]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-mq.c
bio-integrity: remove the needless fail handle of bip_slab creating
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23 #include <linux/crash_dump.h>
24
25 #include <trace/events/block.h>
26
27 #include <linux/blk-mq.h>
28 #include "blk.h"
29 #include "blk-mq.h"
30 #include "blk-mq-tag.h"
31
32 static DEFINE_MUTEX(all_q_mutex);
33 static LIST_HEAD(all_q_list);
34
35 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
36
37 /*
38 * Check if any of the ctx's have pending work in this hardware queue
39 */
40 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
41 {
42 unsigned int i;
43
44 for (i = 0; i < hctx->ctx_map.map_size; i++)
45 if (hctx->ctx_map.map[i].word)
46 return true;
47
48 return false;
49 }
50
51 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
52 struct blk_mq_ctx *ctx)
53 {
54 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
55 }
56
57 #define CTX_TO_BIT(hctx, ctx) \
58 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
59
60 /*
61 * Mark this ctx as having pending work in this hardware queue
62 */
63 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
64 struct blk_mq_ctx *ctx)
65 {
66 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
67
68 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
69 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
70 }
71
72 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
73 struct blk_mq_ctx *ctx)
74 {
75 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
76
77 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
78 }
79
80 static int blk_mq_queue_enter(struct request_queue *q)
81 {
82 while (true) {
83 int ret;
84
85 if (percpu_ref_tryget_live(&q->mq_usage_counter))
86 return 0;
87
88 ret = wait_event_interruptible(q->mq_freeze_wq,
89 !q->mq_freeze_depth || blk_queue_dying(q));
90 if (blk_queue_dying(q))
91 return -ENODEV;
92 if (ret)
93 return ret;
94 }
95 }
96
97 static void blk_mq_queue_exit(struct request_queue *q)
98 {
99 percpu_ref_put(&q->mq_usage_counter);
100 }
101
102 static void blk_mq_usage_counter_release(struct percpu_ref *ref)
103 {
104 struct request_queue *q =
105 container_of(ref, struct request_queue, mq_usage_counter);
106
107 wake_up_all(&q->mq_freeze_wq);
108 }
109
110 /*
111 * Guarantee no request is in use, so we can change any data structure of
112 * the queue afterward.
113 */
114 void blk_mq_freeze_queue(struct request_queue *q)
115 {
116 bool freeze;
117
118 spin_lock_irq(q->queue_lock);
119 freeze = !q->mq_freeze_depth++;
120 spin_unlock_irq(q->queue_lock);
121
122 if (freeze) {
123 percpu_ref_kill(&q->mq_usage_counter);
124 blk_mq_run_queues(q, false);
125 }
126 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
127 }
128
129 static void blk_mq_unfreeze_queue(struct request_queue *q)
130 {
131 bool wake;
132
133 spin_lock_irq(q->queue_lock);
134 wake = !--q->mq_freeze_depth;
135 WARN_ON_ONCE(q->mq_freeze_depth < 0);
136 spin_unlock_irq(q->queue_lock);
137 if (wake) {
138 percpu_ref_reinit(&q->mq_usage_counter);
139 wake_up_all(&q->mq_freeze_wq);
140 }
141 }
142
143 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
144 {
145 return blk_mq_has_free_tags(hctx->tags);
146 }
147 EXPORT_SYMBOL(blk_mq_can_queue);
148
149 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
150 struct request *rq, unsigned int rw_flags)
151 {
152 if (blk_queue_io_stat(q))
153 rw_flags |= REQ_IO_STAT;
154
155 INIT_LIST_HEAD(&rq->queuelist);
156 /* csd/requeue_work/fifo_time is initialized before use */
157 rq->q = q;
158 rq->mq_ctx = ctx;
159 rq->cmd_flags |= rw_flags;
160 /* do not touch atomic flags, it needs atomic ops against the timer */
161 rq->cpu = -1;
162 INIT_HLIST_NODE(&rq->hash);
163 RB_CLEAR_NODE(&rq->rb_node);
164 rq->rq_disk = NULL;
165 rq->part = NULL;
166 rq->start_time = jiffies;
167 #ifdef CONFIG_BLK_CGROUP
168 rq->rl = NULL;
169 set_start_time_ns(rq);
170 rq->io_start_time_ns = 0;
171 #endif
172 rq->nr_phys_segments = 0;
173 #if defined(CONFIG_BLK_DEV_INTEGRITY)
174 rq->nr_integrity_segments = 0;
175 #endif
176 rq->special = NULL;
177 /* tag was already set */
178 rq->errors = 0;
179
180 rq->cmd = rq->__cmd;
181
182 rq->extra_len = 0;
183 rq->sense_len = 0;
184 rq->resid_len = 0;
185 rq->sense = NULL;
186
187 INIT_LIST_HEAD(&rq->timeout_list);
188 rq->timeout = 0;
189
190 rq->end_io = NULL;
191 rq->end_io_data = NULL;
192 rq->next_rq = NULL;
193
194 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
195 }
196
197 static struct request *
198 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
199 {
200 struct request *rq;
201 unsigned int tag;
202
203 tag = blk_mq_get_tag(data);
204 if (tag != BLK_MQ_TAG_FAIL) {
205 rq = data->hctx->tags->rqs[tag];
206
207 if (blk_mq_tag_busy(data->hctx)) {
208 rq->cmd_flags = REQ_MQ_INFLIGHT;
209 atomic_inc(&data->hctx->nr_active);
210 }
211
212 rq->tag = tag;
213 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
214 return rq;
215 }
216
217 return NULL;
218 }
219
220 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
221 bool reserved)
222 {
223 struct blk_mq_ctx *ctx;
224 struct blk_mq_hw_ctx *hctx;
225 struct request *rq;
226 struct blk_mq_alloc_data alloc_data;
227 int ret;
228
229 ret = blk_mq_queue_enter(q);
230 if (ret)
231 return ERR_PTR(ret);
232
233 ctx = blk_mq_get_ctx(q);
234 hctx = q->mq_ops->map_queue(q, ctx->cpu);
235 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
236 reserved, ctx, hctx);
237
238 rq = __blk_mq_alloc_request(&alloc_data, rw);
239 if (!rq && (gfp & __GFP_WAIT)) {
240 __blk_mq_run_hw_queue(hctx);
241 blk_mq_put_ctx(ctx);
242
243 ctx = blk_mq_get_ctx(q);
244 hctx = q->mq_ops->map_queue(q, ctx->cpu);
245 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
246 hctx);
247 rq = __blk_mq_alloc_request(&alloc_data, rw);
248 ctx = alloc_data.ctx;
249 }
250 blk_mq_put_ctx(ctx);
251 if (!rq)
252 return ERR_PTR(-EWOULDBLOCK);
253 return rq;
254 }
255 EXPORT_SYMBOL(blk_mq_alloc_request);
256
257 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
258 struct blk_mq_ctx *ctx, struct request *rq)
259 {
260 const int tag = rq->tag;
261 struct request_queue *q = rq->q;
262
263 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
264 atomic_dec(&hctx->nr_active);
265 rq->cmd_flags = 0;
266
267 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
268 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
269 blk_mq_queue_exit(q);
270 }
271
272 void blk_mq_free_request(struct request *rq)
273 {
274 struct blk_mq_ctx *ctx = rq->mq_ctx;
275 struct blk_mq_hw_ctx *hctx;
276 struct request_queue *q = rq->q;
277
278 ctx->rq_completed[rq_is_sync(rq)]++;
279
280 hctx = q->mq_ops->map_queue(q, ctx->cpu);
281 __blk_mq_free_request(hctx, ctx, rq);
282 }
283
284 inline void __blk_mq_end_request(struct request *rq, int error)
285 {
286 blk_account_io_done(rq);
287
288 if (rq->end_io) {
289 rq->end_io(rq, error);
290 } else {
291 if (unlikely(blk_bidi_rq(rq)))
292 blk_mq_free_request(rq->next_rq);
293 blk_mq_free_request(rq);
294 }
295 }
296 EXPORT_SYMBOL(__blk_mq_end_request);
297
298 void blk_mq_end_request(struct request *rq, int error)
299 {
300 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
301 BUG();
302 __blk_mq_end_request(rq, error);
303 }
304 EXPORT_SYMBOL(blk_mq_end_request);
305
306 static void __blk_mq_complete_request_remote(void *data)
307 {
308 struct request *rq = data;
309
310 rq->q->softirq_done_fn(rq);
311 }
312
313 static void blk_mq_ipi_complete_request(struct request *rq)
314 {
315 struct blk_mq_ctx *ctx = rq->mq_ctx;
316 bool shared = false;
317 int cpu;
318
319 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
320 rq->q->softirq_done_fn(rq);
321 return;
322 }
323
324 cpu = get_cpu();
325 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
326 shared = cpus_share_cache(cpu, ctx->cpu);
327
328 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
329 rq->csd.func = __blk_mq_complete_request_remote;
330 rq->csd.info = rq;
331 rq->csd.flags = 0;
332 smp_call_function_single_async(ctx->cpu, &rq->csd);
333 } else {
334 rq->q->softirq_done_fn(rq);
335 }
336 put_cpu();
337 }
338
339 void __blk_mq_complete_request(struct request *rq)
340 {
341 struct request_queue *q = rq->q;
342
343 if (!q->softirq_done_fn)
344 blk_mq_end_request(rq, rq->errors);
345 else
346 blk_mq_ipi_complete_request(rq);
347 }
348
349 /**
350 * blk_mq_complete_request - end I/O on a request
351 * @rq: the request being processed
352 *
353 * Description:
354 * Ends all I/O on a request. It does not handle partial completions.
355 * The actual completion happens out-of-order, through a IPI handler.
356 **/
357 void blk_mq_complete_request(struct request *rq)
358 {
359 struct request_queue *q = rq->q;
360
361 if (unlikely(blk_should_fake_timeout(q)))
362 return;
363 if (!blk_mark_rq_complete(rq))
364 __blk_mq_complete_request(rq);
365 }
366 EXPORT_SYMBOL(blk_mq_complete_request);
367
368 void blk_mq_start_request(struct request *rq)
369 {
370 struct request_queue *q = rq->q;
371
372 trace_block_rq_issue(q, rq);
373
374 rq->resid_len = blk_rq_bytes(rq);
375 if (unlikely(blk_bidi_rq(rq)))
376 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
377
378 blk_add_timer(rq);
379
380 /*
381 * Ensure that ->deadline is visible before set the started
382 * flag and clear the completed flag.
383 */
384 smp_mb__before_atomic();
385
386 /*
387 * Mark us as started and clear complete. Complete might have been
388 * set if requeue raced with timeout, which then marked it as
389 * complete. So be sure to clear complete again when we start
390 * the request, otherwise we'll ignore the completion event.
391 */
392 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
393 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
394 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
395 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
396
397 if (q->dma_drain_size && blk_rq_bytes(rq)) {
398 /*
399 * Make sure space for the drain appears. We know we can do
400 * this because max_hw_segments has been adjusted to be one
401 * fewer than the device can handle.
402 */
403 rq->nr_phys_segments++;
404 }
405 }
406 EXPORT_SYMBOL(blk_mq_start_request);
407
408 static void __blk_mq_requeue_request(struct request *rq)
409 {
410 struct request_queue *q = rq->q;
411
412 trace_block_rq_requeue(q, rq);
413
414 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
415 if (q->dma_drain_size && blk_rq_bytes(rq))
416 rq->nr_phys_segments--;
417 }
418 }
419
420 void blk_mq_requeue_request(struct request *rq)
421 {
422 __blk_mq_requeue_request(rq);
423
424 BUG_ON(blk_queued_rq(rq));
425 blk_mq_add_to_requeue_list(rq, true);
426 }
427 EXPORT_SYMBOL(blk_mq_requeue_request);
428
429 static void blk_mq_requeue_work(struct work_struct *work)
430 {
431 struct request_queue *q =
432 container_of(work, struct request_queue, requeue_work);
433 LIST_HEAD(rq_list);
434 struct request *rq, *next;
435 unsigned long flags;
436
437 spin_lock_irqsave(&q->requeue_lock, flags);
438 list_splice_init(&q->requeue_list, &rq_list);
439 spin_unlock_irqrestore(&q->requeue_lock, flags);
440
441 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
442 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
443 continue;
444
445 rq->cmd_flags &= ~REQ_SOFTBARRIER;
446 list_del_init(&rq->queuelist);
447 blk_mq_insert_request(rq, true, false, false);
448 }
449
450 while (!list_empty(&rq_list)) {
451 rq = list_entry(rq_list.next, struct request, queuelist);
452 list_del_init(&rq->queuelist);
453 blk_mq_insert_request(rq, false, false, false);
454 }
455
456 /*
457 * Use the start variant of queue running here, so that running
458 * the requeue work will kick stopped queues.
459 */
460 blk_mq_start_hw_queues(q);
461 }
462
463 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
464 {
465 struct request_queue *q = rq->q;
466 unsigned long flags;
467
468 /*
469 * We abuse this flag that is otherwise used by the I/O scheduler to
470 * request head insertation from the workqueue.
471 */
472 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
473
474 spin_lock_irqsave(&q->requeue_lock, flags);
475 if (at_head) {
476 rq->cmd_flags |= REQ_SOFTBARRIER;
477 list_add(&rq->queuelist, &q->requeue_list);
478 } else {
479 list_add_tail(&rq->queuelist, &q->requeue_list);
480 }
481 spin_unlock_irqrestore(&q->requeue_lock, flags);
482 }
483 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
484
485 void blk_mq_kick_requeue_list(struct request_queue *q)
486 {
487 kblockd_schedule_work(&q->requeue_work);
488 }
489 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
490
491 static inline bool is_flush_request(struct request *rq,
492 struct blk_flush_queue *fq, unsigned int tag)
493 {
494 return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
495 fq->flush_rq->tag == tag);
496 }
497
498 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
499 {
500 struct request *rq = tags->rqs[tag];
501 /* mq_ctx of flush rq is always cloned from the corresponding req */
502 struct blk_flush_queue *fq = blk_get_flush_queue(rq->q, rq->mq_ctx);
503
504 if (!is_flush_request(rq, fq, tag))
505 return rq;
506
507 return fq->flush_rq;
508 }
509 EXPORT_SYMBOL(blk_mq_tag_to_rq);
510
511 struct blk_mq_timeout_data {
512 unsigned long next;
513 unsigned int next_set;
514 };
515
516 void blk_mq_rq_timed_out(struct request *req, bool reserved)
517 {
518 struct blk_mq_ops *ops = req->q->mq_ops;
519 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
520
521 /*
522 * We know that complete is set at this point. If STARTED isn't set
523 * anymore, then the request isn't active and the "timeout" should
524 * just be ignored. This can happen due to the bitflag ordering.
525 * Timeout first checks if STARTED is set, and if it is, assumes
526 * the request is active. But if we race with completion, then
527 * we both flags will get cleared. So check here again, and ignore
528 * a timeout event with a request that isn't active.
529 */
530 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
531 return;
532
533 if (ops->timeout)
534 ret = ops->timeout(req, reserved);
535
536 switch (ret) {
537 case BLK_EH_HANDLED:
538 __blk_mq_complete_request(req);
539 break;
540 case BLK_EH_RESET_TIMER:
541 blk_add_timer(req);
542 blk_clear_rq_complete(req);
543 break;
544 case BLK_EH_NOT_HANDLED:
545 break;
546 default:
547 printk(KERN_ERR "block: bad eh return: %d\n", ret);
548 break;
549 }
550 }
551
552 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
553 struct request *rq, void *priv, bool reserved)
554 {
555 struct blk_mq_timeout_data *data = priv;
556
557 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
558 return;
559
560 if (time_after_eq(jiffies, rq->deadline)) {
561 if (!blk_mark_rq_complete(rq))
562 blk_mq_rq_timed_out(rq, reserved);
563 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
564 data->next = rq->deadline;
565 data->next_set = 1;
566 }
567 }
568
569 static void blk_mq_rq_timer(unsigned long priv)
570 {
571 struct request_queue *q = (struct request_queue *)priv;
572 struct blk_mq_timeout_data data = {
573 .next = 0,
574 .next_set = 0,
575 };
576 struct blk_mq_hw_ctx *hctx;
577 int i;
578
579 queue_for_each_hw_ctx(q, hctx, i) {
580 /*
581 * If not software queues are currently mapped to this
582 * hardware queue, there's nothing to check
583 */
584 if (!hctx->nr_ctx || !hctx->tags)
585 continue;
586
587 blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data);
588 }
589
590 if (data.next_set) {
591 data.next = blk_rq_timeout(round_jiffies_up(data.next));
592 mod_timer(&q->timeout, data.next);
593 } else {
594 queue_for_each_hw_ctx(q, hctx, i)
595 blk_mq_tag_idle(hctx);
596 }
597 }
598
599 /*
600 * Reverse check our software queue for entries that we could potentially
601 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
602 * too much time checking for merges.
603 */
604 static bool blk_mq_attempt_merge(struct request_queue *q,
605 struct blk_mq_ctx *ctx, struct bio *bio)
606 {
607 struct request *rq;
608 int checked = 8;
609
610 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
611 int el_ret;
612
613 if (!checked--)
614 break;
615
616 if (!blk_rq_merge_ok(rq, bio))
617 continue;
618
619 el_ret = blk_try_merge(rq, bio);
620 if (el_ret == ELEVATOR_BACK_MERGE) {
621 if (bio_attempt_back_merge(q, rq, bio)) {
622 ctx->rq_merged++;
623 return true;
624 }
625 break;
626 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
627 if (bio_attempt_front_merge(q, rq, bio)) {
628 ctx->rq_merged++;
629 return true;
630 }
631 break;
632 }
633 }
634
635 return false;
636 }
637
638 /*
639 * Process software queues that have been marked busy, splicing them
640 * to the for-dispatch
641 */
642 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
643 {
644 struct blk_mq_ctx *ctx;
645 int i;
646
647 for (i = 0; i < hctx->ctx_map.map_size; i++) {
648 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
649 unsigned int off, bit;
650
651 if (!bm->word)
652 continue;
653
654 bit = 0;
655 off = i * hctx->ctx_map.bits_per_word;
656 do {
657 bit = find_next_bit(&bm->word, bm->depth, bit);
658 if (bit >= bm->depth)
659 break;
660
661 ctx = hctx->ctxs[bit + off];
662 clear_bit(bit, &bm->word);
663 spin_lock(&ctx->lock);
664 list_splice_tail_init(&ctx->rq_list, list);
665 spin_unlock(&ctx->lock);
666
667 bit++;
668 } while (1);
669 }
670 }
671
672 /*
673 * Run this hardware queue, pulling any software queues mapped to it in.
674 * Note that this function currently has various problems around ordering
675 * of IO. In particular, we'd like FIFO behaviour on handling existing
676 * items on the hctx->dispatch list. Ignore that for now.
677 */
678 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
679 {
680 struct request_queue *q = hctx->queue;
681 struct request *rq;
682 LIST_HEAD(rq_list);
683 int queued;
684
685 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
686
687 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
688 return;
689
690 hctx->run++;
691
692 /*
693 * Touch any software queue that has pending entries.
694 */
695 flush_busy_ctxs(hctx, &rq_list);
696
697 /*
698 * If we have previous entries on our dispatch list, grab them
699 * and stuff them at the front for more fair dispatch.
700 */
701 if (!list_empty_careful(&hctx->dispatch)) {
702 spin_lock(&hctx->lock);
703 if (!list_empty(&hctx->dispatch))
704 list_splice_init(&hctx->dispatch, &rq_list);
705 spin_unlock(&hctx->lock);
706 }
707
708 /*
709 * Now process all the entries, sending them to the driver.
710 */
711 queued = 0;
712 while (!list_empty(&rq_list)) {
713 int ret;
714
715 rq = list_first_entry(&rq_list, struct request, queuelist);
716 list_del_init(&rq->queuelist);
717
718 ret = q->mq_ops->queue_rq(hctx, rq, list_empty(&rq_list));
719 switch (ret) {
720 case BLK_MQ_RQ_QUEUE_OK:
721 queued++;
722 continue;
723 case BLK_MQ_RQ_QUEUE_BUSY:
724 list_add(&rq->queuelist, &rq_list);
725 __blk_mq_requeue_request(rq);
726 break;
727 default:
728 pr_err("blk-mq: bad return on queue: %d\n", ret);
729 case BLK_MQ_RQ_QUEUE_ERROR:
730 rq->errors = -EIO;
731 blk_mq_end_request(rq, rq->errors);
732 break;
733 }
734
735 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
736 break;
737 }
738
739 if (!queued)
740 hctx->dispatched[0]++;
741 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
742 hctx->dispatched[ilog2(queued) + 1]++;
743
744 /*
745 * Any items that need requeuing? Stuff them into hctx->dispatch,
746 * that is where we will continue on next queue run.
747 */
748 if (!list_empty(&rq_list)) {
749 spin_lock(&hctx->lock);
750 list_splice(&rq_list, &hctx->dispatch);
751 spin_unlock(&hctx->lock);
752 }
753 }
754
755 /*
756 * It'd be great if the workqueue API had a way to pass
757 * in a mask and had some smarts for more clever placement.
758 * For now we just round-robin here, switching for every
759 * BLK_MQ_CPU_WORK_BATCH queued items.
760 */
761 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
762 {
763 int cpu = hctx->next_cpu;
764
765 if (--hctx->next_cpu_batch <= 0) {
766 int next_cpu;
767
768 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
769 if (next_cpu >= nr_cpu_ids)
770 next_cpu = cpumask_first(hctx->cpumask);
771
772 hctx->next_cpu = next_cpu;
773 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
774 }
775
776 return cpu;
777 }
778
779 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
780 {
781 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
782 return;
783
784 if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
785 __blk_mq_run_hw_queue(hctx);
786 else if (hctx->queue->nr_hw_queues == 1)
787 kblockd_schedule_delayed_work(&hctx->run_work, 0);
788 else {
789 unsigned int cpu;
790
791 cpu = blk_mq_hctx_next_cpu(hctx);
792 kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
793 }
794 }
795
796 void blk_mq_run_queues(struct request_queue *q, bool async)
797 {
798 struct blk_mq_hw_ctx *hctx;
799 int i;
800
801 queue_for_each_hw_ctx(q, hctx, i) {
802 if ((!blk_mq_hctx_has_pending(hctx) &&
803 list_empty_careful(&hctx->dispatch)) ||
804 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
805 continue;
806
807 preempt_disable();
808 blk_mq_run_hw_queue(hctx, async);
809 preempt_enable();
810 }
811 }
812 EXPORT_SYMBOL(blk_mq_run_queues);
813
814 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
815 {
816 cancel_delayed_work(&hctx->run_work);
817 cancel_delayed_work(&hctx->delay_work);
818 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
819 }
820 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
821
822 void blk_mq_stop_hw_queues(struct request_queue *q)
823 {
824 struct blk_mq_hw_ctx *hctx;
825 int i;
826
827 queue_for_each_hw_ctx(q, hctx, i)
828 blk_mq_stop_hw_queue(hctx);
829 }
830 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
831
832 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
833 {
834 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
835
836 preempt_disable();
837 blk_mq_run_hw_queue(hctx, false);
838 preempt_enable();
839 }
840 EXPORT_SYMBOL(blk_mq_start_hw_queue);
841
842 void blk_mq_start_hw_queues(struct request_queue *q)
843 {
844 struct blk_mq_hw_ctx *hctx;
845 int i;
846
847 queue_for_each_hw_ctx(q, hctx, i)
848 blk_mq_start_hw_queue(hctx);
849 }
850 EXPORT_SYMBOL(blk_mq_start_hw_queues);
851
852
853 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
854 {
855 struct blk_mq_hw_ctx *hctx;
856 int i;
857
858 queue_for_each_hw_ctx(q, hctx, i) {
859 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
860 continue;
861
862 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
863 preempt_disable();
864 blk_mq_run_hw_queue(hctx, async);
865 preempt_enable();
866 }
867 }
868 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
869
870 static void blk_mq_run_work_fn(struct work_struct *work)
871 {
872 struct blk_mq_hw_ctx *hctx;
873
874 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
875
876 __blk_mq_run_hw_queue(hctx);
877 }
878
879 static void blk_mq_delay_work_fn(struct work_struct *work)
880 {
881 struct blk_mq_hw_ctx *hctx;
882
883 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
884
885 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
886 __blk_mq_run_hw_queue(hctx);
887 }
888
889 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
890 {
891 unsigned long tmo = msecs_to_jiffies(msecs);
892
893 if (hctx->queue->nr_hw_queues == 1)
894 kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
895 else {
896 unsigned int cpu;
897
898 cpu = blk_mq_hctx_next_cpu(hctx);
899 kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
900 }
901 }
902 EXPORT_SYMBOL(blk_mq_delay_queue);
903
904 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
905 struct request *rq, bool at_head)
906 {
907 struct blk_mq_ctx *ctx = rq->mq_ctx;
908
909 trace_block_rq_insert(hctx->queue, rq);
910
911 if (at_head)
912 list_add(&rq->queuelist, &ctx->rq_list);
913 else
914 list_add_tail(&rq->queuelist, &ctx->rq_list);
915
916 blk_mq_hctx_mark_pending(hctx, ctx);
917 }
918
919 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
920 bool async)
921 {
922 struct request_queue *q = rq->q;
923 struct blk_mq_hw_ctx *hctx;
924 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
925
926 current_ctx = blk_mq_get_ctx(q);
927 if (!cpu_online(ctx->cpu))
928 rq->mq_ctx = ctx = current_ctx;
929
930 hctx = q->mq_ops->map_queue(q, ctx->cpu);
931
932 spin_lock(&ctx->lock);
933 __blk_mq_insert_request(hctx, rq, at_head);
934 spin_unlock(&ctx->lock);
935
936 if (run_queue)
937 blk_mq_run_hw_queue(hctx, async);
938
939 blk_mq_put_ctx(current_ctx);
940 }
941
942 static void blk_mq_insert_requests(struct request_queue *q,
943 struct blk_mq_ctx *ctx,
944 struct list_head *list,
945 int depth,
946 bool from_schedule)
947
948 {
949 struct blk_mq_hw_ctx *hctx;
950 struct blk_mq_ctx *current_ctx;
951
952 trace_block_unplug(q, depth, !from_schedule);
953
954 current_ctx = blk_mq_get_ctx(q);
955
956 if (!cpu_online(ctx->cpu))
957 ctx = current_ctx;
958 hctx = q->mq_ops->map_queue(q, ctx->cpu);
959
960 /*
961 * preemption doesn't flush plug list, so it's possible ctx->cpu is
962 * offline now
963 */
964 spin_lock(&ctx->lock);
965 while (!list_empty(list)) {
966 struct request *rq;
967
968 rq = list_first_entry(list, struct request, queuelist);
969 list_del_init(&rq->queuelist);
970 rq->mq_ctx = ctx;
971 __blk_mq_insert_request(hctx, rq, false);
972 }
973 spin_unlock(&ctx->lock);
974
975 blk_mq_run_hw_queue(hctx, from_schedule);
976 blk_mq_put_ctx(current_ctx);
977 }
978
979 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
980 {
981 struct request *rqa = container_of(a, struct request, queuelist);
982 struct request *rqb = container_of(b, struct request, queuelist);
983
984 return !(rqa->mq_ctx < rqb->mq_ctx ||
985 (rqa->mq_ctx == rqb->mq_ctx &&
986 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
987 }
988
989 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
990 {
991 struct blk_mq_ctx *this_ctx;
992 struct request_queue *this_q;
993 struct request *rq;
994 LIST_HEAD(list);
995 LIST_HEAD(ctx_list);
996 unsigned int depth;
997
998 list_splice_init(&plug->mq_list, &list);
999
1000 list_sort(NULL, &list, plug_ctx_cmp);
1001
1002 this_q = NULL;
1003 this_ctx = NULL;
1004 depth = 0;
1005
1006 while (!list_empty(&list)) {
1007 rq = list_entry_rq(list.next);
1008 list_del_init(&rq->queuelist);
1009 BUG_ON(!rq->q);
1010 if (rq->mq_ctx != this_ctx) {
1011 if (this_ctx) {
1012 blk_mq_insert_requests(this_q, this_ctx,
1013 &ctx_list, depth,
1014 from_schedule);
1015 }
1016
1017 this_ctx = rq->mq_ctx;
1018 this_q = rq->q;
1019 depth = 0;
1020 }
1021
1022 depth++;
1023 list_add_tail(&rq->queuelist, &ctx_list);
1024 }
1025
1026 /*
1027 * If 'this_ctx' is set, we know we have entries to complete
1028 * on 'ctx_list'. Do those.
1029 */
1030 if (this_ctx) {
1031 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1032 from_schedule);
1033 }
1034 }
1035
1036 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1037 {
1038 init_request_from_bio(rq, bio);
1039
1040 if (blk_do_io_stat(rq))
1041 blk_account_io_start(rq, 1);
1042 }
1043
1044 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1045 {
1046 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1047 !blk_queue_nomerges(hctx->queue);
1048 }
1049
1050 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1051 struct blk_mq_ctx *ctx,
1052 struct request *rq, struct bio *bio)
1053 {
1054 if (!hctx_allow_merges(hctx)) {
1055 blk_mq_bio_to_request(rq, bio);
1056 spin_lock(&ctx->lock);
1057 insert_rq:
1058 __blk_mq_insert_request(hctx, rq, false);
1059 spin_unlock(&ctx->lock);
1060 return false;
1061 } else {
1062 struct request_queue *q = hctx->queue;
1063
1064 spin_lock(&ctx->lock);
1065 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1066 blk_mq_bio_to_request(rq, bio);
1067 goto insert_rq;
1068 }
1069
1070 spin_unlock(&ctx->lock);
1071 __blk_mq_free_request(hctx, ctx, rq);
1072 return true;
1073 }
1074 }
1075
1076 struct blk_map_ctx {
1077 struct blk_mq_hw_ctx *hctx;
1078 struct blk_mq_ctx *ctx;
1079 };
1080
1081 static struct request *blk_mq_map_request(struct request_queue *q,
1082 struct bio *bio,
1083 struct blk_map_ctx *data)
1084 {
1085 struct blk_mq_hw_ctx *hctx;
1086 struct blk_mq_ctx *ctx;
1087 struct request *rq;
1088 int rw = bio_data_dir(bio);
1089 struct blk_mq_alloc_data alloc_data;
1090
1091 if (unlikely(blk_mq_queue_enter(q))) {
1092 bio_endio(bio, -EIO);
1093 return NULL;
1094 }
1095
1096 ctx = blk_mq_get_ctx(q);
1097 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1098
1099 if (rw_is_sync(bio->bi_rw))
1100 rw |= REQ_SYNC;
1101
1102 trace_block_getrq(q, bio, rw);
1103 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1104 hctx);
1105 rq = __blk_mq_alloc_request(&alloc_data, rw);
1106 if (unlikely(!rq)) {
1107 __blk_mq_run_hw_queue(hctx);
1108 blk_mq_put_ctx(ctx);
1109 trace_block_sleeprq(q, bio, rw);
1110
1111 ctx = blk_mq_get_ctx(q);
1112 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1113 blk_mq_set_alloc_data(&alloc_data, q,
1114 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1115 rq = __blk_mq_alloc_request(&alloc_data, rw);
1116 ctx = alloc_data.ctx;
1117 hctx = alloc_data.hctx;
1118 }
1119
1120 hctx->queued++;
1121 data->hctx = hctx;
1122 data->ctx = ctx;
1123 return rq;
1124 }
1125
1126 /*
1127 * Multiple hardware queue variant. This will not use per-process plugs,
1128 * but will attempt to bypass the hctx queueing if we can go straight to
1129 * hardware for SYNC IO.
1130 */
1131 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1132 {
1133 const int is_sync = rw_is_sync(bio->bi_rw);
1134 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1135 struct blk_map_ctx data;
1136 struct request *rq;
1137
1138 blk_queue_bounce(q, &bio);
1139
1140 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1141 bio_endio(bio, -EIO);
1142 return;
1143 }
1144
1145 rq = blk_mq_map_request(q, bio, &data);
1146 if (unlikely(!rq))
1147 return;
1148
1149 if (unlikely(is_flush_fua)) {
1150 blk_mq_bio_to_request(rq, bio);
1151 blk_insert_flush(rq);
1152 goto run_queue;
1153 }
1154
1155 if (is_sync) {
1156 int ret;
1157
1158 blk_mq_bio_to_request(rq, bio);
1159
1160 /*
1161 * For OK queue, we are done. For error, kill it. Any other
1162 * error (busy), just add it to our list as we previously
1163 * would have done
1164 */
1165 ret = q->mq_ops->queue_rq(data.hctx, rq, true);
1166 if (ret == BLK_MQ_RQ_QUEUE_OK)
1167 goto done;
1168 else {
1169 __blk_mq_requeue_request(rq);
1170
1171 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1172 rq->errors = -EIO;
1173 blk_mq_end_request(rq, rq->errors);
1174 goto done;
1175 }
1176 }
1177 }
1178
1179 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1180 /*
1181 * For a SYNC request, send it to the hardware immediately. For
1182 * an ASYNC request, just ensure that we run it later on. The
1183 * latter allows for merging opportunities and more efficient
1184 * dispatching.
1185 */
1186 run_queue:
1187 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1188 }
1189 done:
1190 blk_mq_put_ctx(data.ctx);
1191 }
1192
1193 /*
1194 * Single hardware queue variant. This will attempt to use any per-process
1195 * plug for merging and IO deferral.
1196 */
1197 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1198 {
1199 const int is_sync = rw_is_sync(bio->bi_rw);
1200 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1201 unsigned int use_plug, request_count = 0;
1202 struct blk_map_ctx data;
1203 struct request *rq;
1204
1205 /*
1206 * If we have multiple hardware queues, just go directly to
1207 * one of those for sync IO.
1208 */
1209 use_plug = !is_flush_fua && !is_sync;
1210
1211 blk_queue_bounce(q, &bio);
1212
1213 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1214 bio_endio(bio, -EIO);
1215 return;
1216 }
1217
1218 if (use_plug && !blk_queue_nomerges(q) &&
1219 blk_attempt_plug_merge(q, bio, &request_count))
1220 return;
1221
1222 rq = blk_mq_map_request(q, bio, &data);
1223 if (unlikely(!rq))
1224 return;
1225
1226 if (unlikely(is_flush_fua)) {
1227 blk_mq_bio_to_request(rq, bio);
1228 blk_insert_flush(rq);
1229 goto run_queue;
1230 }
1231
1232 /*
1233 * A task plug currently exists. Since this is completely lockless,
1234 * utilize that to temporarily store requests until the task is
1235 * either done or scheduled away.
1236 */
1237 if (use_plug) {
1238 struct blk_plug *plug = current->plug;
1239
1240 if (plug) {
1241 blk_mq_bio_to_request(rq, bio);
1242 if (list_empty(&plug->mq_list))
1243 trace_block_plug(q);
1244 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1245 blk_flush_plug_list(plug, false);
1246 trace_block_plug(q);
1247 }
1248 list_add_tail(&rq->queuelist, &plug->mq_list);
1249 blk_mq_put_ctx(data.ctx);
1250 return;
1251 }
1252 }
1253
1254 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1255 /*
1256 * For a SYNC request, send it to the hardware immediately. For
1257 * an ASYNC request, just ensure that we run it later on. The
1258 * latter allows for merging opportunities and more efficient
1259 * dispatching.
1260 */
1261 run_queue:
1262 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1263 }
1264
1265 blk_mq_put_ctx(data.ctx);
1266 }
1267
1268 /*
1269 * Default mapping to a software queue, since we use one per CPU.
1270 */
1271 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1272 {
1273 return q->queue_hw_ctx[q->mq_map[cpu]];
1274 }
1275 EXPORT_SYMBOL(blk_mq_map_queue);
1276
1277 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1278 struct blk_mq_tags *tags, unsigned int hctx_idx)
1279 {
1280 struct page *page;
1281
1282 if (tags->rqs && set->ops->exit_request) {
1283 int i;
1284
1285 for (i = 0; i < tags->nr_tags; i++) {
1286 if (!tags->rqs[i])
1287 continue;
1288 set->ops->exit_request(set->driver_data, tags->rqs[i],
1289 hctx_idx, i);
1290 tags->rqs[i] = NULL;
1291 }
1292 }
1293
1294 while (!list_empty(&tags->page_list)) {
1295 page = list_first_entry(&tags->page_list, struct page, lru);
1296 list_del_init(&page->lru);
1297 __free_pages(page, page->private);
1298 }
1299
1300 kfree(tags->rqs);
1301
1302 blk_mq_free_tags(tags);
1303 }
1304
1305 static size_t order_to_size(unsigned int order)
1306 {
1307 return (size_t)PAGE_SIZE << order;
1308 }
1309
1310 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1311 unsigned int hctx_idx)
1312 {
1313 struct blk_mq_tags *tags;
1314 unsigned int i, j, entries_per_page, max_order = 4;
1315 size_t rq_size, left;
1316
1317 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1318 set->numa_node);
1319 if (!tags)
1320 return NULL;
1321
1322 INIT_LIST_HEAD(&tags->page_list);
1323
1324 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1325 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1326 set->numa_node);
1327 if (!tags->rqs) {
1328 blk_mq_free_tags(tags);
1329 return NULL;
1330 }
1331
1332 /*
1333 * rq_size is the size of the request plus driver payload, rounded
1334 * to the cacheline size
1335 */
1336 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1337 cache_line_size());
1338 left = rq_size * set->queue_depth;
1339
1340 for (i = 0; i < set->queue_depth; ) {
1341 int this_order = max_order;
1342 struct page *page;
1343 int to_do;
1344 void *p;
1345
1346 while (left < order_to_size(this_order - 1) && this_order)
1347 this_order--;
1348
1349 do {
1350 page = alloc_pages_node(set->numa_node,
1351 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1352 this_order);
1353 if (page)
1354 break;
1355 if (!this_order--)
1356 break;
1357 if (order_to_size(this_order) < rq_size)
1358 break;
1359 } while (1);
1360
1361 if (!page)
1362 goto fail;
1363
1364 page->private = this_order;
1365 list_add_tail(&page->lru, &tags->page_list);
1366
1367 p = page_address(page);
1368 entries_per_page = order_to_size(this_order) / rq_size;
1369 to_do = min(entries_per_page, set->queue_depth - i);
1370 left -= to_do * rq_size;
1371 for (j = 0; j < to_do; j++) {
1372 tags->rqs[i] = p;
1373 tags->rqs[i]->atomic_flags = 0;
1374 tags->rqs[i]->cmd_flags = 0;
1375 if (set->ops->init_request) {
1376 if (set->ops->init_request(set->driver_data,
1377 tags->rqs[i], hctx_idx, i,
1378 set->numa_node)) {
1379 tags->rqs[i] = NULL;
1380 goto fail;
1381 }
1382 }
1383
1384 p += rq_size;
1385 i++;
1386 }
1387 }
1388
1389 return tags;
1390
1391 fail:
1392 blk_mq_free_rq_map(set, tags, hctx_idx);
1393 return NULL;
1394 }
1395
1396 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1397 {
1398 kfree(bitmap->map);
1399 }
1400
1401 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1402 {
1403 unsigned int bpw = 8, total, num_maps, i;
1404
1405 bitmap->bits_per_word = bpw;
1406
1407 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1408 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1409 GFP_KERNEL, node);
1410 if (!bitmap->map)
1411 return -ENOMEM;
1412
1413 bitmap->map_size = num_maps;
1414
1415 total = nr_cpu_ids;
1416 for (i = 0; i < num_maps; i++) {
1417 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1418 total -= bitmap->map[i].depth;
1419 }
1420
1421 return 0;
1422 }
1423
1424 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1425 {
1426 struct request_queue *q = hctx->queue;
1427 struct blk_mq_ctx *ctx;
1428 LIST_HEAD(tmp);
1429
1430 /*
1431 * Move ctx entries to new CPU, if this one is going away.
1432 */
1433 ctx = __blk_mq_get_ctx(q, cpu);
1434
1435 spin_lock(&ctx->lock);
1436 if (!list_empty(&ctx->rq_list)) {
1437 list_splice_init(&ctx->rq_list, &tmp);
1438 blk_mq_hctx_clear_pending(hctx, ctx);
1439 }
1440 spin_unlock(&ctx->lock);
1441
1442 if (list_empty(&tmp))
1443 return NOTIFY_OK;
1444
1445 ctx = blk_mq_get_ctx(q);
1446 spin_lock(&ctx->lock);
1447
1448 while (!list_empty(&tmp)) {
1449 struct request *rq;
1450
1451 rq = list_first_entry(&tmp, struct request, queuelist);
1452 rq->mq_ctx = ctx;
1453 list_move_tail(&rq->queuelist, &ctx->rq_list);
1454 }
1455
1456 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1457 blk_mq_hctx_mark_pending(hctx, ctx);
1458
1459 spin_unlock(&ctx->lock);
1460
1461 blk_mq_run_hw_queue(hctx, true);
1462 blk_mq_put_ctx(ctx);
1463 return NOTIFY_OK;
1464 }
1465
1466 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1467 {
1468 struct request_queue *q = hctx->queue;
1469 struct blk_mq_tag_set *set = q->tag_set;
1470
1471 if (set->tags[hctx->queue_num])
1472 return NOTIFY_OK;
1473
1474 set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1475 if (!set->tags[hctx->queue_num])
1476 return NOTIFY_STOP;
1477
1478 hctx->tags = set->tags[hctx->queue_num];
1479 return NOTIFY_OK;
1480 }
1481
1482 static int blk_mq_hctx_notify(void *data, unsigned long action,
1483 unsigned int cpu)
1484 {
1485 struct blk_mq_hw_ctx *hctx = data;
1486
1487 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1488 return blk_mq_hctx_cpu_offline(hctx, cpu);
1489 else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1490 return blk_mq_hctx_cpu_online(hctx, cpu);
1491
1492 return NOTIFY_OK;
1493 }
1494
1495 static void blk_mq_exit_hctx(struct request_queue *q,
1496 struct blk_mq_tag_set *set,
1497 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1498 {
1499 unsigned flush_start_tag = set->queue_depth;
1500
1501 blk_mq_tag_idle(hctx);
1502
1503 if (set->ops->exit_request)
1504 set->ops->exit_request(set->driver_data,
1505 hctx->fq->flush_rq, hctx_idx,
1506 flush_start_tag + hctx_idx);
1507
1508 if (set->ops->exit_hctx)
1509 set->ops->exit_hctx(hctx, hctx_idx);
1510
1511 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1512 blk_free_flush_queue(hctx->fq);
1513 kfree(hctx->ctxs);
1514 blk_mq_free_bitmap(&hctx->ctx_map);
1515 }
1516
1517 static void blk_mq_exit_hw_queues(struct request_queue *q,
1518 struct blk_mq_tag_set *set, int nr_queue)
1519 {
1520 struct blk_mq_hw_ctx *hctx;
1521 unsigned int i;
1522
1523 queue_for_each_hw_ctx(q, hctx, i) {
1524 if (i == nr_queue)
1525 break;
1526 blk_mq_exit_hctx(q, set, hctx, i);
1527 }
1528 }
1529
1530 static void blk_mq_free_hw_queues(struct request_queue *q,
1531 struct blk_mq_tag_set *set)
1532 {
1533 struct blk_mq_hw_ctx *hctx;
1534 unsigned int i;
1535
1536 queue_for_each_hw_ctx(q, hctx, i) {
1537 free_cpumask_var(hctx->cpumask);
1538 kfree(hctx);
1539 }
1540 }
1541
1542 static int blk_mq_init_hctx(struct request_queue *q,
1543 struct blk_mq_tag_set *set,
1544 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1545 {
1546 int node;
1547 unsigned flush_start_tag = set->queue_depth;
1548
1549 node = hctx->numa_node;
1550 if (node == NUMA_NO_NODE)
1551 node = hctx->numa_node = set->numa_node;
1552
1553 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1554 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1555 spin_lock_init(&hctx->lock);
1556 INIT_LIST_HEAD(&hctx->dispatch);
1557 hctx->queue = q;
1558 hctx->queue_num = hctx_idx;
1559 hctx->flags = set->flags;
1560 hctx->cmd_size = set->cmd_size;
1561
1562 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1563 blk_mq_hctx_notify, hctx);
1564 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1565
1566 hctx->tags = set->tags[hctx_idx];
1567
1568 /*
1569 * Allocate space for all possible cpus to avoid allocation at
1570 * runtime
1571 */
1572 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1573 GFP_KERNEL, node);
1574 if (!hctx->ctxs)
1575 goto unregister_cpu_notifier;
1576
1577 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1578 goto free_ctxs;
1579
1580 hctx->nr_ctx = 0;
1581
1582 if (set->ops->init_hctx &&
1583 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1584 goto free_bitmap;
1585
1586 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1587 if (!hctx->fq)
1588 goto exit_hctx;
1589
1590 if (set->ops->init_request &&
1591 set->ops->init_request(set->driver_data,
1592 hctx->fq->flush_rq, hctx_idx,
1593 flush_start_tag + hctx_idx, node))
1594 goto free_fq;
1595
1596 return 0;
1597
1598 free_fq:
1599 kfree(hctx->fq);
1600 exit_hctx:
1601 if (set->ops->exit_hctx)
1602 set->ops->exit_hctx(hctx, hctx_idx);
1603 free_bitmap:
1604 blk_mq_free_bitmap(&hctx->ctx_map);
1605 free_ctxs:
1606 kfree(hctx->ctxs);
1607 unregister_cpu_notifier:
1608 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1609
1610 return -1;
1611 }
1612
1613 static int blk_mq_init_hw_queues(struct request_queue *q,
1614 struct blk_mq_tag_set *set)
1615 {
1616 struct blk_mq_hw_ctx *hctx;
1617 unsigned int i;
1618
1619 /*
1620 * Initialize hardware queues
1621 */
1622 queue_for_each_hw_ctx(q, hctx, i) {
1623 if (blk_mq_init_hctx(q, set, hctx, i))
1624 break;
1625 }
1626
1627 if (i == q->nr_hw_queues)
1628 return 0;
1629
1630 /*
1631 * Init failed
1632 */
1633 blk_mq_exit_hw_queues(q, set, i);
1634
1635 return 1;
1636 }
1637
1638 static void blk_mq_init_cpu_queues(struct request_queue *q,
1639 unsigned int nr_hw_queues)
1640 {
1641 unsigned int i;
1642
1643 for_each_possible_cpu(i) {
1644 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1645 struct blk_mq_hw_ctx *hctx;
1646
1647 memset(__ctx, 0, sizeof(*__ctx));
1648 __ctx->cpu = i;
1649 spin_lock_init(&__ctx->lock);
1650 INIT_LIST_HEAD(&__ctx->rq_list);
1651 __ctx->queue = q;
1652
1653 /* If the cpu isn't online, the cpu is mapped to first hctx */
1654 if (!cpu_online(i))
1655 continue;
1656
1657 hctx = q->mq_ops->map_queue(q, i);
1658 cpumask_set_cpu(i, hctx->cpumask);
1659 hctx->nr_ctx++;
1660
1661 /*
1662 * Set local node, IFF we have more than one hw queue. If
1663 * not, we remain on the home node of the device
1664 */
1665 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1666 hctx->numa_node = cpu_to_node(i);
1667 }
1668 }
1669
1670 static void blk_mq_map_swqueue(struct request_queue *q)
1671 {
1672 unsigned int i;
1673 struct blk_mq_hw_ctx *hctx;
1674 struct blk_mq_ctx *ctx;
1675
1676 queue_for_each_hw_ctx(q, hctx, i) {
1677 cpumask_clear(hctx->cpumask);
1678 hctx->nr_ctx = 0;
1679 }
1680
1681 /*
1682 * Map software to hardware queues
1683 */
1684 queue_for_each_ctx(q, ctx, i) {
1685 /* If the cpu isn't online, the cpu is mapped to first hctx */
1686 if (!cpu_online(i))
1687 continue;
1688
1689 hctx = q->mq_ops->map_queue(q, i);
1690 cpumask_set_cpu(i, hctx->cpumask);
1691 ctx->index_hw = hctx->nr_ctx;
1692 hctx->ctxs[hctx->nr_ctx++] = ctx;
1693 }
1694
1695 queue_for_each_hw_ctx(q, hctx, i) {
1696 /*
1697 * If no software queues are mapped to this hardware queue,
1698 * disable it and free the request entries.
1699 */
1700 if (!hctx->nr_ctx) {
1701 struct blk_mq_tag_set *set = q->tag_set;
1702
1703 if (set->tags[i]) {
1704 blk_mq_free_rq_map(set, set->tags[i], i);
1705 set->tags[i] = NULL;
1706 hctx->tags = NULL;
1707 }
1708 continue;
1709 }
1710
1711 /*
1712 * Initialize batch roundrobin counts
1713 */
1714 hctx->next_cpu = cpumask_first(hctx->cpumask);
1715 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1716 }
1717 }
1718
1719 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1720 {
1721 struct blk_mq_hw_ctx *hctx;
1722 struct request_queue *q;
1723 bool shared;
1724 int i;
1725
1726 if (set->tag_list.next == set->tag_list.prev)
1727 shared = false;
1728 else
1729 shared = true;
1730
1731 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1732 blk_mq_freeze_queue(q);
1733
1734 queue_for_each_hw_ctx(q, hctx, i) {
1735 if (shared)
1736 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1737 else
1738 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1739 }
1740 blk_mq_unfreeze_queue(q);
1741 }
1742 }
1743
1744 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1745 {
1746 struct blk_mq_tag_set *set = q->tag_set;
1747
1748 mutex_lock(&set->tag_list_lock);
1749 list_del_init(&q->tag_set_list);
1750 blk_mq_update_tag_set_depth(set);
1751 mutex_unlock(&set->tag_list_lock);
1752 }
1753
1754 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1755 struct request_queue *q)
1756 {
1757 q->tag_set = set;
1758
1759 mutex_lock(&set->tag_list_lock);
1760 list_add_tail(&q->tag_set_list, &set->tag_list);
1761 blk_mq_update_tag_set_depth(set);
1762 mutex_unlock(&set->tag_list_lock);
1763 }
1764
1765 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1766 {
1767 struct blk_mq_hw_ctx **hctxs;
1768 struct blk_mq_ctx __percpu *ctx;
1769 struct request_queue *q;
1770 unsigned int *map;
1771 int i;
1772
1773 ctx = alloc_percpu(struct blk_mq_ctx);
1774 if (!ctx)
1775 return ERR_PTR(-ENOMEM);
1776
1777 /*
1778 * If a crashdump is active, then we are potentially in a very
1779 * memory constrained environment. Limit us to 1 queue and
1780 * 64 tags to prevent using too much memory.
1781 */
1782 if (is_kdump_kernel()) {
1783 set->nr_hw_queues = 1;
1784 set->queue_depth = min(64U, set->queue_depth);
1785 }
1786
1787 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1788 set->numa_node);
1789
1790 if (!hctxs)
1791 goto err_percpu;
1792
1793 map = blk_mq_make_queue_map(set);
1794 if (!map)
1795 goto err_map;
1796
1797 for (i = 0; i < set->nr_hw_queues; i++) {
1798 int node = blk_mq_hw_queue_to_node(map, i);
1799
1800 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1801 GFP_KERNEL, node);
1802 if (!hctxs[i])
1803 goto err_hctxs;
1804
1805 if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
1806 goto err_hctxs;
1807
1808 atomic_set(&hctxs[i]->nr_active, 0);
1809 hctxs[i]->numa_node = node;
1810 hctxs[i]->queue_num = i;
1811 }
1812
1813 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1814 if (!q)
1815 goto err_hctxs;
1816
1817 if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release))
1818 goto err_map;
1819
1820 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1821 blk_queue_rq_timeout(q, 30000);
1822
1823 q->nr_queues = nr_cpu_ids;
1824 q->nr_hw_queues = set->nr_hw_queues;
1825 q->mq_map = map;
1826
1827 q->queue_ctx = ctx;
1828 q->queue_hw_ctx = hctxs;
1829
1830 q->mq_ops = set->ops;
1831 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1832
1833 if (!(set->flags & BLK_MQ_F_SG_MERGE))
1834 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1835
1836 q->sg_reserved_size = INT_MAX;
1837
1838 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1839 INIT_LIST_HEAD(&q->requeue_list);
1840 spin_lock_init(&q->requeue_lock);
1841
1842 if (q->nr_hw_queues > 1)
1843 blk_queue_make_request(q, blk_mq_make_request);
1844 else
1845 blk_queue_make_request(q, blk_sq_make_request);
1846
1847 if (set->timeout)
1848 blk_queue_rq_timeout(q, set->timeout);
1849
1850 /*
1851 * Do this after blk_queue_make_request() overrides it...
1852 */
1853 q->nr_requests = set->queue_depth;
1854
1855 if (set->ops->complete)
1856 blk_queue_softirq_done(q, set->ops->complete);
1857
1858 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1859
1860 if (blk_mq_init_hw_queues(q, set))
1861 goto err_hw;
1862
1863 mutex_lock(&all_q_mutex);
1864 list_add_tail(&q->all_q_node, &all_q_list);
1865 mutex_unlock(&all_q_mutex);
1866
1867 blk_mq_add_queue_tag_set(set, q);
1868
1869 blk_mq_map_swqueue(q);
1870
1871 return q;
1872
1873 err_hw:
1874 blk_cleanup_queue(q);
1875 err_hctxs:
1876 kfree(map);
1877 for (i = 0; i < set->nr_hw_queues; i++) {
1878 if (!hctxs[i])
1879 break;
1880 free_cpumask_var(hctxs[i]->cpumask);
1881 kfree(hctxs[i]);
1882 }
1883 err_map:
1884 kfree(hctxs);
1885 err_percpu:
1886 free_percpu(ctx);
1887 return ERR_PTR(-ENOMEM);
1888 }
1889 EXPORT_SYMBOL(blk_mq_init_queue);
1890
1891 void blk_mq_free_queue(struct request_queue *q)
1892 {
1893 struct blk_mq_tag_set *set = q->tag_set;
1894
1895 blk_mq_del_queue_tag_set(q);
1896
1897 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
1898 blk_mq_free_hw_queues(q, set);
1899
1900 percpu_ref_exit(&q->mq_usage_counter);
1901
1902 free_percpu(q->queue_ctx);
1903 kfree(q->queue_hw_ctx);
1904 kfree(q->mq_map);
1905
1906 q->queue_ctx = NULL;
1907 q->queue_hw_ctx = NULL;
1908 q->mq_map = NULL;
1909
1910 mutex_lock(&all_q_mutex);
1911 list_del_init(&q->all_q_node);
1912 mutex_unlock(&all_q_mutex);
1913 }
1914
1915 /* Basically redo blk_mq_init_queue with queue frozen */
1916 static void blk_mq_queue_reinit(struct request_queue *q)
1917 {
1918 blk_mq_freeze_queue(q);
1919
1920 blk_mq_sysfs_unregister(q);
1921
1922 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1923
1924 /*
1925 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1926 * we should change hctx numa_node according to new topology (this
1927 * involves free and re-allocate memory, worthy doing?)
1928 */
1929
1930 blk_mq_map_swqueue(q);
1931
1932 blk_mq_sysfs_register(q);
1933
1934 blk_mq_unfreeze_queue(q);
1935 }
1936
1937 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1938 unsigned long action, void *hcpu)
1939 {
1940 struct request_queue *q;
1941
1942 /*
1943 * Before new mappings are established, hotadded cpu might already
1944 * start handling requests. This doesn't break anything as we map
1945 * offline CPUs to first hardware queue. We will re-init the queue
1946 * below to get optimal settings.
1947 */
1948 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1949 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1950 return NOTIFY_OK;
1951
1952 mutex_lock(&all_q_mutex);
1953 list_for_each_entry(q, &all_q_list, all_q_node)
1954 blk_mq_queue_reinit(q);
1955 mutex_unlock(&all_q_mutex);
1956 return NOTIFY_OK;
1957 }
1958
1959 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
1960 {
1961 int i;
1962
1963 for (i = 0; i < set->nr_hw_queues; i++) {
1964 set->tags[i] = blk_mq_init_rq_map(set, i);
1965 if (!set->tags[i])
1966 goto out_unwind;
1967 }
1968
1969 return 0;
1970
1971 out_unwind:
1972 while (--i >= 0)
1973 blk_mq_free_rq_map(set, set->tags[i], i);
1974
1975 return -ENOMEM;
1976 }
1977
1978 /*
1979 * Allocate the request maps associated with this tag_set. Note that this
1980 * may reduce the depth asked for, if memory is tight. set->queue_depth
1981 * will be updated to reflect the allocated depth.
1982 */
1983 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
1984 {
1985 unsigned int depth;
1986 int err;
1987
1988 depth = set->queue_depth;
1989 do {
1990 err = __blk_mq_alloc_rq_maps(set);
1991 if (!err)
1992 break;
1993
1994 set->queue_depth >>= 1;
1995 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
1996 err = -ENOMEM;
1997 break;
1998 }
1999 } while (set->queue_depth);
2000
2001 if (!set->queue_depth || err) {
2002 pr_err("blk-mq: failed to allocate request map\n");
2003 return -ENOMEM;
2004 }
2005
2006 if (depth != set->queue_depth)
2007 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2008 depth, set->queue_depth);
2009
2010 return 0;
2011 }
2012
2013 /*
2014 * Alloc a tag set to be associated with one or more request queues.
2015 * May fail with EINVAL for various error conditions. May adjust the
2016 * requested depth down, if if it too large. In that case, the set
2017 * value will be stored in set->queue_depth.
2018 */
2019 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2020 {
2021 if (!set->nr_hw_queues)
2022 return -EINVAL;
2023 if (!set->queue_depth)
2024 return -EINVAL;
2025 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2026 return -EINVAL;
2027
2028 if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
2029 return -EINVAL;
2030
2031 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2032 pr_info("blk-mq: reduced tag depth to %u\n",
2033 BLK_MQ_MAX_DEPTH);
2034 set->queue_depth = BLK_MQ_MAX_DEPTH;
2035 }
2036
2037 set->tags = kmalloc_node(set->nr_hw_queues *
2038 sizeof(struct blk_mq_tags *),
2039 GFP_KERNEL, set->numa_node);
2040 if (!set->tags)
2041 return -ENOMEM;
2042
2043 if (blk_mq_alloc_rq_maps(set))
2044 goto enomem;
2045
2046 mutex_init(&set->tag_list_lock);
2047 INIT_LIST_HEAD(&set->tag_list);
2048
2049 return 0;
2050 enomem:
2051 kfree(set->tags);
2052 set->tags = NULL;
2053 return -ENOMEM;
2054 }
2055 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2056
2057 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2058 {
2059 int i;
2060
2061 for (i = 0; i < set->nr_hw_queues; i++) {
2062 if (set->tags[i])
2063 blk_mq_free_rq_map(set, set->tags[i], i);
2064 }
2065
2066 kfree(set->tags);
2067 set->tags = NULL;
2068 }
2069 EXPORT_SYMBOL(blk_mq_free_tag_set);
2070
2071 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2072 {
2073 struct blk_mq_tag_set *set = q->tag_set;
2074 struct blk_mq_hw_ctx *hctx;
2075 int i, ret;
2076
2077 if (!set || nr > set->queue_depth)
2078 return -EINVAL;
2079
2080 ret = 0;
2081 queue_for_each_hw_ctx(q, hctx, i) {
2082 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2083 if (ret)
2084 break;
2085 }
2086
2087 if (!ret)
2088 q->nr_requests = nr;
2089
2090 return ret;
2091 }
2092
2093 void blk_mq_disable_hotplug(void)
2094 {
2095 mutex_lock(&all_q_mutex);
2096 }
2097
2098 void blk_mq_enable_hotplug(void)
2099 {
2100 mutex_unlock(&all_q_mutex);
2101 }
2102
2103 static int __init blk_mq_init(void)
2104 {
2105 blk_mq_cpu_init();
2106
2107 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2108
2109 return 0;
2110 }
2111 subsys_initcall(blk_mq_init);