]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-mq.c
blk-mq: attempt to fix atomic flag memory ordering
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static void blk_mq_poll_stats_start(struct request_queue *q);
41 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
42
43 static int blk_mq_poll_stats_bkt(const struct request *rq)
44 {
45 int ddir, bytes, bucket;
46
47 ddir = rq_data_dir(rq);
48 bytes = blk_rq_bytes(rq);
49
50 bucket = ddir + 2*(ilog2(bytes) - 9);
51
52 if (bucket < 0)
53 return -1;
54 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
55 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
56
57 return bucket;
58 }
59
60 /*
61 * Check if any of the ctx's have pending work in this hardware queue
62 */
63 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
64 {
65 return sbitmap_any_bit_set(&hctx->ctx_map) ||
66 !list_empty_careful(&hctx->dispatch) ||
67 blk_mq_sched_has_work(hctx);
68 }
69
70 /*
71 * Mark this ctx as having pending work in this hardware queue
72 */
73 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
74 struct blk_mq_ctx *ctx)
75 {
76 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
77 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
78 }
79
80 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
81 struct blk_mq_ctx *ctx)
82 {
83 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
84 }
85
86 struct mq_inflight {
87 struct hd_struct *part;
88 unsigned int *inflight;
89 };
90
91 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
92 struct request *rq, void *priv,
93 bool reserved)
94 {
95 struct mq_inflight *mi = priv;
96
97 if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
98 !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
99 /*
100 * index[0] counts the specific partition that was asked
101 * for. index[1] counts the ones that are active on the
102 * whole device, so increment that if mi->part is indeed
103 * a partition, and not a whole device.
104 */
105 if (rq->part == mi->part)
106 mi->inflight[0]++;
107 if (mi->part->partno)
108 mi->inflight[1]++;
109 }
110 }
111
112 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
113 unsigned int inflight[2])
114 {
115 struct mq_inflight mi = { .part = part, .inflight = inflight, };
116
117 inflight[0] = inflight[1] = 0;
118 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119 }
120
121 void blk_freeze_queue_start(struct request_queue *q)
122 {
123 int freeze_depth;
124
125 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
126 if (freeze_depth == 1) {
127 percpu_ref_kill(&q->q_usage_counter);
128 blk_mq_run_hw_queues(q, false);
129 }
130 }
131 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
132
133 void blk_mq_freeze_queue_wait(struct request_queue *q)
134 {
135 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
136 }
137 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
138
139 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
140 unsigned long timeout)
141 {
142 return wait_event_timeout(q->mq_freeze_wq,
143 percpu_ref_is_zero(&q->q_usage_counter),
144 timeout);
145 }
146 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
147
148 /*
149 * Guarantee no request is in use, so we can change any data structure of
150 * the queue afterward.
151 */
152 void blk_freeze_queue(struct request_queue *q)
153 {
154 /*
155 * In the !blk_mq case we are only calling this to kill the
156 * q_usage_counter, otherwise this increases the freeze depth
157 * and waits for it to return to zero. For this reason there is
158 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
159 * exported to drivers as the only user for unfreeze is blk_mq.
160 */
161 blk_freeze_queue_start(q);
162 blk_mq_freeze_queue_wait(q);
163 }
164
165 void blk_mq_freeze_queue(struct request_queue *q)
166 {
167 /*
168 * ...just an alias to keep freeze and unfreeze actions balanced
169 * in the blk_mq_* namespace
170 */
171 blk_freeze_queue(q);
172 }
173 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
174
175 void blk_mq_unfreeze_queue(struct request_queue *q)
176 {
177 int freeze_depth;
178
179 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
180 WARN_ON_ONCE(freeze_depth < 0);
181 if (!freeze_depth) {
182 percpu_ref_reinit(&q->q_usage_counter);
183 wake_up_all(&q->mq_freeze_wq);
184 }
185 }
186 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
187
188 /*
189 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
190 * mpt3sas driver such that this function can be removed.
191 */
192 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
193 {
194 unsigned long flags;
195
196 spin_lock_irqsave(q->queue_lock, flags);
197 queue_flag_set(QUEUE_FLAG_QUIESCED, q);
198 spin_unlock_irqrestore(q->queue_lock, flags);
199 }
200 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
201
202 /**
203 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
204 * @q: request queue.
205 *
206 * Note: this function does not prevent that the struct request end_io()
207 * callback function is invoked. Once this function is returned, we make
208 * sure no dispatch can happen until the queue is unquiesced via
209 * blk_mq_unquiesce_queue().
210 */
211 void blk_mq_quiesce_queue(struct request_queue *q)
212 {
213 struct blk_mq_hw_ctx *hctx;
214 unsigned int i;
215 bool rcu = false;
216
217 blk_mq_quiesce_queue_nowait(q);
218
219 queue_for_each_hw_ctx(q, hctx, i) {
220 if (hctx->flags & BLK_MQ_F_BLOCKING)
221 synchronize_srcu(hctx->queue_rq_srcu);
222 else
223 rcu = true;
224 }
225 if (rcu)
226 synchronize_rcu();
227 }
228 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
229
230 /*
231 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
232 * @q: request queue.
233 *
234 * This function recovers queue into the state before quiescing
235 * which is done by blk_mq_quiesce_queue.
236 */
237 void blk_mq_unquiesce_queue(struct request_queue *q)
238 {
239 unsigned long flags;
240
241 spin_lock_irqsave(q->queue_lock, flags);
242 queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
243 spin_unlock_irqrestore(q->queue_lock, flags);
244
245 /* dispatch requests which are inserted during quiescing */
246 blk_mq_run_hw_queues(q, true);
247 }
248 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
249
250 void blk_mq_wake_waiters(struct request_queue *q)
251 {
252 struct blk_mq_hw_ctx *hctx;
253 unsigned int i;
254
255 queue_for_each_hw_ctx(q, hctx, i)
256 if (blk_mq_hw_queue_mapped(hctx))
257 blk_mq_tag_wakeup_all(hctx->tags, true);
258
259 /*
260 * If we are called because the queue has now been marked as
261 * dying, we need to ensure that processes currently waiting on
262 * the queue are notified as well.
263 */
264 wake_up_all(&q->mq_freeze_wq);
265 }
266
267 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
268 {
269 return blk_mq_has_free_tags(hctx->tags);
270 }
271 EXPORT_SYMBOL(blk_mq_can_queue);
272
273 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
274 unsigned int tag, unsigned int op)
275 {
276 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
277 struct request *rq = tags->static_rqs[tag];
278
279 rq->rq_flags = 0;
280
281 if (data->flags & BLK_MQ_REQ_INTERNAL) {
282 rq->tag = -1;
283 rq->internal_tag = tag;
284 } else {
285 if (blk_mq_tag_busy(data->hctx)) {
286 rq->rq_flags = RQF_MQ_INFLIGHT;
287 atomic_inc(&data->hctx->nr_active);
288 }
289 rq->tag = tag;
290 rq->internal_tag = -1;
291 data->hctx->tags->rqs[rq->tag] = rq;
292 }
293
294 INIT_LIST_HEAD(&rq->queuelist);
295 /* csd/requeue_work/fifo_time is initialized before use */
296 rq->q = data->q;
297 rq->mq_ctx = data->ctx;
298 rq->cmd_flags = op;
299 if (blk_queue_io_stat(data->q))
300 rq->rq_flags |= RQF_IO_STAT;
301 /* do not touch atomic flags, it needs atomic ops against the timer */
302 rq->cpu = -1;
303 INIT_HLIST_NODE(&rq->hash);
304 RB_CLEAR_NODE(&rq->rb_node);
305 rq->rq_disk = NULL;
306 rq->part = NULL;
307 rq->start_time = jiffies;
308 #ifdef CONFIG_BLK_CGROUP
309 rq->rl = NULL;
310 set_start_time_ns(rq);
311 rq->io_start_time_ns = 0;
312 #endif
313 rq->nr_phys_segments = 0;
314 #if defined(CONFIG_BLK_DEV_INTEGRITY)
315 rq->nr_integrity_segments = 0;
316 #endif
317 rq->special = NULL;
318 /* tag was already set */
319 rq->extra_len = 0;
320
321 INIT_LIST_HEAD(&rq->timeout_list);
322 rq->timeout = 0;
323
324 rq->end_io = NULL;
325 rq->end_io_data = NULL;
326 rq->next_rq = NULL;
327
328 data->ctx->rq_dispatched[op_is_sync(op)]++;
329 return rq;
330 }
331
332 static struct request *blk_mq_get_request(struct request_queue *q,
333 struct bio *bio, unsigned int op,
334 struct blk_mq_alloc_data *data)
335 {
336 struct elevator_queue *e = q->elevator;
337 struct request *rq;
338 unsigned int tag;
339 struct blk_mq_ctx *local_ctx = NULL;
340
341 blk_queue_enter_live(q);
342 data->q = q;
343 if (likely(!data->ctx))
344 data->ctx = local_ctx = blk_mq_get_ctx(q);
345 if (likely(!data->hctx))
346 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
347 if (op & REQ_NOWAIT)
348 data->flags |= BLK_MQ_REQ_NOWAIT;
349
350 if (e) {
351 data->flags |= BLK_MQ_REQ_INTERNAL;
352
353 /*
354 * Flush requests are special and go directly to the
355 * dispatch list.
356 */
357 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
358 e->type->ops.mq.limit_depth(op, data);
359 }
360
361 tag = blk_mq_get_tag(data);
362 if (tag == BLK_MQ_TAG_FAIL) {
363 if (local_ctx) {
364 blk_mq_put_ctx(local_ctx);
365 data->ctx = NULL;
366 }
367 blk_queue_exit(q);
368 return NULL;
369 }
370
371 rq = blk_mq_rq_ctx_init(data, tag, op);
372 if (!op_is_flush(op)) {
373 rq->elv.icq = NULL;
374 if (e && e->type->ops.mq.prepare_request) {
375 if (e->type->icq_cache && rq_ioc(bio))
376 blk_mq_sched_assign_ioc(rq, bio);
377
378 e->type->ops.mq.prepare_request(rq, bio);
379 rq->rq_flags |= RQF_ELVPRIV;
380 }
381 }
382 data->hctx->queued++;
383 return rq;
384 }
385
386 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
387 unsigned int flags)
388 {
389 struct blk_mq_alloc_data alloc_data = { .flags = flags };
390 struct request *rq;
391 int ret;
392
393 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
394 if (ret)
395 return ERR_PTR(ret);
396
397 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
398 blk_queue_exit(q);
399
400 if (!rq)
401 return ERR_PTR(-EWOULDBLOCK);
402
403 blk_mq_put_ctx(alloc_data.ctx);
404
405 rq->__data_len = 0;
406 rq->__sector = (sector_t) -1;
407 rq->bio = rq->biotail = NULL;
408 return rq;
409 }
410 EXPORT_SYMBOL(blk_mq_alloc_request);
411
412 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
413 unsigned int op, unsigned int flags, unsigned int hctx_idx)
414 {
415 struct blk_mq_alloc_data alloc_data = { .flags = flags };
416 struct request *rq;
417 unsigned int cpu;
418 int ret;
419
420 /*
421 * If the tag allocator sleeps we could get an allocation for a
422 * different hardware context. No need to complicate the low level
423 * allocator for this for the rare use case of a command tied to
424 * a specific queue.
425 */
426 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
427 return ERR_PTR(-EINVAL);
428
429 if (hctx_idx >= q->nr_hw_queues)
430 return ERR_PTR(-EIO);
431
432 ret = blk_queue_enter(q, true);
433 if (ret)
434 return ERR_PTR(ret);
435
436 /*
437 * Check if the hardware context is actually mapped to anything.
438 * If not tell the caller that it should skip this queue.
439 */
440 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
441 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
442 blk_queue_exit(q);
443 return ERR_PTR(-EXDEV);
444 }
445 cpu = cpumask_first(alloc_data.hctx->cpumask);
446 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
447
448 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
449 blk_queue_exit(q);
450
451 if (!rq)
452 return ERR_PTR(-EWOULDBLOCK);
453
454 return rq;
455 }
456 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
457
458 void blk_mq_free_request(struct request *rq)
459 {
460 struct request_queue *q = rq->q;
461 struct elevator_queue *e = q->elevator;
462 struct blk_mq_ctx *ctx = rq->mq_ctx;
463 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
464 const int sched_tag = rq->internal_tag;
465
466 if (rq->rq_flags & RQF_ELVPRIV) {
467 if (e && e->type->ops.mq.finish_request)
468 e->type->ops.mq.finish_request(rq);
469 if (rq->elv.icq) {
470 put_io_context(rq->elv.icq->ioc);
471 rq->elv.icq = NULL;
472 }
473 }
474
475 ctx->rq_completed[rq_is_sync(rq)]++;
476 if (rq->rq_flags & RQF_MQ_INFLIGHT)
477 atomic_dec(&hctx->nr_active);
478
479 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
480 laptop_io_completion(q->backing_dev_info);
481
482 wbt_done(q->rq_wb, &rq->issue_stat);
483
484 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
485 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
486 if (rq->tag != -1)
487 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
488 if (sched_tag != -1)
489 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
490 blk_mq_sched_restart(hctx);
491 blk_queue_exit(q);
492 }
493 EXPORT_SYMBOL_GPL(blk_mq_free_request);
494
495 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
496 {
497 blk_account_io_done(rq);
498
499 if (rq->end_io) {
500 wbt_done(rq->q->rq_wb, &rq->issue_stat);
501 rq->end_io(rq, error);
502 } else {
503 if (unlikely(blk_bidi_rq(rq)))
504 blk_mq_free_request(rq->next_rq);
505 blk_mq_free_request(rq);
506 }
507 }
508 EXPORT_SYMBOL(__blk_mq_end_request);
509
510 void blk_mq_end_request(struct request *rq, blk_status_t error)
511 {
512 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
513 BUG();
514 __blk_mq_end_request(rq, error);
515 }
516 EXPORT_SYMBOL(blk_mq_end_request);
517
518 static void __blk_mq_complete_request_remote(void *data)
519 {
520 struct request *rq = data;
521
522 rq->q->softirq_done_fn(rq);
523 }
524
525 static void __blk_mq_complete_request(struct request *rq)
526 {
527 struct blk_mq_ctx *ctx = rq->mq_ctx;
528 bool shared = false;
529 int cpu;
530
531 if (rq->internal_tag != -1)
532 blk_mq_sched_completed_request(rq);
533 if (rq->rq_flags & RQF_STATS) {
534 blk_mq_poll_stats_start(rq->q);
535 blk_stat_add(rq);
536 }
537
538 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
539 rq->q->softirq_done_fn(rq);
540 return;
541 }
542
543 cpu = get_cpu();
544 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
545 shared = cpus_share_cache(cpu, ctx->cpu);
546
547 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
548 rq->csd.func = __blk_mq_complete_request_remote;
549 rq->csd.info = rq;
550 rq->csd.flags = 0;
551 smp_call_function_single_async(ctx->cpu, &rq->csd);
552 } else {
553 rq->q->softirq_done_fn(rq);
554 }
555 put_cpu();
556 }
557
558 /**
559 * blk_mq_complete_request - end I/O on a request
560 * @rq: the request being processed
561 *
562 * Description:
563 * Ends all I/O on a request. It does not handle partial completions.
564 * The actual completion happens out-of-order, through a IPI handler.
565 **/
566 void blk_mq_complete_request(struct request *rq)
567 {
568 struct request_queue *q = rq->q;
569
570 if (unlikely(blk_should_fake_timeout(q)))
571 return;
572 if (!blk_mark_rq_complete(rq))
573 __blk_mq_complete_request(rq);
574 }
575 EXPORT_SYMBOL(blk_mq_complete_request);
576
577 int blk_mq_request_started(struct request *rq)
578 {
579 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
580 }
581 EXPORT_SYMBOL_GPL(blk_mq_request_started);
582
583 void blk_mq_start_request(struct request *rq)
584 {
585 struct request_queue *q = rq->q;
586
587 blk_mq_sched_started_request(rq);
588
589 trace_block_rq_issue(q, rq);
590
591 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
592 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
593 rq->rq_flags |= RQF_STATS;
594 wbt_issue(q->rq_wb, &rq->issue_stat);
595 }
596
597 blk_add_timer(rq);
598
599 WARN_ON_ONCE(test_bit(REQ_ATOM_STARTED, &rq->atomic_flags));
600
601 /*
602 * Mark us as started and clear complete. Complete might have been
603 * set if requeue raced with timeout, which then marked it as
604 * complete. So be sure to clear complete again when we start
605 * the request, otherwise we'll ignore the completion event.
606 *
607 * Ensure that ->deadline is visible before we set STARTED, such that
608 * blk_mq_check_expired() is guaranteed to observe our ->deadline when
609 * it observes STARTED.
610 */
611 smp_wmb();
612 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
613 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
614 /*
615 * Coherence order guarantees these consecutive stores to a
616 * single variable propagate in the specified order. Thus the
617 * clear_bit() is ordered _after_ the set bit. See
618 * blk_mq_check_expired().
619 *
620 * (the bits must be part of the same byte for this to be
621 * true).
622 */
623 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
624 }
625
626 if (q->dma_drain_size && blk_rq_bytes(rq)) {
627 /*
628 * Make sure space for the drain appears. We know we can do
629 * this because max_hw_segments has been adjusted to be one
630 * fewer than the device can handle.
631 */
632 rq->nr_phys_segments++;
633 }
634 }
635 EXPORT_SYMBOL(blk_mq_start_request);
636
637 /*
638 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
639 * flag isn't set yet, so there may be race with timeout handler,
640 * but given rq->deadline is just set in .queue_rq() under
641 * this situation, the race won't be possible in reality because
642 * rq->timeout should be set as big enough to cover the window
643 * between blk_mq_start_request() called from .queue_rq() and
644 * clearing REQ_ATOM_STARTED here.
645 */
646 static void __blk_mq_requeue_request(struct request *rq)
647 {
648 struct request_queue *q = rq->q;
649
650 trace_block_rq_requeue(q, rq);
651 wbt_requeue(q->rq_wb, &rq->issue_stat);
652 blk_mq_sched_requeue_request(rq);
653
654 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
655 if (q->dma_drain_size && blk_rq_bytes(rq))
656 rq->nr_phys_segments--;
657 }
658 }
659
660 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
661 {
662 __blk_mq_requeue_request(rq);
663
664 BUG_ON(blk_queued_rq(rq));
665 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
666 }
667 EXPORT_SYMBOL(blk_mq_requeue_request);
668
669 static void blk_mq_requeue_work(struct work_struct *work)
670 {
671 struct request_queue *q =
672 container_of(work, struct request_queue, requeue_work.work);
673 LIST_HEAD(rq_list);
674 struct request *rq, *next;
675
676 spin_lock_irq(&q->requeue_lock);
677 list_splice_init(&q->requeue_list, &rq_list);
678 spin_unlock_irq(&q->requeue_lock);
679
680 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
681 if (!(rq->rq_flags & RQF_SOFTBARRIER))
682 continue;
683
684 rq->rq_flags &= ~RQF_SOFTBARRIER;
685 list_del_init(&rq->queuelist);
686 blk_mq_sched_insert_request(rq, true, false, false, true);
687 }
688
689 while (!list_empty(&rq_list)) {
690 rq = list_entry(rq_list.next, struct request, queuelist);
691 list_del_init(&rq->queuelist);
692 blk_mq_sched_insert_request(rq, false, false, false, true);
693 }
694
695 blk_mq_run_hw_queues(q, false);
696 }
697
698 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
699 bool kick_requeue_list)
700 {
701 struct request_queue *q = rq->q;
702 unsigned long flags;
703
704 /*
705 * We abuse this flag that is otherwise used by the I/O scheduler to
706 * request head insertation from the workqueue.
707 */
708 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
709
710 spin_lock_irqsave(&q->requeue_lock, flags);
711 if (at_head) {
712 rq->rq_flags |= RQF_SOFTBARRIER;
713 list_add(&rq->queuelist, &q->requeue_list);
714 } else {
715 list_add_tail(&rq->queuelist, &q->requeue_list);
716 }
717 spin_unlock_irqrestore(&q->requeue_lock, flags);
718
719 if (kick_requeue_list)
720 blk_mq_kick_requeue_list(q);
721 }
722 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
723
724 void blk_mq_kick_requeue_list(struct request_queue *q)
725 {
726 kblockd_schedule_delayed_work(&q->requeue_work, 0);
727 }
728 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
729
730 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
731 unsigned long msecs)
732 {
733 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
734 msecs_to_jiffies(msecs));
735 }
736 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
737
738 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
739 {
740 if (tag < tags->nr_tags) {
741 prefetch(tags->rqs[tag]);
742 return tags->rqs[tag];
743 }
744
745 return NULL;
746 }
747 EXPORT_SYMBOL(blk_mq_tag_to_rq);
748
749 struct blk_mq_timeout_data {
750 unsigned long next;
751 unsigned int next_set;
752 };
753
754 void blk_mq_rq_timed_out(struct request *req, bool reserved)
755 {
756 const struct blk_mq_ops *ops = req->q->mq_ops;
757 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
758
759 /*
760 * We know that complete is set at this point. If STARTED isn't set
761 * anymore, then the request isn't active and the "timeout" should
762 * just be ignored. This can happen due to the bitflag ordering.
763 * Timeout first checks if STARTED is set, and if it is, assumes
764 * the request is active. But if we race with completion, then
765 * both flags will get cleared. So check here again, and ignore
766 * a timeout event with a request that isn't active.
767 */
768 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
769 return;
770
771 if (ops->timeout)
772 ret = ops->timeout(req, reserved);
773
774 switch (ret) {
775 case BLK_EH_HANDLED:
776 __blk_mq_complete_request(req);
777 break;
778 case BLK_EH_RESET_TIMER:
779 blk_add_timer(req);
780 blk_clear_rq_complete(req);
781 break;
782 case BLK_EH_NOT_HANDLED:
783 break;
784 default:
785 printk(KERN_ERR "block: bad eh return: %d\n", ret);
786 break;
787 }
788 }
789
790 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
791 struct request *rq, void *priv, bool reserved)
792 {
793 struct blk_mq_timeout_data *data = priv;
794 unsigned long deadline;
795
796 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
797 return;
798
799 /*
800 * Ensures that if we see STARTED we must also see our
801 * up-to-date deadline, see blk_mq_start_request().
802 */
803 smp_rmb();
804
805 deadline = READ_ONCE(rq->deadline);
806
807 /*
808 * The rq being checked may have been freed and reallocated
809 * out already here, we avoid this race by checking rq->deadline
810 * and REQ_ATOM_COMPLETE flag together:
811 *
812 * - if rq->deadline is observed as new value because of
813 * reusing, the rq won't be timed out because of timing.
814 * - if rq->deadline is observed as previous value,
815 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
816 * because we put a barrier between setting rq->deadline
817 * and clearing the flag in blk_mq_start_request(), so
818 * this rq won't be timed out too.
819 */
820 if (time_after_eq(jiffies, deadline)) {
821 if (!blk_mark_rq_complete(rq)) {
822 /*
823 * Again coherence order ensures that consecutive reads
824 * from the same variable must be in that order. This
825 * ensures that if we see COMPLETE clear, we must then
826 * see STARTED set and we'll ignore this timeout.
827 *
828 * (There's also the MB implied by the test_and_clear())
829 */
830 blk_mq_rq_timed_out(rq, reserved);
831 }
832 } else if (!data->next_set || time_after(data->next, deadline)) {
833 data->next = deadline;
834 data->next_set = 1;
835 }
836 }
837
838 static void blk_mq_timeout_work(struct work_struct *work)
839 {
840 struct request_queue *q =
841 container_of(work, struct request_queue, timeout_work);
842 struct blk_mq_timeout_data data = {
843 .next = 0,
844 .next_set = 0,
845 };
846 int i;
847
848 /* A deadlock might occur if a request is stuck requiring a
849 * timeout at the same time a queue freeze is waiting
850 * completion, since the timeout code would not be able to
851 * acquire the queue reference here.
852 *
853 * That's why we don't use blk_queue_enter here; instead, we use
854 * percpu_ref_tryget directly, because we need to be able to
855 * obtain a reference even in the short window between the queue
856 * starting to freeze, by dropping the first reference in
857 * blk_freeze_queue_start, and the moment the last request is
858 * consumed, marked by the instant q_usage_counter reaches
859 * zero.
860 */
861 if (!percpu_ref_tryget(&q->q_usage_counter))
862 return;
863
864 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
865
866 if (data.next_set) {
867 data.next = blk_rq_timeout(round_jiffies_up(data.next));
868 mod_timer(&q->timeout, data.next);
869 } else {
870 struct blk_mq_hw_ctx *hctx;
871
872 queue_for_each_hw_ctx(q, hctx, i) {
873 /* the hctx may be unmapped, so check it here */
874 if (blk_mq_hw_queue_mapped(hctx))
875 blk_mq_tag_idle(hctx);
876 }
877 }
878 blk_queue_exit(q);
879 }
880
881 struct flush_busy_ctx_data {
882 struct blk_mq_hw_ctx *hctx;
883 struct list_head *list;
884 };
885
886 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
887 {
888 struct flush_busy_ctx_data *flush_data = data;
889 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
890 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
891
892 sbitmap_clear_bit(sb, bitnr);
893 spin_lock(&ctx->lock);
894 list_splice_tail_init(&ctx->rq_list, flush_data->list);
895 spin_unlock(&ctx->lock);
896 return true;
897 }
898
899 /*
900 * Process software queues that have been marked busy, splicing them
901 * to the for-dispatch
902 */
903 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
904 {
905 struct flush_busy_ctx_data data = {
906 .hctx = hctx,
907 .list = list,
908 };
909
910 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
911 }
912 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
913
914 static inline unsigned int queued_to_index(unsigned int queued)
915 {
916 if (!queued)
917 return 0;
918
919 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
920 }
921
922 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
923 bool wait)
924 {
925 struct blk_mq_alloc_data data = {
926 .q = rq->q,
927 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
928 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
929 };
930
931 might_sleep_if(wait);
932
933 if (rq->tag != -1)
934 goto done;
935
936 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
937 data.flags |= BLK_MQ_REQ_RESERVED;
938
939 rq->tag = blk_mq_get_tag(&data);
940 if (rq->tag >= 0) {
941 if (blk_mq_tag_busy(data.hctx)) {
942 rq->rq_flags |= RQF_MQ_INFLIGHT;
943 atomic_inc(&data.hctx->nr_active);
944 }
945 data.hctx->tags->rqs[rq->tag] = rq;
946 }
947
948 done:
949 if (hctx)
950 *hctx = data.hctx;
951 return rq->tag != -1;
952 }
953
954 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
955 struct request *rq)
956 {
957 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
958 rq->tag = -1;
959
960 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
961 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
962 atomic_dec(&hctx->nr_active);
963 }
964 }
965
966 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
967 struct request *rq)
968 {
969 if (rq->tag == -1 || rq->internal_tag == -1)
970 return;
971
972 __blk_mq_put_driver_tag(hctx, rq);
973 }
974
975 static void blk_mq_put_driver_tag(struct request *rq)
976 {
977 struct blk_mq_hw_ctx *hctx;
978
979 if (rq->tag == -1 || rq->internal_tag == -1)
980 return;
981
982 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
983 __blk_mq_put_driver_tag(hctx, rq);
984 }
985
986 /*
987 * If we fail getting a driver tag because all the driver tags are already
988 * assigned and on the dispatch list, BUT the first entry does not have a
989 * tag, then we could deadlock. For that case, move entries with assigned
990 * driver tags to the front, leaving the set of tagged requests in the
991 * same order, and the untagged set in the same order.
992 */
993 static bool reorder_tags_to_front(struct list_head *list)
994 {
995 struct request *rq, *tmp, *first = NULL;
996
997 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
998 if (rq == first)
999 break;
1000 if (rq->tag != -1) {
1001 list_move(&rq->queuelist, list);
1002 if (!first)
1003 first = rq;
1004 }
1005 }
1006
1007 return first != NULL;
1008 }
1009
1010 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
1011 void *key)
1012 {
1013 struct blk_mq_hw_ctx *hctx;
1014
1015 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1016
1017 list_del(&wait->entry);
1018 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
1019 blk_mq_run_hw_queue(hctx, true);
1020 return 1;
1021 }
1022
1023 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
1024 {
1025 struct sbq_wait_state *ws;
1026
1027 /*
1028 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
1029 * The thread which wins the race to grab this bit adds the hardware
1030 * queue to the wait queue.
1031 */
1032 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
1033 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
1034 return false;
1035
1036 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
1037 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
1038
1039 /*
1040 * As soon as this returns, it's no longer safe to fiddle with
1041 * hctx->dispatch_wait, since a completion can wake up the wait queue
1042 * and unlock the bit.
1043 */
1044 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
1045 return true;
1046 }
1047
1048 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
1049 {
1050 struct blk_mq_hw_ctx *hctx;
1051 struct request *rq;
1052 int errors, queued;
1053
1054 if (list_empty(list))
1055 return false;
1056
1057 /*
1058 * Now process all the entries, sending them to the driver.
1059 */
1060 errors = queued = 0;
1061 do {
1062 struct blk_mq_queue_data bd;
1063 blk_status_t ret;
1064
1065 rq = list_first_entry(list, struct request, queuelist);
1066 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1067 if (!queued && reorder_tags_to_front(list))
1068 continue;
1069
1070 /*
1071 * The initial allocation attempt failed, so we need to
1072 * rerun the hardware queue when a tag is freed.
1073 */
1074 if (!blk_mq_dispatch_wait_add(hctx))
1075 break;
1076
1077 /*
1078 * It's possible that a tag was freed in the window
1079 * between the allocation failure and adding the
1080 * hardware queue to the wait queue.
1081 */
1082 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1083 break;
1084 }
1085
1086 list_del_init(&rq->queuelist);
1087
1088 bd.rq = rq;
1089
1090 /*
1091 * Flag last if we have no more requests, or if we have more
1092 * but can't assign a driver tag to it.
1093 */
1094 if (list_empty(list))
1095 bd.last = true;
1096 else {
1097 struct request *nxt;
1098
1099 nxt = list_first_entry(list, struct request, queuelist);
1100 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1101 }
1102
1103 ret = q->mq_ops->queue_rq(hctx, &bd);
1104 if (ret == BLK_STS_RESOURCE) {
1105 blk_mq_put_driver_tag_hctx(hctx, rq);
1106 list_add(&rq->queuelist, list);
1107 __blk_mq_requeue_request(rq);
1108 break;
1109 }
1110
1111 if (unlikely(ret != BLK_STS_OK)) {
1112 errors++;
1113 blk_mq_end_request(rq, BLK_STS_IOERR);
1114 continue;
1115 }
1116
1117 queued++;
1118 } while (!list_empty(list));
1119
1120 hctx->dispatched[queued_to_index(queued)]++;
1121
1122 /*
1123 * Any items that need requeuing? Stuff them into hctx->dispatch,
1124 * that is where we will continue on next queue run.
1125 */
1126 if (!list_empty(list)) {
1127 /*
1128 * If an I/O scheduler has been configured and we got a driver
1129 * tag for the next request already, free it again.
1130 */
1131 rq = list_first_entry(list, struct request, queuelist);
1132 blk_mq_put_driver_tag(rq);
1133
1134 spin_lock(&hctx->lock);
1135 list_splice_init(list, &hctx->dispatch);
1136 spin_unlock(&hctx->lock);
1137
1138 /*
1139 * If SCHED_RESTART was set by the caller of this function and
1140 * it is no longer set that means that it was cleared by another
1141 * thread and hence that a queue rerun is needed.
1142 *
1143 * If TAG_WAITING is set that means that an I/O scheduler has
1144 * been configured and another thread is waiting for a driver
1145 * tag. To guarantee fairness, do not rerun this hardware queue
1146 * but let the other thread grab the driver tag.
1147 *
1148 * If no I/O scheduler has been configured it is possible that
1149 * the hardware queue got stopped and restarted before requests
1150 * were pushed back onto the dispatch list. Rerun the queue to
1151 * avoid starvation. Notes:
1152 * - blk_mq_run_hw_queue() checks whether or not a queue has
1153 * been stopped before rerunning a queue.
1154 * - Some but not all block drivers stop a queue before
1155 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1156 * and dm-rq.
1157 */
1158 if (!blk_mq_sched_needs_restart(hctx) &&
1159 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1160 blk_mq_run_hw_queue(hctx, true);
1161 }
1162
1163 return (queued + errors) != 0;
1164 }
1165
1166 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1167 {
1168 int srcu_idx;
1169
1170 /*
1171 * We should be running this queue from one of the CPUs that
1172 * are mapped to it.
1173 */
1174 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1175 cpu_online(hctx->next_cpu));
1176
1177 /*
1178 * We can't run the queue inline with ints disabled. Ensure that
1179 * we catch bad users of this early.
1180 */
1181 WARN_ON_ONCE(in_interrupt());
1182
1183 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1184 rcu_read_lock();
1185 blk_mq_sched_dispatch_requests(hctx);
1186 rcu_read_unlock();
1187 } else {
1188 might_sleep();
1189
1190 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1191 blk_mq_sched_dispatch_requests(hctx);
1192 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1193 }
1194 }
1195
1196 /*
1197 * It'd be great if the workqueue API had a way to pass
1198 * in a mask and had some smarts for more clever placement.
1199 * For now we just round-robin here, switching for every
1200 * BLK_MQ_CPU_WORK_BATCH queued items.
1201 */
1202 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1203 {
1204 if (hctx->queue->nr_hw_queues == 1)
1205 return WORK_CPU_UNBOUND;
1206
1207 if (--hctx->next_cpu_batch <= 0) {
1208 int next_cpu;
1209
1210 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1211 if (next_cpu >= nr_cpu_ids)
1212 next_cpu = cpumask_first(hctx->cpumask);
1213
1214 hctx->next_cpu = next_cpu;
1215 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1216 }
1217
1218 return hctx->next_cpu;
1219 }
1220
1221 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1222 unsigned long msecs)
1223 {
1224 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1225 return;
1226
1227 if (unlikely(blk_mq_hctx_stopped(hctx)))
1228 return;
1229
1230 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1231 int cpu = get_cpu();
1232 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1233 __blk_mq_run_hw_queue(hctx);
1234 put_cpu();
1235 return;
1236 }
1237
1238 put_cpu();
1239 }
1240
1241 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1242 &hctx->run_work,
1243 msecs_to_jiffies(msecs));
1244 }
1245
1246 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1247 {
1248 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1249 }
1250 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1251
1252 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1253 {
1254 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1255 }
1256 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1257
1258 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1259 {
1260 struct blk_mq_hw_ctx *hctx;
1261 int i;
1262
1263 queue_for_each_hw_ctx(q, hctx, i) {
1264 if (!blk_mq_hctx_has_pending(hctx) ||
1265 blk_mq_hctx_stopped(hctx))
1266 continue;
1267
1268 blk_mq_run_hw_queue(hctx, async);
1269 }
1270 }
1271 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1272
1273 /**
1274 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1275 * @q: request queue.
1276 *
1277 * The caller is responsible for serializing this function against
1278 * blk_mq_{start,stop}_hw_queue().
1279 */
1280 bool blk_mq_queue_stopped(struct request_queue *q)
1281 {
1282 struct blk_mq_hw_ctx *hctx;
1283 int i;
1284
1285 queue_for_each_hw_ctx(q, hctx, i)
1286 if (blk_mq_hctx_stopped(hctx))
1287 return true;
1288
1289 return false;
1290 }
1291 EXPORT_SYMBOL(blk_mq_queue_stopped);
1292
1293 /*
1294 * This function is often used for pausing .queue_rq() by driver when
1295 * there isn't enough resource or some conditions aren't satisfied, and
1296 * BLK_STS_RESOURCE is usually returned.
1297 *
1298 * We do not guarantee that dispatch can be drained or blocked
1299 * after blk_mq_stop_hw_queue() returns. Please use
1300 * blk_mq_quiesce_queue() for that requirement.
1301 */
1302 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1303 {
1304 cancel_delayed_work(&hctx->run_work);
1305
1306 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1307 }
1308 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1309
1310 /*
1311 * This function is often used for pausing .queue_rq() by driver when
1312 * there isn't enough resource or some conditions aren't satisfied, and
1313 * BLK_STS_RESOURCE is usually returned.
1314 *
1315 * We do not guarantee that dispatch can be drained or blocked
1316 * after blk_mq_stop_hw_queues() returns. Please use
1317 * blk_mq_quiesce_queue() for that requirement.
1318 */
1319 void blk_mq_stop_hw_queues(struct request_queue *q)
1320 {
1321 struct blk_mq_hw_ctx *hctx;
1322 int i;
1323
1324 queue_for_each_hw_ctx(q, hctx, i)
1325 blk_mq_stop_hw_queue(hctx);
1326 }
1327 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1328
1329 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1330 {
1331 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1332
1333 blk_mq_run_hw_queue(hctx, false);
1334 }
1335 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1336
1337 void blk_mq_start_hw_queues(struct request_queue *q)
1338 {
1339 struct blk_mq_hw_ctx *hctx;
1340 int i;
1341
1342 queue_for_each_hw_ctx(q, hctx, i)
1343 blk_mq_start_hw_queue(hctx);
1344 }
1345 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1346
1347 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1348 {
1349 if (!blk_mq_hctx_stopped(hctx))
1350 return;
1351
1352 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1353 blk_mq_run_hw_queue(hctx, async);
1354 }
1355 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1356
1357 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1358 {
1359 struct blk_mq_hw_ctx *hctx;
1360 int i;
1361
1362 queue_for_each_hw_ctx(q, hctx, i)
1363 blk_mq_start_stopped_hw_queue(hctx, async);
1364 }
1365 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1366
1367 static void blk_mq_run_work_fn(struct work_struct *work)
1368 {
1369 struct blk_mq_hw_ctx *hctx;
1370
1371 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1372
1373 /*
1374 * If we are stopped, don't run the queue. The exception is if
1375 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1376 * the STOPPED bit and run it.
1377 */
1378 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1379 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1380 return;
1381
1382 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1383 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1384 }
1385
1386 __blk_mq_run_hw_queue(hctx);
1387 }
1388
1389
1390 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1391 {
1392 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1393 return;
1394
1395 /*
1396 * Stop the hw queue, then modify currently delayed work.
1397 * This should prevent us from running the queue prematurely.
1398 * Mark the queue as auto-clearing STOPPED when it runs.
1399 */
1400 blk_mq_stop_hw_queue(hctx);
1401 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1402 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1403 &hctx->run_work,
1404 msecs_to_jiffies(msecs));
1405 }
1406 EXPORT_SYMBOL(blk_mq_delay_queue);
1407
1408 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1409 struct request *rq,
1410 bool at_head)
1411 {
1412 struct blk_mq_ctx *ctx = rq->mq_ctx;
1413
1414 lockdep_assert_held(&ctx->lock);
1415
1416 trace_block_rq_insert(hctx->queue, rq);
1417
1418 if (at_head)
1419 list_add(&rq->queuelist, &ctx->rq_list);
1420 else
1421 list_add_tail(&rq->queuelist, &ctx->rq_list);
1422 }
1423
1424 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1425 bool at_head)
1426 {
1427 struct blk_mq_ctx *ctx = rq->mq_ctx;
1428
1429 lockdep_assert_held(&ctx->lock);
1430
1431 __blk_mq_insert_req_list(hctx, rq, at_head);
1432 blk_mq_hctx_mark_pending(hctx, ctx);
1433 }
1434
1435 /*
1436 * Should only be used carefully, when the caller knows we want to
1437 * bypass a potential IO scheduler on the target device.
1438 */
1439 void blk_mq_request_bypass_insert(struct request *rq)
1440 {
1441 struct blk_mq_ctx *ctx = rq->mq_ctx;
1442 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1443
1444 spin_lock(&hctx->lock);
1445 list_add_tail(&rq->queuelist, &hctx->dispatch);
1446 spin_unlock(&hctx->lock);
1447
1448 blk_mq_run_hw_queue(hctx, false);
1449 }
1450
1451 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1452 struct list_head *list)
1453
1454 {
1455 /*
1456 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1457 * offline now
1458 */
1459 spin_lock(&ctx->lock);
1460 while (!list_empty(list)) {
1461 struct request *rq;
1462
1463 rq = list_first_entry(list, struct request, queuelist);
1464 BUG_ON(rq->mq_ctx != ctx);
1465 list_del_init(&rq->queuelist);
1466 __blk_mq_insert_req_list(hctx, rq, false);
1467 }
1468 blk_mq_hctx_mark_pending(hctx, ctx);
1469 spin_unlock(&ctx->lock);
1470 }
1471
1472 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1473 {
1474 struct request *rqa = container_of(a, struct request, queuelist);
1475 struct request *rqb = container_of(b, struct request, queuelist);
1476
1477 return !(rqa->mq_ctx < rqb->mq_ctx ||
1478 (rqa->mq_ctx == rqb->mq_ctx &&
1479 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1480 }
1481
1482 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1483 {
1484 struct blk_mq_ctx *this_ctx;
1485 struct request_queue *this_q;
1486 struct request *rq;
1487 LIST_HEAD(list);
1488 LIST_HEAD(ctx_list);
1489 unsigned int depth;
1490
1491 list_splice_init(&plug->mq_list, &list);
1492
1493 list_sort(NULL, &list, plug_ctx_cmp);
1494
1495 this_q = NULL;
1496 this_ctx = NULL;
1497 depth = 0;
1498
1499 while (!list_empty(&list)) {
1500 rq = list_entry_rq(list.next);
1501 list_del_init(&rq->queuelist);
1502 BUG_ON(!rq->q);
1503 if (rq->mq_ctx != this_ctx) {
1504 if (this_ctx) {
1505 trace_block_unplug(this_q, depth, from_schedule);
1506 blk_mq_sched_insert_requests(this_q, this_ctx,
1507 &ctx_list,
1508 from_schedule);
1509 }
1510
1511 this_ctx = rq->mq_ctx;
1512 this_q = rq->q;
1513 depth = 0;
1514 }
1515
1516 depth++;
1517 list_add_tail(&rq->queuelist, &ctx_list);
1518 }
1519
1520 /*
1521 * If 'this_ctx' is set, we know we have entries to complete
1522 * on 'ctx_list'. Do those.
1523 */
1524 if (this_ctx) {
1525 trace_block_unplug(this_q, depth, from_schedule);
1526 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1527 from_schedule);
1528 }
1529 }
1530
1531 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1532 {
1533 blk_init_request_from_bio(rq, bio);
1534
1535 blk_account_io_start(rq, true);
1536 }
1537
1538 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1539 struct blk_mq_ctx *ctx,
1540 struct request *rq)
1541 {
1542 spin_lock(&ctx->lock);
1543 __blk_mq_insert_request(hctx, rq, false);
1544 spin_unlock(&ctx->lock);
1545 }
1546
1547 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1548 {
1549 if (rq->tag != -1)
1550 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1551
1552 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1553 }
1554
1555 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1556 struct request *rq,
1557 blk_qc_t *cookie, bool may_sleep)
1558 {
1559 struct request_queue *q = rq->q;
1560 struct blk_mq_queue_data bd = {
1561 .rq = rq,
1562 .last = true,
1563 };
1564 blk_qc_t new_cookie;
1565 blk_status_t ret;
1566 bool run_queue = true;
1567
1568 /* RCU or SRCU read lock is needed before checking quiesced flag */
1569 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1570 run_queue = false;
1571 goto insert;
1572 }
1573
1574 if (q->elevator)
1575 goto insert;
1576
1577 if (!blk_mq_get_driver_tag(rq, NULL, false))
1578 goto insert;
1579
1580 new_cookie = request_to_qc_t(hctx, rq);
1581
1582 /*
1583 * For OK queue, we are done. For error, kill it. Any other
1584 * error (busy), just add it to our list as we previously
1585 * would have done
1586 */
1587 ret = q->mq_ops->queue_rq(hctx, &bd);
1588 switch (ret) {
1589 case BLK_STS_OK:
1590 *cookie = new_cookie;
1591 return;
1592 case BLK_STS_RESOURCE:
1593 __blk_mq_requeue_request(rq);
1594 goto insert;
1595 default:
1596 *cookie = BLK_QC_T_NONE;
1597 blk_mq_end_request(rq, ret);
1598 return;
1599 }
1600
1601 insert:
1602 blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1603 }
1604
1605 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1606 struct request *rq, blk_qc_t *cookie)
1607 {
1608 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1609 rcu_read_lock();
1610 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1611 rcu_read_unlock();
1612 } else {
1613 unsigned int srcu_idx;
1614
1615 might_sleep();
1616
1617 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1618 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
1619 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1620 }
1621 }
1622
1623 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1624 {
1625 const int is_sync = op_is_sync(bio->bi_opf);
1626 const int is_flush_fua = op_is_flush(bio->bi_opf);
1627 struct blk_mq_alloc_data data = { .flags = 0 };
1628 struct request *rq;
1629 unsigned int request_count = 0;
1630 struct blk_plug *plug;
1631 struct request *same_queue_rq = NULL;
1632 blk_qc_t cookie;
1633 unsigned int wb_acct;
1634
1635 blk_queue_bounce(q, &bio);
1636
1637 blk_queue_split(q, &bio);
1638
1639 if (!bio_integrity_prep(bio))
1640 return BLK_QC_T_NONE;
1641
1642 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1643 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1644 return BLK_QC_T_NONE;
1645
1646 if (blk_mq_sched_bio_merge(q, bio))
1647 return BLK_QC_T_NONE;
1648
1649 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1650
1651 trace_block_getrq(q, bio, bio->bi_opf);
1652
1653 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1654 if (unlikely(!rq)) {
1655 __wbt_done(q->rq_wb, wb_acct);
1656 if (bio->bi_opf & REQ_NOWAIT)
1657 bio_wouldblock_error(bio);
1658 return BLK_QC_T_NONE;
1659 }
1660
1661 wbt_track(&rq->issue_stat, wb_acct);
1662
1663 cookie = request_to_qc_t(data.hctx, rq);
1664
1665 plug = current->plug;
1666 if (unlikely(is_flush_fua)) {
1667 blk_mq_put_ctx(data.ctx);
1668 blk_mq_bio_to_request(rq, bio);
1669 if (q->elevator) {
1670 blk_mq_sched_insert_request(rq, false, true, true,
1671 true);
1672 } else {
1673 blk_insert_flush(rq);
1674 blk_mq_run_hw_queue(data.hctx, true);
1675 }
1676 } else if (plug && q->nr_hw_queues == 1) {
1677 struct request *last = NULL;
1678
1679 blk_mq_put_ctx(data.ctx);
1680 blk_mq_bio_to_request(rq, bio);
1681
1682 /*
1683 * @request_count may become stale because of schedule
1684 * out, so check the list again.
1685 */
1686 if (list_empty(&plug->mq_list))
1687 request_count = 0;
1688 else if (blk_queue_nomerges(q))
1689 request_count = blk_plug_queued_count(q);
1690
1691 if (!request_count)
1692 trace_block_plug(q);
1693 else
1694 last = list_entry_rq(plug->mq_list.prev);
1695
1696 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1697 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1698 blk_flush_plug_list(plug, false);
1699 trace_block_plug(q);
1700 }
1701
1702 list_add_tail(&rq->queuelist, &plug->mq_list);
1703 } else if (plug && !blk_queue_nomerges(q)) {
1704 blk_mq_bio_to_request(rq, bio);
1705
1706 /*
1707 * We do limited plugging. If the bio can be merged, do that.
1708 * Otherwise the existing request in the plug list will be
1709 * issued. So the plug list will have one request at most
1710 * The plug list might get flushed before this. If that happens,
1711 * the plug list is empty, and same_queue_rq is invalid.
1712 */
1713 if (list_empty(&plug->mq_list))
1714 same_queue_rq = NULL;
1715 if (same_queue_rq)
1716 list_del_init(&same_queue_rq->queuelist);
1717 list_add_tail(&rq->queuelist, &plug->mq_list);
1718
1719 blk_mq_put_ctx(data.ctx);
1720
1721 if (same_queue_rq) {
1722 data.hctx = blk_mq_map_queue(q,
1723 same_queue_rq->mq_ctx->cpu);
1724 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1725 &cookie);
1726 }
1727 } else if (q->nr_hw_queues > 1 && is_sync) {
1728 blk_mq_put_ctx(data.ctx);
1729 blk_mq_bio_to_request(rq, bio);
1730 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1731 } else if (q->elevator) {
1732 blk_mq_put_ctx(data.ctx);
1733 blk_mq_bio_to_request(rq, bio);
1734 blk_mq_sched_insert_request(rq, false, true, true, true);
1735 } else {
1736 blk_mq_put_ctx(data.ctx);
1737 blk_mq_bio_to_request(rq, bio);
1738 blk_mq_queue_io(data.hctx, data.ctx, rq);
1739 blk_mq_run_hw_queue(data.hctx, true);
1740 }
1741
1742 return cookie;
1743 }
1744
1745 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1746 unsigned int hctx_idx)
1747 {
1748 struct page *page;
1749
1750 if (tags->rqs && set->ops->exit_request) {
1751 int i;
1752
1753 for (i = 0; i < tags->nr_tags; i++) {
1754 struct request *rq = tags->static_rqs[i];
1755
1756 if (!rq)
1757 continue;
1758 set->ops->exit_request(set, rq, hctx_idx);
1759 tags->static_rqs[i] = NULL;
1760 }
1761 }
1762
1763 while (!list_empty(&tags->page_list)) {
1764 page = list_first_entry(&tags->page_list, struct page, lru);
1765 list_del_init(&page->lru);
1766 /*
1767 * Remove kmemleak object previously allocated in
1768 * blk_mq_init_rq_map().
1769 */
1770 kmemleak_free(page_address(page));
1771 __free_pages(page, page->private);
1772 }
1773 }
1774
1775 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1776 {
1777 kfree(tags->rqs);
1778 tags->rqs = NULL;
1779 kfree(tags->static_rqs);
1780 tags->static_rqs = NULL;
1781
1782 blk_mq_free_tags(tags);
1783 }
1784
1785 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1786 unsigned int hctx_idx,
1787 unsigned int nr_tags,
1788 unsigned int reserved_tags)
1789 {
1790 struct blk_mq_tags *tags;
1791 int node;
1792
1793 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1794 if (node == NUMA_NO_NODE)
1795 node = set->numa_node;
1796
1797 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1798 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1799 if (!tags)
1800 return NULL;
1801
1802 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1803 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1804 node);
1805 if (!tags->rqs) {
1806 blk_mq_free_tags(tags);
1807 return NULL;
1808 }
1809
1810 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1811 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1812 node);
1813 if (!tags->static_rqs) {
1814 kfree(tags->rqs);
1815 blk_mq_free_tags(tags);
1816 return NULL;
1817 }
1818
1819 return tags;
1820 }
1821
1822 static size_t order_to_size(unsigned int order)
1823 {
1824 return (size_t)PAGE_SIZE << order;
1825 }
1826
1827 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1828 unsigned int hctx_idx, unsigned int depth)
1829 {
1830 unsigned int i, j, entries_per_page, max_order = 4;
1831 size_t rq_size, left;
1832 int node;
1833
1834 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1835 if (node == NUMA_NO_NODE)
1836 node = set->numa_node;
1837
1838 INIT_LIST_HEAD(&tags->page_list);
1839
1840 /*
1841 * rq_size is the size of the request plus driver payload, rounded
1842 * to the cacheline size
1843 */
1844 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1845 cache_line_size());
1846 left = rq_size * depth;
1847
1848 for (i = 0; i < depth; ) {
1849 int this_order = max_order;
1850 struct page *page;
1851 int to_do;
1852 void *p;
1853
1854 while (this_order && left < order_to_size(this_order - 1))
1855 this_order--;
1856
1857 do {
1858 page = alloc_pages_node(node,
1859 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1860 this_order);
1861 if (page)
1862 break;
1863 if (!this_order--)
1864 break;
1865 if (order_to_size(this_order) < rq_size)
1866 break;
1867 } while (1);
1868
1869 if (!page)
1870 goto fail;
1871
1872 page->private = this_order;
1873 list_add_tail(&page->lru, &tags->page_list);
1874
1875 p = page_address(page);
1876 /*
1877 * Allow kmemleak to scan these pages as they contain pointers
1878 * to additional allocations like via ops->init_request().
1879 */
1880 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1881 entries_per_page = order_to_size(this_order) / rq_size;
1882 to_do = min(entries_per_page, depth - i);
1883 left -= to_do * rq_size;
1884 for (j = 0; j < to_do; j++) {
1885 struct request *rq = p;
1886
1887 tags->static_rqs[i] = rq;
1888 if (set->ops->init_request) {
1889 if (set->ops->init_request(set, rq, hctx_idx,
1890 node)) {
1891 tags->static_rqs[i] = NULL;
1892 goto fail;
1893 }
1894 }
1895
1896 p += rq_size;
1897 i++;
1898 }
1899 }
1900 return 0;
1901
1902 fail:
1903 blk_mq_free_rqs(set, tags, hctx_idx);
1904 return -ENOMEM;
1905 }
1906
1907 /*
1908 * 'cpu' is going away. splice any existing rq_list entries from this
1909 * software queue to the hw queue dispatch list, and ensure that it
1910 * gets run.
1911 */
1912 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1913 {
1914 struct blk_mq_hw_ctx *hctx;
1915 struct blk_mq_ctx *ctx;
1916 LIST_HEAD(tmp);
1917
1918 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1919 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1920
1921 spin_lock(&ctx->lock);
1922 if (!list_empty(&ctx->rq_list)) {
1923 list_splice_init(&ctx->rq_list, &tmp);
1924 blk_mq_hctx_clear_pending(hctx, ctx);
1925 }
1926 spin_unlock(&ctx->lock);
1927
1928 if (list_empty(&tmp))
1929 return 0;
1930
1931 spin_lock(&hctx->lock);
1932 list_splice_tail_init(&tmp, &hctx->dispatch);
1933 spin_unlock(&hctx->lock);
1934
1935 blk_mq_run_hw_queue(hctx, true);
1936 return 0;
1937 }
1938
1939 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1940 {
1941 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1942 &hctx->cpuhp_dead);
1943 }
1944
1945 /* hctx->ctxs will be freed in queue's release handler */
1946 static void blk_mq_exit_hctx(struct request_queue *q,
1947 struct blk_mq_tag_set *set,
1948 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1949 {
1950 blk_mq_debugfs_unregister_hctx(hctx);
1951
1952 blk_mq_tag_idle(hctx);
1953
1954 if (set->ops->exit_request)
1955 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1956
1957 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1958
1959 if (set->ops->exit_hctx)
1960 set->ops->exit_hctx(hctx, hctx_idx);
1961
1962 if (hctx->flags & BLK_MQ_F_BLOCKING)
1963 cleanup_srcu_struct(hctx->queue_rq_srcu);
1964
1965 blk_mq_remove_cpuhp(hctx);
1966 blk_free_flush_queue(hctx->fq);
1967 sbitmap_free(&hctx->ctx_map);
1968 }
1969
1970 static void blk_mq_exit_hw_queues(struct request_queue *q,
1971 struct blk_mq_tag_set *set, int nr_queue)
1972 {
1973 struct blk_mq_hw_ctx *hctx;
1974 unsigned int i;
1975
1976 queue_for_each_hw_ctx(q, hctx, i) {
1977 if (i == nr_queue)
1978 break;
1979 blk_mq_exit_hctx(q, set, hctx, i);
1980 }
1981 }
1982
1983 static int blk_mq_init_hctx(struct request_queue *q,
1984 struct blk_mq_tag_set *set,
1985 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1986 {
1987 int node;
1988
1989 node = hctx->numa_node;
1990 if (node == NUMA_NO_NODE)
1991 node = hctx->numa_node = set->numa_node;
1992
1993 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1994 spin_lock_init(&hctx->lock);
1995 INIT_LIST_HEAD(&hctx->dispatch);
1996 hctx->queue = q;
1997 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1998
1999 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2000
2001 hctx->tags = set->tags[hctx_idx];
2002
2003 /*
2004 * Allocate space for all possible cpus to avoid allocation at
2005 * runtime
2006 */
2007 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
2008 GFP_KERNEL, node);
2009 if (!hctx->ctxs)
2010 goto unregister_cpu_notifier;
2011
2012 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2013 node))
2014 goto free_ctxs;
2015
2016 hctx->nr_ctx = 0;
2017
2018 if (set->ops->init_hctx &&
2019 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2020 goto free_bitmap;
2021
2022 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2023 goto exit_hctx;
2024
2025 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2026 if (!hctx->fq)
2027 goto sched_exit_hctx;
2028
2029 if (set->ops->init_request &&
2030 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
2031 node))
2032 goto free_fq;
2033
2034 if (hctx->flags & BLK_MQ_F_BLOCKING)
2035 init_srcu_struct(hctx->queue_rq_srcu);
2036
2037 blk_mq_debugfs_register_hctx(q, hctx);
2038
2039 return 0;
2040
2041 free_fq:
2042 kfree(hctx->fq);
2043 sched_exit_hctx:
2044 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2045 exit_hctx:
2046 if (set->ops->exit_hctx)
2047 set->ops->exit_hctx(hctx, hctx_idx);
2048 free_bitmap:
2049 sbitmap_free(&hctx->ctx_map);
2050 free_ctxs:
2051 kfree(hctx->ctxs);
2052 unregister_cpu_notifier:
2053 blk_mq_remove_cpuhp(hctx);
2054 return -1;
2055 }
2056
2057 static void blk_mq_init_cpu_queues(struct request_queue *q,
2058 unsigned int nr_hw_queues)
2059 {
2060 unsigned int i;
2061
2062 for_each_possible_cpu(i) {
2063 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2064 struct blk_mq_hw_ctx *hctx;
2065
2066 __ctx->cpu = i;
2067 spin_lock_init(&__ctx->lock);
2068 INIT_LIST_HEAD(&__ctx->rq_list);
2069 __ctx->queue = q;
2070
2071 /* If the cpu isn't present, the cpu is mapped to first hctx */
2072 if (!cpu_present(i))
2073 continue;
2074
2075 hctx = blk_mq_map_queue(q, i);
2076
2077 /*
2078 * Set local node, IFF we have more than one hw queue. If
2079 * not, we remain on the home node of the device
2080 */
2081 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2082 hctx->numa_node = local_memory_node(cpu_to_node(i));
2083 }
2084 }
2085
2086 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2087 {
2088 int ret = 0;
2089
2090 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2091 set->queue_depth, set->reserved_tags);
2092 if (!set->tags[hctx_idx])
2093 return false;
2094
2095 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2096 set->queue_depth);
2097 if (!ret)
2098 return true;
2099
2100 blk_mq_free_rq_map(set->tags[hctx_idx]);
2101 set->tags[hctx_idx] = NULL;
2102 return false;
2103 }
2104
2105 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2106 unsigned int hctx_idx)
2107 {
2108 if (set->tags[hctx_idx]) {
2109 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2110 blk_mq_free_rq_map(set->tags[hctx_idx]);
2111 set->tags[hctx_idx] = NULL;
2112 }
2113 }
2114
2115 static void blk_mq_map_swqueue(struct request_queue *q)
2116 {
2117 unsigned int i, hctx_idx;
2118 struct blk_mq_hw_ctx *hctx;
2119 struct blk_mq_ctx *ctx;
2120 struct blk_mq_tag_set *set = q->tag_set;
2121
2122 /*
2123 * Avoid others reading imcomplete hctx->cpumask through sysfs
2124 */
2125 mutex_lock(&q->sysfs_lock);
2126
2127 queue_for_each_hw_ctx(q, hctx, i) {
2128 cpumask_clear(hctx->cpumask);
2129 hctx->nr_ctx = 0;
2130 }
2131
2132 /*
2133 * Map software to hardware queues.
2134 *
2135 * If the cpu isn't present, the cpu is mapped to first hctx.
2136 */
2137 for_each_present_cpu(i) {
2138 hctx_idx = q->mq_map[i];
2139 /* unmapped hw queue can be remapped after CPU topo changed */
2140 if (!set->tags[hctx_idx] &&
2141 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2142 /*
2143 * If tags initialization fail for some hctx,
2144 * that hctx won't be brought online. In this
2145 * case, remap the current ctx to hctx[0] which
2146 * is guaranteed to always have tags allocated
2147 */
2148 q->mq_map[i] = 0;
2149 }
2150
2151 ctx = per_cpu_ptr(q->queue_ctx, i);
2152 hctx = blk_mq_map_queue(q, i);
2153
2154 cpumask_set_cpu(i, hctx->cpumask);
2155 ctx->index_hw = hctx->nr_ctx;
2156 hctx->ctxs[hctx->nr_ctx++] = ctx;
2157 }
2158
2159 mutex_unlock(&q->sysfs_lock);
2160
2161 queue_for_each_hw_ctx(q, hctx, i) {
2162 /*
2163 * If no software queues are mapped to this hardware queue,
2164 * disable it and free the request entries.
2165 */
2166 if (!hctx->nr_ctx) {
2167 /* Never unmap queue 0. We need it as a
2168 * fallback in case of a new remap fails
2169 * allocation
2170 */
2171 if (i && set->tags[i])
2172 blk_mq_free_map_and_requests(set, i);
2173
2174 hctx->tags = NULL;
2175 continue;
2176 }
2177
2178 hctx->tags = set->tags[i];
2179 WARN_ON(!hctx->tags);
2180
2181 /*
2182 * Set the map size to the number of mapped software queues.
2183 * This is more accurate and more efficient than looping
2184 * over all possibly mapped software queues.
2185 */
2186 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2187
2188 /*
2189 * Initialize batch roundrobin counts
2190 */
2191 hctx->next_cpu = cpumask_first(hctx->cpumask);
2192 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2193 }
2194 }
2195
2196 /*
2197 * Caller needs to ensure that we're either frozen/quiesced, or that
2198 * the queue isn't live yet.
2199 */
2200 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2201 {
2202 struct blk_mq_hw_ctx *hctx;
2203 int i;
2204
2205 queue_for_each_hw_ctx(q, hctx, i) {
2206 if (shared) {
2207 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2208 atomic_inc(&q->shared_hctx_restart);
2209 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2210 } else {
2211 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2212 atomic_dec(&q->shared_hctx_restart);
2213 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2214 }
2215 }
2216 }
2217
2218 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2219 bool shared)
2220 {
2221 struct request_queue *q;
2222
2223 lockdep_assert_held(&set->tag_list_lock);
2224
2225 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2226 blk_mq_freeze_queue(q);
2227 queue_set_hctx_shared(q, shared);
2228 blk_mq_unfreeze_queue(q);
2229 }
2230 }
2231
2232 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2233 {
2234 struct blk_mq_tag_set *set = q->tag_set;
2235
2236 mutex_lock(&set->tag_list_lock);
2237 list_del_rcu(&q->tag_set_list);
2238 INIT_LIST_HEAD(&q->tag_set_list);
2239 if (list_is_singular(&set->tag_list)) {
2240 /* just transitioned to unshared */
2241 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2242 /* update existing queue */
2243 blk_mq_update_tag_set_depth(set, false);
2244 }
2245 mutex_unlock(&set->tag_list_lock);
2246
2247 synchronize_rcu();
2248 }
2249
2250 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2251 struct request_queue *q)
2252 {
2253 q->tag_set = set;
2254
2255 mutex_lock(&set->tag_list_lock);
2256
2257 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2258 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2259 set->flags |= BLK_MQ_F_TAG_SHARED;
2260 /* update existing queue */
2261 blk_mq_update_tag_set_depth(set, true);
2262 }
2263 if (set->flags & BLK_MQ_F_TAG_SHARED)
2264 queue_set_hctx_shared(q, true);
2265 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2266
2267 mutex_unlock(&set->tag_list_lock);
2268 }
2269
2270 /*
2271 * It is the actual release handler for mq, but we do it from
2272 * request queue's release handler for avoiding use-after-free
2273 * and headache because q->mq_kobj shouldn't have been introduced,
2274 * but we can't group ctx/kctx kobj without it.
2275 */
2276 void blk_mq_release(struct request_queue *q)
2277 {
2278 struct blk_mq_hw_ctx *hctx;
2279 unsigned int i;
2280
2281 /* hctx kobj stays in hctx */
2282 queue_for_each_hw_ctx(q, hctx, i) {
2283 if (!hctx)
2284 continue;
2285 kobject_put(&hctx->kobj);
2286 }
2287
2288 q->mq_map = NULL;
2289
2290 kfree(q->queue_hw_ctx);
2291
2292 /*
2293 * release .mq_kobj and sw queue's kobject now because
2294 * both share lifetime with request queue.
2295 */
2296 blk_mq_sysfs_deinit(q);
2297
2298 free_percpu(q->queue_ctx);
2299 }
2300
2301 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2302 {
2303 struct request_queue *uninit_q, *q;
2304
2305 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2306 if (!uninit_q)
2307 return ERR_PTR(-ENOMEM);
2308
2309 q = blk_mq_init_allocated_queue(set, uninit_q);
2310 if (IS_ERR(q))
2311 blk_cleanup_queue(uninit_q);
2312
2313 return q;
2314 }
2315 EXPORT_SYMBOL(blk_mq_init_queue);
2316
2317 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2318 {
2319 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2320
2321 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
2322 __alignof__(struct blk_mq_hw_ctx)) !=
2323 sizeof(struct blk_mq_hw_ctx));
2324
2325 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2326 hw_ctx_size += sizeof(struct srcu_struct);
2327
2328 return hw_ctx_size;
2329 }
2330
2331 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2332 struct request_queue *q)
2333 {
2334 int i, j;
2335 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2336
2337 blk_mq_sysfs_unregister(q);
2338 for (i = 0; i < set->nr_hw_queues; i++) {
2339 int node;
2340
2341 if (hctxs[i])
2342 continue;
2343
2344 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2345 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2346 GFP_KERNEL, node);
2347 if (!hctxs[i])
2348 break;
2349
2350 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2351 node)) {
2352 kfree(hctxs[i]);
2353 hctxs[i] = NULL;
2354 break;
2355 }
2356
2357 atomic_set(&hctxs[i]->nr_active, 0);
2358 hctxs[i]->numa_node = node;
2359 hctxs[i]->queue_num = i;
2360
2361 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2362 free_cpumask_var(hctxs[i]->cpumask);
2363 kfree(hctxs[i]);
2364 hctxs[i] = NULL;
2365 break;
2366 }
2367 blk_mq_hctx_kobj_init(hctxs[i]);
2368 }
2369 for (j = i; j < q->nr_hw_queues; j++) {
2370 struct blk_mq_hw_ctx *hctx = hctxs[j];
2371
2372 if (hctx) {
2373 if (hctx->tags)
2374 blk_mq_free_map_and_requests(set, j);
2375 blk_mq_exit_hctx(q, set, hctx, j);
2376 kobject_put(&hctx->kobj);
2377 hctxs[j] = NULL;
2378
2379 }
2380 }
2381 q->nr_hw_queues = i;
2382 blk_mq_sysfs_register(q);
2383 }
2384
2385 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2386 struct request_queue *q)
2387 {
2388 /* mark the queue as mq asap */
2389 q->mq_ops = set->ops;
2390
2391 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2392 blk_mq_poll_stats_bkt,
2393 BLK_MQ_POLL_STATS_BKTS, q);
2394 if (!q->poll_cb)
2395 goto err_exit;
2396
2397 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2398 if (!q->queue_ctx)
2399 goto err_exit;
2400
2401 /* init q->mq_kobj and sw queues' kobjects */
2402 blk_mq_sysfs_init(q);
2403
2404 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2405 GFP_KERNEL, set->numa_node);
2406 if (!q->queue_hw_ctx)
2407 goto err_percpu;
2408
2409 q->mq_map = set->mq_map;
2410
2411 blk_mq_realloc_hw_ctxs(set, q);
2412 if (!q->nr_hw_queues)
2413 goto err_hctxs;
2414
2415 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2416 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2417
2418 q->nr_queues = nr_cpu_ids;
2419
2420 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2421
2422 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2423 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2424
2425 q->sg_reserved_size = INT_MAX;
2426
2427 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2428 INIT_LIST_HEAD(&q->requeue_list);
2429 spin_lock_init(&q->requeue_lock);
2430
2431 blk_queue_make_request(q, blk_mq_make_request);
2432
2433 /*
2434 * Do this after blk_queue_make_request() overrides it...
2435 */
2436 q->nr_requests = set->queue_depth;
2437
2438 /*
2439 * Default to classic polling
2440 */
2441 q->poll_nsec = -1;
2442
2443 if (set->ops->complete)
2444 blk_queue_softirq_done(q, set->ops->complete);
2445
2446 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2447 blk_mq_add_queue_tag_set(set, q);
2448 blk_mq_map_swqueue(q);
2449
2450 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2451 int ret;
2452
2453 ret = blk_mq_sched_init(q);
2454 if (ret)
2455 return ERR_PTR(ret);
2456 }
2457
2458 return q;
2459
2460 err_hctxs:
2461 kfree(q->queue_hw_ctx);
2462 err_percpu:
2463 free_percpu(q->queue_ctx);
2464 err_exit:
2465 q->mq_ops = NULL;
2466 return ERR_PTR(-ENOMEM);
2467 }
2468 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2469
2470 void blk_mq_free_queue(struct request_queue *q)
2471 {
2472 struct blk_mq_tag_set *set = q->tag_set;
2473
2474 blk_mq_del_queue_tag_set(q);
2475 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2476 }
2477
2478 /* Basically redo blk_mq_init_queue with queue frozen */
2479 static void blk_mq_queue_reinit(struct request_queue *q)
2480 {
2481 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2482
2483 blk_mq_debugfs_unregister_hctxs(q);
2484 blk_mq_sysfs_unregister(q);
2485
2486 /*
2487 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2488 * we should change hctx numa_node according to new topology (this
2489 * involves free and re-allocate memory, worthy doing?)
2490 */
2491
2492 blk_mq_map_swqueue(q);
2493
2494 blk_mq_sysfs_register(q);
2495 blk_mq_debugfs_register_hctxs(q);
2496 }
2497
2498 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2499 {
2500 int i;
2501
2502 for (i = 0; i < set->nr_hw_queues; i++)
2503 if (!__blk_mq_alloc_rq_map(set, i))
2504 goto out_unwind;
2505
2506 return 0;
2507
2508 out_unwind:
2509 while (--i >= 0)
2510 blk_mq_free_rq_map(set->tags[i]);
2511
2512 return -ENOMEM;
2513 }
2514
2515 /*
2516 * Allocate the request maps associated with this tag_set. Note that this
2517 * may reduce the depth asked for, if memory is tight. set->queue_depth
2518 * will be updated to reflect the allocated depth.
2519 */
2520 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2521 {
2522 unsigned int depth;
2523 int err;
2524
2525 depth = set->queue_depth;
2526 do {
2527 err = __blk_mq_alloc_rq_maps(set);
2528 if (!err)
2529 break;
2530
2531 set->queue_depth >>= 1;
2532 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2533 err = -ENOMEM;
2534 break;
2535 }
2536 } while (set->queue_depth);
2537
2538 if (!set->queue_depth || err) {
2539 pr_err("blk-mq: failed to allocate request map\n");
2540 return -ENOMEM;
2541 }
2542
2543 if (depth != set->queue_depth)
2544 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2545 depth, set->queue_depth);
2546
2547 return 0;
2548 }
2549
2550 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2551 {
2552 if (set->ops->map_queues)
2553 return set->ops->map_queues(set);
2554 else
2555 return blk_mq_map_queues(set);
2556 }
2557
2558 /*
2559 * Alloc a tag set to be associated with one or more request queues.
2560 * May fail with EINVAL for various error conditions. May adjust the
2561 * requested depth down, if if it too large. In that case, the set
2562 * value will be stored in set->queue_depth.
2563 */
2564 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2565 {
2566 int ret;
2567
2568 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2569
2570 if (!set->nr_hw_queues)
2571 return -EINVAL;
2572 if (!set->queue_depth)
2573 return -EINVAL;
2574 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2575 return -EINVAL;
2576
2577 if (!set->ops->queue_rq)
2578 return -EINVAL;
2579
2580 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2581 pr_info("blk-mq: reduced tag depth to %u\n",
2582 BLK_MQ_MAX_DEPTH);
2583 set->queue_depth = BLK_MQ_MAX_DEPTH;
2584 }
2585
2586 /*
2587 * If a crashdump is active, then we are potentially in a very
2588 * memory constrained environment. Limit us to 1 queue and
2589 * 64 tags to prevent using too much memory.
2590 */
2591 if (is_kdump_kernel()) {
2592 set->nr_hw_queues = 1;
2593 set->queue_depth = min(64U, set->queue_depth);
2594 }
2595 /*
2596 * There is no use for more h/w queues than cpus.
2597 */
2598 if (set->nr_hw_queues > nr_cpu_ids)
2599 set->nr_hw_queues = nr_cpu_ids;
2600
2601 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2602 GFP_KERNEL, set->numa_node);
2603 if (!set->tags)
2604 return -ENOMEM;
2605
2606 ret = -ENOMEM;
2607 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2608 GFP_KERNEL, set->numa_node);
2609 if (!set->mq_map)
2610 goto out_free_tags;
2611
2612 ret = blk_mq_update_queue_map(set);
2613 if (ret)
2614 goto out_free_mq_map;
2615
2616 ret = blk_mq_alloc_rq_maps(set);
2617 if (ret)
2618 goto out_free_mq_map;
2619
2620 mutex_init(&set->tag_list_lock);
2621 INIT_LIST_HEAD(&set->tag_list);
2622
2623 return 0;
2624
2625 out_free_mq_map:
2626 kfree(set->mq_map);
2627 set->mq_map = NULL;
2628 out_free_tags:
2629 kfree(set->tags);
2630 set->tags = NULL;
2631 return ret;
2632 }
2633 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2634
2635 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2636 {
2637 int i;
2638
2639 for (i = 0; i < nr_cpu_ids; i++)
2640 blk_mq_free_map_and_requests(set, i);
2641
2642 kfree(set->mq_map);
2643 set->mq_map = NULL;
2644
2645 kfree(set->tags);
2646 set->tags = NULL;
2647 }
2648 EXPORT_SYMBOL(blk_mq_free_tag_set);
2649
2650 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2651 {
2652 struct blk_mq_tag_set *set = q->tag_set;
2653 struct blk_mq_hw_ctx *hctx;
2654 int i, ret;
2655
2656 if (!set)
2657 return -EINVAL;
2658
2659 blk_mq_freeze_queue(q);
2660
2661 ret = 0;
2662 queue_for_each_hw_ctx(q, hctx, i) {
2663 if (!hctx->tags)
2664 continue;
2665 /*
2666 * If we're using an MQ scheduler, just update the scheduler
2667 * queue depth. This is similar to what the old code would do.
2668 */
2669 if (!hctx->sched_tags) {
2670 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2671 min(nr, set->queue_depth),
2672 false);
2673 } else {
2674 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2675 nr, true);
2676 }
2677 if (ret)
2678 break;
2679 }
2680
2681 if (!ret)
2682 q->nr_requests = nr;
2683
2684 blk_mq_unfreeze_queue(q);
2685
2686 return ret;
2687 }
2688
2689 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2690 int nr_hw_queues)
2691 {
2692 struct request_queue *q;
2693
2694 lockdep_assert_held(&set->tag_list_lock);
2695
2696 if (nr_hw_queues > nr_cpu_ids)
2697 nr_hw_queues = nr_cpu_ids;
2698 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2699 return;
2700
2701 list_for_each_entry(q, &set->tag_list, tag_set_list)
2702 blk_mq_freeze_queue(q);
2703
2704 set->nr_hw_queues = nr_hw_queues;
2705 blk_mq_update_queue_map(set);
2706 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2707 blk_mq_realloc_hw_ctxs(set, q);
2708 blk_mq_queue_reinit(q);
2709 }
2710
2711 list_for_each_entry(q, &set->tag_list, tag_set_list)
2712 blk_mq_unfreeze_queue(q);
2713 }
2714
2715 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2716 {
2717 mutex_lock(&set->tag_list_lock);
2718 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2719 mutex_unlock(&set->tag_list_lock);
2720 }
2721 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2722
2723 /* Enable polling stats and return whether they were already enabled. */
2724 static bool blk_poll_stats_enable(struct request_queue *q)
2725 {
2726 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2727 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2728 return true;
2729 blk_stat_add_callback(q, q->poll_cb);
2730 return false;
2731 }
2732
2733 static void blk_mq_poll_stats_start(struct request_queue *q)
2734 {
2735 /*
2736 * We don't arm the callback if polling stats are not enabled or the
2737 * callback is already active.
2738 */
2739 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2740 blk_stat_is_active(q->poll_cb))
2741 return;
2742
2743 blk_stat_activate_msecs(q->poll_cb, 100);
2744 }
2745
2746 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2747 {
2748 struct request_queue *q = cb->data;
2749 int bucket;
2750
2751 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2752 if (cb->stat[bucket].nr_samples)
2753 q->poll_stat[bucket] = cb->stat[bucket];
2754 }
2755 }
2756
2757 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2758 struct blk_mq_hw_ctx *hctx,
2759 struct request *rq)
2760 {
2761 unsigned long ret = 0;
2762 int bucket;
2763
2764 /*
2765 * If stats collection isn't on, don't sleep but turn it on for
2766 * future users
2767 */
2768 if (!blk_poll_stats_enable(q))
2769 return 0;
2770
2771 /*
2772 * As an optimistic guess, use half of the mean service time
2773 * for this type of request. We can (and should) make this smarter.
2774 * For instance, if the completion latencies are tight, we can
2775 * get closer than just half the mean. This is especially
2776 * important on devices where the completion latencies are longer
2777 * than ~10 usec. We do use the stats for the relevant IO size
2778 * if available which does lead to better estimates.
2779 */
2780 bucket = blk_mq_poll_stats_bkt(rq);
2781 if (bucket < 0)
2782 return ret;
2783
2784 if (q->poll_stat[bucket].nr_samples)
2785 ret = (q->poll_stat[bucket].mean + 1) / 2;
2786
2787 return ret;
2788 }
2789
2790 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2791 struct blk_mq_hw_ctx *hctx,
2792 struct request *rq)
2793 {
2794 struct hrtimer_sleeper hs;
2795 enum hrtimer_mode mode;
2796 unsigned int nsecs;
2797 ktime_t kt;
2798
2799 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2800 return false;
2801
2802 /*
2803 * poll_nsec can be:
2804 *
2805 * -1: don't ever hybrid sleep
2806 * 0: use half of prev avg
2807 * >0: use this specific value
2808 */
2809 if (q->poll_nsec == -1)
2810 return false;
2811 else if (q->poll_nsec > 0)
2812 nsecs = q->poll_nsec;
2813 else
2814 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2815
2816 if (!nsecs)
2817 return false;
2818
2819 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2820
2821 /*
2822 * This will be replaced with the stats tracking code, using
2823 * 'avg_completion_time / 2' as the pre-sleep target.
2824 */
2825 kt = nsecs;
2826
2827 mode = HRTIMER_MODE_REL;
2828 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2829 hrtimer_set_expires(&hs.timer, kt);
2830
2831 hrtimer_init_sleeper(&hs, current);
2832 do {
2833 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2834 break;
2835 set_current_state(TASK_UNINTERRUPTIBLE);
2836 hrtimer_start_expires(&hs.timer, mode);
2837 if (hs.task)
2838 io_schedule();
2839 hrtimer_cancel(&hs.timer);
2840 mode = HRTIMER_MODE_ABS;
2841 } while (hs.task && !signal_pending(current));
2842
2843 __set_current_state(TASK_RUNNING);
2844 destroy_hrtimer_on_stack(&hs.timer);
2845 return true;
2846 }
2847
2848 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2849 {
2850 struct request_queue *q = hctx->queue;
2851 long state;
2852
2853 /*
2854 * If we sleep, have the caller restart the poll loop to reset
2855 * the state. Like for the other success return cases, the
2856 * caller is responsible for checking if the IO completed. If
2857 * the IO isn't complete, we'll get called again and will go
2858 * straight to the busy poll loop.
2859 */
2860 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2861 return true;
2862
2863 hctx->poll_considered++;
2864
2865 state = current->state;
2866 while (!need_resched()) {
2867 int ret;
2868
2869 hctx->poll_invoked++;
2870
2871 ret = q->mq_ops->poll(hctx, rq->tag);
2872 if (ret > 0) {
2873 hctx->poll_success++;
2874 set_current_state(TASK_RUNNING);
2875 return true;
2876 }
2877
2878 if (signal_pending_state(state, current))
2879 set_current_state(TASK_RUNNING);
2880
2881 if (current->state == TASK_RUNNING)
2882 return true;
2883 if (ret < 0)
2884 break;
2885 cpu_relax();
2886 }
2887
2888 return false;
2889 }
2890
2891 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2892 {
2893 struct blk_mq_hw_ctx *hctx;
2894 struct blk_plug *plug;
2895 struct request *rq;
2896
2897 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2898 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2899 return false;
2900
2901 plug = current->plug;
2902 if (plug)
2903 blk_flush_plug_list(plug, false);
2904
2905 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2906 if (!blk_qc_t_is_internal(cookie))
2907 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2908 else {
2909 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2910 /*
2911 * With scheduling, if the request has completed, we'll
2912 * get a NULL return here, as we clear the sched tag when
2913 * that happens. The request still remains valid, like always,
2914 * so we should be safe with just the NULL check.
2915 */
2916 if (!rq)
2917 return false;
2918 }
2919
2920 return __blk_mq_poll(hctx, rq);
2921 }
2922 EXPORT_SYMBOL_GPL(blk_mq_poll);
2923
2924 static int __init blk_mq_init(void)
2925 {
2926 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2927 blk_mq_hctx_notify_dead);
2928 return 0;
2929 }
2930 subsys_initcall(blk_mq_init);