight mi = { .part = part, .inflight = inflight, };
116
117 inflight[0] = inflight[1] = 0;
118 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119 }
120
121 void blk_freeze_queue_start(struct request_queue *q)
122 {
123 int freeze_depth;
124
125 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
126 if (freeze_depth == 1) {
127 percpu_ref_kill(&q->q_usage_counter);
128 blk_mq_run_hw_queues(q, false);
129 }
130 }
131 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
132
133 void blk_mq_freeze_queue_wait(struct request_queue *q)
134 {
135 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
136 }
137 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
138
139 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
140 unsigned long timeout)
141 {
142 return wait_event_timeout(q->mq_freeze_wq,
143 percpu_ref_is_zero(&q->q_usage_counter),
144 timeout);
145 }
146 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
147
148 /*
149 * Guarantee no request is in use, so we can change any data structure of
150 * the queue afterward.
151 */
152 void blk_freeze_queue(struct request_queue *q)
153 {
154 /*
155 * In the !blk_mq case we are only calling this to kill the
156 * q_usage_counter, otherwise this increases the freeze depth
157 * and waits for it to return to zero. For this reason there is
158 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
159 * exported to drivers as the only user for unfreeze is blk_mq.
160 */
161 blk_freeze_queue_start(q);
162 blk_mq_freeze_queue_wait(q);
163 }
164
165 void blk_mq_freeze_queue(struct request_queue *q)
166 {
167 /*
168 * ...just an alias to keep freeze and unfreeze actions balanced
169 * in the blk_mq_* namespace
170 */
171 blk_freeze_queue(q);
172 }
173 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
174
175 void blk_mq_unfreeze_queue(struct request_queue *q)
176 {
177 int freeze_depth;
178
179 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
180 WARN_ON_ONCE(freeze_depth < 0);
181 if (!freeze_depth) {
182 percpu_ref_reinit(&q->q_usage_counter);
183 wake_up_all(&q->mq_freeze_wq);
184 }
185 }
186 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
187
188 /*
189 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
190 * mpt3sas driver such that this function can be removed.
191 */
192 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
193 {
194 unsigned long flags;
195
196 spin_lock_irqsave(q->queue_lock, flags);
197 queue_flag_set(QUEUE_FLAG_QUIESCED, q);
198 spin_unlock_irqrestore(q->queue_lock, flags);
199 }
200 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
201
202 /**
203 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
204 * @q: request queue.
205 *
206 * Note: this function does not prevent that the struct request end_io()
207 * callback function is invoked. Once this function is returned, we make
208 * sure no dispatch can happen until the queue is unquiesced via
209 * blk_mq_unquiesce_queue().
210 */
211 void blk_mq_quiesce_queue(struct request_queue *q)
212 {
213 struct blk_mq_hw_ctx *hctx;
214 unsigned int i;
215 bool rcu = false;
216
217 blk_mq_quiesce_queue_nowait(q);
218
219 queue_for_each_hw_ctx(q, hctx, i) {
220 if (hctx->flags & BLK_MQ_F_BLOCKING)
221 synchronize_srcu(hctx->queue_rq_srcu);
222 else
223 rcu = true;
224 }
225 if (rcu)
226 synchronize_rcu();
227 }
228 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
229
230 /*
231 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
232 * @q: request queue.
233 *
234 * This function recovers queue into the state before quiescing
235 * which is done by blk_mq_quiesce_queue.
236 */
237 void blk_mq_unquiesce_queue(struct request_queue *q)
238 {
239 unsigned long flags;
240
241 spin_lock_irqsave(q->queue_lock, flags);
242 queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
243 spin_unlock_irqrestore(q->queue_lock, flags);
244
245 /* dispatch requests which are inserted during quiescing */
246 blk_mq_run_hw_queues(q, true);
247 }
248 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
249
250 void blk_mq_wake_waiters(struct request_queue *q)
251 {
252 struct blk_mq_hw_ctx *hctx;
253 unsigned int i;
254
255 queue_for_each_hw_ctx(q, hctx, i)
256 if (blk_mq_hw_queue_mapped(hctx))
257 blk_mq_tag_wakeup_all(hctx->tags, true);
258
259 /*
260 * If we are called because the queue has now been marked as
261 * dying, we need to ensure that processes currently waiting on
262 * the queue are notified as well.
263 */
264 wake_up_all(&q->mq_freeze_wq);
265 }
266
267 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
268 {
269 return blk_mq_has_free_tags(hctx->tags);
270 }
271 EXPORT_SYMBOL(blk_mq_can_queue);
272
273 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
274 unsigned int tag, unsigned int op)
275 {
276 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
277 struct request *rq = tags->static_rqs[tag];
278
279 rq->rq_flags = 0;
280
281 if (data->flags & BLK_MQ_REQ_INTERNAL) {
282 rq->tag = -1;
283 rq->internal_tag = tag;
284 } else {
285 if (blk_mq_tag_busy(data->hctx)) {
286 rq->rq_flags = RQF_MQ_INFLIGHT;
287 atomic_inc(&data->hctx->nr_active);
288 }
289 rq->tag = tag;
290 rq->internal_tag = -1;
291 data->hctx->tags->rqs[rq->tag] = rq;
292 }
293
294 INIT_LIST_HEAD(&rq->queuelist);
295 /* csd/requeue_work/fifo_time is initialized before use */
296 rq->q = data->q;
297 rq->mq_ctx = data->ctx;
298 rq->cmd_flags = op;
299 if (blk_queue_io_stat(data->q))
300 rq->rq_flags |= RQF_IO_STAT;
301 /* do not touch atomic flags, it needs atomic ops against the timer */
302 rq->cpu = -1;
303 INIT_HLIST_NODE(&rq->hash);
304 RB_CLEAR_NODE(&rq->rb_node);
305 rq->rq_disk = NULL;
306 rq->part = NULL;
307 rq->start_time = jiffies;
308 #ifdef CONFIG_BLK_CGROUP
309 rq->rl = NULL;
310 set_start_time_ns(rq);
311 rq->io_start_time_ns = 0;
312 #endif
313 rq->nr_phys_segments = 0;
314 #if defined(CONFIG_BLK_DEV_INTEGRITY)
315 rq->nr_integrity_segments = 0;
316 #endif
317 rq->special = NULL;
318 /* tag was already set */
319 rq->extra_len = 0;
320
321 INIT_LIST_HEAD(&rq->timeout_list);
322 rq->timeout = 0;
323
324 rq->end_io = NULL;
325 rq->end_io_data = NULL;
326 rq->next_rq = NULL;
327
328 data->ctx->rq_dispatched[op_is_sync(op)]++;
329 return rq;
330 }
331
332 static struct request *blk_mq_get_request(struct request_queue *q,
333 struct bio *bio, unsigned int op,
334 struct blk_mq_alloc_data *data)
335 {
336 struct elevator_queue *e = q->elevator;
337 struct request *rq;
338 unsigned int tag;
339 struct blk_mq_ctx *local_ctx = NULL;
340
341 blk_queue_enter_live(q);
342 data->q = q;
343 if (likely(!data->ctx))
344 data->ctx = local_ctx = blk_mq_get_ctx(q);
345 if (likely(!data->hctx))
346 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
347 if (op & REQ_NOWAIT)
348 data->flags |= BLK_MQ_REQ_NOWAIT;
349
350 if (e) {
351 data->flags |= BLK_MQ_REQ_INTERNAL;
352
353 /*
354 * Flush requests are special and go directly to the
355 * dispatch list.
356 */
357 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
358 e->type->ops.mq.limit_depth(op, data);
359 }
360
361 tag = blk_mq_get_tag(data);
362 if (tag == BLK_MQ_TAG_FAIL) {
363 if (local_ctx) {
364 blk_mq_put_ctx(local_ctx);
365 data->ctx = NULL;
366 }
367 blk_queue_exit(q);
368 return NULL;
369 }
370
371 rq = blk_mq_rq_ctx_init(data, tag, op);
372 if (!op_is_flush(op)) {
373 rq->elv.icq = NULL;
374 if (e && e->type->ops.mq.prepare_request) {
375 if (e->type->icq_cache && rq_ioc(bio))
376 blk_mq_sched_assign_ioc(rq, bio);
377
378 e->type->ops.mq.prepare_request(rq, bio);
379 rq->rq_flags |= RQF_ELVPRIV;
380 }
381 }
382 data->hctx->queued++;
383 return rq;
384 }
385
386 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
387 unsigned int flags)
388 {
389 struct blk_mq_alloc_data alloc_data = { .flags = flags };
390 struct request *rq;
391 int ret;
392
393 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
394 if (ret)
395 return ERR_PTR(ret);
396
397 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
398 blk_queue_exit(q);
399
400 if (!rq)
401 return ERR_PTR(-EWOULDBLOCK);
402
403 blk_mq_put_ctx(alloc_data.ctx);
404
405 rq->__data_len = 0;
406 rq->__sector = (sector_t) -1;
407 rq->bio = rq->biotail = NULL;
408 return rq;
409 }
410 EXPORT_SYMBOL(blk_mq_alloc_request);
411
412 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
413 unsigned int op, unsigned int flags, unsigned int hctx_idx)
414 {
415 struct blk_mq_alloc_data alloc_data = { .flags = flags };
416 struct request *rq;
417 unsigned int cpu;
418 int ret;
419
420 /*
421 * If the tag allocator sleeps we could get an allocation for a
422 * different hardware context. No need to complicate the low level
423 * allocator for this for the rare use case of a command tied to
424 * a specific queue.
425 */
426 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
427 return ERR_PTR(-EINVAL);
428
429 if (hctx_idx >= q->nr_hw_queues)
430 return ERR_PTR(-EIO);
431
432 ret = blk_queue_enter(q, true);
433 if (ret)
434 return ERR_PTR(ret);
435
436 /*
437 * Check if the hardware context is actually mapped to anything.
438 * If not tell the caller that it should skip this queue.
439 */
440 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
441 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
442 blk_queue_exit(q);
443 return ERR_PTR(-EXDEV);
444 }
445 cpu = cpumask_first(alloc_data.hctx->cpumask);
446 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
447
448 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
449 blk_queue_exit(q);
450
451 if (!rq)
452 return ERR_PTR(-EWOULDBLOCK);
453
454 return rq;
455 }
456 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
457
458 void blk_mq_free_request(struct request *rq)
459 {
460 struct request_queue *q = rq->q;
461 struct elevator_queue *e = q->elevator;
462 struct blk_mq_ctx *ctx = rq->mq_ctx;
463 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
464 const int sched_tag = rq->internal_tag;
465
466 if (rq->rq_flags & RQF_ELVPRIV) {
467 if (e && e->type->ops.mq.finish_request)
468 e->type->ops.mq.finish_request(rq);
469 if (rq->elv.icq) {
470 put_io_context(rq->elv.icq->ioc);
471 rq->elv.icq = NULL;
472 }
473 }
474
475 ctx->rq_completed[rq_is_sync(rq)]++;
476 if (rq->rq_flags & RQF_MQ_INFLIGHT)
477 atomic_dec(&hctx->nr_active);
478
479 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
480 laptop_io_completion(q->backing_dev_info);
481
482 wbt_done(q->rq_wb, &rq->issue_stat);
483
484 if (blk_rq_rl(rq))
485 blk_put_rl(blk_rq_rl(rq));
486
487 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
488 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
489 if (rq->tag != -1)
490 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
491 if (sched_tag != -1)
492 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
493 blk_mq_sched_restart(hctx);
494 blk_queue_exit(q);
495 }
496 EXPORT_SYMBOL_GPL(blk_mq_free_request);
497
498 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
499 {
500 blk_account_io_done(rq);
501
502 if (rq->end_io) {
503 wbt_done(rq->q->rq_wb, &rq->issue_stat);
504 rq->end_io(rq, error);
505 } else {
506 if (unlikely(blk_bidi_rq(rq)))
507 blk_mq_free_request(rq->next_rq);
508 blk_mq_free_request(rq);
509 }
510 }
511 EXPORT_SYMBOL(__blk_mq_end_request);
512
513 void blk_mq_end_request(struct request *rq, blk_status_t error)
514 {
515 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
516 BUG();
517 __blk_mq_end_request(rq, error);
518 }
519 EXPORT_SYMBOL(blk_mq_end_request);
520
521 static void __blk_mq_complete_request_remote(void *data)
522 {
523 struct request *rq = data;
524
525 rq->q->softirq_done_fn(rq);
526 }
527
528 static void __blk_mq_complete_request(struct request *rq)
529 {
530 struct blk_mq_ctx *ctx = rq->mq_ctx;
531 bool shared = false;
532 int cpu;
533
534 if (rq->internal_tag != -1)
535 blk_mq_sched_completed_request(rq);
536 if (rq->rq_flags & RQF_STATS) {
537 blk_mq_poll_stats_start(rq->q);
538 blk_stat_add(rq);
539 }
540
541 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
542 rq->q->softirq_done_fn(rq);
543 return;
544 }
545
546 cpu = get_cpu();
547 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
548 shared = cpus_share_cache(cpu, ctx->cpu);
549
550 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
551 rq->csd.func = __blk_mq_complete_request_remote;
552 rq->csd.info = rq;
553 rq->csd.flags = 0;
554 smp_call_function_single_async(ctx->cpu, &rq->csd);
555 } else {
556 rq->q->softirq_done_fn(rq);
557 }
558 put_cpu();
559 }
560
561 /**
562 * blk_mq_complete_request - end I/O on a request
563 * @rq: the request being processed
564 *
565 * Description:
566 * Ends all I/O on a request. It does not handle partial completions.
567 * The actual completion happens out-of-order, through a IPI handler.
568 **/
569 void blk_mq_complete_request(struct request *rq)
570 {
571 struct request_queue *q = rq->q;
572
573 if (unlikely(blk_should_fake_timeout(q)))
574 return;
575 if (!blk_mark_rq_complete(rq))
576 __blk_mq_complete_request(rq);
577 }
578 EXPORT_SYMBOL(blk_mq_complete_request);
579
580 int blk_mq_request_started(struct request *rq)
581 {
582 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
583 }
584 EXPORT_SYMBOL_GPL(blk_mq_request_started);
585
586 void blk_mq_start_request(struct request *rq)
587 {
588 struct request_queue *q = rq->q;
589
590 blk_mq_sched_started_request(rq);
591
592 trace_block_rq_issue(q, rq);
593
594 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
595 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
596 rq->rq_flags |= RQF_STATS;
597 wbt_issue(q->rq_wb, &rq->issue_stat);
598 }
599
600 blk_add_timer(rq);
601
602 WARN_ON_ONCE(test_bit(REQ_ATOM_STARTED, &rq->atomic_flags));
603
604 /*
605 * Mark us as started and clear complete. Complete might have been
606 * set if requeue raced with timeout, which then marked it as
607 * complete. So be sure to clear complete again when we start
608 * the request, otherwise we'll ignore the completion event.
609 *
610 * Ensure that ->deadline is visible before we set STARTED, such that
611 * blk_mq_check_expired() is guaranteed to observe our ->deadline when
612 * it observes STARTED.
613 */
614 smp_wmb();
615 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
616 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
617 /*
618 * Coherence order guarantees these consecutive stores to a
619 * single variable propagate in the specified order. Thus the
620 * clear_bit() is ordered _after_ the set bit. See
621 * blk_mq_check_expired().
622 *
623 * (the bits must be part of the same byte for this to be
624 * true).
625 */
626 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
627 }
628
629 if (q->dma_drain_size && blk_rq_bytes(rq)) {
630 /*
631 * Make sure space for the drain appears. We know we can do
632 * this because max_hw_segments has been adjusted to be one
633 * fewer than the device can handle.
634 */
635 rq->nr_phys_segments++;
636 }
637 }
638 EXPORT_SYMBOL(blk_mq_start_request);
639
640 /*
641 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
642 * flag isn't set yet, so there may be race with timeout handler,
643 * but given rq->deadline is just set in .queue_rq() under
644 * this situation, the race won't be possible in reality because
645 * rq->timeout should be set as big enough to cover the window
646 * between blk_mq_start_request() called from .queue_rq() and
647 * clearing REQ_ATOM_STARTED here.
648 */
649 static void __blk_mq_requeue_request(struct request *rq)
650 {
651 struct request_queue *q = rq->q;
652
653 trace_block_rq_requeue(q, rq);
654 wbt_requeue(q->rq_wb, &rq->issue_stat);
655 blk_mq_sched_requeue_request(rq);
656
657 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
658 if (q->dma_drain_size && blk_rq_bytes(rq))
659 rq->nr_phys_segments--;
660 }
661 }
662
663 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
664 {
665 __blk_mq_requeue_request(rq);
666
667 BUG_ON(blk_queued_rq(rq));
668 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
669 }
670 EXPORT_SYMBOL(blk_mq_requeue_request);
671
672 static void blk_mq_requeue_work(struct work_struct *work)
673 {
674 struct request_queue *q =
675 container_of(work, struct request_queue, requeue_work.work);
676 LIST_HEAD(rq_list);
677 struct request *rq, *next;
678
679 spin_lock_irq(&q->requeue_lock);
680 list_splice_init(&q->requeue_list, &rq_list);
681 spin_unlock_irq(&q->requeue_lock);
682
683 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
684 if (!(rq->rq_flags & RQF_SOFTBARRIER))
685 continue;
686
687 rq->rq_flags &= ~RQF_SOFTBARRIER;
688 list_del_init(&rq->queuelist);
689 blk_mq_sched_insert_request(rq, true, false, false, true);
690 }
691
692 while (!list_empty(&rq_list)) {
693 rq = list_entry(rq_list.next, struct request, queuelist);
694 list_del_init(&rq->queuelist);
695 blk_mq_sched_insert_request(rq, false, false, false, true);
696 }
697
698 blk_mq_run_hw_queues(q, false);
699 }
700
701 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
702 bool kick_requeue_list)
703 {
704 struct request_queue *q = rq->q;
705 unsigned long flags;
706
707 /*
708 * We abuse this flag that is otherwise used by the I/O scheduler to
709 * request head insertation from the workqueue.
710 */
711 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
712
713 spin_lock_irqsave(&q->requeue_lock, flags);
714 if (at_head) {
715 rq->rq_flags |= RQF_SOFTBARRIER;
716 list_add(&rq->queuelist, &q->requeue_list);
717 } else {
718 list_add_tail(&rq->queuelist, &q->requeue_list);
719 }
720 spin_unlock_irqrestore(&q->requeue_lock, flags);
721
722 if (kick_requeue_list)
723 blk_mq_kick_requeue_list(q);
724 }
725 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
726
727 void blk_mq_kick_requeue_list(struct request_queue *q)
728 {
729 kblockd_schedule_delayed_work(&q->requeue_work, 0);
730 }
731 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
732
733 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
734 unsigned long msecs)
735 {
736 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
737 msecs_to_jiffies(msecs));
738 }
739 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
740
741 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
742 {
743 if (tag < tags->nr_tags) {
744 prefetch(tags->rqs[tag]);
745 return tags->rqs[tag];
746 }
747
748 return NULL;
749 }
750 EXPORT_SYMBOL(blk_mq_tag_to_rq);
751
752 struct blk_mq_timeout_data {
753 unsigned long next;
754 unsigned int next_set;
755 };
756
757 void blk_mq_rq_timed_out(struct request *req, bool reserved)
758 {
759 const struct blk_mq_ops *ops = req->q->mq_ops;
760 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
761
762 /*
763 * We know that complete is set at this point. If STARTED isn't set
764 * anymore, then the request isn't active and the "timeout" should
765 * just be ignored. This can happen due to the bitflag ordering.
766 * Timeout first checks if STARTED is set, and if it is, assumes
767 * the request is active. But if we race with completion, then
768 * both flags will get cleared. So check here again, and ignore
769 * a timeout event with a request that isn't active.
770 */
771 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
772 return;
773
774 if (ops->timeout)
775 ret = ops->timeout(req, reserved);
776
777 switch (ret) {
778 case BLK_EH_HANDLED:
779 __blk_mq_complete_request(req);
780 break;
781 case BLK_EH_RESET_TIMER:
782 blk_add_timer(req);
783 blk_clear_rq_complete(req);
784 break;
785 case BLK_EH_NOT_HANDLED:
786 break;
787 default:
788 printk(KERN_ERR "block: bad eh return: %d\n", ret);
789 break;
790 }
791 }
792
793 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
794 struct request *rq, void *priv, bool reserved)
795 {
796 struct blk_mq_timeout_data *data = priv;
797 unsigned long deadline;
798
799 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
800 return;
801
802 /*
803 * Ensures that if we see STARTED we must also see our
804 * up-to-date deadline, see blk_mq_start_request().
805 */
806 smp_rmb();
807
808 deadline = READ_ONCE(rq->deadline);
809
810 /*
811 * The rq being checked may have been freed and reallocated
812 * out already here, we avoid this race by checking rq->deadline
813 * and REQ_ATOM_COMPLETE flag together:
814 *
815 * - if rq->deadline is observed as new value because of
816 * reusing, the rq won't be timed out because of timing.
817 * - if rq->deadline is observed as previous value,
818 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
819 * because we put a barrier between setting rq->deadline
820 * and clearing the flag in blk_mq_start_request(), so
821 * this rq won't be timed out too.
822 */
823 if (time_after_eq(jiffies, deadline)) {
824 if (!blk_mark_rq_complete(rq)) {
825 /*
826 * Again coherence order ensures that consecutive reads
827 * from the same variable must be in that order. This
828 * ensures that if we see COMPLETE clear, we must then
829 * see STARTED set and we'll ignore this timeout.
830 *
831 * (There's also the MB implied by the test_and_clear())
832 */
833 blk_mq_rq_timed_out(rq, reserved);
834 }
835 } else if (!data->next_set || time_after(data->next, deadline)) {
836 data->next = deadline;
837 data->next_set = 1;
838 }
839 }
840
841 static void blk_mq_timeout_work(struct work_struct *work)
842 {
843 struct request_queue *q =
844 container_of(work, struct request_queue, timeout_work);
845 struct blk_mq_timeout_data data = {
846 .next = 0,
847 .next_set = 0,
848 };
849 int i;
850
851 /* A deadlock might occur if a request is stuck requiring a
852 * timeout at the same time a queue freeze is waiting
853 * completion, since the timeout code would not be able to
854 * acquire the queue reference here.
855 *
856 * That's why we don't use blk_queue_enter here; instead, we use
857 * percpu_ref_tryget directly, because we need to be able to
858 * obtain a reference even in the short window between the queue
859 * starting to freeze, by dropping the first reference in
860 * blk_freeze_queue_start, and the moment the last request is
861 * consumed, marked by the instant q_usage_counter reaches
862 * zero.
863 */
864 if (!percpu_ref_tryget(&q->q_usage_counter))
865 return;
866
867 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
868
869 if (data.next_set) {
870 data.next = blk_rq_timeout(round_jiffies_up(data.next));
871 mod_timer(&q->timeout, data.next);
872 } else {
873 struct blk_mq_hw_ctx *hctx;
874
875 queue_for_each_hw_ctx(q, hctx, i) {
876 /* the hctx may be unmapped, so check it here */
877 if (blk_mq_hw_queue_mapped(hctx))
878 blk_mq_tag_idle(hctx);
879 }
880 }
881 blk_queue_exit(q);
882 }
883
884 struct flush_busy_ctx_data {
885 struct blk_mq_hw_ctx *hctx;
886 struct list_head *list;
887 };
888
889 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
890 {
891 struct flush_busy_ctx_data *flush_data = data;
892 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
893 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
894
895 sbitmap_clear_bit(sb, bitnr);
896 spin_lock(&ctx->lock);
897 list_splice_tail_init(&ctx->rq_list, flush_data->list);
898 spin_unlock(&ctx->lock);
899 return true;
900 }
901
902 /*
903 * Process software queues that have been marked busy, splicing them
904 * to the for-dispatch
905 */
906 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
907 {
908 struct flush_busy_ctx_data data = {
909 .hctx = hctx,
910 .list = list,
911 };
912
913 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
914 }
915 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
916
917 struct dispatch_rq_data {
918 struct blk_mq_hw_ctx *hctx;
919 struct request *rq;
920 };
921
922 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
923 void *data)
924 {
925 struct dispatch_rq_data *dispatch_data = data;
926 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
927 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
928
929 spin_lock(&ctx->lock);
930 if (unlikely(!list_empty(&ctx->rq_list))) {
931 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
932 list_del_init(&dispatch_data->rq->queuelist);
933 if (list_empty(&ctx->rq_list))
934 sbitmap_clear_bit(sb, bitnr);
935 }
936 spin_unlock(&ctx->lock);
937
938 return !dispatch_data->rq;
939 }
940
941 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
942 struct blk_mq_ctx *start)
943 {
944 unsigned off = start ? start->index_hw : 0;
945 struct dispatch_rq_data data = {
946 .hctx = hctx,
947 .rq = NULL,
948 };
949
950 __sbitmap_for_each_set(&hctx->ctx_map, off,
951 dispatch_rq_from_ctx, &data);
952
953 return data.rq;
954 }
955
956 static inline unsigned int queued_to_index(unsigned int queued)
957 {
958 if (!queued)
959 return 0;
960
961 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
962 }
963
964 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
965 bool wait)
966 {
967 struct blk_mq_alloc_data data = {
968 .q = rq->q,
969 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
970 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
971 };
972
973 might_sleep_if(wait);
974
975 if (rq->tag != -1)
976 goto done;
977
978 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
979 data.flags |= BLK_MQ_REQ_RESERVED;
980
981 rq->tag = blk_mq_get_tag(&data);
982 if (rq->tag >= 0) {
983 if (blk_mq_tag_busy(data.hctx)) {
984 rq->rq_flags |= RQF_MQ_INFLIGHT;
985 atomic_inc(&data.hctx->nr_active);
986 }
987 data.hctx->tags->rqs[rq->tag] = rq;
988 }
989
990 done:
991 if (hctx)
992 *hctx = data.hctx;
993 return rq->tag != -1;
994 }
995
996 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
997 struct request *rq)
998 {
999 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
1000 rq->tag = -1;
1001
1002 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
1003 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
1004 atomic_dec(&hctx->nr_active);
1005 }
1006 }
1007
1008 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
1009 struct request *rq)
1010 {
1011 if (rq->tag == -1 || rq->internal_tag == -1)
1012 return;
1013
1014 __blk_mq_put_driver_tag(hctx, rq);
1015 }
1016
1017 static void blk_mq_put_driver_tag(struct request *rq)
1018 {
1019 struct blk_mq_hw_ctx *hctx;
1020
1021 if (rq->tag == -1 || rq->internal_tag == -1)
1022 return;
1023
1024 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1025 __blk_mq_put_driver_tag(hctx, rq);
1026 }
1027
1028 /*
1029 * If we fail getting a driver tag because all the driver tags are already
1030 * assigned and on the dispatch list, BUT the first entry does not have a
1031 * tag, then we could deadlock. For that case, move entries with assigned
1032 * driver tags to the front, leaving the set of tagged requests in the
1033 * same order, and the untagged set in the same order.
1034 */
1035 static bool reorder_tags_to_front(struct list_head *list)
1036 {
1037 struct request *rq, *tmp, *first = NULL;
1038
1039 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
1040 if (rq == first)
1041 break;
1042 if (rq->tag != -1) {
1043 list_move(&rq->queuelist, list);
1044 if (!first)
1045 first = rq;
1046 }
1047 }
1048
1049 return first != NULL;
1050 }
1051
1052 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
1053 void *key)
1054 {
1055 struct blk_mq_hw_ctx *hctx;
1056
1057 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1058
1059 list_del(&wait->entry);
1060 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
1061 blk_mq_run_hw_queue(hctx, true);
1062 return 1;
1063 }
1064
1065 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
1066 {
1067 struct sbq_wait_state *ws;
1068
1069 /*
1070 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
1071 * The thread which wins the race to grab this bit adds the hardware
1072 * queue to the wait queue.
1073 */
1074 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
1075 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
1076 return false;
1077
1078 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
1079 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
1080
1081 /*
1082 * As soon as this returns, it's no longer safe to fiddle with
1083 * hctx->dispatch_wait, since a completion can wake up the wait queue
1084 * and unlock the bit.
1085 */
1086 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
1087 return true;
1088 }
1089
1090 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1091 bool got_budget)
1092 {
1093 struct blk_mq_hw_ctx *hctx;
1094 struct request *rq;
1095 int errors, queued;
1096
1097 if (list_empty(list))
1098 return false;
1099
1100 WARN_ON(!list_is_singular(list) && got_budget);
1101
1102 /*
1103 * Now process all the entries, sending them to the driver.
1104 */
1105 errors = queued = 0;
1106 do {
1107 struct blk_mq_queue_data bd;
1108 blk_status_t ret;
1109
1110 rq = list_first_entry(list, struct request, queuelist);
1111 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1112 if (!queued && reorder_tags_to_front(list))
1113 continue;
1114
1115 /*
1116 * The initial allocation attempt failed, so we need to
1117 * rerun the hardware queue when a tag is freed.
1118 */
1119 if (!blk_mq_dispatch_wait_add(hctx)) {
1120 if (got_budget)
1121 blk_mq_put_dispatch_budget(hctx);
1122 break;
1123 }
1124
1125 /*
1126 * It's possible that a tag was freed in the window
1127 * between the allocation failure and adding the
1128 * hardware queue to the wait queue.
1129 */
1130 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1131 if (got_budget)
1132 blk_mq_put_dispatch_budget(hctx);
1133 break;
1134 }
1135 }
1136
1137 if (!got_budget) {
1138 ret = blk_mq_get_dispatch_budget(hctx);
1139 if (ret == BLK_STS_RESOURCE)
1140 break;
1141 if (ret != BLK_STS_OK)
1142 goto fail_rq;
1143 }
1144
1145 list_del_init(&rq->queuelist);
1146
1147 bd.rq = rq;
1148
1149 /*
1150 * Flag last if we have no more requests, or if we have more
1151 * but can't assign a driver tag to it.
1152 */
1153 if (list_empty(list))
1154 bd.last = true;
1155 else {
1156 struct request *nxt;
1157
1158 nxt = list_first_entry(list, struct request, queuelist);
1159 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1160 }
1161
1162 ret = q->mq_ops->queue_rq(hctx, &bd);
1163 if (ret == BLK_STS_RESOURCE) {
1164 blk_mq_put_driver_tag_hctx(hctx, rq);
1165 list_add(&rq->queuelist, list);
1166 __blk_mq_requeue_request(rq);
1167 break;
1168 }
1169
1170 fail_rq:
1171 if (unlikely(ret != BLK_STS_OK)) {
1172 errors++;
1173 blk_mq_end_request(rq, BLK_STS_IOERR);
1174 continue;
1175 }
1176
1177 queued++;
1178 } while (!list_empty(list));
1179
1180 hctx->dispatched[queued_to_index(queued)]++;
1181
1182 /*
1183 * Any items that need requeuing? Stuff them into hctx->dispatch,
1184 * that is where we will continue on next queue run.
1185 */
1186 if (!list_empty(list)) {
1187 /*
1188 * If an I/O scheduler has been configured and we got a driver
1189 * tag for the next request already, free it again.
1190 */
1191 rq = list_first_entry(list, struct request, queuelist);
1192 blk_mq_put_driver_tag(rq);
1193
1194 spin_lock(&hctx->lock);
1195 list_splice_init(list, &hctx->dispatch);
1196 spin_unlock(&hctx->lock);
1197
1198 /*
1199 * If SCHED_RESTART was set by the caller of this function and
1200 * it is no longer set that means that it was cleared by another
1201 * thread and hence that a queue rerun is needed.
1202 *
1203 * If TAG_WAITING is set that means that an I/O scheduler has
1204 * been configured and another thread is waiting for a driver
1205 * tag. To guarantee fairness, do not rerun this hardware queue
1206 * but let the other thread grab the driver tag.
1207 *
1208 * If no I/O scheduler has been configured it is possible that
1209 * the hardware queue got stopped and restarted before requests
1210 * were pushed back onto the dispatch list. Rerun the queue to
1211 * avoid starvation. Notes:
1212 * - blk_mq_run_hw_queue() checks whether or not a queue has
1213 * been stopped before rerunning a queue.
1214 * - Some but not all block drivers stop a queue before
1215 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1216 * and dm-rq.
1217 */
1218 if (!blk_mq_sched_needs_restart(hctx) &&
1219 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1220 blk_mq_run_hw_queue(hctx, true);
1221 }
1222
1223 return (queued + errors) != 0;
1224 }
1225
1226 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1227 {
1228 int srcu_idx;
1229
1230 /*
1231 * We should be running this queue from one of the CPUs that
1232 * are mapped to it.
1233 */
1234 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1235 cpu_online(hctx->next_cpu));
1236
1237 /*
1238 * We can't run the queue inline with ints disabled. Ensure that
1239 * we catch bad users of this early.
1240 */
1241 WARN_ON_ONCE(in_interrupt());
1242
1243 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1244 rcu_read_lock();
1245 blk_mq_sched_dispatch_requests(hctx);
1246 rcu_read_unlock();
1247 } else {
1248 might_sleep();
1249
1250 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1251 blk_mq_sched_dispatch_requests(hctx);
1252 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1253 }
1254 }
1255
1256 /*
1257 * It'd be great if the workqueue API had a way to pass
1258 * in a mask and had some smarts for more clever placement.
1259 * For now we just round-robin here, switching for every
1260 * BLK_MQ_CPU_WORK_BATCH queued items.
1261 */
1262 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1263 {
1264 if (hctx->queue->nr_hw_queues == 1)
1265 return WORK_CPU_UNBOUND;
1266
1267 if (--hctx->next_cpu_batch <= 0) {
1268 int next_cpu;
1269
1270 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1271 if (next_cpu >= nr_cpu_ids)
1272 next_cpu = cpumask_first(hctx->cpumask);
1273
1274 hctx->next_cpu = next_cpu;
1275 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1276 }
1277
1278 return hctx->next_cpu;
1279 }
1280
1281 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1282 unsigned long msecs)
1283 {
1284 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1285 return;
1286
1287 if (unlikely(blk_mq_hctx_stopped(hctx)))
1288 return;
1289
1290 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1291 int cpu = get_cpu();
1292 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1293 __blk_mq_run_hw_queue(hctx);
1294 put_cpu();
1295 return;
1296 }
1297
1298 put_cpu();
1299 }
1300
1301 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1302 &hctx->run_work,
1303 msecs_to_jiffies(msecs));
1304 }
1305
1306 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1307 {
1308 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1309 }
1310 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1311
1312 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1313 {
1314 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1315 }
1316 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1317
1318 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1319 {
1320 struct blk_mq_hw_ctx *hctx;
1321 int i;
1322
1323 queue_for_each_hw_ctx(q, hctx, i) {
1324 if (!blk_mq_hctx_has_pending(hctx) ||
1325 blk_mq_hctx_stopped(hctx))
1326 continue;
1327
1328 blk_mq_run_hw_queue(hctx, async);
1329 }
1330 }
1331 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1332
1333 /**
1334 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1335 * @q: request queue.
1336 *
1337 * The caller is responsible for serializing this function against
1338 * blk_mq_{start,stop}_hw_queue().
1339 */
1340 bool blk_mq_queue_stopped(struct request_queue *q)
1341 {
1342 struct blk_mq_hw_ctx *hctx;
1343 int i;
1344
1345 queue_for_each_hw_ctx(q, hctx, i)
1346 if (blk_mq_hctx_stopped(hctx))
1347 return true;
1348
1349 return false;
1350 }
1351 EXPORT_SYMBOL(blk_mq_queue_stopped);
1352
1353 /*
1354 * This function is often used for pausing .queue_rq() by driver when
1355 * there isn't enough resource or some conditions aren't satisfied, and
1356 * BLK_STS_RESOURCE is usually returned.
1357 *
1358 * We do not guarantee that dispatch can be drained or blocked
1359 * after blk_mq_stop_hw_queue() returns. Please use
1360 * blk_mq_quiesce_queue() for that requirement.
1361 */
1362 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1363 {
1364 cancel_delayed_work(&hctx->run_work);
1365
1366 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1367 }
1368 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1369
1370 /*
1371 * This function is often used for pausing .queue_rq() by driver when
1372 * there isn't enough resource or some conditions aren't satisfied, and
1373 * BLK_STS_RESOURCE is usually returned.
1374 *
1375 * We do not guarantee that dispatch can be drained or blocked
1376 * after blk_mq_stop_hw_queues() returns. Please use
1377 * blk_mq_quiesce_queue() for that requirement.
1378 */
1379 void blk_mq_stop_hw_queues(struct request_queue *q)
1380 {
1381 struct blk_mq_hw_ctx *hctx;
1382 int i;
1383
1384 queue_for_each_hw_ctx(q, hctx, i)
1385 blk_mq_stop_hw_queue(hctx);
1386 }
1387 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1388
1389 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1390 {
1391 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1392
1393 blk_mq_run_hw_queue(hctx, false);
1394 }
1395 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1396
1397 void blk_mq_start_hw_queues(struct request_queue *q)
1398 {
1399 struct blk_mq_hw_ctx *hctx;
1400 int i;
1401
1402 queue_for_each_hw_ctx(q, hctx, i)
1403 blk_mq_start_hw_queue(hctx);
1404 }
1405 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1406
1407 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1408 {
1409 if (!blk_mq_hctx_stopped(hctx))
1410 return;
1411
1412 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1413 blk_mq_run_hw_queue(hctx, async);
1414 }
1415 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1416
1417 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1418 {
1419 struct blk_mq_hw_ctx *hctx;
1420 int i;
1421
1422 queue_for_each_hw_ctx(q, hctx, i)
1423 blk_mq_start_stopped_hw_queue(hctx, async);
1424 }
1425 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1426
1427 static void blk_mq_run_work_fn(struct work_struct *work)
1428 {
1429 struct blk_mq_hw_ctx *hctx;
1430
1431 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1432
1433 /*
1434 * If we are stopped, don't run the queue. The exception is if
1435 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1436 * the STOPPED bit and run it.
1437 */
1438 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1439 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1440 return;
1441
1442 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1443 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1444 }
1445
1446 __blk_mq_run_hw_queue(hctx);
1447 }
1448
1449
1450 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1451 {
1452 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1453 return;
1454
1455 /*
1456 * Stop the hw queue, then modify currently delayed work.
1457 * This should prevent us from running the queue prematurely.
1458 * Mark the queue as auto-clearing STOPPED when it runs.
1459 */
1460 blk_mq_stop_hw_queue(hctx);
1461 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1462 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1463 &hctx->run_work,
1464 msecs_to_jiffies(msecs));
1465 }
1466 EXPORT_SYMBOL(blk_mq_delay_queue);
1467
1468 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1469 struct request *rq,
1470 bool at_head)
1471 {
1472 struct blk_mq_ctx *ctx = rq->mq_ctx;
1473
1474 lockdep_assert_held(&ctx->lock);
1475
1476 trace_block_rq_insert(hctx->queue, rq);
1477
1478 if (at_head)
1479 list_add(&rq->queuelist, &ctx->rq_list);
1480 else
1481 list_add_tail(&rq->queuelist, &ctx->rq_list);
1482 }
1483
1484 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1485 bool at_head)
1486 {
1487 struct blk_mq_ctx *ctx = rq->mq_ctx;
1488
1489 lockdep_assert_held(&ctx->lock);
1490
1491 __blk_mq_insert_req_list(hctx, rq, at_head);
1492 blk_mq_hctx_mark_pending(hctx, ctx);
1493 }
1494
1495 /*
1496 * Should only be used carefully, when the caller knows we want to
1497 * bypass a potential IO scheduler on the target device.
1498 */
1499 void blk_mq_request_bypass_insert(struct request *rq)
1500 {
1501 struct blk_mq_ctx *ctx = rq->mq_ctx;
1502 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1503
1504 spin_lock(&hctx->lock);
1505 list_add_tail(&rq->queuelist, &hctx->dispatch);
1506 spin_unlock(&hctx->lock);
1507
1508 blk_mq_run_hw_queue(hctx, false);
1509 }
1510
1511 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1512 struct list_head *list)
1513
1514 {
1515 /*
1516 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1517 * offline now
1518 */
1519 spin_lock(&ctx->lock);
1520 while (!list_empty(list)) {
1521 struct request *rq;
1522
1523 rq = list_first_entry(list, struct request, queuelist);
1524 BUG_ON(rq->mq_ctx != ctx);
1525 list_del_init(&rq->queuelist);
1526 __blk_mq_insert_req_list(hctx, rq, false);
1527 }
1528 blk_mq_hctx_mark_pending(hctx, ctx);
1529 spin_unlock(&ctx->lock);
1530 }
1531
1532 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1533 {
1534 struct request *rqa = container_of(a, struct request, queuelist);
1535 struct request *rqb = container_of(b, struct request, queuelist);
1536
1537 return !(rqa->mq_ctx < rqb->mq_ctx ||
1538 (rqa->mq_ctx == rqb->mq_ctx &&
1539 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1540 }
1541
1542 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1543 {
1544 struct blk_mq_ctx *this_ctx;
1545 struct request_queue *this_q;
1546 struct request *rq;
1547 LIST_HEAD(list);
1548 LIST_HEAD(ctx_list);
1549 unsigned int depth;
1550
1551 list_splice_init(&plug->mq_list, &list);
1552
1553 list_sort(NULL, &list, plug_ctx_cmp);
1554
1555 this_q = NULL;
1556 this_ctx = NULL;
1557 depth = 0;
1558
1559 while (!list_empty(&list)) {
1560 rq = list_entry_rq(list.next);
1561 list_del_init(&rq->queuelist);
1562 BUG_ON(!rq->q);
1563 if (rq->mq_ctx != this_ctx) {
1564 if (this_ctx) {
1565 trace_block_unplug(this_q, depth, from_schedule);
1566 blk_mq_sched_insert_requests(this_q, this_ctx,
1567 &ctx_list,
1568 from_schedule);
1569 }
1570
1571 this_ctx = rq->mq_ctx;
1572 this_q = rq->q;
1573 depth = 0;
1574 }
1575
1576 depth++;
1577 list_add_tail(&rq->queuelist, &ctx_list);
1578 }
1579
1580 /*
1581 * If 'this_ctx' is set, we know we have entries to complete
1582 * on 'ctx_list'. Do those.
1583 */
1584 if (this_ctx) {
1585 trace_block_unplug(this_q, depth, from_schedule);
1586 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1587 from_schedule);
1588 }
1589 }
1590
1591 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1592 {
1593 blk_init_request_from_bio(rq, bio);
1594
1595 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1596
1597 blk_account_io_start(rq, true);
1598 }
1599
1600 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1601 struct blk_mq_ctx *ctx,
1602 struct request *rq)
1603 {
1604 spin_lock(&ctx->lock);
1605 __blk_mq_insert_request(hctx, rq, false);
1606 spin_unlock(&ctx->lock);
1607 }
1608
1609 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1610 {
1611 if (rq->tag != -1)
1612 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1613
1614 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1615 }
1616
1617 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1618 struct request *rq,
1619 blk_qc_t *cookie, bool may_sleep)
1620 {
1621 struct request_queue *q = rq->q;
1622 struct blk_mq_queue_data bd = {
1623 .rq = rq,
1624 .last = true,
1625 };
1626 blk_qc_t new_cookie;
1627 blk_status_t ret;
1628 bool run_queue = true;
1629
1630 /* RCU or SRCU read lock is needed before checking quiesced flag */
1631 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1632 run_queue = false;
1633 goto insert;
1634 }
1635
1636 if (q->elevator)
1637 goto insert;
1638
1639 if (!blk_mq_get_driver_tag(rq, NULL, false))
1640 goto insert;
1641
1642 ret = blk_mq_get_dispatch_budget(hctx);
1643 if (ret == BLK_STS_RESOURCE) {
1644 blk_mq_put_driver_tag(rq);
1645 goto insert;
1646 } else if (ret != BLK_STS_OK)
1647 goto fail_rq;
1648
1649 new_cookie = request_to_qc_t(hctx, rq);
1650
1651 /*
1652 * For OK queue, we are done. For error, kill it. Any other
1653 * error (busy), just add it to our list as we previously
1654 * would have done
1655 */
1656 ret = q->mq_ops->queue_rq(hctx, &bd);
1657 switch (ret) {
1658 case BLK_STS_OK:
1659 *cookie = new_cookie;
1660 return;
1661 case BLK_STS_RESOURCE:
1662 __blk_mq_requeue_request(rq);
1663 goto insert;
1664 default:
1665 fail_rq:
1666 *cookie = BLK_QC_T_NONE;
1667 blk_mq_end_request(rq, ret);
1668 return;
1669 }
1670
1671 insert:
1672 blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1673 }
1674
1675 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1676 struct request *rq, blk_qc_t *cookie)
1677 {
1678 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1679 rcu_read_lock();
1680 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1681 rcu_read_unlock();
1682 } else {
1683 unsigned int srcu_idx;
1684
1685 might_sleep();
1686
1687 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1688 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
1689 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1690 }
1691 }
1692
1693 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1694 {
1695 const int is_sync = op_is_sync(bio->bi_opf);
1696 const int is_flush_fua = op_is_flush(bio->bi_opf);
1697 struct blk_mq_alloc_data data = { .flags = 0 };
1698 struct request *rq;
1699 unsigned int request_count = 0;
1700 struct blk_plug *plug;
1701 struct request *same_queue_rq = NULL;
1702 blk_qc_t cookie;
1703 unsigned int wb_acct;
1704
1705 blk_queue_bounce(q, &bio);
1706
1707 blk_queue_split(q, &bio);
1708
1709 if (!bio_integrity_prep(bio))
1710 return BLK_QC_T_NONE;
1711
1712 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1713 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1714 return BLK_QC_T_NONE;
1715
1716 if (blk_mq_sched_bio_merge(q, bio))
1717 return BLK_QC_T_NONE;
1718
1719 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1720
1721 trace_block_getrq(q, bio, bio->bi_opf);
1722
1723 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1724 if (unlikely(!rq)) {
1725 __wbt_done(q->rq_wb, wb_acct);
1726 if (bio->bi_opf & REQ_NOWAIT)
1727 bio_wouldblock_error(bio);
1728 return BLK_QC_T_NONE;
1729 }
1730
1731 wbt_track(&rq->issue_stat, wb_acct);
1732
1733 cookie = request_to_qc_t(data.hctx, rq);
1734
1735 plug = current->plug;
1736 if (unlikely(is_flush_fua)) {
1737 blk_mq_put_ctx(data.ctx);
1738 blk_mq_bio_to_request(rq, bio);
1739 if (q->elevator) {
1740 blk_mq_sched_insert_request(rq, false, true, true,
1741 true);
1742 } else {
1743 blk_insert_flush(rq);
1744 blk_mq_run_hw_queue(data.hctx, true);
1745 }
1746 } else if (plug && q->nr_hw_queues == 1) {
1747 struct request *last = NULL;
1748
1749 blk_mq_put_ctx(data.ctx);
1750 blk_mq_bio_to_request(rq, bio);
1751
1752 /*
1753 * @request_count may become stale because of schedule
1754 * out, so check the list again.
1755 */
1756 if (list_empty(&plug->mq_list))
1757 request_count = 0;
1758 else if (blk_queue_nomerges(q))
1759 request_count = blk_plug_queued_count(q);
1760
1761 if (!request_count)
1762 trace_block_plug(q);
1763 else
1764 last = list_entry_rq(plug->mq_list.prev);
1765
1766 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1767 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1768 blk_flush_plug_list(plug, false);
1769 trace_block_plug(q);
1770 }
1771
1772 list_add_tail(&rq->queuelist, &plug->mq_list);
1773 } else if (plug && !blk_queue_nomerges(q)) {
1774 blk_mq_bio_to_request(rq, bio);
1775
1776 /*
1777 * We do limited plugging. If the bio can be merged, do that.
1778 * Otherwise the existing request in the plug list will be
1779 * issued. So the plug list will have one request at most
1780 * The plug list might get flushed before this. If that happens,
1781 * the plug list is empty, and same_queue_rq is invalid.
1782 */
1783 if (list_empty(&plug->mq_list))
1784 same_queue_rq = NULL;
1785 if (same_queue_rq)
1786 list_del_init(&same_queue_rq->queuelist);
1787 list_add_tail(&rq->queuelist, &plug->mq_list);
1788
1789 blk_mq_put_ctx(data.ctx);
1790
1791 if (same_queue_rq) {
1792 data.hctx = blk_mq_map_queue(q,
1793 same_queue_rq->mq_ctx->cpu);
1794 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1795 &cookie);
1796 }
1797 } else if (q->nr_hw_queues > 1 && is_sync) {
1798 blk_mq_put_ctx(data.ctx);
1799 blk_mq_bio_to_request(rq, bio);
1800 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1801 } else if (q->elevator) {
1802 blk_mq_put_ctx(data.ctx);
1803 blk_mq_bio_to_request(rq, bio);
1804 blk_mq_sched_insert_request(rq, false, true, true, true);
1805 } else {
1806 blk_mq_put_ctx(data.ctx);
1807 blk_mq_bio_to_request(rq, bio);
1808 blk_mq_queue_io(data.hctx, data.ctx, rq);
1809 blk_mq_run_hw_queue(data.hctx, true);
1810 }
1811
1812 return cookie;
1813 }
1814
1815 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1816 unsigned int hctx_idx)
1817 {
1818 struct page *page;
1819
1820 if (tags->rqs && set->ops->exit_request) {
1821 int i;
1822
1823 for (i = 0; i < tags->nr_tags; i++) {
1824 struct request *rq = tags->static_rqs[i];
1825
1826 if (!rq)
1827 continue;
1828 set->ops->exit_request(set, rq, hctx_idx);
1829 tags->static_rqs[i] = NULL;
1830 }
1831 }
1832
1833 while (!list_empty(&tags->page_list)) {
1834 page = list_first_entry(&tags->page_list, struct page, lru);
1835 list_del_init(&page->lru);
1836 /*
1837 * Remove kmemleak object previously allocated in
1838 * blk_mq_init_rq_map().
1839 */
1840 kmemleak_free(page_address(page));
1841 __free_pages(page, page->private);
1842 }
1843 }
1844
1845 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1846 {
1847 kfree(tags->rqs);
1848 tags->rqs = NULL;
1849 kfree(tags->static_rqs);
1850 tags->static_rqs = NULL;
1851
1852 blk_mq_free_tags(tags);
1853 }
1854
1855 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1856 unsigned int hctx_idx,
1857 unsigned int nr_tags,
1858 unsigned int reserved_tags)
1859 {
1860 struct blk_mq_tags *tags;
1861 int node;
1862
1863 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1864 if (node == NUMA_NO_NODE)
1865 node = set->numa_node;
1866
1867 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1868 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1869 if (!tags)
1870 return NULL;
1871
1872 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1873 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1874 node);
1875 if (!tags->rqs) {
1876 blk_mq_free_tags(tags);
1877 return NULL;
1878 }
1879
1880 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1881 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1882 node);
1883 if (!tags->static_rqs) {
1884 kfree(tags->rqs);
1885 blk_mq_free_tags(tags);
1886 return NULL;
1887 }
1888
1889 return tags;
1890 }
1891
1892 static size_t order_to_size(unsigned int order)
1893 {
1894 return (size_t)PAGE_SIZE << order;
1895 }
1896
1897 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1898 unsigned int hctx_idx, unsigned int depth)
1899 {
1900 unsigned int i, j, entries_per_page, max_order = 4;
1901 size_t rq_size, left;
1902 int node;
1903
1904 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1905 if (node == NUMA_NO_NODE)
1906 node = set->numa_node;
1907
1908 INIT_LIST_HEAD(&tags->page_list);
1909
1910 /*
1911 * rq_size is the size of the request plus driver payload, rounded
1912 * to the cacheline size
1913 */
1914 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1915 cache_line_size());
1916 left = rq_size * depth;
1917
1918 for (i = 0; i < depth; ) {
1919 int this_order = max_order;
1920 struct page *page;
1921 int to_do;
1922 void *p;
1923
1924 while (this_order && left < order_to_size(this_order - 1))
1925 this_order--;
1926
1927 do {
1928 page = alloc_pages_node(node,
1929 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1930 this_order);
1931 if (page)
1932 break;
1933 if (!this_order--)
1934 break;
1935 if (order_to_size(this_order) < rq_size)
1936 break;
1937 } while (1);
1938
1939 if (!page)
1940 goto fail;
1941
1942 page->private = this_order;
1943 list_add_tail(&page->lru, &tags->page_list);
1944
1945 p = page_address(page);
1946 /*
1947 * Allow kmemleak to scan these pages as they contain pointers
1948 * to additional allocations like via ops->init_request().
1949 */
1950 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1951 entries_per_page = order_to_size(this_order) / rq_size;
1952 to_do = min(entries_per_page, depth - i);
1953 left -= to_do * rq_size;
1954 for (j = 0; j < to_do; j++) {
1955 struct request *rq = p;
1956
1957 tags->static_rqs[i] = rq;
1958 if (set->ops->init_request) {
1959 if (set->ops->init_request(set, rq, hctx_idx,
1960 node)) {
1961 tags->static_rqs[i] = NULL;
1962 goto fail;
1963 }
1964 }
1965
1966 p += rq_size;
1967 i++;
1968 }
1969 }
1970 return 0;
1971
1972 fail:
1973 blk_mq_free_rqs(set, tags, hctx_idx);
1974 return -ENOMEM;
1975 }
1976
1977 /*
1978 * 'cpu' is going away. splice any existing rq_list entries from this
1979 * software queue to the hw queue dispatch list, and ensure that it
1980 * gets run.
1981 */
1982 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1983 {
1984 struct blk_mq_hw_ctx *hctx;
1985 struct blk_mq_ctx *ctx;
1986 LIST_HEAD(tmp);
1987
1988 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1989 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1990
1991 spin_lock(&ctx->lock);
1992 if (!list_empty(&ctx->rq_list)) {
1993 list_splice_init(&ctx->rq_list, &tmp);
1994 blk_mq_hctx_clear_pending(hctx, ctx);
1995 }
1996 spin_unlock(&ctx->lock);
1997
1998 if (list_empty(&tmp))
1999 return 0;
2000
2001 spin_lock(&hctx->lock);
2002 list_splice_tail_init(&tmp, &hctx->dispatch);
2003 spin_unlock(&hctx->lock);
2004
2005 blk_mq_run_hw_queue(hctx, true);
2006 return 0;
2007 }
2008
2009 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2010 {
2011 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2012 &hctx->cpuhp_dead);
2013 }
2014
2015 /* hctx->ctxs will be freed in queue's release handler */
2016 static void blk_mq_exit_hctx(struct request_queue *q,
2017 struct blk_mq_tag_set *set,
2018 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2019 {
2020 blk_mq_debugfs_unregister_hctx(hctx);
2021
2022 blk_mq_tag_idle(hctx);
2023
2024 if (set->ops->exit_request)
2025 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2026
2027 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2028
2029 if (set->ops->exit_hctx)
2030 set->ops->exit_hctx(hctx, hctx_idx);
2031
2032 if (hctx->flags & BLK_MQ_F_BLOCKING)
2033 cleanup_srcu_struct(hctx->queue_rq_srcu);
2034
2035 blk_mq_remove_cpuhp(hctx);
2036 blk_free_flush_queue(hctx->fq);
2037 sbitmap_free(&hctx->ctx_map);
2038 }
2039
2040 static void blk_mq_exit_hw_queues(struct request_queue *q,
2041 struct blk_mq_tag_set *set, int nr_queue)
2042 {
2043 struct blk_mq_hw_ctx *hctx;
2044 unsigned int i;
2045
2046 queue_for_each_hw_ctx(q, hctx, i) {
2047 if (i == nr_queue)
2048 break;
2049 blk_mq_exit_hctx(q, set, hctx, i);
2050 }
2051 }
2052
2053 static int blk_mq_init_hctx(struct request_queue *q,
2054 struct blk_mq_tag_set *set,
2055 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2056 {
2057 int node;
2058
2059 node = hctx->numa_node;
2060 if (node == NUMA_NO_NODE)
2061 node = hctx->numa_node = set->numa_node;
2062
2063 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2064 spin_lock_init(&hctx->lock);
2065 INIT_LIST_HEAD(&hctx->dispatch);
2066 hctx->queue = q;
2067 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2068
2069 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2070
2071 hctx->tags = set->tags[hctx_idx];
2072
2073 /*
2074 * Allocate space for all possible cpus to avoid allocation at
2075 * runtime
2076 */
2077 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
2078 GFP_KERNEL, node);
2079 if (!hctx->ctxs)
2080 goto unregister_cpu_notifier;
2081
2082 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2083 node))
2084 goto free_ctxs;
2085
2086 hctx->nr_ctx = 0;
2087
2088 if (set->ops->init_hctx &&
2089 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2090 goto free_bitmap;
2091
2092 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2093 goto exit_hctx;
2094
2095 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2096 if (!hctx->fq)
2097 goto sched_exit_hctx;
2098
2099 if (set->ops->init_request &&
2100 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
2101 node))
2102 goto free_fq;
2103
2104 if (hctx->flags & BLK_MQ_F_BLOCKING)
2105 init_srcu_struct(hctx->queue_rq_srcu);
2106
2107 blk_mq_debugfs_register_hctx(q, hctx);
2108
2109 return 0;
2110
2111 free_fq:
2112 kfree(hctx->fq);
2113 sched_exit_hctx:
2114 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2115 exit_hctx:
2116 if (set->ops->exit_hctx)
2117 set->ops->exit_hctx(hctx, hctx_idx);
2118 free_bitmap:
2119 sbitmap_free(&hctx->ctx_map);
2120 free_ctxs:
2121 kfree(hctx->ctxs);
2122 unregister_cpu_notifier:
2123 blk_mq_remove_cpuhp(hctx);
2124 return -1;
2125 }
2126
2127 static void blk_mq_init_cpu_queues(struct request_queue *q,
2128 unsigned int nr_hw_queues)
2129 {
2130 unsigned int i;
2131
2132 for_each_possible_cpu(i) {
2133 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2134 struct blk_mq_hw_ctx *hctx;
2135
2136 __ctx->cpu = i;
2137 spin_lock_init(&__ctx->lock);
2138 INIT_LIST_HEAD(&__ctx->rq_list);
2139 __ctx->queue = q;
2140
2141 /* If the cpu isn't present, the cpu is mapped to first hctx */
2142 if (!cpu_present(i))
2143 continue;
2144
2145 hctx = blk_mq_map_queue(q, i);
2146
2147 /*
2148 * Set local node, IFF we have more than one hw queue. If
2149 * not, we remain on the home node of the device
2150 */
2151 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2152 hctx->numa_node = local_memory_node(cpu_to_node(i));
2153 }
2154 }
2155
2156 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2157 {
2158 int ret = 0;
2159
2160 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2161 set->queue_depth, set->reserved_tags);
2162 if (!set->tags[hctx_idx])
2163 return false;
2164
2165 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2166 set->queue_depth);
2167 if (!ret)
2168 return true;
2169
2170 blk_mq_free_rq_map(set->tags[hctx_idx]);
2171 set->tags[hctx_idx] = NULL;
2172 return false;
2173 }
2174
2175 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2176 unsigned int hctx_idx)
2177 {
2178 if (set->tags[hctx_idx]) {
2179 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2180 blk_mq_free_rq_map(set->tags[hctx_idx]);
2181 set->tags[hctx_idx] = NULL;
2182 }
2183 }
2184
2185 static void blk_mq_map_swqueue(struct request_queue *q)
2186 {
2187 unsigned int i, hctx_idx;
2188 struct blk_mq_hw_ctx *hctx;
2189 struct blk_mq_ctx *ctx;
2190 struct blk_mq_tag_set *set = q->tag_set;
2191
2192 /*
2193 * Avoid others reading imcomplete hctx->cpumask through sysfs
2194 */
2195 mutex_lock(&q->sysfs_lock);
2196
2197 queue_for_each_hw_ctx(q, hctx, i) {
2198 cpumask_clear(hctx->cpumask);
2199 hctx->nr_ctx = 0;
2200 }
2201
2202 /*
2203 * Map software to hardware queues.
2204 *
2205 * If the cpu isn't present, the cpu is mapped to first hctx.
2206 */
2207 for_each_present_cpu(i) {
2208 hctx_idx = q->mq_map[i];
2209 /* unmapped hw queue can be remapped after CPU topo changed */
2210 if (!set->tags[hctx_idx] &&
2211 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2212 /*
2213 * If tags initialization fail for some hctx,
2214 * that hctx won't be brought online. In this
2215 * case, remap the current ctx to hctx[0] which
2216 * is guaranteed to always have tags allocated
2217 */
2218 q->mq_map[i] = 0;
2219 }
2220
2221 ctx = per_cpu_ptr(q->queue_ctx, i);
2222 hctx = blk_mq_map_queue(q, i);
2223
2224 cpumask_set_cpu(i, hctx->cpumask);
2225 ctx->index_hw = hctx->nr_ctx;
2226 hctx->ctxs[hctx->nr_ctx++] = ctx;
2227 }
2228
2229 mutex_unlock(&q->sysfs_lock);
2230
2231 queue_for_each_hw_ctx(q, hctx, i) {
2232 /*
2233 * If no software queues are mapped to this hardware queue,
2234 * disable it and free the request entries.
2235 */
2236 if (!hctx->nr_ctx) {
2237 /* Never unmap queue 0. We need it as a
2238 * fallback in case of a new remap fails
2239 * allocation
2240 */
2241 if (i && set->tags[i])
2242 blk_mq_free_map_and_requests(set, i);
2243
2244 hctx->tags = NULL;
2245 continue;
2246 }
2247
2248 hctx->tags = set->tags[i];
2249 WARN_ON(!hctx->tags);
2250
2251 /*
2252 * Set the map size to the number of mapped software queues.
2253 * This is more accurate and more efficient than looping
2254 * over all possibly mapped software queues.
2255 */
2256 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2257
2258 /*
2259 * Initialize batch roundrobin counts
2260 */
2261 hctx->next_cpu = cpumask_first(hctx->cpumask);
2262 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2263 }
2264 }
2265
2266 /*
2267 * Caller needs to ensure that we're either frozen/quiesced, or that
2268 * the queue isn't live yet.
2269 */
2270 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2271 {
2272 struct blk_mq_hw_ctx *hctx;
2273 int i;
2274
2275 queue_for_each_hw_ctx(q, hctx, i) {
2276 if (shared) {
2277 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2278 atomic_inc(&q->shared_hctx_restart);
2279 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2280 } else {
2281 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2282 atomic_dec(&q->shared_hctx_restart);
2283 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2284 }
2285 }
2286 }
2287
2288 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2289 bool shared)
2290 {
2291 struct request_queue *q;
2292
2293 lockdep_assert_held(&set->tag_list_lock);
2294
2295 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2296 blk_mq_freeze_queue(q);
2297 queue_set_hctx_shared(q, shared);
2298 blk_mq_unfreeze_queue(q);
2299 }
2300 }
2301
2302 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2303 {
2304 struct blk_mq_tag_set *set = q->tag_set;
2305
2306 mutex_lock(&set->tag_list_lock);
2307 list_del_rcu(&q->tag_set_list);
2308 INIT_LIST_HEAD(&q->tag_set_list);
2309 if (list_is_singular(&set->tag_list)) {
2310 /* just transitioned to unshared */
2311 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2312 /* update existing queue */
2313 blk_mq_update_tag_set_depth(set, false);
2314 }
2315 mutex_unlock(&set->tag_list_lock);
2316
2317 synchronize_rcu();
2318 }
2319
2320 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2321 struct request_queue *q)
2322 {
2323 q->tag_set = set;
2324
2325 mutex_lock(&set->tag_list_lock);
2326
2327 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2328 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2329 set->flags |= BLK_MQ_F_TAG_SHARED;
2330 /* update existing queue */
2331 blk_mq_update_tag_set_depth(set, true);
2332 }
2333 if (set->flags & BLK_MQ_F_TAG_SHARED)
2334 queue_set_hctx_shared(q, true);
2335 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2336
2337 mutex_unlock(&set->tag_list_lock);
2338 }
2339
2340 /*
2341 * It is the actual release handler for mq, but we do it from
2342 * request queue's release handler for avoiding use-after-free
2343 * and headache because q->mq_kobj shouldn't have been introduced,
2344 * but we can't group ctx/kctx kobj without it.
2345 */
2346 void blk_mq_release(struct request_queue *q)
2347 {
2348 struct blk_mq_hw_ctx *hctx;
2349 unsigned int i;
2350
2351 /* hctx kobj stays in hctx */
2352 queue_for_each_hw_ctx(q, hctx, i) {
2353 if (!hctx)
2354 continue;
2355 kobject_put(&hctx->kobj);
2356 }
2357
2358 q->mq_map = NULL;
2359
2360 kfree(q->queue_hw_ctx);
2361
2362 /*
2363 * release .mq_kobj and sw queue's kobject now because
2364 * both share lifetime with request queue.
2365 */
2366 blk_mq_sysfs_deinit(q);
2367
2368 free_percpu(q->queue_ctx);
2369 }
2370
2371 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2372 {
2373 struct request_queue *uninit_q, *q;
2374
2375 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2376 if (!uninit_q)
2377 return ERR_PTR(-ENOMEM);
2378
2379 q = blk_mq_init_allocated_queue(set, uninit_q);
2380 if (IS_ERR(q))
2381 blk_cleanup_queue(uninit_q);
2382
2383 return q;
2384 }
2385 EXPORT_SYMBOL(blk_mq_init_queue);
2386
2387 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2388 {
2389 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2390
2391 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
2392 __alignof__(struct blk_mq_hw_ctx)) !=
2393 sizeof(struct blk_mq_hw_ctx));
2394
2395 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2396 hw_ctx_size += sizeof(struct srcu_struct);
2397
2398 return hw_ctx_size;
2399 }
2400
2401 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2402 struct request_queue *q)
2403 {
2404 int i, j;
2405 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2406
2407 blk_mq_sysfs_unregister(q);
2408 for (i = 0; i < set->nr_hw_queues; i++) {
2409 int node;
2410
2411 if (hctxs[i])
2412 continue;
2413
2414 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2415 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2416 GFP_KERNEL, node);
2417 if (!hctxs[i])
2418 break;
2419
2420 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2421 node)) {
2422 kfree(hctxs[i]);
2423 hctxs[i] = NULL;
2424 break;
2425 }
2426
2427 atomic_set(&hctxs[i]->nr_active, 0);
2428 hctxs[i]->numa_node = node;
2429 hctxs[i]->queue_num = i;
2430
2431 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2432 free_cpumask_var(hctxs[i]->cpumask);
2433 kfree(hctxs[i]);
2434 hctxs[i] = NULL;
2435 break;
2436 }
2437 blk_mq_hctx_kobj_init(hctxs[i]);
2438 }
2439 for (j = i; j < q->nr_hw_queues; j++) {
2440 struct blk_mq_hw_ctx *hctx = hctxs[j];
2441
2442 if (hctx) {
2443 if (hctx->tags)
2444 blk_mq_free_map_and_requests(set, j);
2445 blk_mq_exit_hctx(q, set, hctx, j);
2446 kobject_put(&hctx->kobj);
2447 hctxs[j] = NULL;
2448
2449 }
2450 }
2451 q->nr_hw_queues = i;
2452 blk_mq_sysfs_register(q);
2453 }
2454
2455 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2456 struct request_queue *q)
2457 {
2458 /* mark the queue as mq asap */
2459 q->mq_ops = set->ops;
2460
2461 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2462 blk_mq_poll_stats_bkt,
2463 BLK_MQ_POLL_STATS_BKTS, q);
2464 if (!q->poll_cb)
2465 goto err_exit;
2466
2467 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2468 if (!q->queue_ctx)
2469 goto err_exit;
2470
2471 /* init q->mq_kobj and sw queues' kobjects */
2472 blk_mq_sysfs_init(q);
2473
2474 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2475 GFP_KERNEL, set->numa_node);
2476 if (!q->queue_hw_ctx)
2477 goto err_percpu;
2478
2479 q->mq_map = set->mq_map;
2480
2481 blk_mq_realloc_hw_ctxs(set, q);
2482 if (!q->nr_hw_queues)
2483 goto err_hctxs;
2484
2485 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2486 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2487
2488 q->nr_queues = nr_cpu_ids;
2489
2490 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2491
2492 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2493 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2494
2495 q->sg_reserved_size = INT_MAX;
2496
2497 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2498 INIT_LIST_HEAD(&q->requeue_list);
2499 spin_lock_init(&q->requeue_lock);
2500
2501 blk_queue_make_request(q, blk_mq_make_request);
2502
2503 /*
2504 * Do this after blk_queue_make_request() overrides it...
2505 */
2506 q->nr_requests = set->queue_depth;
2507
2508 /*
2509 * Default to classic polling
2510 */
2511 q->poll_nsec = -1;
2512
2513 if (set->ops->complete)
2514 blk_queue_softirq_done(q, set->ops->complete);
2515
2516 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2517 blk_mq_add_queue_tag_set(set, q);
2518 blk_mq_map_swqueue(q);
2519
2520 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2521 int ret;
2522
2523 ret = blk_mq_sched_init(q);
2524 if (ret)
2525 return ERR_PTR(ret);
2526 }
2527
2528 return q;
2529
2530 err_hctxs:
2531 kfree(q->queue_hw_ctx);
2532 err_percpu:
2533 free_percpu(q->queue_ctx);
2534 err_exit:
2535 q->mq_ops = NULL;
2536 return ERR_PTR(-ENOMEM);
2537 }
2538 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2539
2540 void blk_mq_free_queue(struct request_queue *q)
2541 {
2542 struct blk_mq_tag_set *set = q->tag_set;
2543
2544 blk_mq_del_queue_tag_set(q);
2545 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2546 }
2547
2548 /* Basically redo blk_mq_init_queue with queue frozen */
2549 static void blk_mq_queue_reinit(struct request_queue *q)
2550 {
2551 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2552
2553 blk_mq_debugfs_unregister_hctxs(q);
2554 blk_mq_sysfs_unregister(q);
2555
2556 /*
2557 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2558 * we should change hctx numa_node according to new topology (this
2559 * involves free and re-allocate memory, worthy doing?)
2560 */
2561
2562 blk_mq_map_swqueue(q);
2563
2564 blk_mq_sysfs_register(q);
2565 blk_mq_debugfs_register_hctxs(q);
2566 }
2567
2568 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2569 {
2570 int i;
2571
2572 for (i = 0; i < set->nr_hw_queues; i++)
2573 if (!__blk_mq_alloc_rq_map(set, i))
2574 goto out_unwind;
2575
2576 return 0;
2577
2578 out_unwind:
2579 while (--i >= 0)
2580 blk_mq_free_rq_map(set->tags[i]);
2581
2582 return -ENOMEM;
2583 }
2584
2585 /*
2586 * Allocate the request maps associated with this tag_set. Note that this
2587 * may reduce the depth asked for, if memory is tight. set->queue_depth
2588 * will be updated to reflect the allocated depth.
2589 */
2590 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2591 {
2592 unsigned int depth;
2593 int err;
2594
2595 depth = set->queue_depth;
2596 do {
2597 err = __blk_mq_alloc_rq_maps(set);
2598 if (!err)
2599 break;
2600
2601 set->queue_depth >>= 1;
2602 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2603 err = -ENOMEM;
2604 break;
2605 }
2606 } while (set->queue_depth);
2607
2608 if (!set->queue_depth || err) {
2609 pr_err("blk-mq: failed to allocate request map\n");
2610 return -ENOMEM;
2611 }
2612
2613 if (depth != set->queue_depth)
2614 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2615 depth, set->queue_depth);
2616
2617 return 0;
2618 }
2619
2620 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2621 {
2622 if (set->ops->map_queues)
2623 return set->ops->map_queues(set);
2624 else
2625 return blk_mq_map_queues(set);
2626 }
2627
2628 /*
2629 * Alloc a tag set to be associated with one or more request queues.
2630 * May fail with EINVAL for various error conditions. May adjust the
2631 * requested depth down, if if it too large. In that case, the set
2632 * value will be stored in set->queue_depth.
2633 */
2634 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2635 {
2636 int ret;
2637
2638 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2639
2640 if (!set->nr_hw_queues)
2641 return -EINVAL;
2642 if (!set->queue_depth)
2643 return -EINVAL;
2644 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2645 return -EINVAL;
2646
2647 if (!set->ops->queue_rq)
2648 return -EINVAL;
2649
2650 if (!set->ops->get_budget ^ !set->ops->put_budget)
2651 return -EINVAL;
2652
2653 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2654 pr_info("blk-mq: reduced tag depth to %u\n",
2655 BLK_MQ_MAX_DEPTH);
2656 set->queue_depth = BLK_MQ_MAX_DEPTH;
2657 }
2658
2659 /*
2660 * If a crashdump is active, then we are potentially in a very
2661 * memory constrained environment. Limit us to 1 queue and
2662 * 64 tags to prevent using too much memory.
2663 */
2664 if (is_kdump_kernel()) {
2665 set->nr_hw_queues = 1;
2666 set->queue_depth = min(64U, set->queue_depth);
2667 }
2668 /*
2669 * There is no use for more h/w queues than cpus.
2670 */
2671 if (set->nr_hw_queues > nr_cpu_ids)
2672 set->nr_hw_queues = nr_cpu_ids;
2673
2674 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2675 GFP_KERNEL, set->numa_node);
2676 if (!set->tags)
2677 return -ENOMEM;
2678
2679 ret = -ENOMEM;
2680 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2681 GFP_KERNEL, set->numa_node);
2682 if (!set->mq_map)
2683 goto out_free_tags;
2684
2685 ret = blk_mq_update_queue_map(set);
2686 if (ret)
2687 goto out_free_mq_map;
2688
2689 ret = blk_mq_alloc_rq_maps(set);
2690 if (ret)
2691 goto out_free_mq_map;
2692
2693 mutex_init(&set->tag_list_lock);
2694 INIT_LIST_HEAD(&set->tag_list);
2695
2696 return 0;
2697
2698 out_free_mq_map:
2699 kfree(set->mq_map);
2700 set->mq_map = NULL;
2701 out_free_tags:
2702 kfree(set->tags);
2703 set->tags = NULL;
2704 return ret;
2705 }
2706 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2707
2708 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2709 {
2710 int i;
2711
2712 for (i = 0; i < nr_cpu_ids; i++)
2713 blk_mq_free_map_and_requests(set, i);
2714
2715 kfree(set->mq_map);
2716 set->mq_map = NULL;
2717
2718 kfree(set->tags);
2719 set->tags = NULL;
2720 }
2721 EXPORT_SYMBOL(blk_mq_free_tag_set);
2722
2723 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2724 {
2725 struct blk_mq_tag_set *set = q->tag_set;
2726 struct blk_mq_hw_ctx *hctx;
2727 int i, ret;
2728
2729 if (!set)
2730 return -EINVAL;
2731
2732 blk_mq_freeze_queue(q);
2733
2734 ret = 0;
2735 queue_for_each_hw_ctx(q, hctx, i) {
2736 if (!hctx->tags)
2737 continue;
2738 /*
2739 * If we're using an MQ scheduler, just update the scheduler
2740 * queue depth. This is similar to what the old code would do.
2741 */
2742 if (!hctx->sched_tags) {
2743 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2744 min(nr, set->queue_depth),
2745 false);
2746 } else {
2747 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2748 nr, true);
2749 }
2750 if (ret)
2751 break;
2752 }
2753
2754 if (!ret)
2755 q->nr_requests = nr;
2756
2757 blk_mq_unfreeze_queue(q);
2758
2759 return ret;
2760 }
2761
2762 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2763 int nr_hw_queues)
2764 {
2765 struct request_queue *q;
2766
2767 lockdep_assert_held(&set->tag_list_lock);
2768
2769 if (nr_hw_queues > nr_cpu_ids)
2770 nr_hw_queues = nr_cpu_ids;
2771 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2772 return;
2773
2774 list_for_each_entry(q, &set->tag_list, tag_set_list)
2775 blk_mq_freeze_queue(q);
2776
2777 set->nr_hw_queues = nr_hw_queues;
2778 blk_mq_update_queue_map(set);
2779 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2780 blk_mq_realloc_hw_ctxs(set, q);
2781 blk_mq_queue_reinit(q);
2782 }
2783
2784 list_for_each_entry(q, &set->tag_list, tag_set_list)
2785 blk_mq_unfreeze_queue(q);
2786 }
2787
2788 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2789 {
2790 mutex_lock(&set->tag_list_lock);
2791 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2792 mutex_unlock(&set->tag_list_lock);
2793 }
2794 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2795
2796 /* Enable polling stats and return whether they were already enabled. */
2797 static bool blk_poll_stats_enable(struct request_queue *q)
2798 {
2799 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2800 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2801 return true;
2802 blk_stat_add_callback(q, q->poll_cb);
2803 return false;
2804 }
2805
2806 static void blk_mq_poll_stats_start(struct request_queue *q)
2807 {
2808 /*
2809 * We don't arm the callback if polling stats are not enabled or the
2810 * callback is already active.
2811 */
2812 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2813 blk_stat_is_active(q->poll_cb))
2814 return;
2815
2816 blk_stat_activate_msecs(q->poll_cb, 100);
2817 }
2818
2819 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2820 {
2821 struct request_queue *q = cb->data;
2822 int bucket;
2823
2824 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2825 if (cb->stat[bucket].nr_samples)
2826 q->poll_stat[bucket] = cb->stat[bucket];
2827 }
2828 }
2829
2830 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2831 struct blk_mq_hw_ctx *hctx,
2832 struct request *rq)
2833 {
2834 unsigned long ret = 0;
2835 int bucket;
2836
2837 /*
2838 * If stats collection isn't on, don't sleep but turn it on for
2839 * future users
2840 */
2841 if (!blk_poll_stats_enable(q))
2842 return 0;
2843
2844 /*
2845 * As an optimistic guess, use half of the mean service time
2846 * for this type of request. We can (and should) make this smarter.
2847 * For instance, if the completion latencies are tight, we can
2848 * get closer than just half the mean. This is especially
2849 * important on devices where the completion latencies are longer
2850 * than ~10 usec. We do use the stats for the relevant IO size
2851 * if available which does lead to better estimates.
2852 */
2853 bucket = blk_mq_poll_stats_bkt(rq);
2854 if (bucket < 0)
2855 return ret;
2856
2857 if (q->poll_stat[bucket].nr_samples)
2858 ret = (q->poll_stat[bucket].mean + 1) / 2;
2859
2860 return ret;
2861 }
2862
2863 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2864 struct blk_mq_hw_ctx *hctx,
2865 struct request *rq)
2866 {
2867 struct hrtimer_sleeper hs;
2868 enum hrtimer_mode mode;
2869 unsigned int nsecs;
2870 ktime_t kt;
2871
2872 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2873 return false;
2874
2875 /*
2876 * poll_nsec can be:
2877 *
2878 * -1: don't ever hybrid sleep
2879 * 0: use half of prev avg
2880 * >0: use this specific value
2881 */
2882 if (q->poll_nsec == -1)
2883 return false;
2884 else if (q->poll_nsec > 0)
2885 nsecs = q->poll_nsec;
2886 else
2887 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2888
2889 if (!nsecs)
2890 return false;
2891
2892 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2893
2894 /*
2895 * This will be replaced with the stats tracking code, using
2896 * 'avg_completion_time / 2' as the pre-sleep target.
2897 */
2898 kt = nsecs;
2899
2900 mode = HRTIMER_MODE_REL;
2901 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2902 hrtimer_set_expires(&hs.timer, kt);
2903
2904 hrtimer_init_sleeper(&hs, current);
2905 do {
2906 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2907 break;
2908 set_current_state(TASK_UNINTERRUPTIBLE);
2909 hrtimer_start_expires(&hs.timer, mode);
2910 if (hs.task)
2911 io_schedule();
2912 hrtimer_cancel(&hs.timer);
2913 mode = HRTIMER_MODE_ABS;
2914 } while (hs.task && !signal_pending(current));
2915
2916 __set_current_state(TASK_RUNNING);
2917 destroy_hrtimer_on_stack(&hs.timer);
2918 return true;
2919 }
2920
2921 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2922 {
2923 struct request_queue *q = hctx->queue;
2924 long state;
2925
2926 /*
2927 * If we sleep, have the caller restart the poll loop to reset
2928 * the state. Like for the other success return cases, the
2929 * caller is responsible for checking if the IO completed. If
2930 * the IO isn't complete, we'll get called again and will go
2931 * straight to the busy poll loop.
2932 */
2933 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2934 return true;
2935
2936 hctx->poll_considered++;
2937
2938 state = current->state;
2939 while (!need_resched()) {
2940 int ret;
2941
2942 hctx->poll_invoked++;
2943
2944 ret = q->mq_ops->poll(hctx, rq->tag);
2945 if (ret > 0) {
2946 hctx->poll_success++;
2947 set_current_state(TASK_RUNNING);
2948 return true;
2949 }
2950
2951 if (signal_pending_state(state, current))
2952 set_current_state(TASK_RUNNING);
2953
2954 if (current->state == TASK_RUNNING)
2955 return true;
2956 if (ret < 0)
2957 break;
2958 cpu_relax();
2959 }
2960
2961 return false;
2962 }
2963
2964 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2965 {
2966 struct blk_mq_hw_ctx *hctx;
2967 struct blk_plug *plug;
2968 struct request *rq;
2969
2970 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2971 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2972 return false;
2973
2974 plug = current->plug;
2975 if (plug)
2976 blk_flush_plug_list(plug, false);
2977
2978 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2979 if (!blk_qc_t_is_internal(cookie))
2980 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2981 else {
2982 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2983 /*
2984 * With scheduling, if the request has completed, we'll
2985 * get a NULL return here, as we clear the sched tag when
2986 * that happens. The request still remains valid, like always,
2987 * so we should be safe with just the NULL check.
2988 */
2989 if (!rq)
2990 return false;
2991 }
2992
2993 return __blk_mq_poll(hctx, rq);
2994 }
2995 EXPORT_SYMBOL_GPL(blk_mq_poll);
2996
2997 static int __init blk_mq_init(void)
2998 {
2999 /*
3000 * See comment in block/blk.h rq_atomic_flags enum
3001 */
3002 BUILD_BUG_ON((REQ_ATOM_STARTED / BITS_PER_BYTE) !=
3003 (REQ_ATOM_COMPLETE / BITS_PER_BYTE));
3004
3005 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3006 blk_mq_hctx_notify_dead);
3007 return 0;
3008 }
3009 subsys_initcall(blk_mq_init);