]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-mq.c
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma
[mirror_ubuntu-artful-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
25 #include <linux/prefetch.h>
26
27 #include <trace/events/block.h>
28
29 #include <linux/blk-mq.h>
30 #include "blk.h"
31 #include "blk-mq.h"
32 #include "blk-mq-tag.h"
33
34 static DEFINE_MUTEX(all_q_mutex);
35 static LIST_HEAD(all_q_list);
36
37 /*
38 * Check if any of the ctx's have pending work in this hardware queue
39 */
40 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
41 {
42 return sbitmap_any_bit_set(&hctx->ctx_map);
43 }
44
45 /*
46 * Mark this ctx as having pending work in this hardware queue
47 */
48 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
49 struct blk_mq_ctx *ctx)
50 {
51 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
52 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
53 }
54
55 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
56 struct blk_mq_ctx *ctx)
57 {
58 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
59 }
60
61 void blk_mq_freeze_queue_start(struct request_queue *q)
62 {
63 int freeze_depth;
64
65 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
66 if (freeze_depth == 1) {
67 percpu_ref_kill(&q->q_usage_counter);
68 blk_mq_run_hw_queues(q, false);
69 }
70 }
71 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
72
73 static void blk_mq_freeze_queue_wait(struct request_queue *q)
74 {
75 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
76 }
77
78 /*
79 * Guarantee no request is in use, so we can change any data structure of
80 * the queue afterward.
81 */
82 void blk_freeze_queue(struct request_queue *q)
83 {
84 /*
85 * In the !blk_mq case we are only calling this to kill the
86 * q_usage_counter, otherwise this increases the freeze depth
87 * and waits for it to return to zero. For this reason there is
88 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
89 * exported to drivers as the only user for unfreeze is blk_mq.
90 */
91 blk_mq_freeze_queue_start(q);
92 blk_mq_freeze_queue_wait(q);
93 }
94
95 void blk_mq_freeze_queue(struct request_queue *q)
96 {
97 /*
98 * ...just an alias to keep freeze and unfreeze actions balanced
99 * in the blk_mq_* namespace
100 */
101 blk_freeze_queue(q);
102 }
103 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
104
105 void blk_mq_unfreeze_queue(struct request_queue *q)
106 {
107 int freeze_depth;
108
109 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
110 WARN_ON_ONCE(freeze_depth < 0);
111 if (!freeze_depth) {
112 percpu_ref_reinit(&q->q_usage_counter);
113 wake_up_all(&q->mq_freeze_wq);
114 }
115 }
116 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
117
118 void blk_mq_wake_waiters(struct request_queue *q)
119 {
120 struct blk_mq_hw_ctx *hctx;
121 unsigned int i;
122
123 queue_for_each_hw_ctx(q, hctx, i)
124 if (blk_mq_hw_queue_mapped(hctx))
125 blk_mq_tag_wakeup_all(hctx->tags, true);
126
127 /*
128 * If we are called because the queue has now been marked as
129 * dying, we need to ensure that processes currently waiting on
130 * the queue are notified as well.
131 */
132 wake_up_all(&q->mq_freeze_wq);
133 }
134
135 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
136 {
137 return blk_mq_has_free_tags(hctx->tags);
138 }
139 EXPORT_SYMBOL(blk_mq_can_queue);
140
141 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
142 struct request *rq, int op,
143 unsigned int op_flags)
144 {
145 if (blk_queue_io_stat(q))
146 op_flags |= REQ_IO_STAT;
147
148 INIT_LIST_HEAD(&rq->queuelist);
149 /* csd/requeue_work/fifo_time is initialized before use */
150 rq->q = q;
151 rq->mq_ctx = ctx;
152 req_set_op_attrs(rq, op, op_flags);
153 /* do not touch atomic flags, it needs atomic ops against the timer */
154 rq->cpu = -1;
155 INIT_HLIST_NODE(&rq->hash);
156 RB_CLEAR_NODE(&rq->rb_node);
157 rq->rq_disk = NULL;
158 rq->part = NULL;
159 rq->start_time = jiffies;
160 #ifdef CONFIG_BLK_CGROUP
161 rq->rl = NULL;
162 set_start_time_ns(rq);
163 rq->io_start_time_ns = 0;
164 #endif
165 rq->nr_phys_segments = 0;
166 #if defined(CONFIG_BLK_DEV_INTEGRITY)
167 rq->nr_integrity_segments = 0;
168 #endif
169 rq->special = NULL;
170 /* tag was already set */
171 rq->errors = 0;
172
173 rq->cmd = rq->__cmd;
174
175 rq->extra_len = 0;
176 rq->sense_len = 0;
177 rq->resid_len = 0;
178 rq->sense = NULL;
179
180 INIT_LIST_HEAD(&rq->timeout_list);
181 rq->timeout = 0;
182
183 rq->end_io = NULL;
184 rq->end_io_data = NULL;
185 rq->next_rq = NULL;
186
187 ctx->rq_dispatched[rw_is_sync(op, op_flags)]++;
188 }
189
190 static struct request *
191 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int op, int op_flags)
192 {
193 struct request *rq;
194 unsigned int tag;
195
196 tag = blk_mq_get_tag(data);
197 if (tag != BLK_MQ_TAG_FAIL) {
198 rq = data->hctx->tags->rqs[tag];
199
200 if (blk_mq_tag_busy(data->hctx)) {
201 rq->cmd_flags = REQ_MQ_INFLIGHT;
202 atomic_inc(&data->hctx->nr_active);
203 }
204
205 rq->tag = tag;
206 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op, op_flags);
207 return rq;
208 }
209
210 return NULL;
211 }
212
213 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
214 unsigned int flags)
215 {
216 struct blk_mq_ctx *ctx;
217 struct blk_mq_hw_ctx *hctx;
218 struct request *rq;
219 struct blk_mq_alloc_data alloc_data;
220 int ret;
221
222 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
223 if (ret)
224 return ERR_PTR(ret);
225
226 ctx = blk_mq_get_ctx(q);
227 hctx = q->mq_ops->map_queue(q, ctx->cpu);
228 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
229 rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
230 blk_mq_put_ctx(ctx);
231
232 if (!rq) {
233 blk_queue_exit(q);
234 return ERR_PTR(-EWOULDBLOCK);
235 }
236
237 rq->__data_len = 0;
238 rq->__sector = (sector_t) -1;
239 rq->bio = rq->biotail = NULL;
240 return rq;
241 }
242 EXPORT_SYMBOL(blk_mq_alloc_request);
243
244 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
245 unsigned int flags, unsigned int hctx_idx)
246 {
247 struct blk_mq_hw_ctx *hctx;
248 struct blk_mq_ctx *ctx;
249 struct request *rq;
250 struct blk_mq_alloc_data alloc_data;
251 int ret;
252
253 /*
254 * If the tag allocator sleeps we could get an allocation for a
255 * different hardware context. No need to complicate the low level
256 * allocator for this for the rare use case of a command tied to
257 * a specific queue.
258 */
259 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
260 return ERR_PTR(-EINVAL);
261
262 if (hctx_idx >= q->nr_hw_queues)
263 return ERR_PTR(-EIO);
264
265 ret = blk_queue_enter(q, true);
266 if (ret)
267 return ERR_PTR(ret);
268
269 /*
270 * Check if the hardware context is actually mapped to anything.
271 * If not tell the caller that it should skip this queue.
272 */
273 hctx = q->queue_hw_ctx[hctx_idx];
274 if (!blk_mq_hw_queue_mapped(hctx)) {
275 ret = -EXDEV;
276 goto out_queue_exit;
277 }
278 ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));
279
280 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
281 rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
282 if (!rq) {
283 ret = -EWOULDBLOCK;
284 goto out_queue_exit;
285 }
286
287 return rq;
288
289 out_queue_exit:
290 blk_queue_exit(q);
291 return ERR_PTR(ret);
292 }
293 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
294
295 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
296 struct blk_mq_ctx *ctx, struct request *rq)
297 {
298 const int tag = rq->tag;
299 struct request_queue *q = rq->q;
300
301 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
302 atomic_dec(&hctx->nr_active);
303 rq->cmd_flags = 0;
304
305 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
306 blk_mq_put_tag(hctx, ctx, tag);
307 blk_queue_exit(q);
308 }
309
310 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
311 {
312 struct blk_mq_ctx *ctx = rq->mq_ctx;
313
314 ctx->rq_completed[rq_is_sync(rq)]++;
315 __blk_mq_free_request(hctx, ctx, rq);
316
317 }
318 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
319
320 void blk_mq_free_request(struct request *rq)
321 {
322 struct blk_mq_hw_ctx *hctx;
323 struct request_queue *q = rq->q;
324
325 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
326 blk_mq_free_hctx_request(hctx, rq);
327 }
328 EXPORT_SYMBOL_GPL(blk_mq_free_request);
329
330 inline void __blk_mq_end_request(struct request *rq, int error)
331 {
332 blk_account_io_done(rq);
333
334 if (rq->end_io) {
335 rq->end_io(rq, error);
336 } else {
337 if (unlikely(blk_bidi_rq(rq)))
338 blk_mq_free_request(rq->next_rq);
339 blk_mq_free_request(rq);
340 }
341 }
342 EXPORT_SYMBOL(__blk_mq_end_request);
343
344 void blk_mq_end_request(struct request *rq, int error)
345 {
346 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
347 BUG();
348 __blk_mq_end_request(rq, error);
349 }
350 EXPORT_SYMBOL(blk_mq_end_request);
351
352 static void __blk_mq_complete_request_remote(void *data)
353 {
354 struct request *rq = data;
355
356 rq->q->softirq_done_fn(rq);
357 }
358
359 static void blk_mq_ipi_complete_request(struct request *rq)
360 {
361 struct blk_mq_ctx *ctx = rq->mq_ctx;
362 bool shared = false;
363 int cpu;
364
365 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
366 rq->q->softirq_done_fn(rq);
367 return;
368 }
369
370 cpu = get_cpu();
371 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
372 shared = cpus_share_cache(cpu, ctx->cpu);
373
374 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
375 rq->csd.func = __blk_mq_complete_request_remote;
376 rq->csd.info = rq;
377 rq->csd.flags = 0;
378 smp_call_function_single_async(ctx->cpu, &rq->csd);
379 } else {
380 rq->q->softirq_done_fn(rq);
381 }
382 put_cpu();
383 }
384
385 static void __blk_mq_complete_request(struct request *rq)
386 {
387 struct request_queue *q = rq->q;
388
389 if (!q->softirq_done_fn)
390 blk_mq_end_request(rq, rq->errors);
391 else
392 blk_mq_ipi_complete_request(rq);
393 }
394
395 /**
396 * blk_mq_complete_request - end I/O on a request
397 * @rq: the request being processed
398 *
399 * Description:
400 * Ends all I/O on a request. It does not handle partial completions.
401 * The actual completion happens out-of-order, through a IPI handler.
402 **/
403 void blk_mq_complete_request(struct request *rq, int error)
404 {
405 struct request_queue *q = rq->q;
406
407 if (unlikely(blk_should_fake_timeout(q)))
408 return;
409 if (!blk_mark_rq_complete(rq)) {
410 rq->errors = error;
411 __blk_mq_complete_request(rq);
412 }
413 }
414 EXPORT_SYMBOL(blk_mq_complete_request);
415
416 int blk_mq_request_started(struct request *rq)
417 {
418 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
419 }
420 EXPORT_SYMBOL_GPL(blk_mq_request_started);
421
422 void blk_mq_start_request(struct request *rq)
423 {
424 struct request_queue *q = rq->q;
425
426 trace_block_rq_issue(q, rq);
427
428 rq->resid_len = blk_rq_bytes(rq);
429 if (unlikely(blk_bidi_rq(rq)))
430 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
431
432 blk_add_timer(rq);
433
434 /*
435 * Ensure that ->deadline is visible before set the started
436 * flag and clear the completed flag.
437 */
438 smp_mb__before_atomic();
439
440 /*
441 * Mark us as started and clear complete. Complete might have been
442 * set if requeue raced with timeout, which then marked it as
443 * complete. So be sure to clear complete again when we start
444 * the request, otherwise we'll ignore the completion event.
445 */
446 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
447 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
448 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
449 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
450
451 if (q->dma_drain_size && blk_rq_bytes(rq)) {
452 /*
453 * Make sure space for the drain appears. We know we can do
454 * this because max_hw_segments has been adjusted to be one
455 * fewer than the device can handle.
456 */
457 rq->nr_phys_segments++;
458 }
459 }
460 EXPORT_SYMBOL(blk_mq_start_request);
461
462 static void __blk_mq_requeue_request(struct request *rq)
463 {
464 struct request_queue *q = rq->q;
465
466 trace_block_rq_requeue(q, rq);
467
468 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
469 if (q->dma_drain_size && blk_rq_bytes(rq))
470 rq->nr_phys_segments--;
471 }
472 }
473
474 void blk_mq_requeue_request(struct request *rq)
475 {
476 __blk_mq_requeue_request(rq);
477
478 BUG_ON(blk_queued_rq(rq));
479 blk_mq_add_to_requeue_list(rq, true);
480 }
481 EXPORT_SYMBOL(blk_mq_requeue_request);
482
483 static void blk_mq_requeue_work(struct work_struct *work)
484 {
485 struct request_queue *q =
486 container_of(work, struct request_queue, requeue_work.work);
487 LIST_HEAD(rq_list);
488 struct request *rq, *next;
489 unsigned long flags;
490
491 spin_lock_irqsave(&q->requeue_lock, flags);
492 list_splice_init(&q->requeue_list, &rq_list);
493 spin_unlock_irqrestore(&q->requeue_lock, flags);
494
495 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
496 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
497 continue;
498
499 rq->cmd_flags &= ~REQ_SOFTBARRIER;
500 list_del_init(&rq->queuelist);
501 blk_mq_insert_request(rq, true, false, false);
502 }
503
504 while (!list_empty(&rq_list)) {
505 rq = list_entry(rq_list.next, struct request, queuelist);
506 list_del_init(&rq->queuelist);
507 blk_mq_insert_request(rq, false, false, false);
508 }
509
510 /*
511 * Use the start variant of queue running here, so that running
512 * the requeue work will kick stopped queues.
513 */
514 blk_mq_start_hw_queues(q);
515 }
516
517 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
518 {
519 struct request_queue *q = rq->q;
520 unsigned long flags;
521
522 /*
523 * We abuse this flag that is otherwise used by the I/O scheduler to
524 * request head insertation from the workqueue.
525 */
526 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
527
528 spin_lock_irqsave(&q->requeue_lock, flags);
529 if (at_head) {
530 rq->cmd_flags |= REQ_SOFTBARRIER;
531 list_add(&rq->queuelist, &q->requeue_list);
532 } else {
533 list_add_tail(&rq->queuelist, &q->requeue_list);
534 }
535 spin_unlock_irqrestore(&q->requeue_lock, flags);
536 }
537 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
538
539 void blk_mq_cancel_requeue_work(struct request_queue *q)
540 {
541 cancel_delayed_work_sync(&q->requeue_work);
542 }
543 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
544
545 void blk_mq_kick_requeue_list(struct request_queue *q)
546 {
547 kblockd_schedule_delayed_work(&q->requeue_work, 0);
548 }
549 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
550
551 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
552 unsigned long msecs)
553 {
554 kblockd_schedule_delayed_work(&q->requeue_work,
555 msecs_to_jiffies(msecs));
556 }
557 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
558
559 void blk_mq_abort_requeue_list(struct request_queue *q)
560 {
561 unsigned long flags;
562 LIST_HEAD(rq_list);
563
564 spin_lock_irqsave(&q->requeue_lock, flags);
565 list_splice_init(&q->requeue_list, &rq_list);
566 spin_unlock_irqrestore(&q->requeue_lock, flags);
567
568 while (!list_empty(&rq_list)) {
569 struct request *rq;
570
571 rq = list_first_entry(&rq_list, struct request, queuelist);
572 list_del_init(&rq->queuelist);
573 rq->errors = -EIO;
574 blk_mq_end_request(rq, rq->errors);
575 }
576 }
577 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
578
579 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
580 {
581 if (tag < tags->nr_tags) {
582 prefetch(tags->rqs[tag]);
583 return tags->rqs[tag];
584 }
585
586 return NULL;
587 }
588 EXPORT_SYMBOL(blk_mq_tag_to_rq);
589
590 struct blk_mq_timeout_data {
591 unsigned long next;
592 unsigned int next_set;
593 };
594
595 void blk_mq_rq_timed_out(struct request *req, bool reserved)
596 {
597 struct blk_mq_ops *ops = req->q->mq_ops;
598 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
599
600 /*
601 * We know that complete is set at this point. If STARTED isn't set
602 * anymore, then the request isn't active and the "timeout" should
603 * just be ignored. This can happen due to the bitflag ordering.
604 * Timeout first checks if STARTED is set, and if it is, assumes
605 * the request is active. But if we race with completion, then
606 * we both flags will get cleared. So check here again, and ignore
607 * a timeout event with a request that isn't active.
608 */
609 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
610 return;
611
612 if (ops->timeout)
613 ret = ops->timeout(req, reserved);
614
615 switch (ret) {
616 case BLK_EH_HANDLED:
617 __blk_mq_complete_request(req);
618 break;
619 case BLK_EH_RESET_TIMER:
620 blk_add_timer(req);
621 blk_clear_rq_complete(req);
622 break;
623 case BLK_EH_NOT_HANDLED:
624 break;
625 default:
626 printk(KERN_ERR "block: bad eh return: %d\n", ret);
627 break;
628 }
629 }
630
631 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
632 struct request *rq, void *priv, bool reserved)
633 {
634 struct blk_mq_timeout_data *data = priv;
635
636 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
637 /*
638 * If a request wasn't started before the queue was
639 * marked dying, kill it here or it'll go unnoticed.
640 */
641 if (unlikely(blk_queue_dying(rq->q))) {
642 rq->errors = -EIO;
643 blk_mq_end_request(rq, rq->errors);
644 }
645 return;
646 }
647
648 if (time_after_eq(jiffies, rq->deadline)) {
649 if (!blk_mark_rq_complete(rq))
650 blk_mq_rq_timed_out(rq, reserved);
651 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
652 data->next = rq->deadline;
653 data->next_set = 1;
654 }
655 }
656
657 static void blk_mq_timeout_work(struct work_struct *work)
658 {
659 struct request_queue *q =
660 container_of(work, struct request_queue, timeout_work);
661 struct blk_mq_timeout_data data = {
662 .next = 0,
663 .next_set = 0,
664 };
665 int i;
666
667 /* A deadlock might occur if a request is stuck requiring a
668 * timeout at the same time a queue freeze is waiting
669 * completion, since the timeout code would not be able to
670 * acquire the queue reference here.
671 *
672 * That's why we don't use blk_queue_enter here; instead, we use
673 * percpu_ref_tryget directly, because we need to be able to
674 * obtain a reference even in the short window between the queue
675 * starting to freeze, by dropping the first reference in
676 * blk_mq_freeze_queue_start, and the moment the last request is
677 * consumed, marked by the instant q_usage_counter reaches
678 * zero.
679 */
680 if (!percpu_ref_tryget(&q->q_usage_counter))
681 return;
682
683 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
684
685 if (data.next_set) {
686 data.next = blk_rq_timeout(round_jiffies_up(data.next));
687 mod_timer(&q->timeout, data.next);
688 } else {
689 struct blk_mq_hw_ctx *hctx;
690
691 queue_for_each_hw_ctx(q, hctx, i) {
692 /* the hctx may be unmapped, so check it here */
693 if (blk_mq_hw_queue_mapped(hctx))
694 blk_mq_tag_idle(hctx);
695 }
696 }
697 blk_queue_exit(q);
698 }
699
700 /*
701 * Reverse check our software queue for entries that we could potentially
702 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
703 * too much time checking for merges.
704 */
705 static bool blk_mq_attempt_merge(struct request_queue *q,
706 struct blk_mq_ctx *ctx, struct bio *bio)
707 {
708 struct request *rq;
709 int checked = 8;
710
711 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
712 int el_ret;
713
714 if (!checked--)
715 break;
716
717 if (!blk_rq_merge_ok(rq, bio))
718 continue;
719
720 el_ret = blk_try_merge(rq, bio);
721 if (el_ret == ELEVATOR_BACK_MERGE) {
722 if (bio_attempt_back_merge(q, rq, bio)) {
723 ctx->rq_merged++;
724 return true;
725 }
726 break;
727 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
728 if (bio_attempt_front_merge(q, rq, bio)) {
729 ctx->rq_merged++;
730 return true;
731 }
732 break;
733 }
734 }
735
736 return false;
737 }
738
739 struct flush_busy_ctx_data {
740 struct blk_mq_hw_ctx *hctx;
741 struct list_head *list;
742 };
743
744 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
745 {
746 struct flush_busy_ctx_data *flush_data = data;
747 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
748 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
749
750 sbitmap_clear_bit(sb, bitnr);
751 spin_lock(&ctx->lock);
752 list_splice_tail_init(&ctx->rq_list, flush_data->list);
753 spin_unlock(&ctx->lock);
754 return true;
755 }
756
757 /*
758 * Process software queues that have been marked busy, splicing them
759 * to the for-dispatch
760 */
761 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
762 {
763 struct flush_busy_ctx_data data = {
764 .hctx = hctx,
765 .list = list,
766 };
767
768 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
769 }
770
771 static inline unsigned int queued_to_index(unsigned int queued)
772 {
773 if (!queued)
774 return 0;
775
776 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
777 }
778
779 /*
780 * Run this hardware queue, pulling any software queues mapped to it in.
781 * Note that this function currently has various problems around ordering
782 * of IO. In particular, we'd like FIFO behaviour on handling existing
783 * items on the hctx->dispatch list. Ignore that for now.
784 */
785 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
786 {
787 struct request_queue *q = hctx->queue;
788 struct request *rq;
789 LIST_HEAD(rq_list);
790 LIST_HEAD(driver_list);
791 struct list_head *dptr;
792 int queued;
793
794 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
795 return;
796
797 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
798 cpu_online(hctx->next_cpu));
799
800 hctx->run++;
801
802 /*
803 * Touch any software queue that has pending entries.
804 */
805 flush_busy_ctxs(hctx, &rq_list);
806
807 /*
808 * If we have previous entries on our dispatch list, grab them
809 * and stuff them at the front for more fair dispatch.
810 */
811 if (!list_empty_careful(&hctx->dispatch)) {
812 spin_lock(&hctx->lock);
813 if (!list_empty(&hctx->dispatch))
814 list_splice_init(&hctx->dispatch, &rq_list);
815 spin_unlock(&hctx->lock);
816 }
817
818 /*
819 * Start off with dptr being NULL, so we start the first request
820 * immediately, even if we have more pending.
821 */
822 dptr = NULL;
823
824 /*
825 * Now process all the entries, sending them to the driver.
826 */
827 queued = 0;
828 while (!list_empty(&rq_list)) {
829 struct blk_mq_queue_data bd;
830 int ret;
831
832 rq = list_first_entry(&rq_list, struct request, queuelist);
833 list_del_init(&rq->queuelist);
834
835 bd.rq = rq;
836 bd.list = dptr;
837 bd.last = list_empty(&rq_list);
838
839 ret = q->mq_ops->queue_rq(hctx, &bd);
840 switch (ret) {
841 case BLK_MQ_RQ_QUEUE_OK:
842 queued++;
843 break;
844 case BLK_MQ_RQ_QUEUE_BUSY:
845 list_add(&rq->queuelist, &rq_list);
846 __blk_mq_requeue_request(rq);
847 break;
848 default:
849 pr_err("blk-mq: bad return on queue: %d\n", ret);
850 case BLK_MQ_RQ_QUEUE_ERROR:
851 rq->errors = -EIO;
852 blk_mq_end_request(rq, rq->errors);
853 break;
854 }
855
856 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
857 break;
858
859 /*
860 * We've done the first request. If we have more than 1
861 * left in the list, set dptr to defer issue.
862 */
863 if (!dptr && rq_list.next != rq_list.prev)
864 dptr = &driver_list;
865 }
866
867 hctx->dispatched[queued_to_index(queued)]++;
868
869 /*
870 * Any items that need requeuing? Stuff them into hctx->dispatch,
871 * that is where we will continue on next queue run.
872 */
873 if (!list_empty(&rq_list)) {
874 spin_lock(&hctx->lock);
875 list_splice(&rq_list, &hctx->dispatch);
876 spin_unlock(&hctx->lock);
877 /*
878 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
879 * it's possible the queue is stopped and restarted again
880 * before this. Queue restart will dispatch requests. And since
881 * requests in rq_list aren't added into hctx->dispatch yet,
882 * the requests in rq_list might get lost.
883 *
884 * blk_mq_run_hw_queue() already checks the STOPPED bit
885 **/
886 blk_mq_run_hw_queue(hctx, true);
887 }
888 }
889
890 /*
891 * It'd be great if the workqueue API had a way to pass
892 * in a mask and had some smarts for more clever placement.
893 * For now we just round-robin here, switching for every
894 * BLK_MQ_CPU_WORK_BATCH queued items.
895 */
896 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
897 {
898 if (hctx->queue->nr_hw_queues == 1)
899 return WORK_CPU_UNBOUND;
900
901 if (--hctx->next_cpu_batch <= 0) {
902 int cpu = hctx->next_cpu, next_cpu;
903
904 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
905 if (next_cpu >= nr_cpu_ids)
906 next_cpu = cpumask_first(hctx->cpumask);
907
908 hctx->next_cpu = next_cpu;
909 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
910
911 return cpu;
912 }
913
914 return hctx->next_cpu;
915 }
916
917 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
918 {
919 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
920 !blk_mq_hw_queue_mapped(hctx)))
921 return;
922
923 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
924 int cpu = get_cpu();
925 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
926 __blk_mq_run_hw_queue(hctx);
927 put_cpu();
928 return;
929 }
930
931 put_cpu();
932 }
933
934 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
935 }
936
937 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
938 {
939 struct blk_mq_hw_ctx *hctx;
940 int i;
941
942 queue_for_each_hw_ctx(q, hctx, i) {
943 if ((!blk_mq_hctx_has_pending(hctx) &&
944 list_empty_careful(&hctx->dispatch)) ||
945 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
946 continue;
947
948 blk_mq_run_hw_queue(hctx, async);
949 }
950 }
951 EXPORT_SYMBOL(blk_mq_run_hw_queues);
952
953 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
954 {
955 cancel_work(&hctx->run_work);
956 cancel_delayed_work(&hctx->delay_work);
957 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
958 }
959 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
960
961 void blk_mq_stop_hw_queues(struct request_queue *q)
962 {
963 struct blk_mq_hw_ctx *hctx;
964 int i;
965
966 queue_for_each_hw_ctx(q, hctx, i)
967 blk_mq_stop_hw_queue(hctx);
968 }
969 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
970
971 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
972 {
973 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
974
975 blk_mq_run_hw_queue(hctx, false);
976 }
977 EXPORT_SYMBOL(blk_mq_start_hw_queue);
978
979 void blk_mq_start_hw_queues(struct request_queue *q)
980 {
981 struct blk_mq_hw_ctx *hctx;
982 int i;
983
984 queue_for_each_hw_ctx(q, hctx, i)
985 blk_mq_start_hw_queue(hctx);
986 }
987 EXPORT_SYMBOL(blk_mq_start_hw_queues);
988
989 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
990 {
991 struct blk_mq_hw_ctx *hctx;
992 int i;
993
994 queue_for_each_hw_ctx(q, hctx, i) {
995 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
996 continue;
997
998 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
999 blk_mq_run_hw_queue(hctx, async);
1000 }
1001 }
1002 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1003
1004 static void blk_mq_run_work_fn(struct work_struct *work)
1005 {
1006 struct blk_mq_hw_ctx *hctx;
1007
1008 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1009
1010 __blk_mq_run_hw_queue(hctx);
1011 }
1012
1013 static void blk_mq_delay_work_fn(struct work_struct *work)
1014 {
1015 struct blk_mq_hw_ctx *hctx;
1016
1017 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1018
1019 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1020 __blk_mq_run_hw_queue(hctx);
1021 }
1022
1023 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1024 {
1025 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1026 return;
1027
1028 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1029 &hctx->delay_work, msecs_to_jiffies(msecs));
1030 }
1031 EXPORT_SYMBOL(blk_mq_delay_queue);
1032
1033 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1034 struct request *rq,
1035 bool at_head)
1036 {
1037 struct blk_mq_ctx *ctx = rq->mq_ctx;
1038
1039 trace_block_rq_insert(hctx->queue, rq);
1040
1041 if (at_head)
1042 list_add(&rq->queuelist, &ctx->rq_list);
1043 else
1044 list_add_tail(&rq->queuelist, &ctx->rq_list);
1045 }
1046
1047 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
1048 struct request *rq, bool at_head)
1049 {
1050 struct blk_mq_ctx *ctx = rq->mq_ctx;
1051
1052 __blk_mq_insert_req_list(hctx, rq, at_head);
1053 blk_mq_hctx_mark_pending(hctx, ctx);
1054 }
1055
1056 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1057 bool async)
1058 {
1059 struct blk_mq_ctx *ctx = rq->mq_ctx;
1060 struct request_queue *q = rq->q;
1061 struct blk_mq_hw_ctx *hctx;
1062
1063 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1064
1065 spin_lock(&ctx->lock);
1066 __blk_mq_insert_request(hctx, rq, at_head);
1067 spin_unlock(&ctx->lock);
1068
1069 if (run_queue)
1070 blk_mq_run_hw_queue(hctx, async);
1071 }
1072
1073 static void blk_mq_insert_requests(struct request_queue *q,
1074 struct blk_mq_ctx *ctx,
1075 struct list_head *list,
1076 int depth,
1077 bool from_schedule)
1078
1079 {
1080 struct blk_mq_hw_ctx *hctx;
1081
1082 trace_block_unplug(q, depth, !from_schedule);
1083
1084 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1085
1086 /*
1087 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1088 * offline now
1089 */
1090 spin_lock(&ctx->lock);
1091 while (!list_empty(list)) {
1092 struct request *rq;
1093
1094 rq = list_first_entry(list, struct request, queuelist);
1095 BUG_ON(rq->mq_ctx != ctx);
1096 list_del_init(&rq->queuelist);
1097 __blk_mq_insert_req_list(hctx, rq, false);
1098 }
1099 blk_mq_hctx_mark_pending(hctx, ctx);
1100 spin_unlock(&ctx->lock);
1101
1102 blk_mq_run_hw_queue(hctx, from_schedule);
1103 }
1104
1105 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1106 {
1107 struct request *rqa = container_of(a, struct request, queuelist);
1108 struct request *rqb = container_of(b, struct request, queuelist);
1109
1110 return !(rqa->mq_ctx < rqb->mq_ctx ||
1111 (rqa->mq_ctx == rqb->mq_ctx &&
1112 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1113 }
1114
1115 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1116 {
1117 struct blk_mq_ctx *this_ctx;
1118 struct request_queue *this_q;
1119 struct request *rq;
1120 LIST_HEAD(list);
1121 LIST_HEAD(ctx_list);
1122 unsigned int depth;
1123
1124 list_splice_init(&plug->mq_list, &list);
1125
1126 list_sort(NULL, &list, plug_ctx_cmp);
1127
1128 this_q = NULL;
1129 this_ctx = NULL;
1130 depth = 0;
1131
1132 while (!list_empty(&list)) {
1133 rq = list_entry_rq(list.next);
1134 list_del_init(&rq->queuelist);
1135 BUG_ON(!rq->q);
1136 if (rq->mq_ctx != this_ctx) {
1137 if (this_ctx) {
1138 blk_mq_insert_requests(this_q, this_ctx,
1139 &ctx_list, depth,
1140 from_schedule);
1141 }
1142
1143 this_ctx = rq->mq_ctx;
1144 this_q = rq->q;
1145 depth = 0;
1146 }
1147
1148 depth++;
1149 list_add_tail(&rq->queuelist, &ctx_list);
1150 }
1151
1152 /*
1153 * If 'this_ctx' is set, we know we have entries to complete
1154 * on 'ctx_list'. Do those.
1155 */
1156 if (this_ctx) {
1157 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1158 from_schedule);
1159 }
1160 }
1161
1162 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1163 {
1164 init_request_from_bio(rq, bio);
1165
1166 blk_account_io_start(rq, 1);
1167 }
1168
1169 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1170 {
1171 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1172 !blk_queue_nomerges(hctx->queue);
1173 }
1174
1175 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1176 struct blk_mq_ctx *ctx,
1177 struct request *rq, struct bio *bio)
1178 {
1179 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1180 blk_mq_bio_to_request(rq, bio);
1181 spin_lock(&ctx->lock);
1182 insert_rq:
1183 __blk_mq_insert_request(hctx, rq, false);
1184 spin_unlock(&ctx->lock);
1185 return false;
1186 } else {
1187 struct request_queue *q = hctx->queue;
1188
1189 spin_lock(&ctx->lock);
1190 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1191 blk_mq_bio_to_request(rq, bio);
1192 goto insert_rq;
1193 }
1194
1195 spin_unlock(&ctx->lock);
1196 __blk_mq_free_request(hctx, ctx, rq);
1197 return true;
1198 }
1199 }
1200
1201 struct blk_map_ctx {
1202 struct blk_mq_hw_ctx *hctx;
1203 struct blk_mq_ctx *ctx;
1204 };
1205
1206 static struct request *blk_mq_map_request(struct request_queue *q,
1207 struct bio *bio,
1208 struct blk_map_ctx *data)
1209 {
1210 struct blk_mq_hw_ctx *hctx;
1211 struct blk_mq_ctx *ctx;
1212 struct request *rq;
1213 int op = bio_data_dir(bio);
1214 int op_flags = 0;
1215 struct blk_mq_alloc_data alloc_data;
1216
1217 blk_queue_enter_live(q);
1218 ctx = blk_mq_get_ctx(q);
1219 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1220
1221 if (rw_is_sync(bio_op(bio), bio->bi_opf))
1222 op_flags |= REQ_SYNC;
1223
1224 trace_block_getrq(q, bio, op);
1225 blk_mq_set_alloc_data(&alloc_data, q, 0, ctx, hctx);
1226 rq = __blk_mq_alloc_request(&alloc_data, op, op_flags);
1227
1228 hctx->queued++;
1229 data->hctx = hctx;
1230 data->ctx = ctx;
1231 return rq;
1232 }
1233
1234 static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie)
1235 {
1236 int ret;
1237 struct request_queue *q = rq->q;
1238 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
1239 rq->mq_ctx->cpu);
1240 struct blk_mq_queue_data bd = {
1241 .rq = rq,
1242 .list = NULL,
1243 .last = 1
1244 };
1245 blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1246
1247 /*
1248 * For OK queue, we are done. For error, kill it. Any other
1249 * error (busy), just add it to our list as we previously
1250 * would have done
1251 */
1252 ret = q->mq_ops->queue_rq(hctx, &bd);
1253 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1254 *cookie = new_cookie;
1255 return 0;
1256 }
1257
1258 __blk_mq_requeue_request(rq);
1259
1260 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1261 *cookie = BLK_QC_T_NONE;
1262 rq->errors = -EIO;
1263 blk_mq_end_request(rq, rq->errors);
1264 return 0;
1265 }
1266
1267 return -1;
1268 }
1269
1270 /*
1271 * Multiple hardware queue variant. This will not use per-process plugs,
1272 * but will attempt to bypass the hctx queueing if we can go straight to
1273 * hardware for SYNC IO.
1274 */
1275 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1276 {
1277 const int is_sync = rw_is_sync(bio_op(bio), bio->bi_opf);
1278 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1279 struct blk_map_ctx data;
1280 struct request *rq;
1281 unsigned int request_count = 0;
1282 struct blk_plug *plug;
1283 struct request *same_queue_rq = NULL;
1284 blk_qc_t cookie;
1285
1286 blk_queue_bounce(q, &bio);
1287
1288 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1289 bio_io_error(bio);
1290 return BLK_QC_T_NONE;
1291 }
1292
1293 blk_queue_split(q, &bio, q->bio_split);
1294
1295 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1296 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1297 return BLK_QC_T_NONE;
1298
1299 rq = blk_mq_map_request(q, bio, &data);
1300 if (unlikely(!rq))
1301 return BLK_QC_T_NONE;
1302
1303 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1304
1305 if (unlikely(is_flush_fua)) {
1306 blk_mq_bio_to_request(rq, bio);
1307 blk_insert_flush(rq);
1308 goto run_queue;
1309 }
1310
1311 plug = current->plug;
1312 /*
1313 * If the driver supports defer issued based on 'last', then
1314 * queue it up like normal since we can potentially save some
1315 * CPU this way.
1316 */
1317 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1318 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1319 struct request *old_rq = NULL;
1320
1321 blk_mq_bio_to_request(rq, bio);
1322
1323 /*
1324 * We do limited pluging. If the bio can be merged, do that.
1325 * Otherwise the existing request in the plug list will be
1326 * issued. So the plug list will have one request at most
1327 */
1328 if (plug) {
1329 /*
1330 * The plug list might get flushed before this. If that
1331 * happens, same_queue_rq is invalid and plug list is
1332 * empty
1333 */
1334 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1335 old_rq = same_queue_rq;
1336 list_del_init(&old_rq->queuelist);
1337 }
1338 list_add_tail(&rq->queuelist, &plug->mq_list);
1339 } else /* is_sync */
1340 old_rq = rq;
1341 blk_mq_put_ctx(data.ctx);
1342 if (!old_rq)
1343 goto done;
1344 if (!blk_mq_direct_issue_request(old_rq, &cookie))
1345 goto done;
1346 blk_mq_insert_request(old_rq, false, true, true);
1347 goto done;
1348 }
1349
1350 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1351 /*
1352 * For a SYNC request, send it to the hardware immediately. For
1353 * an ASYNC request, just ensure that we run it later on. The
1354 * latter allows for merging opportunities and more efficient
1355 * dispatching.
1356 */
1357 run_queue:
1358 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1359 }
1360 blk_mq_put_ctx(data.ctx);
1361 done:
1362 return cookie;
1363 }
1364
1365 /*
1366 * Single hardware queue variant. This will attempt to use any per-process
1367 * plug for merging and IO deferral.
1368 */
1369 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1370 {
1371 const int is_sync = rw_is_sync(bio_op(bio), bio->bi_opf);
1372 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1373 struct blk_plug *plug;
1374 unsigned int request_count = 0;
1375 struct blk_map_ctx data;
1376 struct request *rq;
1377 blk_qc_t cookie;
1378
1379 blk_queue_bounce(q, &bio);
1380
1381 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1382 bio_io_error(bio);
1383 return BLK_QC_T_NONE;
1384 }
1385
1386 blk_queue_split(q, &bio, q->bio_split);
1387
1388 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1389 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1390 return BLK_QC_T_NONE;
1391 } else
1392 request_count = blk_plug_queued_count(q);
1393
1394 rq = blk_mq_map_request(q, bio, &data);
1395 if (unlikely(!rq))
1396 return BLK_QC_T_NONE;
1397
1398 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1399
1400 if (unlikely(is_flush_fua)) {
1401 blk_mq_bio_to_request(rq, bio);
1402 blk_insert_flush(rq);
1403 goto run_queue;
1404 }
1405
1406 /*
1407 * A task plug currently exists. Since this is completely lockless,
1408 * utilize that to temporarily store requests until the task is
1409 * either done or scheduled away.
1410 */
1411 plug = current->plug;
1412 if (plug) {
1413 blk_mq_bio_to_request(rq, bio);
1414 if (!request_count)
1415 trace_block_plug(q);
1416
1417 blk_mq_put_ctx(data.ctx);
1418
1419 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1420 blk_flush_plug_list(plug, false);
1421 trace_block_plug(q);
1422 }
1423
1424 list_add_tail(&rq->queuelist, &plug->mq_list);
1425 return cookie;
1426 }
1427
1428 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1429 /*
1430 * For a SYNC request, send it to the hardware immediately. For
1431 * an ASYNC request, just ensure that we run it later on. The
1432 * latter allows for merging opportunities and more efficient
1433 * dispatching.
1434 */
1435 run_queue:
1436 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1437 }
1438
1439 blk_mq_put_ctx(data.ctx);
1440 return cookie;
1441 }
1442
1443 /*
1444 * Default mapping to a software queue, since we use one per CPU.
1445 */
1446 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1447 {
1448 return q->queue_hw_ctx[q->mq_map[cpu]];
1449 }
1450 EXPORT_SYMBOL(blk_mq_map_queue);
1451
1452 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1453 struct blk_mq_tags *tags, unsigned int hctx_idx)
1454 {
1455 struct page *page;
1456
1457 if (tags->rqs && set->ops->exit_request) {
1458 int i;
1459
1460 for (i = 0; i < tags->nr_tags; i++) {
1461 if (!tags->rqs[i])
1462 continue;
1463 set->ops->exit_request(set->driver_data, tags->rqs[i],
1464 hctx_idx, i);
1465 tags->rqs[i] = NULL;
1466 }
1467 }
1468
1469 while (!list_empty(&tags->page_list)) {
1470 page = list_first_entry(&tags->page_list, struct page, lru);
1471 list_del_init(&page->lru);
1472 /*
1473 * Remove kmemleak object previously allocated in
1474 * blk_mq_init_rq_map().
1475 */
1476 kmemleak_free(page_address(page));
1477 __free_pages(page, page->private);
1478 }
1479
1480 kfree(tags->rqs);
1481
1482 blk_mq_free_tags(tags);
1483 }
1484
1485 static size_t order_to_size(unsigned int order)
1486 {
1487 return (size_t)PAGE_SIZE << order;
1488 }
1489
1490 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1491 unsigned int hctx_idx)
1492 {
1493 struct blk_mq_tags *tags;
1494 unsigned int i, j, entries_per_page, max_order = 4;
1495 size_t rq_size, left;
1496
1497 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1498 set->numa_node,
1499 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1500 if (!tags)
1501 return NULL;
1502
1503 INIT_LIST_HEAD(&tags->page_list);
1504
1505 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1506 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1507 set->numa_node);
1508 if (!tags->rqs) {
1509 blk_mq_free_tags(tags);
1510 return NULL;
1511 }
1512
1513 /*
1514 * rq_size is the size of the request plus driver payload, rounded
1515 * to the cacheline size
1516 */
1517 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1518 cache_line_size());
1519 left = rq_size * set->queue_depth;
1520
1521 for (i = 0; i < set->queue_depth; ) {
1522 int this_order = max_order;
1523 struct page *page;
1524 int to_do;
1525 void *p;
1526
1527 while (this_order && left < order_to_size(this_order - 1))
1528 this_order--;
1529
1530 do {
1531 page = alloc_pages_node(set->numa_node,
1532 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1533 this_order);
1534 if (page)
1535 break;
1536 if (!this_order--)
1537 break;
1538 if (order_to_size(this_order) < rq_size)
1539 break;
1540 } while (1);
1541
1542 if (!page)
1543 goto fail;
1544
1545 page->private = this_order;
1546 list_add_tail(&page->lru, &tags->page_list);
1547
1548 p = page_address(page);
1549 /*
1550 * Allow kmemleak to scan these pages as they contain pointers
1551 * to additional allocations like via ops->init_request().
1552 */
1553 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1554 entries_per_page = order_to_size(this_order) / rq_size;
1555 to_do = min(entries_per_page, set->queue_depth - i);
1556 left -= to_do * rq_size;
1557 for (j = 0; j < to_do; j++) {
1558 tags->rqs[i] = p;
1559 if (set->ops->init_request) {
1560 if (set->ops->init_request(set->driver_data,
1561 tags->rqs[i], hctx_idx, i,
1562 set->numa_node)) {
1563 tags->rqs[i] = NULL;
1564 goto fail;
1565 }
1566 }
1567
1568 p += rq_size;
1569 i++;
1570 }
1571 }
1572 return tags;
1573
1574 fail:
1575 blk_mq_free_rq_map(set, tags, hctx_idx);
1576 return NULL;
1577 }
1578
1579 /*
1580 * 'cpu' is going away. splice any existing rq_list entries from this
1581 * software queue to the hw queue dispatch list, and ensure that it
1582 * gets run.
1583 */
1584 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1585 {
1586 struct blk_mq_ctx *ctx;
1587 LIST_HEAD(tmp);
1588
1589 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1590
1591 spin_lock(&ctx->lock);
1592 if (!list_empty(&ctx->rq_list)) {
1593 list_splice_init(&ctx->rq_list, &tmp);
1594 blk_mq_hctx_clear_pending(hctx, ctx);
1595 }
1596 spin_unlock(&ctx->lock);
1597
1598 if (list_empty(&tmp))
1599 return NOTIFY_OK;
1600
1601 spin_lock(&hctx->lock);
1602 list_splice_tail_init(&tmp, &hctx->dispatch);
1603 spin_unlock(&hctx->lock);
1604
1605 blk_mq_run_hw_queue(hctx, true);
1606 return NOTIFY_OK;
1607 }
1608
1609 static int blk_mq_hctx_notify(void *data, unsigned long action,
1610 unsigned int cpu)
1611 {
1612 struct blk_mq_hw_ctx *hctx = data;
1613
1614 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1615 return blk_mq_hctx_cpu_offline(hctx, cpu);
1616
1617 /*
1618 * In case of CPU online, tags may be reallocated
1619 * in blk_mq_map_swqueue() after mapping is updated.
1620 */
1621
1622 return NOTIFY_OK;
1623 }
1624
1625 /* hctx->ctxs will be freed in queue's release handler */
1626 static void blk_mq_exit_hctx(struct request_queue *q,
1627 struct blk_mq_tag_set *set,
1628 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1629 {
1630 unsigned flush_start_tag = set->queue_depth;
1631
1632 blk_mq_tag_idle(hctx);
1633
1634 if (set->ops->exit_request)
1635 set->ops->exit_request(set->driver_data,
1636 hctx->fq->flush_rq, hctx_idx,
1637 flush_start_tag + hctx_idx);
1638
1639 if (set->ops->exit_hctx)
1640 set->ops->exit_hctx(hctx, hctx_idx);
1641
1642 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1643 blk_free_flush_queue(hctx->fq);
1644 sbitmap_free(&hctx->ctx_map);
1645 }
1646
1647 static void blk_mq_exit_hw_queues(struct request_queue *q,
1648 struct blk_mq_tag_set *set, int nr_queue)
1649 {
1650 struct blk_mq_hw_ctx *hctx;
1651 unsigned int i;
1652
1653 queue_for_each_hw_ctx(q, hctx, i) {
1654 if (i == nr_queue)
1655 break;
1656 blk_mq_exit_hctx(q, set, hctx, i);
1657 }
1658 }
1659
1660 static void blk_mq_free_hw_queues(struct request_queue *q,
1661 struct blk_mq_tag_set *set)
1662 {
1663 struct blk_mq_hw_ctx *hctx;
1664 unsigned int i;
1665
1666 queue_for_each_hw_ctx(q, hctx, i)
1667 free_cpumask_var(hctx->cpumask);
1668 }
1669
1670 static int blk_mq_init_hctx(struct request_queue *q,
1671 struct blk_mq_tag_set *set,
1672 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1673 {
1674 int node;
1675 unsigned flush_start_tag = set->queue_depth;
1676
1677 node = hctx->numa_node;
1678 if (node == NUMA_NO_NODE)
1679 node = hctx->numa_node = set->numa_node;
1680
1681 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1682 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1683 spin_lock_init(&hctx->lock);
1684 INIT_LIST_HEAD(&hctx->dispatch);
1685 hctx->queue = q;
1686 hctx->queue_num = hctx_idx;
1687 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1688
1689 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1690 blk_mq_hctx_notify, hctx);
1691 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1692
1693 hctx->tags = set->tags[hctx_idx];
1694
1695 /*
1696 * Allocate space for all possible cpus to avoid allocation at
1697 * runtime
1698 */
1699 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1700 GFP_KERNEL, node);
1701 if (!hctx->ctxs)
1702 goto unregister_cpu_notifier;
1703
1704 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1705 node))
1706 goto free_ctxs;
1707
1708 hctx->nr_ctx = 0;
1709
1710 if (set->ops->init_hctx &&
1711 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1712 goto free_bitmap;
1713
1714 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1715 if (!hctx->fq)
1716 goto exit_hctx;
1717
1718 if (set->ops->init_request &&
1719 set->ops->init_request(set->driver_data,
1720 hctx->fq->flush_rq, hctx_idx,
1721 flush_start_tag + hctx_idx, node))
1722 goto free_fq;
1723
1724 return 0;
1725
1726 free_fq:
1727 kfree(hctx->fq);
1728 exit_hctx:
1729 if (set->ops->exit_hctx)
1730 set->ops->exit_hctx(hctx, hctx_idx);
1731 free_bitmap:
1732 sbitmap_free(&hctx->ctx_map);
1733 free_ctxs:
1734 kfree(hctx->ctxs);
1735 unregister_cpu_notifier:
1736 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1737
1738 return -1;
1739 }
1740
1741 static void blk_mq_init_cpu_queues(struct request_queue *q,
1742 unsigned int nr_hw_queues)
1743 {
1744 unsigned int i;
1745
1746 for_each_possible_cpu(i) {
1747 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1748 struct blk_mq_hw_ctx *hctx;
1749
1750 memset(__ctx, 0, sizeof(*__ctx));
1751 __ctx->cpu = i;
1752 spin_lock_init(&__ctx->lock);
1753 INIT_LIST_HEAD(&__ctx->rq_list);
1754 __ctx->queue = q;
1755
1756 /* If the cpu isn't online, the cpu is mapped to first hctx */
1757 if (!cpu_online(i))
1758 continue;
1759
1760 hctx = q->mq_ops->map_queue(q, i);
1761
1762 /*
1763 * Set local node, IFF we have more than one hw queue. If
1764 * not, we remain on the home node of the device
1765 */
1766 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1767 hctx->numa_node = local_memory_node(cpu_to_node(i));
1768 }
1769 }
1770
1771 static void blk_mq_map_swqueue(struct request_queue *q,
1772 const struct cpumask *online_mask)
1773 {
1774 unsigned int i;
1775 struct blk_mq_hw_ctx *hctx;
1776 struct blk_mq_ctx *ctx;
1777 struct blk_mq_tag_set *set = q->tag_set;
1778
1779 /*
1780 * Avoid others reading imcomplete hctx->cpumask through sysfs
1781 */
1782 mutex_lock(&q->sysfs_lock);
1783
1784 queue_for_each_hw_ctx(q, hctx, i) {
1785 cpumask_clear(hctx->cpumask);
1786 hctx->nr_ctx = 0;
1787 }
1788
1789 /*
1790 * Map software to hardware queues
1791 */
1792 for_each_possible_cpu(i) {
1793 /* If the cpu isn't online, the cpu is mapped to first hctx */
1794 if (!cpumask_test_cpu(i, online_mask))
1795 continue;
1796
1797 ctx = per_cpu_ptr(q->queue_ctx, i);
1798 hctx = q->mq_ops->map_queue(q, i);
1799
1800 cpumask_set_cpu(i, hctx->cpumask);
1801 ctx->index_hw = hctx->nr_ctx;
1802 hctx->ctxs[hctx->nr_ctx++] = ctx;
1803 }
1804
1805 mutex_unlock(&q->sysfs_lock);
1806
1807 queue_for_each_hw_ctx(q, hctx, i) {
1808 /*
1809 * If no software queues are mapped to this hardware queue,
1810 * disable it and free the request entries.
1811 */
1812 if (!hctx->nr_ctx) {
1813 if (set->tags[i]) {
1814 blk_mq_free_rq_map(set, set->tags[i], i);
1815 set->tags[i] = NULL;
1816 }
1817 hctx->tags = NULL;
1818 continue;
1819 }
1820
1821 /* unmapped hw queue can be remapped after CPU topo changed */
1822 if (!set->tags[i])
1823 set->tags[i] = blk_mq_init_rq_map(set, i);
1824 hctx->tags = set->tags[i];
1825 WARN_ON(!hctx->tags);
1826
1827 cpumask_copy(hctx->tags->cpumask, hctx->cpumask);
1828 /*
1829 * Set the map size to the number of mapped software queues.
1830 * This is more accurate and more efficient than looping
1831 * over all possibly mapped software queues.
1832 */
1833 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
1834
1835 /*
1836 * Initialize batch roundrobin counts
1837 */
1838 hctx->next_cpu = cpumask_first(hctx->cpumask);
1839 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1840 }
1841 }
1842
1843 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1844 {
1845 struct blk_mq_hw_ctx *hctx;
1846 int i;
1847
1848 queue_for_each_hw_ctx(q, hctx, i) {
1849 if (shared)
1850 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1851 else
1852 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1853 }
1854 }
1855
1856 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
1857 {
1858 struct request_queue *q;
1859
1860 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1861 blk_mq_freeze_queue(q);
1862 queue_set_hctx_shared(q, shared);
1863 blk_mq_unfreeze_queue(q);
1864 }
1865 }
1866
1867 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1868 {
1869 struct blk_mq_tag_set *set = q->tag_set;
1870
1871 mutex_lock(&set->tag_list_lock);
1872 list_del_init(&q->tag_set_list);
1873 if (list_is_singular(&set->tag_list)) {
1874 /* just transitioned to unshared */
1875 set->flags &= ~BLK_MQ_F_TAG_SHARED;
1876 /* update existing queue */
1877 blk_mq_update_tag_set_depth(set, false);
1878 }
1879 mutex_unlock(&set->tag_list_lock);
1880 }
1881
1882 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1883 struct request_queue *q)
1884 {
1885 q->tag_set = set;
1886
1887 mutex_lock(&set->tag_list_lock);
1888
1889 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
1890 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
1891 set->flags |= BLK_MQ_F_TAG_SHARED;
1892 /* update existing queue */
1893 blk_mq_update_tag_set_depth(set, true);
1894 }
1895 if (set->flags & BLK_MQ_F_TAG_SHARED)
1896 queue_set_hctx_shared(q, true);
1897 list_add_tail(&q->tag_set_list, &set->tag_list);
1898
1899 mutex_unlock(&set->tag_list_lock);
1900 }
1901
1902 /*
1903 * It is the actual release handler for mq, but we do it from
1904 * request queue's release handler for avoiding use-after-free
1905 * and headache because q->mq_kobj shouldn't have been introduced,
1906 * but we can't group ctx/kctx kobj without it.
1907 */
1908 void blk_mq_release(struct request_queue *q)
1909 {
1910 struct blk_mq_hw_ctx *hctx;
1911 unsigned int i;
1912
1913 /* hctx kobj stays in hctx */
1914 queue_for_each_hw_ctx(q, hctx, i) {
1915 if (!hctx)
1916 continue;
1917 kfree(hctx->ctxs);
1918 kfree(hctx);
1919 }
1920
1921 kfree(q->mq_map);
1922 q->mq_map = NULL;
1923
1924 kfree(q->queue_hw_ctx);
1925
1926 /* ctx kobj stays in queue_ctx */
1927 free_percpu(q->queue_ctx);
1928 }
1929
1930 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1931 {
1932 struct request_queue *uninit_q, *q;
1933
1934 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1935 if (!uninit_q)
1936 return ERR_PTR(-ENOMEM);
1937
1938 q = blk_mq_init_allocated_queue(set, uninit_q);
1939 if (IS_ERR(q))
1940 blk_cleanup_queue(uninit_q);
1941
1942 return q;
1943 }
1944 EXPORT_SYMBOL(blk_mq_init_queue);
1945
1946 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
1947 struct request_queue *q)
1948 {
1949 int i, j;
1950 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
1951
1952 blk_mq_sysfs_unregister(q);
1953 for (i = 0; i < set->nr_hw_queues; i++) {
1954 int node;
1955
1956 if (hctxs[i])
1957 continue;
1958
1959 node = blk_mq_hw_queue_to_node(q->mq_map, i);
1960 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1961 GFP_KERNEL, node);
1962 if (!hctxs[i])
1963 break;
1964
1965 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1966 node)) {
1967 kfree(hctxs[i]);
1968 hctxs[i] = NULL;
1969 break;
1970 }
1971
1972 atomic_set(&hctxs[i]->nr_active, 0);
1973 hctxs[i]->numa_node = node;
1974 hctxs[i]->queue_num = i;
1975
1976 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
1977 free_cpumask_var(hctxs[i]->cpumask);
1978 kfree(hctxs[i]);
1979 hctxs[i] = NULL;
1980 break;
1981 }
1982 blk_mq_hctx_kobj_init(hctxs[i]);
1983 }
1984 for (j = i; j < q->nr_hw_queues; j++) {
1985 struct blk_mq_hw_ctx *hctx = hctxs[j];
1986
1987 if (hctx) {
1988 if (hctx->tags) {
1989 blk_mq_free_rq_map(set, hctx->tags, j);
1990 set->tags[j] = NULL;
1991 }
1992 blk_mq_exit_hctx(q, set, hctx, j);
1993 free_cpumask_var(hctx->cpumask);
1994 kobject_put(&hctx->kobj);
1995 kfree(hctx->ctxs);
1996 kfree(hctx);
1997 hctxs[j] = NULL;
1998
1999 }
2000 }
2001 q->nr_hw_queues = i;
2002 blk_mq_sysfs_register(q);
2003 }
2004
2005 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2006 struct request_queue *q)
2007 {
2008 /* mark the queue as mq asap */
2009 q->mq_ops = set->ops;
2010
2011 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2012 if (!q->queue_ctx)
2013 goto err_exit;
2014
2015 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2016 GFP_KERNEL, set->numa_node);
2017 if (!q->queue_hw_ctx)
2018 goto err_percpu;
2019
2020 q->mq_map = blk_mq_make_queue_map(set);
2021 if (!q->mq_map)
2022 goto err_map;
2023
2024 blk_mq_realloc_hw_ctxs(set, q);
2025 if (!q->nr_hw_queues)
2026 goto err_hctxs;
2027
2028 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2029 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2030
2031 q->nr_queues = nr_cpu_ids;
2032
2033 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2034
2035 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2036 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2037
2038 q->sg_reserved_size = INT_MAX;
2039
2040 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2041 INIT_LIST_HEAD(&q->requeue_list);
2042 spin_lock_init(&q->requeue_lock);
2043
2044 if (q->nr_hw_queues > 1)
2045 blk_queue_make_request(q, blk_mq_make_request);
2046 else
2047 blk_queue_make_request(q, blk_sq_make_request);
2048
2049 /*
2050 * Do this after blk_queue_make_request() overrides it...
2051 */
2052 q->nr_requests = set->queue_depth;
2053
2054 if (set->ops->complete)
2055 blk_queue_softirq_done(q, set->ops->complete);
2056
2057 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2058
2059 get_online_cpus();
2060 mutex_lock(&all_q_mutex);
2061
2062 list_add_tail(&q->all_q_node, &all_q_list);
2063 blk_mq_add_queue_tag_set(set, q);
2064 blk_mq_map_swqueue(q, cpu_online_mask);
2065
2066 mutex_unlock(&all_q_mutex);
2067 put_online_cpus();
2068
2069 return q;
2070
2071 err_hctxs:
2072 kfree(q->mq_map);
2073 err_map:
2074 kfree(q->queue_hw_ctx);
2075 err_percpu:
2076 free_percpu(q->queue_ctx);
2077 err_exit:
2078 q->mq_ops = NULL;
2079 return ERR_PTR(-ENOMEM);
2080 }
2081 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2082
2083 void blk_mq_free_queue(struct request_queue *q)
2084 {
2085 struct blk_mq_tag_set *set = q->tag_set;
2086
2087 mutex_lock(&all_q_mutex);
2088 list_del_init(&q->all_q_node);
2089 mutex_unlock(&all_q_mutex);
2090
2091 blk_mq_del_queue_tag_set(q);
2092
2093 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2094 blk_mq_free_hw_queues(q, set);
2095 }
2096
2097 /* Basically redo blk_mq_init_queue with queue frozen */
2098 static void blk_mq_queue_reinit(struct request_queue *q,
2099 const struct cpumask *online_mask)
2100 {
2101 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2102
2103 blk_mq_sysfs_unregister(q);
2104
2105 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask);
2106
2107 /*
2108 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2109 * we should change hctx numa_node according to new topology (this
2110 * involves free and re-allocate memory, worthy doing?)
2111 */
2112
2113 blk_mq_map_swqueue(q, online_mask);
2114
2115 blk_mq_sysfs_register(q);
2116 }
2117
2118 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2119 unsigned long action, void *hcpu)
2120 {
2121 struct request_queue *q;
2122 int cpu = (unsigned long)hcpu;
2123 /*
2124 * New online cpumask which is going to be set in this hotplug event.
2125 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2126 * one-by-one and dynamically allocating this could result in a failure.
2127 */
2128 static struct cpumask online_new;
2129
2130 /*
2131 * Before hotadded cpu starts handling requests, new mappings must
2132 * be established. Otherwise, these requests in hw queue might
2133 * never be dispatched.
2134 *
2135 * For example, there is a single hw queue (hctx) and two CPU queues
2136 * (ctx0 for CPU0, and ctx1 for CPU1).
2137 *
2138 * Now CPU1 is just onlined and a request is inserted into
2139 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
2140 * still zero.
2141 *
2142 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
2143 * set in pending bitmap and tries to retrieve requests in
2144 * hctx->ctxs[0]->rq_list. But htx->ctxs[0] is a pointer to ctx0,
2145 * so the request in ctx1->rq_list is ignored.
2146 */
2147 switch (action & ~CPU_TASKS_FROZEN) {
2148 case CPU_DEAD:
2149 case CPU_UP_CANCELED:
2150 cpumask_copy(&online_new, cpu_online_mask);
2151 break;
2152 case CPU_UP_PREPARE:
2153 cpumask_copy(&online_new, cpu_online_mask);
2154 cpumask_set_cpu(cpu, &online_new);
2155 break;
2156 default:
2157 return NOTIFY_OK;
2158 }
2159
2160 mutex_lock(&all_q_mutex);
2161
2162 /*
2163 * We need to freeze and reinit all existing queues. Freezing
2164 * involves synchronous wait for an RCU grace period and doing it
2165 * one by one may take a long time. Start freezing all queues in
2166 * one swoop and then wait for the completions so that freezing can
2167 * take place in parallel.
2168 */
2169 list_for_each_entry(q, &all_q_list, all_q_node)
2170 blk_mq_freeze_queue_start(q);
2171 list_for_each_entry(q, &all_q_list, all_q_node) {
2172 blk_mq_freeze_queue_wait(q);
2173
2174 /*
2175 * timeout handler can't touch hw queue during the
2176 * reinitialization
2177 */
2178 del_timer_sync(&q->timeout);
2179 }
2180
2181 list_for_each_entry(q, &all_q_list, all_q_node)
2182 blk_mq_queue_reinit(q, &online_new);
2183
2184 list_for_each_entry(q, &all_q_list, all_q_node)
2185 blk_mq_unfreeze_queue(q);
2186
2187 mutex_unlock(&all_q_mutex);
2188 return NOTIFY_OK;
2189 }
2190
2191 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2192 {
2193 int i;
2194
2195 for (i = 0; i < set->nr_hw_queues; i++) {
2196 set->tags[i] = blk_mq_init_rq_map(set, i);
2197 if (!set->tags[i])
2198 goto out_unwind;
2199 }
2200
2201 return 0;
2202
2203 out_unwind:
2204 while (--i >= 0)
2205 blk_mq_free_rq_map(set, set->tags[i], i);
2206
2207 return -ENOMEM;
2208 }
2209
2210 /*
2211 * Allocate the request maps associated with this tag_set. Note that this
2212 * may reduce the depth asked for, if memory is tight. set->queue_depth
2213 * will be updated to reflect the allocated depth.
2214 */
2215 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2216 {
2217 unsigned int depth;
2218 int err;
2219
2220 depth = set->queue_depth;
2221 do {
2222 err = __blk_mq_alloc_rq_maps(set);
2223 if (!err)
2224 break;
2225
2226 set->queue_depth >>= 1;
2227 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2228 err = -ENOMEM;
2229 break;
2230 }
2231 } while (set->queue_depth);
2232
2233 if (!set->queue_depth || err) {
2234 pr_err("blk-mq: failed to allocate request map\n");
2235 return -ENOMEM;
2236 }
2237
2238 if (depth != set->queue_depth)
2239 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2240 depth, set->queue_depth);
2241
2242 return 0;
2243 }
2244
2245 struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
2246 {
2247 return tags->cpumask;
2248 }
2249 EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);
2250
2251 /*
2252 * Alloc a tag set to be associated with one or more request queues.
2253 * May fail with EINVAL for various error conditions. May adjust the
2254 * requested depth down, if if it too large. In that case, the set
2255 * value will be stored in set->queue_depth.
2256 */
2257 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2258 {
2259 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2260
2261 if (!set->nr_hw_queues)
2262 return -EINVAL;
2263 if (!set->queue_depth)
2264 return -EINVAL;
2265 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2266 return -EINVAL;
2267
2268 if (!set->ops->queue_rq || !set->ops->map_queue)
2269 return -EINVAL;
2270
2271 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2272 pr_info("blk-mq: reduced tag depth to %u\n",
2273 BLK_MQ_MAX_DEPTH);
2274 set->queue_depth = BLK_MQ_MAX_DEPTH;
2275 }
2276
2277 /*
2278 * If a crashdump is active, then we are potentially in a very
2279 * memory constrained environment. Limit us to 1 queue and
2280 * 64 tags to prevent using too much memory.
2281 */
2282 if (is_kdump_kernel()) {
2283 set->nr_hw_queues = 1;
2284 set->queue_depth = min(64U, set->queue_depth);
2285 }
2286 /*
2287 * There is no use for more h/w queues than cpus.
2288 */
2289 if (set->nr_hw_queues > nr_cpu_ids)
2290 set->nr_hw_queues = nr_cpu_ids;
2291
2292 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2293 GFP_KERNEL, set->numa_node);
2294 if (!set->tags)
2295 return -ENOMEM;
2296
2297 if (blk_mq_alloc_rq_maps(set))
2298 goto enomem;
2299
2300 mutex_init(&set->tag_list_lock);
2301 INIT_LIST_HEAD(&set->tag_list);
2302
2303 return 0;
2304 enomem:
2305 kfree(set->tags);
2306 set->tags = NULL;
2307 return -ENOMEM;
2308 }
2309 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2310
2311 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2312 {
2313 int i;
2314
2315 for (i = 0; i < nr_cpu_ids; i++) {
2316 if (set->tags[i])
2317 blk_mq_free_rq_map(set, set->tags[i], i);
2318 }
2319
2320 kfree(set->tags);
2321 set->tags = NULL;
2322 }
2323 EXPORT_SYMBOL(blk_mq_free_tag_set);
2324
2325 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2326 {
2327 struct blk_mq_tag_set *set = q->tag_set;
2328 struct blk_mq_hw_ctx *hctx;
2329 int i, ret;
2330
2331 if (!set || nr > set->queue_depth)
2332 return -EINVAL;
2333
2334 ret = 0;
2335 queue_for_each_hw_ctx(q, hctx, i) {
2336 if (!hctx->tags)
2337 continue;
2338 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2339 if (ret)
2340 break;
2341 }
2342
2343 if (!ret)
2344 q->nr_requests = nr;
2345
2346 return ret;
2347 }
2348
2349 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2350 {
2351 struct request_queue *q;
2352
2353 if (nr_hw_queues > nr_cpu_ids)
2354 nr_hw_queues = nr_cpu_ids;
2355 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2356 return;
2357
2358 list_for_each_entry(q, &set->tag_list, tag_set_list)
2359 blk_mq_freeze_queue(q);
2360
2361 set->nr_hw_queues = nr_hw_queues;
2362 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2363 blk_mq_realloc_hw_ctxs(set, q);
2364
2365 if (q->nr_hw_queues > 1)
2366 blk_queue_make_request(q, blk_mq_make_request);
2367 else
2368 blk_queue_make_request(q, blk_sq_make_request);
2369
2370 blk_mq_queue_reinit(q, cpu_online_mask);
2371 }
2372
2373 list_for_each_entry(q, &set->tag_list, tag_set_list)
2374 blk_mq_unfreeze_queue(q);
2375 }
2376 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2377
2378 void blk_mq_disable_hotplug(void)
2379 {
2380 mutex_lock(&all_q_mutex);
2381 }
2382
2383 void blk_mq_enable_hotplug(void)
2384 {
2385 mutex_unlock(&all_q_mutex);
2386 }
2387
2388 static int __init blk_mq_init(void)
2389 {
2390 blk_mq_cpu_init();
2391
2392 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2393
2394 return 0;
2395 }
2396 subsys_initcall(blk_mq_init);