]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-mq.c
blk-mq: add blk_mq_start_stopped_hw_queue()
[mirror_ubuntu-artful-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
25 #include <linux/prefetch.h>
26
27 #include <trace/events/block.h>
28
29 #include <linux/blk-mq.h>
30 #include "blk.h"
31 #include "blk-mq.h"
32 #include "blk-mq-tag.h"
33 #include "blk-stat.h"
34 #include "blk-wbt.h"
35
36 static DEFINE_MUTEX(all_q_mutex);
37 static LIST_HEAD(all_q_list);
38
39 /*
40 * Check if any of the ctx's have pending work in this hardware queue
41 */
42 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
43 {
44 return sbitmap_any_bit_set(&hctx->ctx_map);
45 }
46
47 /*
48 * Mark this ctx as having pending work in this hardware queue
49 */
50 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
51 struct blk_mq_ctx *ctx)
52 {
53 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
54 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
55 }
56
57 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
58 struct blk_mq_ctx *ctx)
59 {
60 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
61 }
62
63 void blk_mq_freeze_queue_start(struct request_queue *q)
64 {
65 int freeze_depth;
66
67 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
68 if (freeze_depth == 1) {
69 percpu_ref_kill(&q->q_usage_counter);
70 blk_mq_run_hw_queues(q, false);
71 }
72 }
73 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
74
75 static void blk_mq_freeze_queue_wait(struct request_queue *q)
76 {
77 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
78 }
79
80 /*
81 * Guarantee no request is in use, so we can change any data structure of
82 * the queue afterward.
83 */
84 void blk_freeze_queue(struct request_queue *q)
85 {
86 /*
87 * In the !blk_mq case we are only calling this to kill the
88 * q_usage_counter, otherwise this increases the freeze depth
89 * and waits for it to return to zero. For this reason there is
90 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
91 * exported to drivers as the only user for unfreeze is blk_mq.
92 */
93 blk_mq_freeze_queue_start(q);
94 blk_mq_freeze_queue_wait(q);
95 }
96
97 void blk_mq_freeze_queue(struct request_queue *q)
98 {
99 /*
100 * ...just an alias to keep freeze and unfreeze actions balanced
101 * in the blk_mq_* namespace
102 */
103 blk_freeze_queue(q);
104 }
105 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
106
107 void blk_mq_unfreeze_queue(struct request_queue *q)
108 {
109 int freeze_depth;
110
111 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
112 WARN_ON_ONCE(freeze_depth < 0);
113 if (!freeze_depth) {
114 percpu_ref_reinit(&q->q_usage_counter);
115 wake_up_all(&q->mq_freeze_wq);
116 }
117 }
118 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
119
120 /**
121 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
122 * @q: request queue.
123 *
124 * Note: this function does not prevent that the struct request end_io()
125 * callback function is invoked. Additionally, it is not prevented that
126 * new queue_rq() calls occur unless the queue has been stopped first.
127 */
128 void blk_mq_quiesce_queue(struct request_queue *q)
129 {
130 struct blk_mq_hw_ctx *hctx;
131 unsigned int i;
132 bool rcu = false;
133
134 blk_mq_stop_hw_queues(q);
135
136 queue_for_each_hw_ctx(q, hctx, i) {
137 if (hctx->flags & BLK_MQ_F_BLOCKING)
138 synchronize_srcu(&hctx->queue_rq_srcu);
139 else
140 rcu = true;
141 }
142 if (rcu)
143 synchronize_rcu();
144 }
145 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
146
147 void blk_mq_wake_waiters(struct request_queue *q)
148 {
149 struct blk_mq_hw_ctx *hctx;
150 unsigned int i;
151
152 queue_for_each_hw_ctx(q, hctx, i)
153 if (blk_mq_hw_queue_mapped(hctx))
154 blk_mq_tag_wakeup_all(hctx->tags, true);
155
156 /*
157 * If we are called because the queue has now been marked as
158 * dying, we need to ensure that processes currently waiting on
159 * the queue are notified as well.
160 */
161 wake_up_all(&q->mq_freeze_wq);
162 }
163
164 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
165 {
166 return blk_mq_has_free_tags(hctx->tags);
167 }
168 EXPORT_SYMBOL(blk_mq_can_queue);
169
170 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
171 struct request *rq, unsigned int op)
172 {
173 INIT_LIST_HEAD(&rq->queuelist);
174 /* csd/requeue_work/fifo_time is initialized before use */
175 rq->q = q;
176 rq->mq_ctx = ctx;
177 rq->cmd_flags = op;
178 if (blk_queue_io_stat(q))
179 rq->rq_flags |= RQF_IO_STAT;
180 /* do not touch atomic flags, it needs atomic ops against the timer */
181 rq->cpu = -1;
182 INIT_HLIST_NODE(&rq->hash);
183 RB_CLEAR_NODE(&rq->rb_node);
184 rq->rq_disk = NULL;
185 rq->part = NULL;
186 rq->start_time = jiffies;
187 #ifdef CONFIG_BLK_CGROUP
188 rq->rl = NULL;
189 set_start_time_ns(rq);
190 rq->io_start_time_ns = 0;
191 #endif
192 rq->nr_phys_segments = 0;
193 #if defined(CONFIG_BLK_DEV_INTEGRITY)
194 rq->nr_integrity_segments = 0;
195 #endif
196 rq->special = NULL;
197 /* tag was already set */
198 rq->errors = 0;
199
200 rq->cmd = rq->__cmd;
201
202 rq->extra_len = 0;
203 rq->sense_len = 0;
204 rq->resid_len = 0;
205 rq->sense = NULL;
206
207 INIT_LIST_HEAD(&rq->timeout_list);
208 rq->timeout = 0;
209
210 rq->end_io = NULL;
211 rq->end_io_data = NULL;
212 rq->next_rq = NULL;
213
214 ctx->rq_dispatched[op_is_sync(op)]++;
215 }
216
217 static struct request *
218 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, unsigned int op)
219 {
220 struct request *rq;
221 unsigned int tag;
222
223 tag = blk_mq_get_tag(data);
224 if (tag != BLK_MQ_TAG_FAIL) {
225 rq = data->hctx->tags->rqs[tag];
226
227 if (blk_mq_tag_busy(data->hctx)) {
228 rq->rq_flags = RQF_MQ_INFLIGHT;
229 atomic_inc(&data->hctx->nr_active);
230 }
231
232 rq->tag = tag;
233 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
234 return rq;
235 }
236
237 return NULL;
238 }
239
240 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
241 unsigned int flags)
242 {
243 struct blk_mq_ctx *ctx;
244 struct blk_mq_hw_ctx *hctx;
245 struct request *rq;
246 struct blk_mq_alloc_data alloc_data;
247 int ret;
248
249 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
250 if (ret)
251 return ERR_PTR(ret);
252
253 ctx = blk_mq_get_ctx(q);
254 hctx = blk_mq_map_queue(q, ctx->cpu);
255 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
256 rq = __blk_mq_alloc_request(&alloc_data, rw);
257 blk_mq_put_ctx(ctx);
258
259 if (!rq) {
260 blk_queue_exit(q);
261 return ERR_PTR(-EWOULDBLOCK);
262 }
263
264 rq->__data_len = 0;
265 rq->__sector = (sector_t) -1;
266 rq->bio = rq->biotail = NULL;
267 return rq;
268 }
269 EXPORT_SYMBOL(blk_mq_alloc_request);
270
271 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
272 unsigned int flags, unsigned int hctx_idx)
273 {
274 struct blk_mq_hw_ctx *hctx;
275 struct blk_mq_ctx *ctx;
276 struct request *rq;
277 struct blk_mq_alloc_data alloc_data;
278 int ret;
279
280 /*
281 * If the tag allocator sleeps we could get an allocation for a
282 * different hardware context. No need to complicate the low level
283 * allocator for this for the rare use case of a command tied to
284 * a specific queue.
285 */
286 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
287 return ERR_PTR(-EINVAL);
288
289 if (hctx_idx >= q->nr_hw_queues)
290 return ERR_PTR(-EIO);
291
292 ret = blk_queue_enter(q, true);
293 if (ret)
294 return ERR_PTR(ret);
295
296 /*
297 * Check if the hardware context is actually mapped to anything.
298 * If not tell the caller that it should skip this queue.
299 */
300 hctx = q->queue_hw_ctx[hctx_idx];
301 if (!blk_mq_hw_queue_mapped(hctx)) {
302 ret = -EXDEV;
303 goto out_queue_exit;
304 }
305 ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));
306
307 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
308 rq = __blk_mq_alloc_request(&alloc_data, rw);
309 if (!rq) {
310 ret = -EWOULDBLOCK;
311 goto out_queue_exit;
312 }
313
314 return rq;
315
316 out_queue_exit:
317 blk_queue_exit(q);
318 return ERR_PTR(ret);
319 }
320 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
321
322 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
323 struct blk_mq_ctx *ctx, struct request *rq)
324 {
325 const int tag = rq->tag;
326 struct request_queue *q = rq->q;
327
328 if (rq->rq_flags & RQF_MQ_INFLIGHT)
329 atomic_dec(&hctx->nr_active);
330
331 wbt_done(q->rq_wb, &rq->issue_stat);
332 rq->rq_flags = 0;
333
334 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
335 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
336 blk_mq_put_tag(hctx, ctx, tag);
337 blk_queue_exit(q);
338 }
339
340 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
341 {
342 struct blk_mq_ctx *ctx = rq->mq_ctx;
343
344 ctx->rq_completed[rq_is_sync(rq)]++;
345 __blk_mq_free_request(hctx, ctx, rq);
346
347 }
348 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
349
350 void blk_mq_free_request(struct request *rq)
351 {
352 blk_mq_free_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
353 }
354 EXPORT_SYMBOL_GPL(blk_mq_free_request);
355
356 inline void __blk_mq_end_request(struct request *rq, int error)
357 {
358 blk_account_io_done(rq);
359
360 if (rq->end_io) {
361 wbt_done(rq->q->rq_wb, &rq->issue_stat);
362 rq->end_io(rq, error);
363 } else {
364 if (unlikely(blk_bidi_rq(rq)))
365 blk_mq_free_request(rq->next_rq);
366 blk_mq_free_request(rq);
367 }
368 }
369 EXPORT_SYMBOL(__blk_mq_end_request);
370
371 void blk_mq_end_request(struct request *rq, int error)
372 {
373 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
374 BUG();
375 __blk_mq_end_request(rq, error);
376 }
377 EXPORT_SYMBOL(blk_mq_end_request);
378
379 static void __blk_mq_complete_request_remote(void *data)
380 {
381 struct request *rq = data;
382
383 rq->q->softirq_done_fn(rq);
384 }
385
386 static void blk_mq_ipi_complete_request(struct request *rq)
387 {
388 struct blk_mq_ctx *ctx = rq->mq_ctx;
389 bool shared = false;
390 int cpu;
391
392 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
393 rq->q->softirq_done_fn(rq);
394 return;
395 }
396
397 cpu = get_cpu();
398 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
399 shared = cpus_share_cache(cpu, ctx->cpu);
400
401 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
402 rq->csd.func = __blk_mq_complete_request_remote;
403 rq->csd.info = rq;
404 rq->csd.flags = 0;
405 smp_call_function_single_async(ctx->cpu, &rq->csd);
406 } else {
407 rq->q->softirq_done_fn(rq);
408 }
409 put_cpu();
410 }
411
412 static void blk_mq_stat_add(struct request *rq)
413 {
414 if (rq->rq_flags & RQF_STATS) {
415 /*
416 * We could rq->mq_ctx here, but there's less of a risk
417 * of races if we have the completion event add the stats
418 * to the local software queue.
419 */
420 struct blk_mq_ctx *ctx;
421
422 ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
423 blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
424 }
425 }
426
427 static void __blk_mq_complete_request(struct request *rq)
428 {
429 struct request_queue *q = rq->q;
430
431 blk_mq_stat_add(rq);
432
433 if (!q->softirq_done_fn)
434 blk_mq_end_request(rq, rq->errors);
435 else
436 blk_mq_ipi_complete_request(rq);
437 }
438
439 /**
440 * blk_mq_complete_request - end I/O on a request
441 * @rq: the request being processed
442 *
443 * Description:
444 * Ends all I/O on a request. It does not handle partial completions.
445 * The actual completion happens out-of-order, through a IPI handler.
446 **/
447 void blk_mq_complete_request(struct request *rq, int error)
448 {
449 struct request_queue *q = rq->q;
450
451 if (unlikely(blk_should_fake_timeout(q)))
452 return;
453 if (!blk_mark_rq_complete(rq)) {
454 rq->errors = error;
455 __blk_mq_complete_request(rq);
456 }
457 }
458 EXPORT_SYMBOL(blk_mq_complete_request);
459
460 int blk_mq_request_started(struct request *rq)
461 {
462 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
463 }
464 EXPORT_SYMBOL_GPL(blk_mq_request_started);
465
466 void blk_mq_start_request(struct request *rq)
467 {
468 struct request_queue *q = rq->q;
469
470 trace_block_rq_issue(q, rq);
471
472 rq->resid_len = blk_rq_bytes(rq);
473 if (unlikely(blk_bidi_rq(rq)))
474 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
475
476 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
477 blk_stat_set_issue_time(&rq->issue_stat);
478 rq->rq_flags |= RQF_STATS;
479 wbt_issue(q->rq_wb, &rq->issue_stat);
480 }
481
482 blk_add_timer(rq);
483
484 /*
485 * Ensure that ->deadline is visible before set the started
486 * flag and clear the completed flag.
487 */
488 smp_mb__before_atomic();
489
490 /*
491 * Mark us as started and clear complete. Complete might have been
492 * set if requeue raced with timeout, which then marked it as
493 * complete. So be sure to clear complete again when we start
494 * the request, otherwise we'll ignore the completion event.
495 */
496 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
497 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
498 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
499 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
500
501 if (q->dma_drain_size && blk_rq_bytes(rq)) {
502 /*
503 * Make sure space for the drain appears. We know we can do
504 * this because max_hw_segments has been adjusted to be one
505 * fewer than the device can handle.
506 */
507 rq->nr_phys_segments++;
508 }
509 }
510 EXPORT_SYMBOL(blk_mq_start_request);
511
512 static void __blk_mq_requeue_request(struct request *rq)
513 {
514 struct request_queue *q = rq->q;
515
516 trace_block_rq_requeue(q, rq);
517 wbt_requeue(q->rq_wb, &rq->issue_stat);
518
519 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
520 if (q->dma_drain_size && blk_rq_bytes(rq))
521 rq->nr_phys_segments--;
522 }
523 }
524
525 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
526 {
527 __blk_mq_requeue_request(rq);
528
529 BUG_ON(blk_queued_rq(rq));
530 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
531 }
532 EXPORT_SYMBOL(blk_mq_requeue_request);
533
534 static void blk_mq_requeue_work(struct work_struct *work)
535 {
536 struct request_queue *q =
537 container_of(work, struct request_queue, requeue_work.work);
538 LIST_HEAD(rq_list);
539 struct request *rq, *next;
540 unsigned long flags;
541
542 spin_lock_irqsave(&q->requeue_lock, flags);
543 list_splice_init(&q->requeue_list, &rq_list);
544 spin_unlock_irqrestore(&q->requeue_lock, flags);
545
546 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
547 if (!(rq->rq_flags & RQF_SOFTBARRIER))
548 continue;
549
550 rq->rq_flags &= ~RQF_SOFTBARRIER;
551 list_del_init(&rq->queuelist);
552 blk_mq_insert_request(rq, true, false, false);
553 }
554
555 while (!list_empty(&rq_list)) {
556 rq = list_entry(rq_list.next, struct request, queuelist);
557 list_del_init(&rq->queuelist);
558 blk_mq_insert_request(rq, false, false, false);
559 }
560
561 blk_mq_run_hw_queues(q, false);
562 }
563
564 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
565 bool kick_requeue_list)
566 {
567 struct request_queue *q = rq->q;
568 unsigned long flags;
569
570 /*
571 * We abuse this flag that is otherwise used by the I/O scheduler to
572 * request head insertation from the workqueue.
573 */
574 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
575
576 spin_lock_irqsave(&q->requeue_lock, flags);
577 if (at_head) {
578 rq->rq_flags |= RQF_SOFTBARRIER;
579 list_add(&rq->queuelist, &q->requeue_list);
580 } else {
581 list_add_tail(&rq->queuelist, &q->requeue_list);
582 }
583 spin_unlock_irqrestore(&q->requeue_lock, flags);
584
585 if (kick_requeue_list)
586 blk_mq_kick_requeue_list(q);
587 }
588 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
589
590 void blk_mq_kick_requeue_list(struct request_queue *q)
591 {
592 kblockd_schedule_delayed_work(&q->requeue_work, 0);
593 }
594 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
595
596 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
597 unsigned long msecs)
598 {
599 kblockd_schedule_delayed_work(&q->requeue_work,
600 msecs_to_jiffies(msecs));
601 }
602 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
603
604 void blk_mq_abort_requeue_list(struct request_queue *q)
605 {
606 unsigned long flags;
607 LIST_HEAD(rq_list);
608
609 spin_lock_irqsave(&q->requeue_lock, flags);
610 list_splice_init(&q->requeue_list, &rq_list);
611 spin_unlock_irqrestore(&q->requeue_lock, flags);
612
613 while (!list_empty(&rq_list)) {
614 struct request *rq;
615
616 rq = list_first_entry(&rq_list, struct request, queuelist);
617 list_del_init(&rq->queuelist);
618 rq->errors = -EIO;
619 blk_mq_end_request(rq, rq->errors);
620 }
621 }
622 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
623
624 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
625 {
626 if (tag < tags->nr_tags) {
627 prefetch(tags->rqs[tag]);
628 return tags->rqs[tag];
629 }
630
631 return NULL;
632 }
633 EXPORT_SYMBOL(blk_mq_tag_to_rq);
634
635 struct blk_mq_timeout_data {
636 unsigned long next;
637 unsigned int next_set;
638 };
639
640 void blk_mq_rq_timed_out(struct request *req, bool reserved)
641 {
642 struct blk_mq_ops *ops = req->q->mq_ops;
643 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
644
645 /*
646 * We know that complete is set at this point. If STARTED isn't set
647 * anymore, then the request isn't active and the "timeout" should
648 * just be ignored. This can happen due to the bitflag ordering.
649 * Timeout first checks if STARTED is set, and if it is, assumes
650 * the request is active. But if we race with completion, then
651 * we both flags will get cleared. So check here again, and ignore
652 * a timeout event with a request that isn't active.
653 */
654 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
655 return;
656
657 if (ops->timeout)
658 ret = ops->timeout(req, reserved);
659
660 switch (ret) {
661 case BLK_EH_HANDLED:
662 __blk_mq_complete_request(req);
663 break;
664 case BLK_EH_RESET_TIMER:
665 blk_add_timer(req);
666 blk_clear_rq_complete(req);
667 break;
668 case BLK_EH_NOT_HANDLED:
669 break;
670 default:
671 printk(KERN_ERR "block: bad eh return: %d\n", ret);
672 break;
673 }
674 }
675
676 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
677 struct request *rq, void *priv, bool reserved)
678 {
679 struct blk_mq_timeout_data *data = priv;
680
681 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
682 /*
683 * If a request wasn't started before the queue was
684 * marked dying, kill it here or it'll go unnoticed.
685 */
686 if (unlikely(blk_queue_dying(rq->q))) {
687 rq->errors = -EIO;
688 blk_mq_end_request(rq, rq->errors);
689 }
690 return;
691 }
692
693 if (time_after_eq(jiffies, rq->deadline)) {
694 if (!blk_mark_rq_complete(rq))
695 blk_mq_rq_timed_out(rq, reserved);
696 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
697 data->next = rq->deadline;
698 data->next_set = 1;
699 }
700 }
701
702 static void blk_mq_timeout_work(struct work_struct *work)
703 {
704 struct request_queue *q =
705 container_of(work, struct request_queue, timeout_work);
706 struct blk_mq_timeout_data data = {
707 .next = 0,
708 .next_set = 0,
709 };
710 int i;
711
712 /* A deadlock might occur if a request is stuck requiring a
713 * timeout at the same time a queue freeze is waiting
714 * completion, since the timeout code would not be able to
715 * acquire the queue reference here.
716 *
717 * That's why we don't use blk_queue_enter here; instead, we use
718 * percpu_ref_tryget directly, because we need to be able to
719 * obtain a reference even in the short window between the queue
720 * starting to freeze, by dropping the first reference in
721 * blk_mq_freeze_queue_start, and the moment the last request is
722 * consumed, marked by the instant q_usage_counter reaches
723 * zero.
724 */
725 if (!percpu_ref_tryget(&q->q_usage_counter))
726 return;
727
728 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
729
730 if (data.next_set) {
731 data.next = blk_rq_timeout(round_jiffies_up(data.next));
732 mod_timer(&q->timeout, data.next);
733 } else {
734 struct blk_mq_hw_ctx *hctx;
735
736 queue_for_each_hw_ctx(q, hctx, i) {
737 /* the hctx may be unmapped, so check it here */
738 if (blk_mq_hw_queue_mapped(hctx))
739 blk_mq_tag_idle(hctx);
740 }
741 }
742 blk_queue_exit(q);
743 }
744
745 /*
746 * Reverse check our software queue for entries that we could potentially
747 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
748 * too much time checking for merges.
749 */
750 static bool blk_mq_attempt_merge(struct request_queue *q,
751 struct blk_mq_ctx *ctx, struct bio *bio)
752 {
753 struct request *rq;
754 int checked = 8;
755
756 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
757 int el_ret;
758
759 if (!checked--)
760 break;
761
762 if (!blk_rq_merge_ok(rq, bio))
763 continue;
764
765 el_ret = blk_try_merge(rq, bio);
766 if (el_ret == ELEVATOR_BACK_MERGE) {
767 if (bio_attempt_back_merge(q, rq, bio)) {
768 ctx->rq_merged++;
769 return true;
770 }
771 break;
772 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
773 if (bio_attempt_front_merge(q, rq, bio)) {
774 ctx->rq_merged++;
775 return true;
776 }
777 break;
778 }
779 }
780
781 return false;
782 }
783
784 struct flush_busy_ctx_data {
785 struct blk_mq_hw_ctx *hctx;
786 struct list_head *list;
787 };
788
789 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
790 {
791 struct flush_busy_ctx_data *flush_data = data;
792 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
793 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
794
795 sbitmap_clear_bit(sb, bitnr);
796 spin_lock(&ctx->lock);
797 list_splice_tail_init(&ctx->rq_list, flush_data->list);
798 spin_unlock(&ctx->lock);
799 return true;
800 }
801
802 /*
803 * Process software queues that have been marked busy, splicing them
804 * to the for-dispatch
805 */
806 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
807 {
808 struct flush_busy_ctx_data data = {
809 .hctx = hctx,
810 .list = list,
811 };
812
813 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
814 }
815
816 static inline unsigned int queued_to_index(unsigned int queued)
817 {
818 if (!queued)
819 return 0;
820
821 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
822 }
823
824 /*
825 * Run this hardware queue, pulling any software queues mapped to it in.
826 * Note that this function currently has various problems around ordering
827 * of IO. In particular, we'd like FIFO behaviour on handling existing
828 * items on the hctx->dispatch list. Ignore that for now.
829 */
830 static void blk_mq_process_rq_list(struct blk_mq_hw_ctx *hctx)
831 {
832 struct request_queue *q = hctx->queue;
833 struct request *rq;
834 LIST_HEAD(rq_list);
835 LIST_HEAD(driver_list);
836 struct list_head *dptr;
837 int queued;
838
839 if (unlikely(blk_mq_hctx_stopped(hctx)))
840 return;
841
842 hctx->run++;
843
844 /*
845 * Touch any software queue that has pending entries.
846 */
847 flush_busy_ctxs(hctx, &rq_list);
848
849 /*
850 * If we have previous entries on our dispatch list, grab them
851 * and stuff them at the front for more fair dispatch.
852 */
853 if (!list_empty_careful(&hctx->dispatch)) {
854 spin_lock(&hctx->lock);
855 if (!list_empty(&hctx->dispatch))
856 list_splice_init(&hctx->dispatch, &rq_list);
857 spin_unlock(&hctx->lock);
858 }
859
860 /*
861 * Start off with dptr being NULL, so we start the first request
862 * immediately, even if we have more pending.
863 */
864 dptr = NULL;
865
866 /*
867 * Now process all the entries, sending them to the driver.
868 */
869 queued = 0;
870 while (!list_empty(&rq_list)) {
871 struct blk_mq_queue_data bd;
872 int ret;
873
874 rq = list_first_entry(&rq_list, struct request, queuelist);
875 list_del_init(&rq->queuelist);
876
877 bd.rq = rq;
878 bd.list = dptr;
879 bd.last = list_empty(&rq_list);
880
881 ret = q->mq_ops->queue_rq(hctx, &bd);
882 switch (ret) {
883 case BLK_MQ_RQ_QUEUE_OK:
884 queued++;
885 break;
886 case BLK_MQ_RQ_QUEUE_BUSY:
887 list_add(&rq->queuelist, &rq_list);
888 __blk_mq_requeue_request(rq);
889 break;
890 default:
891 pr_err("blk-mq: bad return on queue: %d\n", ret);
892 case BLK_MQ_RQ_QUEUE_ERROR:
893 rq->errors = -EIO;
894 blk_mq_end_request(rq, rq->errors);
895 break;
896 }
897
898 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
899 break;
900
901 /*
902 * We've done the first request. If we have more than 1
903 * left in the list, set dptr to defer issue.
904 */
905 if (!dptr && rq_list.next != rq_list.prev)
906 dptr = &driver_list;
907 }
908
909 hctx->dispatched[queued_to_index(queued)]++;
910
911 /*
912 * Any items that need requeuing? Stuff them into hctx->dispatch,
913 * that is where we will continue on next queue run.
914 */
915 if (!list_empty(&rq_list)) {
916 spin_lock(&hctx->lock);
917 list_splice(&rq_list, &hctx->dispatch);
918 spin_unlock(&hctx->lock);
919 /*
920 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
921 * it's possible the queue is stopped and restarted again
922 * before this. Queue restart will dispatch requests. And since
923 * requests in rq_list aren't added into hctx->dispatch yet,
924 * the requests in rq_list might get lost.
925 *
926 * blk_mq_run_hw_queue() already checks the STOPPED bit
927 **/
928 blk_mq_run_hw_queue(hctx, true);
929 }
930 }
931
932 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
933 {
934 int srcu_idx;
935
936 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
937 cpu_online(hctx->next_cpu));
938
939 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
940 rcu_read_lock();
941 blk_mq_process_rq_list(hctx);
942 rcu_read_unlock();
943 } else {
944 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
945 blk_mq_process_rq_list(hctx);
946 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
947 }
948 }
949
950 /*
951 * It'd be great if the workqueue API had a way to pass
952 * in a mask and had some smarts for more clever placement.
953 * For now we just round-robin here, switching for every
954 * BLK_MQ_CPU_WORK_BATCH queued items.
955 */
956 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
957 {
958 if (hctx->queue->nr_hw_queues == 1)
959 return WORK_CPU_UNBOUND;
960
961 if (--hctx->next_cpu_batch <= 0) {
962 int next_cpu;
963
964 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
965 if (next_cpu >= nr_cpu_ids)
966 next_cpu = cpumask_first(hctx->cpumask);
967
968 hctx->next_cpu = next_cpu;
969 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
970 }
971
972 return hctx->next_cpu;
973 }
974
975 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
976 {
977 if (unlikely(blk_mq_hctx_stopped(hctx) ||
978 !blk_mq_hw_queue_mapped(hctx)))
979 return;
980
981 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
982 int cpu = get_cpu();
983 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
984 __blk_mq_run_hw_queue(hctx);
985 put_cpu();
986 return;
987 }
988
989 put_cpu();
990 }
991
992 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
993 }
994
995 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
996 {
997 struct blk_mq_hw_ctx *hctx;
998 int i;
999
1000 queue_for_each_hw_ctx(q, hctx, i) {
1001 if ((!blk_mq_hctx_has_pending(hctx) &&
1002 list_empty_careful(&hctx->dispatch)) ||
1003 blk_mq_hctx_stopped(hctx))
1004 continue;
1005
1006 blk_mq_run_hw_queue(hctx, async);
1007 }
1008 }
1009 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1010
1011 /**
1012 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1013 * @q: request queue.
1014 *
1015 * The caller is responsible for serializing this function against
1016 * blk_mq_{start,stop}_hw_queue().
1017 */
1018 bool blk_mq_queue_stopped(struct request_queue *q)
1019 {
1020 struct blk_mq_hw_ctx *hctx;
1021 int i;
1022
1023 queue_for_each_hw_ctx(q, hctx, i)
1024 if (blk_mq_hctx_stopped(hctx))
1025 return true;
1026
1027 return false;
1028 }
1029 EXPORT_SYMBOL(blk_mq_queue_stopped);
1030
1031 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1032 {
1033 cancel_work(&hctx->run_work);
1034 cancel_delayed_work(&hctx->delay_work);
1035 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1036 }
1037 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1038
1039 void blk_mq_stop_hw_queues(struct request_queue *q)
1040 {
1041 struct blk_mq_hw_ctx *hctx;
1042 int i;
1043
1044 queue_for_each_hw_ctx(q, hctx, i)
1045 blk_mq_stop_hw_queue(hctx);
1046 }
1047 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1048
1049 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1050 {
1051 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1052
1053 blk_mq_run_hw_queue(hctx, false);
1054 }
1055 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1056
1057 void blk_mq_start_hw_queues(struct request_queue *q)
1058 {
1059 struct blk_mq_hw_ctx *hctx;
1060 int i;
1061
1062 queue_for_each_hw_ctx(q, hctx, i)
1063 blk_mq_start_hw_queue(hctx);
1064 }
1065 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1066
1067 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1068 {
1069 if (!blk_mq_hctx_stopped(hctx))
1070 return;
1071
1072 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1073 blk_mq_run_hw_queue(hctx, async);
1074 }
1075 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1076
1077 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1078 {
1079 struct blk_mq_hw_ctx *hctx;
1080 int i;
1081
1082 queue_for_each_hw_ctx(q, hctx, i)
1083 blk_mq_start_stopped_hw_queue(hctx, async);
1084 }
1085 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1086
1087 static void blk_mq_run_work_fn(struct work_struct *work)
1088 {
1089 struct blk_mq_hw_ctx *hctx;
1090
1091 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1092
1093 __blk_mq_run_hw_queue(hctx);
1094 }
1095
1096 static void blk_mq_delay_work_fn(struct work_struct *work)
1097 {
1098 struct blk_mq_hw_ctx *hctx;
1099
1100 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1101
1102 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1103 __blk_mq_run_hw_queue(hctx);
1104 }
1105
1106 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1107 {
1108 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1109 return;
1110
1111 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1112 &hctx->delay_work, msecs_to_jiffies(msecs));
1113 }
1114 EXPORT_SYMBOL(blk_mq_delay_queue);
1115
1116 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1117 struct request *rq,
1118 bool at_head)
1119 {
1120 struct blk_mq_ctx *ctx = rq->mq_ctx;
1121
1122 trace_block_rq_insert(hctx->queue, rq);
1123
1124 if (at_head)
1125 list_add(&rq->queuelist, &ctx->rq_list);
1126 else
1127 list_add_tail(&rq->queuelist, &ctx->rq_list);
1128 }
1129
1130 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
1131 struct request *rq, bool at_head)
1132 {
1133 struct blk_mq_ctx *ctx = rq->mq_ctx;
1134
1135 __blk_mq_insert_req_list(hctx, rq, at_head);
1136 blk_mq_hctx_mark_pending(hctx, ctx);
1137 }
1138
1139 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1140 bool async)
1141 {
1142 struct blk_mq_ctx *ctx = rq->mq_ctx;
1143 struct request_queue *q = rq->q;
1144 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1145
1146 spin_lock(&ctx->lock);
1147 __blk_mq_insert_request(hctx, rq, at_head);
1148 spin_unlock(&ctx->lock);
1149
1150 if (run_queue)
1151 blk_mq_run_hw_queue(hctx, async);
1152 }
1153
1154 static void blk_mq_insert_requests(struct request_queue *q,
1155 struct blk_mq_ctx *ctx,
1156 struct list_head *list,
1157 int depth,
1158 bool from_schedule)
1159
1160 {
1161 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1162
1163 trace_block_unplug(q, depth, !from_schedule);
1164
1165 /*
1166 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1167 * offline now
1168 */
1169 spin_lock(&ctx->lock);
1170 while (!list_empty(list)) {
1171 struct request *rq;
1172
1173 rq = list_first_entry(list, struct request, queuelist);
1174 BUG_ON(rq->mq_ctx != ctx);
1175 list_del_init(&rq->queuelist);
1176 __blk_mq_insert_req_list(hctx, rq, false);
1177 }
1178 blk_mq_hctx_mark_pending(hctx, ctx);
1179 spin_unlock(&ctx->lock);
1180
1181 blk_mq_run_hw_queue(hctx, from_schedule);
1182 }
1183
1184 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1185 {
1186 struct request *rqa = container_of(a, struct request, queuelist);
1187 struct request *rqb = container_of(b, struct request, queuelist);
1188
1189 return !(rqa->mq_ctx < rqb->mq_ctx ||
1190 (rqa->mq_ctx == rqb->mq_ctx &&
1191 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1192 }
1193
1194 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1195 {
1196 struct blk_mq_ctx *this_ctx;
1197 struct request_queue *this_q;
1198 struct request *rq;
1199 LIST_HEAD(list);
1200 LIST_HEAD(ctx_list);
1201 unsigned int depth;
1202
1203 list_splice_init(&plug->mq_list, &list);
1204
1205 list_sort(NULL, &list, plug_ctx_cmp);
1206
1207 this_q = NULL;
1208 this_ctx = NULL;
1209 depth = 0;
1210
1211 while (!list_empty(&list)) {
1212 rq = list_entry_rq(list.next);
1213 list_del_init(&rq->queuelist);
1214 BUG_ON(!rq->q);
1215 if (rq->mq_ctx != this_ctx) {
1216 if (this_ctx) {
1217 blk_mq_insert_requests(this_q, this_ctx,
1218 &ctx_list, depth,
1219 from_schedule);
1220 }
1221
1222 this_ctx = rq->mq_ctx;
1223 this_q = rq->q;
1224 depth = 0;
1225 }
1226
1227 depth++;
1228 list_add_tail(&rq->queuelist, &ctx_list);
1229 }
1230
1231 /*
1232 * If 'this_ctx' is set, we know we have entries to complete
1233 * on 'ctx_list'. Do those.
1234 */
1235 if (this_ctx) {
1236 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1237 from_schedule);
1238 }
1239 }
1240
1241 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1242 {
1243 init_request_from_bio(rq, bio);
1244
1245 blk_account_io_start(rq, true);
1246 }
1247
1248 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1249 {
1250 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1251 !blk_queue_nomerges(hctx->queue);
1252 }
1253
1254 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1255 struct blk_mq_ctx *ctx,
1256 struct request *rq, struct bio *bio)
1257 {
1258 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1259 blk_mq_bio_to_request(rq, bio);
1260 spin_lock(&ctx->lock);
1261 insert_rq:
1262 __blk_mq_insert_request(hctx, rq, false);
1263 spin_unlock(&ctx->lock);
1264 return false;
1265 } else {
1266 struct request_queue *q = hctx->queue;
1267
1268 spin_lock(&ctx->lock);
1269 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1270 blk_mq_bio_to_request(rq, bio);
1271 goto insert_rq;
1272 }
1273
1274 spin_unlock(&ctx->lock);
1275 __blk_mq_free_request(hctx, ctx, rq);
1276 return true;
1277 }
1278 }
1279
1280 static struct request *blk_mq_map_request(struct request_queue *q,
1281 struct bio *bio,
1282 struct blk_mq_alloc_data *data)
1283 {
1284 struct blk_mq_hw_ctx *hctx;
1285 struct blk_mq_ctx *ctx;
1286 struct request *rq;
1287
1288 blk_queue_enter_live(q);
1289 ctx = blk_mq_get_ctx(q);
1290 hctx = blk_mq_map_queue(q, ctx->cpu);
1291
1292 trace_block_getrq(q, bio, bio->bi_opf);
1293 blk_mq_set_alloc_data(data, q, 0, ctx, hctx);
1294 rq = __blk_mq_alloc_request(data, bio->bi_opf);
1295
1296 data->hctx->queued++;
1297 return rq;
1298 }
1299
1300 static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie)
1301 {
1302 int ret;
1303 struct request_queue *q = rq->q;
1304 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
1305 struct blk_mq_queue_data bd = {
1306 .rq = rq,
1307 .list = NULL,
1308 .last = 1
1309 };
1310 blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1311
1312 if (blk_mq_hctx_stopped(hctx))
1313 goto insert;
1314
1315 /*
1316 * For OK queue, we are done. For error, kill it. Any other
1317 * error (busy), just add it to our list as we previously
1318 * would have done
1319 */
1320 ret = q->mq_ops->queue_rq(hctx, &bd);
1321 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1322 *cookie = new_cookie;
1323 return;
1324 }
1325
1326 __blk_mq_requeue_request(rq);
1327
1328 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1329 *cookie = BLK_QC_T_NONE;
1330 rq->errors = -EIO;
1331 blk_mq_end_request(rq, rq->errors);
1332 return;
1333 }
1334
1335 insert:
1336 blk_mq_insert_request(rq, false, true, true);
1337 }
1338
1339 /*
1340 * Multiple hardware queue variant. This will not use per-process plugs,
1341 * but will attempt to bypass the hctx queueing if we can go straight to
1342 * hardware for SYNC IO.
1343 */
1344 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1345 {
1346 const int is_sync = op_is_sync(bio->bi_opf);
1347 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1348 struct blk_mq_alloc_data data;
1349 struct request *rq;
1350 unsigned int request_count = 0, srcu_idx;
1351 struct blk_plug *plug;
1352 struct request *same_queue_rq = NULL;
1353 blk_qc_t cookie;
1354 unsigned int wb_acct;
1355
1356 blk_queue_bounce(q, &bio);
1357
1358 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1359 bio_io_error(bio);
1360 return BLK_QC_T_NONE;
1361 }
1362
1363 blk_queue_split(q, &bio, q->bio_split);
1364
1365 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1366 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1367 return BLK_QC_T_NONE;
1368
1369 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1370
1371 rq = blk_mq_map_request(q, bio, &data);
1372 if (unlikely(!rq)) {
1373 __wbt_done(q->rq_wb, wb_acct);
1374 return BLK_QC_T_NONE;
1375 }
1376
1377 wbt_track(&rq->issue_stat, wb_acct);
1378
1379 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1380
1381 if (unlikely(is_flush_fua)) {
1382 blk_mq_bio_to_request(rq, bio);
1383 blk_insert_flush(rq);
1384 goto run_queue;
1385 }
1386
1387 plug = current->plug;
1388 /*
1389 * If the driver supports defer issued based on 'last', then
1390 * queue it up like normal since we can potentially save some
1391 * CPU this way.
1392 */
1393 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1394 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1395 struct request *old_rq = NULL;
1396
1397 blk_mq_bio_to_request(rq, bio);
1398
1399 /*
1400 * We do limited plugging. If the bio can be merged, do that.
1401 * Otherwise the existing request in the plug list will be
1402 * issued. So the plug list will have one request at most
1403 */
1404 if (plug) {
1405 /*
1406 * The plug list might get flushed before this. If that
1407 * happens, same_queue_rq is invalid and plug list is
1408 * empty
1409 */
1410 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1411 old_rq = same_queue_rq;
1412 list_del_init(&old_rq->queuelist);
1413 }
1414 list_add_tail(&rq->queuelist, &plug->mq_list);
1415 } else /* is_sync */
1416 old_rq = rq;
1417 blk_mq_put_ctx(data.ctx);
1418 if (!old_rq)
1419 goto done;
1420
1421 if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
1422 rcu_read_lock();
1423 blk_mq_try_issue_directly(old_rq, &cookie);
1424 rcu_read_unlock();
1425 } else {
1426 srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
1427 blk_mq_try_issue_directly(old_rq, &cookie);
1428 srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
1429 }
1430 goto done;
1431 }
1432
1433 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1434 /*
1435 * For a SYNC request, send it to the hardware immediately. For
1436 * an ASYNC request, just ensure that we run it later on. The
1437 * latter allows for merging opportunities and more efficient
1438 * dispatching.
1439 */
1440 run_queue:
1441 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1442 }
1443 blk_mq_put_ctx(data.ctx);
1444 done:
1445 return cookie;
1446 }
1447
1448 /*
1449 * Single hardware queue variant. This will attempt to use any per-process
1450 * plug for merging and IO deferral.
1451 */
1452 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1453 {
1454 const int is_sync = op_is_sync(bio->bi_opf);
1455 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1456 struct blk_plug *plug;
1457 unsigned int request_count = 0;
1458 struct blk_mq_alloc_data data;
1459 struct request *rq;
1460 blk_qc_t cookie;
1461 unsigned int wb_acct;
1462
1463 blk_queue_bounce(q, &bio);
1464
1465 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1466 bio_io_error(bio);
1467 return BLK_QC_T_NONE;
1468 }
1469
1470 blk_queue_split(q, &bio, q->bio_split);
1471
1472 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1473 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1474 return BLK_QC_T_NONE;
1475 } else
1476 request_count = blk_plug_queued_count(q);
1477
1478 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1479
1480 rq = blk_mq_map_request(q, bio, &data);
1481 if (unlikely(!rq)) {
1482 __wbt_done(q->rq_wb, wb_acct);
1483 return BLK_QC_T_NONE;
1484 }
1485
1486 wbt_track(&rq->issue_stat, wb_acct);
1487
1488 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1489
1490 if (unlikely(is_flush_fua)) {
1491 blk_mq_bio_to_request(rq, bio);
1492 blk_insert_flush(rq);
1493 goto run_queue;
1494 }
1495
1496 /*
1497 * A task plug currently exists. Since this is completely lockless,
1498 * utilize that to temporarily store requests until the task is
1499 * either done or scheduled away.
1500 */
1501 plug = current->plug;
1502 if (plug) {
1503 struct request *last = NULL;
1504
1505 blk_mq_bio_to_request(rq, bio);
1506
1507 /*
1508 * @request_count may become stale because of schedule
1509 * out, so check the list again.
1510 */
1511 if (list_empty(&plug->mq_list))
1512 request_count = 0;
1513 if (!request_count)
1514 trace_block_plug(q);
1515 else
1516 last = list_entry_rq(plug->mq_list.prev);
1517
1518 blk_mq_put_ctx(data.ctx);
1519
1520 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1521 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1522 blk_flush_plug_list(plug, false);
1523 trace_block_plug(q);
1524 }
1525
1526 list_add_tail(&rq->queuelist, &plug->mq_list);
1527 return cookie;
1528 }
1529
1530 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1531 /*
1532 * For a SYNC request, send it to the hardware immediately. For
1533 * an ASYNC request, just ensure that we run it later on. The
1534 * latter allows for merging opportunities and more efficient
1535 * dispatching.
1536 */
1537 run_queue:
1538 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1539 }
1540
1541 blk_mq_put_ctx(data.ctx);
1542 return cookie;
1543 }
1544
1545 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1546 struct blk_mq_tags *tags, unsigned int hctx_idx)
1547 {
1548 struct page *page;
1549
1550 if (tags->rqs && set->ops->exit_request) {
1551 int i;
1552
1553 for (i = 0; i < tags->nr_tags; i++) {
1554 if (!tags->rqs[i])
1555 continue;
1556 set->ops->exit_request(set->driver_data, tags->rqs[i],
1557 hctx_idx, i);
1558 tags->rqs[i] = NULL;
1559 }
1560 }
1561
1562 while (!list_empty(&tags->page_list)) {
1563 page = list_first_entry(&tags->page_list, struct page, lru);
1564 list_del_init(&page->lru);
1565 /*
1566 * Remove kmemleak object previously allocated in
1567 * blk_mq_init_rq_map().
1568 */
1569 kmemleak_free(page_address(page));
1570 __free_pages(page, page->private);
1571 }
1572
1573 kfree(tags->rqs);
1574
1575 blk_mq_free_tags(tags);
1576 }
1577
1578 static size_t order_to_size(unsigned int order)
1579 {
1580 return (size_t)PAGE_SIZE << order;
1581 }
1582
1583 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1584 unsigned int hctx_idx)
1585 {
1586 struct blk_mq_tags *tags;
1587 unsigned int i, j, entries_per_page, max_order = 4;
1588 size_t rq_size, left;
1589
1590 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1591 set->numa_node,
1592 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1593 if (!tags)
1594 return NULL;
1595
1596 INIT_LIST_HEAD(&tags->page_list);
1597
1598 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1599 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1600 set->numa_node);
1601 if (!tags->rqs) {
1602 blk_mq_free_tags(tags);
1603 return NULL;
1604 }
1605
1606 /*
1607 * rq_size is the size of the request plus driver payload, rounded
1608 * to the cacheline size
1609 */
1610 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1611 cache_line_size());
1612 left = rq_size * set->queue_depth;
1613
1614 for (i = 0; i < set->queue_depth; ) {
1615 int this_order = max_order;
1616 struct page *page;
1617 int to_do;
1618 void *p;
1619
1620 while (this_order && left < order_to_size(this_order - 1))
1621 this_order--;
1622
1623 do {
1624 page = alloc_pages_node(set->numa_node,
1625 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1626 this_order);
1627 if (page)
1628 break;
1629 if (!this_order--)
1630 break;
1631 if (order_to_size(this_order) < rq_size)
1632 break;
1633 } while (1);
1634
1635 if (!page)
1636 goto fail;
1637
1638 page->private = this_order;
1639 list_add_tail(&page->lru, &tags->page_list);
1640
1641 p = page_address(page);
1642 /*
1643 * Allow kmemleak to scan these pages as they contain pointers
1644 * to additional allocations like via ops->init_request().
1645 */
1646 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1647 entries_per_page = order_to_size(this_order) / rq_size;
1648 to_do = min(entries_per_page, set->queue_depth - i);
1649 left -= to_do * rq_size;
1650 for (j = 0; j < to_do; j++) {
1651 tags->rqs[i] = p;
1652 if (set->ops->init_request) {
1653 if (set->ops->init_request(set->driver_data,
1654 tags->rqs[i], hctx_idx, i,
1655 set->numa_node)) {
1656 tags->rqs[i] = NULL;
1657 goto fail;
1658 }
1659 }
1660
1661 p += rq_size;
1662 i++;
1663 }
1664 }
1665 return tags;
1666
1667 fail:
1668 blk_mq_free_rq_map(set, tags, hctx_idx);
1669 return NULL;
1670 }
1671
1672 /*
1673 * 'cpu' is going away. splice any existing rq_list entries from this
1674 * software queue to the hw queue dispatch list, and ensure that it
1675 * gets run.
1676 */
1677 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1678 {
1679 struct blk_mq_hw_ctx *hctx;
1680 struct blk_mq_ctx *ctx;
1681 LIST_HEAD(tmp);
1682
1683 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1684 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1685
1686 spin_lock(&ctx->lock);
1687 if (!list_empty(&ctx->rq_list)) {
1688 list_splice_init(&ctx->rq_list, &tmp);
1689 blk_mq_hctx_clear_pending(hctx, ctx);
1690 }
1691 spin_unlock(&ctx->lock);
1692
1693 if (list_empty(&tmp))
1694 return 0;
1695
1696 spin_lock(&hctx->lock);
1697 list_splice_tail_init(&tmp, &hctx->dispatch);
1698 spin_unlock(&hctx->lock);
1699
1700 blk_mq_run_hw_queue(hctx, true);
1701 return 0;
1702 }
1703
1704 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1705 {
1706 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1707 &hctx->cpuhp_dead);
1708 }
1709
1710 /* hctx->ctxs will be freed in queue's release handler */
1711 static void blk_mq_exit_hctx(struct request_queue *q,
1712 struct blk_mq_tag_set *set,
1713 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1714 {
1715 unsigned flush_start_tag = set->queue_depth;
1716
1717 blk_mq_tag_idle(hctx);
1718
1719 if (set->ops->exit_request)
1720 set->ops->exit_request(set->driver_data,
1721 hctx->fq->flush_rq, hctx_idx,
1722 flush_start_tag + hctx_idx);
1723
1724 if (set->ops->exit_hctx)
1725 set->ops->exit_hctx(hctx, hctx_idx);
1726
1727 if (hctx->flags & BLK_MQ_F_BLOCKING)
1728 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1729
1730 blk_mq_remove_cpuhp(hctx);
1731 blk_free_flush_queue(hctx->fq);
1732 sbitmap_free(&hctx->ctx_map);
1733 }
1734
1735 static void blk_mq_exit_hw_queues(struct request_queue *q,
1736 struct blk_mq_tag_set *set, int nr_queue)
1737 {
1738 struct blk_mq_hw_ctx *hctx;
1739 unsigned int i;
1740
1741 queue_for_each_hw_ctx(q, hctx, i) {
1742 if (i == nr_queue)
1743 break;
1744 blk_mq_exit_hctx(q, set, hctx, i);
1745 }
1746 }
1747
1748 static void blk_mq_free_hw_queues(struct request_queue *q,
1749 struct blk_mq_tag_set *set)
1750 {
1751 struct blk_mq_hw_ctx *hctx;
1752 unsigned int i;
1753
1754 queue_for_each_hw_ctx(q, hctx, i)
1755 free_cpumask_var(hctx->cpumask);
1756 }
1757
1758 static int blk_mq_init_hctx(struct request_queue *q,
1759 struct blk_mq_tag_set *set,
1760 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1761 {
1762 int node;
1763 unsigned flush_start_tag = set->queue_depth;
1764
1765 node = hctx->numa_node;
1766 if (node == NUMA_NO_NODE)
1767 node = hctx->numa_node = set->numa_node;
1768
1769 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1770 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1771 spin_lock_init(&hctx->lock);
1772 INIT_LIST_HEAD(&hctx->dispatch);
1773 hctx->queue = q;
1774 hctx->queue_num = hctx_idx;
1775 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1776
1777 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1778
1779 hctx->tags = set->tags[hctx_idx];
1780
1781 /*
1782 * Allocate space for all possible cpus to avoid allocation at
1783 * runtime
1784 */
1785 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1786 GFP_KERNEL, node);
1787 if (!hctx->ctxs)
1788 goto unregister_cpu_notifier;
1789
1790 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1791 node))
1792 goto free_ctxs;
1793
1794 hctx->nr_ctx = 0;
1795
1796 if (set->ops->init_hctx &&
1797 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1798 goto free_bitmap;
1799
1800 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1801 if (!hctx->fq)
1802 goto exit_hctx;
1803
1804 if (set->ops->init_request &&
1805 set->ops->init_request(set->driver_data,
1806 hctx->fq->flush_rq, hctx_idx,
1807 flush_start_tag + hctx_idx, node))
1808 goto free_fq;
1809
1810 if (hctx->flags & BLK_MQ_F_BLOCKING)
1811 init_srcu_struct(&hctx->queue_rq_srcu);
1812
1813 return 0;
1814
1815 free_fq:
1816 kfree(hctx->fq);
1817 exit_hctx:
1818 if (set->ops->exit_hctx)
1819 set->ops->exit_hctx(hctx, hctx_idx);
1820 free_bitmap:
1821 sbitmap_free(&hctx->ctx_map);
1822 free_ctxs:
1823 kfree(hctx->ctxs);
1824 unregister_cpu_notifier:
1825 blk_mq_remove_cpuhp(hctx);
1826 return -1;
1827 }
1828
1829 static void blk_mq_init_cpu_queues(struct request_queue *q,
1830 unsigned int nr_hw_queues)
1831 {
1832 unsigned int i;
1833
1834 for_each_possible_cpu(i) {
1835 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1836 struct blk_mq_hw_ctx *hctx;
1837
1838 memset(__ctx, 0, sizeof(*__ctx));
1839 __ctx->cpu = i;
1840 spin_lock_init(&__ctx->lock);
1841 INIT_LIST_HEAD(&__ctx->rq_list);
1842 __ctx->queue = q;
1843 blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
1844 blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
1845
1846 /* If the cpu isn't online, the cpu is mapped to first hctx */
1847 if (!cpu_online(i))
1848 continue;
1849
1850 hctx = blk_mq_map_queue(q, i);
1851
1852 /*
1853 * Set local node, IFF we have more than one hw queue. If
1854 * not, we remain on the home node of the device
1855 */
1856 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1857 hctx->numa_node = local_memory_node(cpu_to_node(i));
1858 }
1859 }
1860
1861 static void blk_mq_map_swqueue(struct request_queue *q,
1862 const struct cpumask *online_mask)
1863 {
1864 unsigned int i;
1865 struct blk_mq_hw_ctx *hctx;
1866 struct blk_mq_ctx *ctx;
1867 struct blk_mq_tag_set *set = q->tag_set;
1868
1869 /*
1870 * Avoid others reading imcomplete hctx->cpumask through sysfs
1871 */
1872 mutex_lock(&q->sysfs_lock);
1873
1874 queue_for_each_hw_ctx(q, hctx, i) {
1875 cpumask_clear(hctx->cpumask);
1876 hctx->nr_ctx = 0;
1877 }
1878
1879 /*
1880 * Map software to hardware queues
1881 */
1882 for_each_possible_cpu(i) {
1883 /* If the cpu isn't online, the cpu is mapped to first hctx */
1884 if (!cpumask_test_cpu(i, online_mask))
1885 continue;
1886
1887 ctx = per_cpu_ptr(q->queue_ctx, i);
1888 hctx = blk_mq_map_queue(q, i);
1889
1890 cpumask_set_cpu(i, hctx->cpumask);
1891 ctx->index_hw = hctx->nr_ctx;
1892 hctx->ctxs[hctx->nr_ctx++] = ctx;
1893 }
1894
1895 mutex_unlock(&q->sysfs_lock);
1896
1897 queue_for_each_hw_ctx(q, hctx, i) {
1898 /*
1899 * If no software queues are mapped to this hardware queue,
1900 * disable it and free the request entries.
1901 */
1902 if (!hctx->nr_ctx) {
1903 if (set->tags[i]) {
1904 blk_mq_free_rq_map(set, set->tags[i], i);
1905 set->tags[i] = NULL;
1906 }
1907 hctx->tags = NULL;
1908 continue;
1909 }
1910
1911 /* unmapped hw queue can be remapped after CPU topo changed */
1912 if (!set->tags[i])
1913 set->tags[i] = blk_mq_init_rq_map(set, i);
1914 hctx->tags = set->tags[i];
1915 WARN_ON(!hctx->tags);
1916
1917 /*
1918 * Set the map size to the number of mapped software queues.
1919 * This is more accurate and more efficient than looping
1920 * over all possibly mapped software queues.
1921 */
1922 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
1923
1924 /*
1925 * Initialize batch roundrobin counts
1926 */
1927 hctx->next_cpu = cpumask_first(hctx->cpumask);
1928 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1929 }
1930 }
1931
1932 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1933 {
1934 struct blk_mq_hw_ctx *hctx;
1935 int i;
1936
1937 queue_for_each_hw_ctx(q, hctx, i) {
1938 if (shared)
1939 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1940 else
1941 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1942 }
1943 }
1944
1945 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
1946 {
1947 struct request_queue *q;
1948
1949 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1950 blk_mq_freeze_queue(q);
1951 queue_set_hctx_shared(q, shared);
1952 blk_mq_unfreeze_queue(q);
1953 }
1954 }
1955
1956 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1957 {
1958 struct blk_mq_tag_set *set = q->tag_set;
1959
1960 mutex_lock(&set->tag_list_lock);
1961 list_del_init(&q->tag_set_list);
1962 if (list_is_singular(&set->tag_list)) {
1963 /* just transitioned to unshared */
1964 set->flags &= ~BLK_MQ_F_TAG_SHARED;
1965 /* update existing queue */
1966 blk_mq_update_tag_set_depth(set, false);
1967 }
1968 mutex_unlock(&set->tag_list_lock);
1969 }
1970
1971 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1972 struct request_queue *q)
1973 {
1974 q->tag_set = set;
1975
1976 mutex_lock(&set->tag_list_lock);
1977
1978 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
1979 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
1980 set->flags |= BLK_MQ_F_TAG_SHARED;
1981 /* update existing queue */
1982 blk_mq_update_tag_set_depth(set, true);
1983 }
1984 if (set->flags & BLK_MQ_F_TAG_SHARED)
1985 queue_set_hctx_shared(q, true);
1986 list_add_tail(&q->tag_set_list, &set->tag_list);
1987
1988 mutex_unlock(&set->tag_list_lock);
1989 }
1990
1991 /*
1992 * It is the actual release handler for mq, but we do it from
1993 * request queue's release handler for avoiding use-after-free
1994 * and headache because q->mq_kobj shouldn't have been introduced,
1995 * but we can't group ctx/kctx kobj without it.
1996 */
1997 void blk_mq_release(struct request_queue *q)
1998 {
1999 struct blk_mq_hw_ctx *hctx;
2000 unsigned int i;
2001
2002 /* hctx kobj stays in hctx */
2003 queue_for_each_hw_ctx(q, hctx, i) {
2004 if (!hctx)
2005 continue;
2006 kfree(hctx->ctxs);
2007 kfree(hctx);
2008 }
2009
2010 q->mq_map = NULL;
2011
2012 kfree(q->queue_hw_ctx);
2013
2014 /* ctx kobj stays in queue_ctx */
2015 free_percpu(q->queue_ctx);
2016 }
2017
2018 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2019 {
2020 struct request_queue *uninit_q, *q;
2021
2022 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2023 if (!uninit_q)
2024 return ERR_PTR(-ENOMEM);
2025
2026 q = blk_mq_init_allocated_queue(set, uninit_q);
2027 if (IS_ERR(q))
2028 blk_cleanup_queue(uninit_q);
2029
2030 return q;
2031 }
2032 EXPORT_SYMBOL(blk_mq_init_queue);
2033
2034 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2035 struct request_queue *q)
2036 {
2037 int i, j;
2038 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2039
2040 blk_mq_sysfs_unregister(q);
2041 for (i = 0; i < set->nr_hw_queues; i++) {
2042 int node;
2043
2044 if (hctxs[i])
2045 continue;
2046
2047 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2048 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2049 GFP_KERNEL, node);
2050 if (!hctxs[i])
2051 break;
2052
2053 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2054 node)) {
2055 kfree(hctxs[i]);
2056 hctxs[i] = NULL;
2057 break;
2058 }
2059
2060 atomic_set(&hctxs[i]->nr_active, 0);
2061 hctxs[i]->numa_node = node;
2062 hctxs[i]->queue_num = i;
2063
2064 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2065 free_cpumask_var(hctxs[i]->cpumask);
2066 kfree(hctxs[i]);
2067 hctxs[i] = NULL;
2068 break;
2069 }
2070 blk_mq_hctx_kobj_init(hctxs[i]);
2071 }
2072 for (j = i; j < q->nr_hw_queues; j++) {
2073 struct blk_mq_hw_ctx *hctx = hctxs[j];
2074
2075 if (hctx) {
2076 if (hctx->tags) {
2077 blk_mq_free_rq_map(set, hctx->tags, j);
2078 set->tags[j] = NULL;
2079 }
2080 blk_mq_exit_hctx(q, set, hctx, j);
2081 free_cpumask_var(hctx->cpumask);
2082 kobject_put(&hctx->kobj);
2083 kfree(hctx->ctxs);
2084 kfree(hctx);
2085 hctxs[j] = NULL;
2086
2087 }
2088 }
2089 q->nr_hw_queues = i;
2090 blk_mq_sysfs_register(q);
2091 }
2092
2093 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2094 struct request_queue *q)
2095 {
2096 /* mark the queue as mq asap */
2097 q->mq_ops = set->ops;
2098
2099 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2100 if (!q->queue_ctx)
2101 goto err_exit;
2102
2103 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2104 GFP_KERNEL, set->numa_node);
2105 if (!q->queue_hw_ctx)
2106 goto err_percpu;
2107
2108 q->mq_map = set->mq_map;
2109
2110 blk_mq_realloc_hw_ctxs(set, q);
2111 if (!q->nr_hw_queues)
2112 goto err_hctxs;
2113
2114 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2115 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2116
2117 q->nr_queues = nr_cpu_ids;
2118
2119 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2120
2121 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2122 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2123
2124 q->sg_reserved_size = INT_MAX;
2125
2126 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2127 INIT_LIST_HEAD(&q->requeue_list);
2128 spin_lock_init(&q->requeue_lock);
2129
2130 if (q->nr_hw_queues > 1)
2131 blk_queue_make_request(q, blk_mq_make_request);
2132 else
2133 blk_queue_make_request(q, blk_sq_make_request);
2134
2135 /*
2136 * Do this after blk_queue_make_request() overrides it...
2137 */
2138 q->nr_requests = set->queue_depth;
2139
2140 /*
2141 * Default to classic polling
2142 */
2143 q->poll_nsec = -1;
2144
2145 if (set->ops->complete)
2146 blk_queue_softirq_done(q, set->ops->complete);
2147
2148 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2149
2150 get_online_cpus();
2151 mutex_lock(&all_q_mutex);
2152
2153 list_add_tail(&q->all_q_node, &all_q_list);
2154 blk_mq_add_queue_tag_set(set, q);
2155 blk_mq_map_swqueue(q, cpu_online_mask);
2156
2157 mutex_unlock(&all_q_mutex);
2158 put_online_cpus();
2159
2160 return q;
2161
2162 err_hctxs:
2163 kfree(q->queue_hw_ctx);
2164 err_percpu:
2165 free_percpu(q->queue_ctx);
2166 err_exit:
2167 q->mq_ops = NULL;
2168 return ERR_PTR(-ENOMEM);
2169 }
2170 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2171
2172 void blk_mq_free_queue(struct request_queue *q)
2173 {
2174 struct blk_mq_tag_set *set = q->tag_set;
2175
2176 mutex_lock(&all_q_mutex);
2177 list_del_init(&q->all_q_node);
2178 mutex_unlock(&all_q_mutex);
2179
2180 wbt_exit(q);
2181
2182 blk_mq_del_queue_tag_set(q);
2183
2184 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2185 blk_mq_free_hw_queues(q, set);
2186 }
2187
2188 /* Basically redo blk_mq_init_queue with queue frozen */
2189 static void blk_mq_queue_reinit(struct request_queue *q,
2190 const struct cpumask *online_mask)
2191 {
2192 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2193
2194 blk_mq_sysfs_unregister(q);
2195
2196 /*
2197 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2198 * we should change hctx numa_node according to new topology (this
2199 * involves free and re-allocate memory, worthy doing?)
2200 */
2201
2202 blk_mq_map_swqueue(q, online_mask);
2203
2204 blk_mq_sysfs_register(q);
2205 }
2206
2207 /*
2208 * New online cpumask which is going to be set in this hotplug event.
2209 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2210 * one-by-one and dynamically allocating this could result in a failure.
2211 */
2212 static struct cpumask cpuhp_online_new;
2213
2214 static void blk_mq_queue_reinit_work(void)
2215 {
2216 struct request_queue *q;
2217
2218 mutex_lock(&all_q_mutex);
2219 /*
2220 * We need to freeze and reinit all existing queues. Freezing
2221 * involves synchronous wait for an RCU grace period and doing it
2222 * one by one may take a long time. Start freezing all queues in
2223 * one swoop and then wait for the completions so that freezing can
2224 * take place in parallel.
2225 */
2226 list_for_each_entry(q, &all_q_list, all_q_node)
2227 blk_mq_freeze_queue_start(q);
2228 list_for_each_entry(q, &all_q_list, all_q_node)
2229 blk_mq_freeze_queue_wait(q);
2230
2231 list_for_each_entry(q, &all_q_list, all_q_node)
2232 blk_mq_queue_reinit(q, &cpuhp_online_new);
2233
2234 list_for_each_entry(q, &all_q_list, all_q_node)
2235 blk_mq_unfreeze_queue(q);
2236
2237 mutex_unlock(&all_q_mutex);
2238 }
2239
2240 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2241 {
2242 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2243 blk_mq_queue_reinit_work();
2244 return 0;
2245 }
2246
2247 /*
2248 * Before hotadded cpu starts handling requests, new mappings must be
2249 * established. Otherwise, these requests in hw queue might never be
2250 * dispatched.
2251 *
2252 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2253 * for CPU0, and ctx1 for CPU1).
2254 *
2255 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2256 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2257 *
2258 * And then while running hw queue, flush_busy_ctxs() finds bit0 is set in
2259 * pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2260 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list
2261 * is ignored.
2262 */
2263 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2264 {
2265 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2266 cpumask_set_cpu(cpu, &cpuhp_online_new);
2267 blk_mq_queue_reinit_work();
2268 return 0;
2269 }
2270
2271 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2272 {
2273 int i;
2274
2275 for (i = 0; i < set->nr_hw_queues; i++) {
2276 set->tags[i] = blk_mq_init_rq_map(set, i);
2277 if (!set->tags[i])
2278 goto out_unwind;
2279 }
2280
2281 return 0;
2282
2283 out_unwind:
2284 while (--i >= 0)
2285 blk_mq_free_rq_map(set, set->tags[i], i);
2286
2287 return -ENOMEM;
2288 }
2289
2290 /*
2291 * Allocate the request maps associated with this tag_set. Note that this
2292 * may reduce the depth asked for, if memory is tight. set->queue_depth
2293 * will be updated to reflect the allocated depth.
2294 */
2295 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2296 {
2297 unsigned int depth;
2298 int err;
2299
2300 depth = set->queue_depth;
2301 do {
2302 err = __blk_mq_alloc_rq_maps(set);
2303 if (!err)
2304 break;
2305
2306 set->queue_depth >>= 1;
2307 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2308 err = -ENOMEM;
2309 break;
2310 }
2311 } while (set->queue_depth);
2312
2313 if (!set->queue_depth || err) {
2314 pr_err("blk-mq: failed to allocate request map\n");
2315 return -ENOMEM;
2316 }
2317
2318 if (depth != set->queue_depth)
2319 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2320 depth, set->queue_depth);
2321
2322 return 0;
2323 }
2324
2325 /*
2326 * Alloc a tag set to be associated with one or more request queues.
2327 * May fail with EINVAL for various error conditions. May adjust the
2328 * requested depth down, if if it too large. In that case, the set
2329 * value will be stored in set->queue_depth.
2330 */
2331 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2332 {
2333 int ret;
2334
2335 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2336
2337 if (!set->nr_hw_queues)
2338 return -EINVAL;
2339 if (!set->queue_depth)
2340 return -EINVAL;
2341 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2342 return -EINVAL;
2343
2344 if (!set->ops->queue_rq)
2345 return -EINVAL;
2346
2347 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2348 pr_info("blk-mq: reduced tag depth to %u\n",
2349 BLK_MQ_MAX_DEPTH);
2350 set->queue_depth = BLK_MQ_MAX_DEPTH;
2351 }
2352
2353 /*
2354 * If a crashdump is active, then we are potentially in a very
2355 * memory constrained environment. Limit us to 1 queue and
2356 * 64 tags to prevent using too much memory.
2357 */
2358 if (is_kdump_kernel()) {
2359 set->nr_hw_queues = 1;
2360 set->queue_depth = min(64U, set->queue_depth);
2361 }
2362 /*
2363 * There is no use for more h/w queues than cpus.
2364 */
2365 if (set->nr_hw_queues > nr_cpu_ids)
2366 set->nr_hw_queues = nr_cpu_ids;
2367
2368 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2369 GFP_KERNEL, set->numa_node);
2370 if (!set->tags)
2371 return -ENOMEM;
2372
2373 ret = -ENOMEM;
2374 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2375 GFP_KERNEL, set->numa_node);
2376 if (!set->mq_map)
2377 goto out_free_tags;
2378
2379 if (set->ops->map_queues)
2380 ret = set->ops->map_queues(set);
2381 else
2382 ret = blk_mq_map_queues(set);
2383 if (ret)
2384 goto out_free_mq_map;
2385
2386 ret = blk_mq_alloc_rq_maps(set);
2387 if (ret)
2388 goto out_free_mq_map;
2389
2390 mutex_init(&set->tag_list_lock);
2391 INIT_LIST_HEAD(&set->tag_list);
2392
2393 return 0;
2394
2395 out_free_mq_map:
2396 kfree(set->mq_map);
2397 set->mq_map = NULL;
2398 out_free_tags:
2399 kfree(set->tags);
2400 set->tags = NULL;
2401 return ret;
2402 }
2403 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2404
2405 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2406 {
2407 int i;
2408
2409 for (i = 0; i < nr_cpu_ids; i++) {
2410 if (set->tags[i])
2411 blk_mq_free_rq_map(set, set->tags[i], i);
2412 }
2413
2414 kfree(set->mq_map);
2415 set->mq_map = NULL;
2416
2417 kfree(set->tags);
2418 set->tags = NULL;
2419 }
2420 EXPORT_SYMBOL(blk_mq_free_tag_set);
2421
2422 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2423 {
2424 struct blk_mq_tag_set *set = q->tag_set;
2425 struct blk_mq_hw_ctx *hctx;
2426 int i, ret;
2427
2428 if (!set || nr > set->queue_depth)
2429 return -EINVAL;
2430
2431 ret = 0;
2432 queue_for_each_hw_ctx(q, hctx, i) {
2433 if (!hctx->tags)
2434 continue;
2435 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2436 if (ret)
2437 break;
2438 }
2439
2440 if (!ret)
2441 q->nr_requests = nr;
2442
2443 return ret;
2444 }
2445
2446 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2447 {
2448 struct request_queue *q;
2449
2450 if (nr_hw_queues > nr_cpu_ids)
2451 nr_hw_queues = nr_cpu_ids;
2452 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2453 return;
2454
2455 list_for_each_entry(q, &set->tag_list, tag_set_list)
2456 blk_mq_freeze_queue(q);
2457
2458 set->nr_hw_queues = nr_hw_queues;
2459 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2460 blk_mq_realloc_hw_ctxs(set, q);
2461
2462 if (q->nr_hw_queues > 1)
2463 blk_queue_make_request(q, blk_mq_make_request);
2464 else
2465 blk_queue_make_request(q, blk_sq_make_request);
2466
2467 blk_mq_queue_reinit(q, cpu_online_mask);
2468 }
2469
2470 list_for_each_entry(q, &set->tag_list, tag_set_list)
2471 blk_mq_unfreeze_queue(q);
2472 }
2473 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2474
2475 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2476 struct blk_mq_hw_ctx *hctx,
2477 struct request *rq)
2478 {
2479 struct blk_rq_stat stat[2];
2480 unsigned long ret = 0;
2481
2482 /*
2483 * If stats collection isn't on, don't sleep but turn it on for
2484 * future users
2485 */
2486 if (!blk_stat_enable(q))
2487 return 0;
2488
2489 /*
2490 * We don't have to do this once per IO, should optimize this
2491 * to just use the current window of stats until it changes
2492 */
2493 memset(&stat, 0, sizeof(stat));
2494 blk_hctx_stat_get(hctx, stat);
2495
2496 /*
2497 * As an optimistic guess, use half of the mean service time
2498 * for this type of request. We can (and should) make this smarter.
2499 * For instance, if the completion latencies are tight, we can
2500 * get closer than just half the mean. This is especially
2501 * important on devices where the completion latencies are longer
2502 * than ~10 usec.
2503 */
2504 if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
2505 ret = (stat[BLK_STAT_READ].mean + 1) / 2;
2506 else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
2507 ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;
2508
2509 return ret;
2510 }
2511
2512 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2513 struct blk_mq_hw_ctx *hctx,
2514 struct request *rq)
2515 {
2516 struct hrtimer_sleeper hs;
2517 enum hrtimer_mode mode;
2518 unsigned int nsecs;
2519 ktime_t kt;
2520
2521 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2522 return false;
2523
2524 /*
2525 * poll_nsec can be:
2526 *
2527 * -1: don't ever hybrid sleep
2528 * 0: use half of prev avg
2529 * >0: use this specific value
2530 */
2531 if (q->poll_nsec == -1)
2532 return false;
2533 else if (q->poll_nsec > 0)
2534 nsecs = q->poll_nsec;
2535 else
2536 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2537
2538 if (!nsecs)
2539 return false;
2540
2541 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2542
2543 /*
2544 * This will be replaced with the stats tracking code, using
2545 * 'avg_completion_time / 2' as the pre-sleep target.
2546 */
2547 kt = ktime_set(0, nsecs);
2548
2549 mode = HRTIMER_MODE_REL;
2550 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2551 hrtimer_set_expires(&hs.timer, kt);
2552
2553 hrtimer_init_sleeper(&hs, current);
2554 do {
2555 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2556 break;
2557 set_current_state(TASK_UNINTERRUPTIBLE);
2558 hrtimer_start_expires(&hs.timer, mode);
2559 if (hs.task)
2560 io_schedule();
2561 hrtimer_cancel(&hs.timer);
2562 mode = HRTIMER_MODE_ABS;
2563 } while (hs.task && !signal_pending(current));
2564
2565 __set_current_state(TASK_RUNNING);
2566 destroy_hrtimer_on_stack(&hs.timer);
2567 return true;
2568 }
2569
2570 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2571 {
2572 struct request_queue *q = hctx->queue;
2573 long state;
2574
2575 /*
2576 * If we sleep, have the caller restart the poll loop to reset
2577 * the state. Like for the other success return cases, the
2578 * caller is responsible for checking if the IO completed. If
2579 * the IO isn't complete, we'll get called again and will go
2580 * straight to the busy poll loop.
2581 */
2582 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2583 return true;
2584
2585 hctx->poll_considered++;
2586
2587 state = current->state;
2588 while (!need_resched()) {
2589 int ret;
2590
2591 hctx->poll_invoked++;
2592
2593 ret = q->mq_ops->poll(hctx, rq->tag);
2594 if (ret > 0) {
2595 hctx->poll_success++;
2596 set_current_state(TASK_RUNNING);
2597 return true;
2598 }
2599
2600 if (signal_pending_state(state, current))
2601 set_current_state(TASK_RUNNING);
2602
2603 if (current->state == TASK_RUNNING)
2604 return true;
2605 if (ret < 0)
2606 break;
2607 cpu_relax();
2608 }
2609
2610 return false;
2611 }
2612
2613 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2614 {
2615 struct blk_mq_hw_ctx *hctx;
2616 struct blk_plug *plug;
2617 struct request *rq;
2618
2619 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2620 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2621 return false;
2622
2623 plug = current->plug;
2624 if (plug)
2625 blk_flush_plug_list(plug, false);
2626
2627 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2628 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2629
2630 return __blk_mq_poll(hctx, rq);
2631 }
2632 EXPORT_SYMBOL_GPL(blk_mq_poll);
2633
2634 void blk_mq_disable_hotplug(void)
2635 {
2636 mutex_lock(&all_q_mutex);
2637 }
2638
2639 void blk_mq_enable_hotplug(void)
2640 {
2641 mutex_unlock(&all_q_mutex);
2642 }
2643
2644 static int __init blk_mq_init(void)
2645 {
2646 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2647 blk_mq_hctx_notify_dead);
2648
2649 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2650 blk_mq_queue_reinit_prepare,
2651 blk_mq_queue_reinit_dead);
2652 return 0;
2653 }
2654 subsys_initcall(blk_mq_init);