]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-mq.c
Merge branch 'acpi-pci'
[mirror_ubuntu-artful-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23 #include <linux/crash_dump.h>
24
25 #include <trace/events/block.h>
26
27 #include <linux/blk-mq.h>
28 #include "blk.h"
29 #include "blk-mq.h"
30 #include "blk-mq-tag.h"
31
32 static DEFINE_MUTEX(all_q_mutex);
33 static LIST_HEAD(all_q_list);
34
35 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
36
37 /*
38 * Check if any of the ctx's have pending work in this hardware queue
39 */
40 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
41 {
42 unsigned int i;
43
44 for (i = 0; i < hctx->ctx_map.size; i++)
45 if (hctx->ctx_map.map[i].word)
46 return true;
47
48 return false;
49 }
50
51 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
52 struct blk_mq_ctx *ctx)
53 {
54 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
55 }
56
57 #define CTX_TO_BIT(hctx, ctx) \
58 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
59
60 /*
61 * Mark this ctx as having pending work in this hardware queue
62 */
63 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
64 struct blk_mq_ctx *ctx)
65 {
66 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
67
68 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
69 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
70 }
71
72 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
73 struct blk_mq_ctx *ctx)
74 {
75 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
76
77 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
78 }
79
80 static int blk_mq_queue_enter(struct request_queue *q, gfp_t gfp)
81 {
82 while (true) {
83 int ret;
84
85 if (percpu_ref_tryget_live(&q->mq_usage_counter))
86 return 0;
87
88 if (!(gfp & __GFP_WAIT))
89 return -EBUSY;
90
91 ret = wait_event_interruptible(q->mq_freeze_wq,
92 !atomic_read(&q->mq_freeze_depth) ||
93 blk_queue_dying(q));
94 if (blk_queue_dying(q))
95 return -ENODEV;
96 if (ret)
97 return ret;
98 }
99 }
100
101 static void blk_mq_queue_exit(struct request_queue *q)
102 {
103 percpu_ref_put(&q->mq_usage_counter);
104 }
105
106 static void blk_mq_usage_counter_release(struct percpu_ref *ref)
107 {
108 struct request_queue *q =
109 container_of(ref, struct request_queue, mq_usage_counter);
110
111 wake_up_all(&q->mq_freeze_wq);
112 }
113
114 void blk_mq_freeze_queue_start(struct request_queue *q)
115 {
116 int freeze_depth;
117
118 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
119 if (freeze_depth == 1) {
120 percpu_ref_kill(&q->mq_usage_counter);
121 blk_mq_run_hw_queues(q, false);
122 }
123 }
124 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
125
126 static void blk_mq_freeze_queue_wait(struct request_queue *q)
127 {
128 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
129 }
130
131 /*
132 * Guarantee no request is in use, so we can change any data structure of
133 * the queue afterward.
134 */
135 void blk_mq_freeze_queue(struct request_queue *q)
136 {
137 blk_mq_freeze_queue_start(q);
138 blk_mq_freeze_queue_wait(q);
139 }
140 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
141
142 void blk_mq_unfreeze_queue(struct request_queue *q)
143 {
144 int freeze_depth;
145
146 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
147 WARN_ON_ONCE(freeze_depth < 0);
148 if (!freeze_depth) {
149 percpu_ref_reinit(&q->mq_usage_counter);
150 wake_up_all(&q->mq_freeze_wq);
151 }
152 }
153 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
154
155 void blk_mq_wake_waiters(struct request_queue *q)
156 {
157 struct blk_mq_hw_ctx *hctx;
158 unsigned int i;
159
160 queue_for_each_hw_ctx(q, hctx, i)
161 if (blk_mq_hw_queue_mapped(hctx))
162 blk_mq_tag_wakeup_all(hctx->tags, true);
163
164 /*
165 * If we are called because the queue has now been marked as
166 * dying, we need to ensure that processes currently waiting on
167 * the queue are notified as well.
168 */
169 wake_up_all(&q->mq_freeze_wq);
170 }
171
172 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
173 {
174 return blk_mq_has_free_tags(hctx->tags);
175 }
176 EXPORT_SYMBOL(blk_mq_can_queue);
177
178 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
179 struct request *rq, unsigned int rw_flags)
180 {
181 if (blk_queue_io_stat(q))
182 rw_flags |= REQ_IO_STAT;
183
184 INIT_LIST_HEAD(&rq->queuelist);
185 /* csd/requeue_work/fifo_time is initialized before use */
186 rq->q = q;
187 rq->mq_ctx = ctx;
188 rq->cmd_flags |= rw_flags;
189 /* do not touch atomic flags, it needs atomic ops against the timer */
190 rq->cpu = -1;
191 INIT_HLIST_NODE(&rq->hash);
192 RB_CLEAR_NODE(&rq->rb_node);
193 rq->rq_disk = NULL;
194 rq->part = NULL;
195 rq->start_time = jiffies;
196 #ifdef CONFIG_BLK_CGROUP
197 rq->rl = NULL;
198 set_start_time_ns(rq);
199 rq->io_start_time_ns = 0;
200 #endif
201 rq->nr_phys_segments = 0;
202 #if defined(CONFIG_BLK_DEV_INTEGRITY)
203 rq->nr_integrity_segments = 0;
204 #endif
205 rq->special = NULL;
206 /* tag was already set */
207 rq->errors = 0;
208
209 rq->cmd = rq->__cmd;
210
211 rq->extra_len = 0;
212 rq->sense_len = 0;
213 rq->resid_len = 0;
214 rq->sense = NULL;
215
216 INIT_LIST_HEAD(&rq->timeout_list);
217 rq->timeout = 0;
218
219 rq->end_io = NULL;
220 rq->end_io_data = NULL;
221 rq->next_rq = NULL;
222
223 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
224 }
225
226 static struct request *
227 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
228 {
229 struct request *rq;
230 unsigned int tag;
231
232 tag = blk_mq_get_tag(data);
233 if (tag != BLK_MQ_TAG_FAIL) {
234 rq = data->hctx->tags->rqs[tag];
235
236 if (blk_mq_tag_busy(data->hctx)) {
237 rq->cmd_flags = REQ_MQ_INFLIGHT;
238 atomic_inc(&data->hctx->nr_active);
239 }
240
241 rq->tag = tag;
242 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
243 return rq;
244 }
245
246 return NULL;
247 }
248
249 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
250 bool reserved)
251 {
252 struct blk_mq_ctx *ctx;
253 struct blk_mq_hw_ctx *hctx;
254 struct request *rq;
255 struct blk_mq_alloc_data alloc_data;
256 int ret;
257
258 ret = blk_mq_queue_enter(q, gfp);
259 if (ret)
260 return ERR_PTR(ret);
261
262 ctx = blk_mq_get_ctx(q);
263 hctx = q->mq_ops->map_queue(q, ctx->cpu);
264 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
265 reserved, ctx, hctx);
266
267 rq = __blk_mq_alloc_request(&alloc_data, rw);
268 if (!rq && (gfp & __GFP_WAIT)) {
269 __blk_mq_run_hw_queue(hctx);
270 blk_mq_put_ctx(ctx);
271
272 ctx = blk_mq_get_ctx(q);
273 hctx = q->mq_ops->map_queue(q, ctx->cpu);
274 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
275 hctx);
276 rq = __blk_mq_alloc_request(&alloc_data, rw);
277 ctx = alloc_data.ctx;
278 }
279 blk_mq_put_ctx(ctx);
280 if (!rq) {
281 blk_mq_queue_exit(q);
282 return ERR_PTR(-EWOULDBLOCK);
283 }
284 return rq;
285 }
286 EXPORT_SYMBOL(blk_mq_alloc_request);
287
288 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
289 struct blk_mq_ctx *ctx, struct request *rq)
290 {
291 const int tag = rq->tag;
292 struct request_queue *q = rq->q;
293
294 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
295 atomic_dec(&hctx->nr_active);
296 rq->cmd_flags = 0;
297
298 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
299 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
300 blk_mq_queue_exit(q);
301 }
302
303 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
304 {
305 struct blk_mq_ctx *ctx = rq->mq_ctx;
306
307 ctx->rq_completed[rq_is_sync(rq)]++;
308 __blk_mq_free_request(hctx, ctx, rq);
309
310 }
311 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
312
313 void blk_mq_free_request(struct request *rq)
314 {
315 struct blk_mq_hw_ctx *hctx;
316 struct request_queue *q = rq->q;
317
318 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
319 blk_mq_free_hctx_request(hctx, rq);
320 }
321 EXPORT_SYMBOL_GPL(blk_mq_free_request);
322
323 inline void __blk_mq_end_request(struct request *rq, int error)
324 {
325 blk_account_io_done(rq);
326
327 if (rq->end_io) {
328 rq->end_io(rq, error);
329 } else {
330 if (unlikely(blk_bidi_rq(rq)))
331 blk_mq_free_request(rq->next_rq);
332 blk_mq_free_request(rq);
333 }
334 }
335 EXPORT_SYMBOL(__blk_mq_end_request);
336
337 void blk_mq_end_request(struct request *rq, int error)
338 {
339 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
340 BUG();
341 __blk_mq_end_request(rq, error);
342 }
343 EXPORT_SYMBOL(blk_mq_end_request);
344
345 static void __blk_mq_complete_request_remote(void *data)
346 {
347 struct request *rq = data;
348
349 rq->q->softirq_done_fn(rq);
350 }
351
352 static void blk_mq_ipi_complete_request(struct request *rq)
353 {
354 struct blk_mq_ctx *ctx = rq->mq_ctx;
355 bool shared = false;
356 int cpu;
357
358 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
359 rq->q->softirq_done_fn(rq);
360 return;
361 }
362
363 cpu = get_cpu();
364 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
365 shared = cpus_share_cache(cpu, ctx->cpu);
366
367 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
368 rq->csd.func = __blk_mq_complete_request_remote;
369 rq->csd.info = rq;
370 rq->csd.flags = 0;
371 smp_call_function_single_async(ctx->cpu, &rq->csd);
372 } else {
373 rq->q->softirq_done_fn(rq);
374 }
375 put_cpu();
376 }
377
378 void __blk_mq_complete_request(struct request *rq)
379 {
380 struct request_queue *q = rq->q;
381
382 if (!q->softirq_done_fn)
383 blk_mq_end_request(rq, rq->errors);
384 else
385 blk_mq_ipi_complete_request(rq);
386 }
387
388 /**
389 * blk_mq_complete_request - end I/O on a request
390 * @rq: the request being processed
391 *
392 * Description:
393 * Ends all I/O on a request. It does not handle partial completions.
394 * The actual completion happens out-of-order, through a IPI handler.
395 **/
396 void blk_mq_complete_request(struct request *rq, int error)
397 {
398 struct request_queue *q = rq->q;
399
400 if (unlikely(blk_should_fake_timeout(q)))
401 return;
402 if (!blk_mark_rq_complete(rq)) {
403 rq->errors = error;
404 __blk_mq_complete_request(rq);
405 }
406 }
407 EXPORT_SYMBOL(blk_mq_complete_request);
408
409 int blk_mq_request_started(struct request *rq)
410 {
411 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
412 }
413 EXPORT_SYMBOL_GPL(blk_mq_request_started);
414
415 void blk_mq_start_request(struct request *rq)
416 {
417 struct request_queue *q = rq->q;
418
419 trace_block_rq_issue(q, rq);
420
421 rq->resid_len = blk_rq_bytes(rq);
422 if (unlikely(blk_bidi_rq(rq)))
423 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
424
425 blk_add_timer(rq);
426
427 /*
428 * Ensure that ->deadline is visible before set the started
429 * flag and clear the completed flag.
430 */
431 smp_mb__before_atomic();
432
433 /*
434 * Mark us as started and clear complete. Complete might have been
435 * set if requeue raced with timeout, which then marked it as
436 * complete. So be sure to clear complete again when we start
437 * the request, otherwise we'll ignore the completion event.
438 */
439 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
440 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
441 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
442 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
443
444 if (q->dma_drain_size && blk_rq_bytes(rq)) {
445 /*
446 * Make sure space for the drain appears. We know we can do
447 * this because max_hw_segments has been adjusted to be one
448 * fewer than the device can handle.
449 */
450 rq->nr_phys_segments++;
451 }
452 }
453 EXPORT_SYMBOL(blk_mq_start_request);
454
455 static void __blk_mq_requeue_request(struct request *rq)
456 {
457 struct request_queue *q = rq->q;
458
459 trace_block_rq_requeue(q, rq);
460
461 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
462 if (q->dma_drain_size && blk_rq_bytes(rq))
463 rq->nr_phys_segments--;
464 }
465 }
466
467 void blk_mq_requeue_request(struct request *rq)
468 {
469 __blk_mq_requeue_request(rq);
470
471 BUG_ON(blk_queued_rq(rq));
472 blk_mq_add_to_requeue_list(rq, true);
473 }
474 EXPORT_SYMBOL(blk_mq_requeue_request);
475
476 static void blk_mq_requeue_work(struct work_struct *work)
477 {
478 struct request_queue *q =
479 container_of(work, struct request_queue, requeue_work);
480 LIST_HEAD(rq_list);
481 struct request *rq, *next;
482 unsigned long flags;
483
484 spin_lock_irqsave(&q->requeue_lock, flags);
485 list_splice_init(&q->requeue_list, &rq_list);
486 spin_unlock_irqrestore(&q->requeue_lock, flags);
487
488 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
489 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
490 continue;
491
492 rq->cmd_flags &= ~REQ_SOFTBARRIER;
493 list_del_init(&rq->queuelist);
494 blk_mq_insert_request(rq, true, false, false);
495 }
496
497 while (!list_empty(&rq_list)) {
498 rq = list_entry(rq_list.next, struct request, queuelist);
499 list_del_init(&rq->queuelist);
500 blk_mq_insert_request(rq, false, false, false);
501 }
502
503 /*
504 * Use the start variant of queue running here, so that running
505 * the requeue work will kick stopped queues.
506 */
507 blk_mq_start_hw_queues(q);
508 }
509
510 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
511 {
512 struct request_queue *q = rq->q;
513 unsigned long flags;
514
515 /*
516 * We abuse this flag that is otherwise used by the I/O scheduler to
517 * request head insertation from the workqueue.
518 */
519 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
520
521 spin_lock_irqsave(&q->requeue_lock, flags);
522 if (at_head) {
523 rq->cmd_flags |= REQ_SOFTBARRIER;
524 list_add(&rq->queuelist, &q->requeue_list);
525 } else {
526 list_add_tail(&rq->queuelist, &q->requeue_list);
527 }
528 spin_unlock_irqrestore(&q->requeue_lock, flags);
529 }
530 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
531
532 void blk_mq_cancel_requeue_work(struct request_queue *q)
533 {
534 cancel_work_sync(&q->requeue_work);
535 }
536 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
537
538 void blk_mq_kick_requeue_list(struct request_queue *q)
539 {
540 kblockd_schedule_work(&q->requeue_work);
541 }
542 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
543
544 void blk_mq_abort_requeue_list(struct request_queue *q)
545 {
546 unsigned long flags;
547 LIST_HEAD(rq_list);
548
549 spin_lock_irqsave(&q->requeue_lock, flags);
550 list_splice_init(&q->requeue_list, &rq_list);
551 spin_unlock_irqrestore(&q->requeue_lock, flags);
552
553 while (!list_empty(&rq_list)) {
554 struct request *rq;
555
556 rq = list_first_entry(&rq_list, struct request, queuelist);
557 list_del_init(&rq->queuelist);
558 rq->errors = -EIO;
559 blk_mq_end_request(rq, rq->errors);
560 }
561 }
562 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
563
564 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
565 {
566 return tags->rqs[tag];
567 }
568 EXPORT_SYMBOL(blk_mq_tag_to_rq);
569
570 struct blk_mq_timeout_data {
571 unsigned long next;
572 unsigned int next_set;
573 };
574
575 void blk_mq_rq_timed_out(struct request *req, bool reserved)
576 {
577 struct blk_mq_ops *ops = req->q->mq_ops;
578 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
579
580 /*
581 * We know that complete is set at this point. If STARTED isn't set
582 * anymore, then the request isn't active and the "timeout" should
583 * just be ignored. This can happen due to the bitflag ordering.
584 * Timeout first checks if STARTED is set, and if it is, assumes
585 * the request is active. But if we race with completion, then
586 * we both flags will get cleared. So check here again, and ignore
587 * a timeout event with a request that isn't active.
588 */
589 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
590 return;
591
592 if (ops->timeout)
593 ret = ops->timeout(req, reserved);
594
595 switch (ret) {
596 case BLK_EH_HANDLED:
597 __blk_mq_complete_request(req);
598 break;
599 case BLK_EH_RESET_TIMER:
600 blk_add_timer(req);
601 blk_clear_rq_complete(req);
602 break;
603 case BLK_EH_NOT_HANDLED:
604 break;
605 default:
606 printk(KERN_ERR "block: bad eh return: %d\n", ret);
607 break;
608 }
609 }
610
611 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
612 struct request *rq, void *priv, bool reserved)
613 {
614 struct blk_mq_timeout_data *data = priv;
615
616 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
617 /*
618 * If a request wasn't started before the queue was
619 * marked dying, kill it here or it'll go unnoticed.
620 */
621 if (unlikely(blk_queue_dying(rq->q)))
622 blk_mq_complete_request(rq, -EIO);
623 return;
624 }
625 if (rq->cmd_flags & REQ_NO_TIMEOUT)
626 return;
627
628 if (time_after_eq(jiffies, rq->deadline)) {
629 if (!blk_mark_rq_complete(rq))
630 blk_mq_rq_timed_out(rq, reserved);
631 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
632 data->next = rq->deadline;
633 data->next_set = 1;
634 }
635 }
636
637 static void blk_mq_rq_timer(unsigned long priv)
638 {
639 struct request_queue *q = (struct request_queue *)priv;
640 struct blk_mq_timeout_data data = {
641 .next = 0,
642 .next_set = 0,
643 };
644 int i;
645
646 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
647
648 if (data.next_set) {
649 data.next = blk_rq_timeout(round_jiffies_up(data.next));
650 mod_timer(&q->timeout, data.next);
651 } else {
652 struct blk_mq_hw_ctx *hctx;
653
654 queue_for_each_hw_ctx(q, hctx, i) {
655 /* the hctx may be unmapped, so check it here */
656 if (blk_mq_hw_queue_mapped(hctx))
657 blk_mq_tag_idle(hctx);
658 }
659 }
660 }
661
662 /*
663 * Reverse check our software queue for entries that we could potentially
664 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
665 * too much time checking for merges.
666 */
667 static bool blk_mq_attempt_merge(struct request_queue *q,
668 struct blk_mq_ctx *ctx, struct bio *bio)
669 {
670 struct request *rq;
671 int checked = 8;
672
673 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
674 int el_ret;
675
676 if (!checked--)
677 break;
678
679 if (!blk_rq_merge_ok(rq, bio))
680 continue;
681
682 el_ret = blk_try_merge(rq, bio);
683 if (el_ret == ELEVATOR_BACK_MERGE) {
684 if (bio_attempt_back_merge(q, rq, bio)) {
685 ctx->rq_merged++;
686 return true;
687 }
688 break;
689 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
690 if (bio_attempt_front_merge(q, rq, bio)) {
691 ctx->rq_merged++;
692 return true;
693 }
694 break;
695 }
696 }
697
698 return false;
699 }
700
701 /*
702 * Process software queues that have been marked busy, splicing them
703 * to the for-dispatch
704 */
705 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
706 {
707 struct blk_mq_ctx *ctx;
708 int i;
709
710 for (i = 0; i < hctx->ctx_map.size; i++) {
711 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
712 unsigned int off, bit;
713
714 if (!bm->word)
715 continue;
716
717 bit = 0;
718 off = i * hctx->ctx_map.bits_per_word;
719 do {
720 bit = find_next_bit(&bm->word, bm->depth, bit);
721 if (bit >= bm->depth)
722 break;
723
724 ctx = hctx->ctxs[bit + off];
725 clear_bit(bit, &bm->word);
726 spin_lock(&ctx->lock);
727 list_splice_tail_init(&ctx->rq_list, list);
728 spin_unlock(&ctx->lock);
729
730 bit++;
731 } while (1);
732 }
733 }
734
735 /*
736 * Run this hardware queue, pulling any software queues mapped to it in.
737 * Note that this function currently has various problems around ordering
738 * of IO. In particular, we'd like FIFO behaviour on handling existing
739 * items on the hctx->dispatch list. Ignore that for now.
740 */
741 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
742 {
743 struct request_queue *q = hctx->queue;
744 struct request *rq;
745 LIST_HEAD(rq_list);
746 LIST_HEAD(driver_list);
747 struct list_head *dptr;
748 int queued;
749
750 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
751
752 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
753 return;
754
755 hctx->run++;
756
757 /*
758 * Touch any software queue that has pending entries.
759 */
760 flush_busy_ctxs(hctx, &rq_list);
761
762 /*
763 * If we have previous entries on our dispatch list, grab them
764 * and stuff them at the front for more fair dispatch.
765 */
766 if (!list_empty_careful(&hctx->dispatch)) {
767 spin_lock(&hctx->lock);
768 if (!list_empty(&hctx->dispatch))
769 list_splice_init(&hctx->dispatch, &rq_list);
770 spin_unlock(&hctx->lock);
771 }
772
773 /*
774 * Start off with dptr being NULL, so we start the first request
775 * immediately, even if we have more pending.
776 */
777 dptr = NULL;
778
779 /*
780 * Now process all the entries, sending them to the driver.
781 */
782 queued = 0;
783 while (!list_empty(&rq_list)) {
784 struct blk_mq_queue_data bd;
785 int ret;
786
787 rq = list_first_entry(&rq_list, struct request, queuelist);
788 list_del_init(&rq->queuelist);
789
790 bd.rq = rq;
791 bd.list = dptr;
792 bd.last = list_empty(&rq_list);
793
794 ret = q->mq_ops->queue_rq(hctx, &bd);
795 switch (ret) {
796 case BLK_MQ_RQ_QUEUE_OK:
797 queued++;
798 continue;
799 case BLK_MQ_RQ_QUEUE_BUSY:
800 list_add(&rq->queuelist, &rq_list);
801 __blk_mq_requeue_request(rq);
802 break;
803 default:
804 pr_err("blk-mq: bad return on queue: %d\n", ret);
805 case BLK_MQ_RQ_QUEUE_ERROR:
806 rq->errors = -EIO;
807 blk_mq_end_request(rq, rq->errors);
808 break;
809 }
810
811 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
812 break;
813
814 /*
815 * We've done the first request. If we have more than 1
816 * left in the list, set dptr to defer issue.
817 */
818 if (!dptr && rq_list.next != rq_list.prev)
819 dptr = &driver_list;
820 }
821
822 if (!queued)
823 hctx->dispatched[0]++;
824 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
825 hctx->dispatched[ilog2(queued) + 1]++;
826
827 /*
828 * Any items that need requeuing? Stuff them into hctx->dispatch,
829 * that is where we will continue on next queue run.
830 */
831 if (!list_empty(&rq_list)) {
832 spin_lock(&hctx->lock);
833 list_splice(&rq_list, &hctx->dispatch);
834 spin_unlock(&hctx->lock);
835 /*
836 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
837 * it's possible the queue is stopped and restarted again
838 * before this. Queue restart will dispatch requests. And since
839 * requests in rq_list aren't added into hctx->dispatch yet,
840 * the requests in rq_list might get lost.
841 *
842 * blk_mq_run_hw_queue() already checks the STOPPED bit
843 **/
844 blk_mq_run_hw_queue(hctx, true);
845 }
846 }
847
848 /*
849 * It'd be great if the workqueue API had a way to pass
850 * in a mask and had some smarts for more clever placement.
851 * For now we just round-robin here, switching for every
852 * BLK_MQ_CPU_WORK_BATCH queued items.
853 */
854 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
855 {
856 if (hctx->queue->nr_hw_queues == 1)
857 return WORK_CPU_UNBOUND;
858
859 if (--hctx->next_cpu_batch <= 0) {
860 int cpu = hctx->next_cpu, next_cpu;
861
862 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
863 if (next_cpu >= nr_cpu_ids)
864 next_cpu = cpumask_first(hctx->cpumask);
865
866 hctx->next_cpu = next_cpu;
867 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
868
869 return cpu;
870 }
871
872 return hctx->next_cpu;
873 }
874
875 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
876 {
877 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
878 !blk_mq_hw_queue_mapped(hctx)))
879 return;
880
881 if (!async) {
882 int cpu = get_cpu();
883 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
884 __blk_mq_run_hw_queue(hctx);
885 put_cpu();
886 return;
887 }
888
889 put_cpu();
890 }
891
892 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
893 &hctx->run_work, 0);
894 }
895
896 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
897 {
898 struct blk_mq_hw_ctx *hctx;
899 int i;
900
901 queue_for_each_hw_ctx(q, hctx, i) {
902 if ((!blk_mq_hctx_has_pending(hctx) &&
903 list_empty_careful(&hctx->dispatch)) ||
904 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
905 continue;
906
907 blk_mq_run_hw_queue(hctx, async);
908 }
909 }
910 EXPORT_SYMBOL(blk_mq_run_hw_queues);
911
912 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
913 {
914 cancel_delayed_work(&hctx->run_work);
915 cancel_delayed_work(&hctx->delay_work);
916 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
917 }
918 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
919
920 void blk_mq_stop_hw_queues(struct request_queue *q)
921 {
922 struct blk_mq_hw_ctx *hctx;
923 int i;
924
925 queue_for_each_hw_ctx(q, hctx, i)
926 blk_mq_stop_hw_queue(hctx);
927 }
928 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
929
930 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
931 {
932 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
933
934 blk_mq_run_hw_queue(hctx, false);
935 }
936 EXPORT_SYMBOL(blk_mq_start_hw_queue);
937
938 void blk_mq_start_hw_queues(struct request_queue *q)
939 {
940 struct blk_mq_hw_ctx *hctx;
941 int i;
942
943 queue_for_each_hw_ctx(q, hctx, i)
944 blk_mq_start_hw_queue(hctx);
945 }
946 EXPORT_SYMBOL(blk_mq_start_hw_queues);
947
948 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
949 {
950 struct blk_mq_hw_ctx *hctx;
951 int i;
952
953 queue_for_each_hw_ctx(q, hctx, i) {
954 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
955 continue;
956
957 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
958 blk_mq_run_hw_queue(hctx, async);
959 }
960 }
961 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
962
963 static void blk_mq_run_work_fn(struct work_struct *work)
964 {
965 struct blk_mq_hw_ctx *hctx;
966
967 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
968
969 __blk_mq_run_hw_queue(hctx);
970 }
971
972 static void blk_mq_delay_work_fn(struct work_struct *work)
973 {
974 struct blk_mq_hw_ctx *hctx;
975
976 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
977
978 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
979 __blk_mq_run_hw_queue(hctx);
980 }
981
982 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
983 {
984 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
985 return;
986
987 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
988 &hctx->delay_work, msecs_to_jiffies(msecs));
989 }
990 EXPORT_SYMBOL(blk_mq_delay_queue);
991
992 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
993 struct request *rq, bool at_head)
994 {
995 struct blk_mq_ctx *ctx = rq->mq_ctx;
996
997 trace_block_rq_insert(hctx->queue, rq);
998
999 if (at_head)
1000 list_add(&rq->queuelist, &ctx->rq_list);
1001 else
1002 list_add_tail(&rq->queuelist, &ctx->rq_list);
1003
1004 blk_mq_hctx_mark_pending(hctx, ctx);
1005 }
1006
1007 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1008 bool async)
1009 {
1010 struct request_queue *q = rq->q;
1011 struct blk_mq_hw_ctx *hctx;
1012 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
1013
1014 current_ctx = blk_mq_get_ctx(q);
1015 if (!cpu_online(ctx->cpu))
1016 rq->mq_ctx = ctx = current_ctx;
1017
1018 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1019
1020 spin_lock(&ctx->lock);
1021 __blk_mq_insert_request(hctx, rq, at_head);
1022 spin_unlock(&ctx->lock);
1023
1024 if (run_queue)
1025 blk_mq_run_hw_queue(hctx, async);
1026
1027 blk_mq_put_ctx(current_ctx);
1028 }
1029
1030 static void blk_mq_insert_requests(struct request_queue *q,
1031 struct blk_mq_ctx *ctx,
1032 struct list_head *list,
1033 int depth,
1034 bool from_schedule)
1035
1036 {
1037 struct blk_mq_hw_ctx *hctx;
1038 struct blk_mq_ctx *current_ctx;
1039
1040 trace_block_unplug(q, depth, !from_schedule);
1041
1042 current_ctx = blk_mq_get_ctx(q);
1043
1044 if (!cpu_online(ctx->cpu))
1045 ctx = current_ctx;
1046 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1047
1048 /*
1049 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1050 * offline now
1051 */
1052 spin_lock(&ctx->lock);
1053 while (!list_empty(list)) {
1054 struct request *rq;
1055
1056 rq = list_first_entry(list, struct request, queuelist);
1057 list_del_init(&rq->queuelist);
1058 rq->mq_ctx = ctx;
1059 __blk_mq_insert_request(hctx, rq, false);
1060 }
1061 spin_unlock(&ctx->lock);
1062
1063 blk_mq_run_hw_queue(hctx, from_schedule);
1064 blk_mq_put_ctx(current_ctx);
1065 }
1066
1067 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1068 {
1069 struct request *rqa = container_of(a, struct request, queuelist);
1070 struct request *rqb = container_of(b, struct request, queuelist);
1071
1072 return !(rqa->mq_ctx < rqb->mq_ctx ||
1073 (rqa->mq_ctx == rqb->mq_ctx &&
1074 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1075 }
1076
1077 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1078 {
1079 struct blk_mq_ctx *this_ctx;
1080 struct request_queue *this_q;
1081 struct request *rq;
1082 LIST_HEAD(list);
1083 LIST_HEAD(ctx_list);
1084 unsigned int depth;
1085
1086 list_splice_init(&plug->mq_list, &list);
1087
1088 list_sort(NULL, &list, plug_ctx_cmp);
1089
1090 this_q = NULL;
1091 this_ctx = NULL;
1092 depth = 0;
1093
1094 while (!list_empty(&list)) {
1095 rq = list_entry_rq(list.next);
1096 list_del_init(&rq->queuelist);
1097 BUG_ON(!rq->q);
1098 if (rq->mq_ctx != this_ctx) {
1099 if (this_ctx) {
1100 blk_mq_insert_requests(this_q, this_ctx,
1101 &ctx_list, depth,
1102 from_schedule);
1103 }
1104
1105 this_ctx = rq->mq_ctx;
1106 this_q = rq->q;
1107 depth = 0;
1108 }
1109
1110 depth++;
1111 list_add_tail(&rq->queuelist, &ctx_list);
1112 }
1113
1114 /*
1115 * If 'this_ctx' is set, we know we have entries to complete
1116 * on 'ctx_list'. Do those.
1117 */
1118 if (this_ctx) {
1119 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1120 from_schedule);
1121 }
1122 }
1123
1124 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1125 {
1126 init_request_from_bio(rq, bio);
1127
1128 if (blk_do_io_stat(rq))
1129 blk_account_io_start(rq, 1);
1130 }
1131
1132 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1133 {
1134 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1135 !blk_queue_nomerges(hctx->queue);
1136 }
1137
1138 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1139 struct blk_mq_ctx *ctx,
1140 struct request *rq, struct bio *bio)
1141 {
1142 if (!hctx_allow_merges(hctx)) {
1143 blk_mq_bio_to_request(rq, bio);
1144 spin_lock(&ctx->lock);
1145 insert_rq:
1146 __blk_mq_insert_request(hctx, rq, false);
1147 spin_unlock(&ctx->lock);
1148 return false;
1149 } else {
1150 struct request_queue *q = hctx->queue;
1151
1152 spin_lock(&ctx->lock);
1153 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1154 blk_mq_bio_to_request(rq, bio);
1155 goto insert_rq;
1156 }
1157
1158 spin_unlock(&ctx->lock);
1159 __blk_mq_free_request(hctx, ctx, rq);
1160 return true;
1161 }
1162 }
1163
1164 struct blk_map_ctx {
1165 struct blk_mq_hw_ctx *hctx;
1166 struct blk_mq_ctx *ctx;
1167 };
1168
1169 static struct request *blk_mq_map_request(struct request_queue *q,
1170 struct bio *bio,
1171 struct blk_map_ctx *data)
1172 {
1173 struct blk_mq_hw_ctx *hctx;
1174 struct blk_mq_ctx *ctx;
1175 struct request *rq;
1176 int rw = bio_data_dir(bio);
1177 struct blk_mq_alloc_data alloc_data;
1178
1179 if (unlikely(blk_mq_queue_enter(q, GFP_KERNEL))) {
1180 bio_io_error(bio);
1181 return NULL;
1182 }
1183
1184 ctx = blk_mq_get_ctx(q);
1185 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1186
1187 if (rw_is_sync(bio->bi_rw))
1188 rw |= REQ_SYNC;
1189
1190 trace_block_getrq(q, bio, rw);
1191 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1192 hctx);
1193 rq = __blk_mq_alloc_request(&alloc_data, rw);
1194 if (unlikely(!rq)) {
1195 __blk_mq_run_hw_queue(hctx);
1196 blk_mq_put_ctx(ctx);
1197 trace_block_sleeprq(q, bio, rw);
1198
1199 ctx = blk_mq_get_ctx(q);
1200 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1201 blk_mq_set_alloc_data(&alloc_data, q,
1202 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1203 rq = __blk_mq_alloc_request(&alloc_data, rw);
1204 ctx = alloc_data.ctx;
1205 hctx = alloc_data.hctx;
1206 }
1207
1208 hctx->queued++;
1209 data->hctx = hctx;
1210 data->ctx = ctx;
1211 return rq;
1212 }
1213
1214 static int blk_mq_direct_issue_request(struct request *rq)
1215 {
1216 int ret;
1217 struct request_queue *q = rq->q;
1218 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
1219 rq->mq_ctx->cpu);
1220 struct blk_mq_queue_data bd = {
1221 .rq = rq,
1222 .list = NULL,
1223 .last = 1
1224 };
1225
1226 /*
1227 * For OK queue, we are done. For error, kill it. Any other
1228 * error (busy), just add it to our list as we previously
1229 * would have done
1230 */
1231 ret = q->mq_ops->queue_rq(hctx, &bd);
1232 if (ret == BLK_MQ_RQ_QUEUE_OK)
1233 return 0;
1234 else {
1235 __blk_mq_requeue_request(rq);
1236
1237 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1238 rq->errors = -EIO;
1239 blk_mq_end_request(rq, rq->errors);
1240 return 0;
1241 }
1242 return -1;
1243 }
1244 }
1245
1246 /*
1247 * Multiple hardware queue variant. This will not use per-process plugs,
1248 * but will attempt to bypass the hctx queueing if we can go straight to
1249 * hardware for SYNC IO.
1250 */
1251 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1252 {
1253 const int is_sync = rw_is_sync(bio->bi_rw);
1254 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1255 struct blk_map_ctx data;
1256 struct request *rq;
1257 unsigned int request_count = 0;
1258 struct blk_plug *plug;
1259 struct request *same_queue_rq = NULL;
1260
1261 blk_queue_bounce(q, &bio);
1262
1263 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1264 bio_io_error(bio);
1265 return;
1266 }
1267
1268 blk_queue_split(q, &bio, q->bio_split);
1269
1270 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1271 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1272 return;
1273
1274 rq = blk_mq_map_request(q, bio, &data);
1275 if (unlikely(!rq))
1276 return;
1277
1278 if (unlikely(is_flush_fua)) {
1279 blk_mq_bio_to_request(rq, bio);
1280 blk_insert_flush(rq);
1281 goto run_queue;
1282 }
1283
1284 plug = current->plug;
1285 /*
1286 * If the driver supports defer issued based on 'last', then
1287 * queue it up like normal since we can potentially save some
1288 * CPU this way.
1289 */
1290 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1291 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1292 struct request *old_rq = NULL;
1293
1294 blk_mq_bio_to_request(rq, bio);
1295
1296 /*
1297 * we do limited pluging. If bio can be merged, do merge.
1298 * Otherwise the existing request in the plug list will be
1299 * issued. So the plug list will have one request at most
1300 */
1301 if (plug) {
1302 /*
1303 * The plug list might get flushed before this. If that
1304 * happens, same_queue_rq is invalid and plug list is empty
1305 **/
1306 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1307 old_rq = same_queue_rq;
1308 list_del_init(&old_rq->queuelist);
1309 }
1310 list_add_tail(&rq->queuelist, &plug->mq_list);
1311 } else /* is_sync */
1312 old_rq = rq;
1313 blk_mq_put_ctx(data.ctx);
1314 if (!old_rq)
1315 return;
1316 if (!blk_mq_direct_issue_request(old_rq))
1317 return;
1318 blk_mq_insert_request(old_rq, false, true, true);
1319 return;
1320 }
1321
1322 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1323 /*
1324 * For a SYNC request, send it to the hardware immediately. For
1325 * an ASYNC request, just ensure that we run it later on. The
1326 * latter allows for merging opportunities and more efficient
1327 * dispatching.
1328 */
1329 run_queue:
1330 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1331 }
1332 blk_mq_put_ctx(data.ctx);
1333 }
1334
1335 /*
1336 * Single hardware queue variant. This will attempt to use any per-process
1337 * plug for merging and IO deferral.
1338 */
1339 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1340 {
1341 const int is_sync = rw_is_sync(bio->bi_rw);
1342 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1343 struct blk_plug *plug;
1344 unsigned int request_count = 0;
1345 struct blk_map_ctx data;
1346 struct request *rq;
1347
1348 blk_queue_bounce(q, &bio);
1349
1350 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1351 bio_io_error(bio);
1352 return;
1353 }
1354
1355 blk_queue_split(q, &bio, q->bio_split);
1356
1357 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1358 blk_attempt_plug_merge(q, bio, &request_count, NULL))
1359 return;
1360
1361 rq = blk_mq_map_request(q, bio, &data);
1362 if (unlikely(!rq))
1363 return;
1364
1365 if (unlikely(is_flush_fua)) {
1366 blk_mq_bio_to_request(rq, bio);
1367 blk_insert_flush(rq);
1368 goto run_queue;
1369 }
1370
1371 /*
1372 * A task plug currently exists. Since this is completely lockless,
1373 * utilize that to temporarily store requests until the task is
1374 * either done or scheduled away.
1375 */
1376 plug = current->plug;
1377 if (plug) {
1378 blk_mq_bio_to_request(rq, bio);
1379 if (list_empty(&plug->mq_list))
1380 trace_block_plug(q);
1381 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1382 blk_flush_plug_list(plug, false);
1383 trace_block_plug(q);
1384 }
1385 list_add_tail(&rq->queuelist, &plug->mq_list);
1386 blk_mq_put_ctx(data.ctx);
1387 return;
1388 }
1389
1390 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1391 /*
1392 * For a SYNC request, send it to the hardware immediately. For
1393 * an ASYNC request, just ensure that we run it later on. The
1394 * latter allows for merging opportunities and more efficient
1395 * dispatching.
1396 */
1397 run_queue:
1398 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1399 }
1400
1401 blk_mq_put_ctx(data.ctx);
1402 }
1403
1404 /*
1405 * Default mapping to a software queue, since we use one per CPU.
1406 */
1407 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1408 {
1409 return q->queue_hw_ctx[q->mq_map[cpu]];
1410 }
1411 EXPORT_SYMBOL(blk_mq_map_queue);
1412
1413 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1414 struct blk_mq_tags *tags, unsigned int hctx_idx)
1415 {
1416 struct page *page;
1417
1418 if (tags->rqs && set->ops->exit_request) {
1419 int i;
1420
1421 for (i = 0; i < tags->nr_tags; i++) {
1422 if (!tags->rqs[i])
1423 continue;
1424 set->ops->exit_request(set->driver_data, tags->rqs[i],
1425 hctx_idx, i);
1426 tags->rqs[i] = NULL;
1427 }
1428 }
1429
1430 while (!list_empty(&tags->page_list)) {
1431 page = list_first_entry(&tags->page_list, struct page, lru);
1432 list_del_init(&page->lru);
1433 __free_pages(page, page->private);
1434 }
1435
1436 kfree(tags->rqs);
1437
1438 blk_mq_free_tags(tags);
1439 }
1440
1441 static size_t order_to_size(unsigned int order)
1442 {
1443 return (size_t)PAGE_SIZE << order;
1444 }
1445
1446 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1447 unsigned int hctx_idx)
1448 {
1449 struct blk_mq_tags *tags;
1450 unsigned int i, j, entries_per_page, max_order = 4;
1451 size_t rq_size, left;
1452
1453 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1454 set->numa_node,
1455 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1456 if (!tags)
1457 return NULL;
1458
1459 INIT_LIST_HEAD(&tags->page_list);
1460
1461 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1462 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1463 set->numa_node);
1464 if (!tags->rqs) {
1465 blk_mq_free_tags(tags);
1466 return NULL;
1467 }
1468
1469 /*
1470 * rq_size is the size of the request plus driver payload, rounded
1471 * to the cacheline size
1472 */
1473 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1474 cache_line_size());
1475 left = rq_size * set->queue_depth;
1476
1477 for (i = 0; i < set->queue_depth; ) {
1478 int this_order = max_order;
1479 struct page *page;
1480 int to_do;
1481 void *p;
1482
1483 while (left < order_to_size(this_order - 1) && this_order)
1484 this_order--;
1485
1486 do {
1487 page = alloc_pages_node(set->numa_node,
1488 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1489 this_order);
1490 if (page)
1491 break;
1492 if (!this_order--)
1493 break;
1494 if (order_to_size(this_order) < rq_size)
1495 break;
1496 } while (1);
1497
1498 if (!page)
1499 goto fail;
1500
1501 page->private = this_order;
1502 list_add_tail(&page->lru, &tags->page_list);
1503
1504 p = page_address(page);
1505 entries_per_page = order_to_size(this_order) / rq_size;
1506 to_do = min(entries_per_page, set->queue_depth - i);
1507 left -= to_do * rq_size;
1508 for (j = 0; j < to_do; j++) {
1509 tags->rqs[i] = p;
1510 if (set->ops->init_request) {
1511 if (set->ops->init_request(set->driver_data,
1512 tags->rqs[i], hctx_idx, i,
1513 set->numa_node)) {
1514 tags->rqs[i] = NULL;
1515 goto fail;
1516 }
1517 }
1518
1519 p += rq_size;
1520 i++;
1521 }
1522 }
1523 return tags;
1524
1525 fail:
1526 blk_mq_free_rq_map(set, tags, hctx_idx);
1527 return NULL;
1528 }
1529
1530 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1531 {
1532 kfree(bitmap->map);
1533 }
1534
1535 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1536 {
1537 unsigned int bpw = 8, total, num_maps, i;
1538
1539 bitmap->bits_per_word = bpw;
1540
1541 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1542 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1543 GFP_KERNEL, node);
1544 if (!bitmap->map)
1545 return -ENOMEM;
1546
1547 total = nr_cpu_ids;
1548 for (i = 0; i < num_maps; i++) {
1549 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1550 total -= bitmap->map[i].depth;
1551 }
1552
1553 return 0;
1554 }
1555
1556 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1557 {
1558 struct request_queue *q = hctx->queue;
1559 struct blk_mq_ctx *ctx;
1560 LIST_HEAD(tmp);
1561
1562 /*
1563 * Move ctx entries to new CPU, if this one is going away.
1564 */
1565 ctx = __blk_mq_get_ctx(q, cpu);
1566
1567 spin_lock(&ctx->lock);
1568 if (!list_empty(&ctx->rq_list)) {
1569 list_splice_init(&ctx->rq_list, &tmp);
1570 blk_mq_hctx_clear_pending(hctx, ctx);
1571 }
1572 spin_unlock(&ctx->lock);
1573
1574 if (list_empty(&tmp))
1575 return NOTIFY_OK;
1576
1577 ctx = blk_mq_get_ctx(q);
1578 spin_lock(&ctx->lock);
1579
1580 while (!list_empty(&tmp)) {
1581 struct request *rq;
1582
1583 rq = list_first_entry(&tmp, struct request, queuelist);
1584 rq->mq_ctx = ctx;
1585 list_move_tail(&rq->queuelist, &ctx->rq_list);
1586 }
1587
1588 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1589 blk_mq_hctx_mark_pending(hctx, ctx);
1590
1591 spin_unlock(&ctx->lock);
1592
1593 blk_mq_run_hw_queue(hctx, true);
1594 blk_mq_put_ctx(ctx);
1595 return NOTIFY_OK;
1596 }
1597
1598 static int blk_mq_hctx_notify(void *data, unsigned long action,
1599 unsigned int cpu)
1600 {
1601 struct blk_mq_hw_ctx *hctx = data;
1602
1603 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1604 return blk_mq_hctx_cpu_offline(hctx, cpu);
1605
1606 /*
1607 * In case of CPU online, tags may be reallocated
1608 * in blk_mq_map_swqueue() after mapping is updated.
1609 */
1610
1611 return NOTIFY_OK;
1612 }
1613
1614 /* hctx->ctxs will be freed in queue's release handler */
1615 static void blk_mq_exit_hctx(struct request_queue *q,
1616 struct blk_mq_tag_set *set,
1617 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1618 {
1619 unsigned flush_start_tag = set->queue_depth;
1620
1621 blk_mq_tag_idle(hctx);
1622
1623 if (set->ops->exit_request)
1624 set->ops->exit_request(set->driver_data,
1625 hctx->fq->flush_rq, hctx_idx,
1626 flush_start_tag + hctx_idx);
1627
1628 if (set->ops->exit_hctx)
1629 set->ops->exit_hctx(hctx, hctx_idx);
1630
1631 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1632 blk_free_flush_queue(hctx->fq);
1633 blk_mq_free_bitmap(&hctx->ctx_map);
1634 }
1635
1636 static void blk_mq_exit_hw_queues(struct request_queue *q,
1637 struct blk_mq_tag_set *set, int nr_queue)
1638 {
1639 struct blk_mq_hw_ctx *hctx;
1640 unsigned int i;
1641
1642 queue_for_each_hw_ctx(q, hctx, i) {
1643 if (i == nr_queue)
1644 break;
1645 blk_mq_exit_hctx(q, set, hctx, i);
1646 }
1647 }
1648
1649 static void blk_mq_free_hw_queues(struct request_queue *q,
1650 struct blk_mq_tag_set *set)
1651 {
1652 struct blk_mq_hw_ctx *hctx;
1653 unsigned int i;
1654
1655 queue_for_each_hw_ctx(q, hctx, i)
1656 free_cpumask_var(hctx->cpumask);
1657 }
1658
1659 static int blk_mq_init_hctx(struct request_queue *q,
1660 struct blk_mq_tag_set *set,
1661 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1662 {
1663 int node;
1664 unsigned flush_start_tag = set->queue_depth;
1665
1666 node = hctx->numa_node;
1667 if (node == NUMA_NO_NODE)
1668 node = hctx->numa_node = set->numa_node;
1669
1670 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1671 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1672 spin_lock_init(&hctx->lock);
1673 INIT_LIST_HEAD(&hctx->dispatch);
1674 hctx->queue = q;
1675 hctx->queue_num = hctx_idx;
1676 hctx->flags = set->flags;
1677
1678 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1679 blk_mq_hctx_notify, hctx);
1680 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1681
1682 hctx->tags = set->tags[hctx_idx];
1683
1684 /*
1685 * Allocate space for all possible cpus to avoid allocation at
1686 * runtime
1687 */
1688 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1689 GFP_KERNEL, node);
1690 if (!hctx->ctxs)
1691 goto unregister_cpu_notifier;
1692
1693 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1694 goto free_ctxs;
1695
1696 hctx->nr_ctx = 0;
1697
1698 if (set->ops->init_hctx &&
1699 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1700 goto free_bitmap;
1701
1702 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1703 if (!hctx->fq)
1704 goto exit_hctx;
1705
1706 if (set->ops->init_request &&
1707 set->ops->init_request(set->driver_data,
1708 hctx->fq->flush_rq, hctx_idx,
1709 flush_start_tag + hctx_idx, node))
1710 goto free_fq;
1711
1712 return 0;
1713
1714 free_fq:
1715 kfree(hctx->fq);
1716 exit_hctx:
1717 if (set->ops->exit_hctx)
1718 set->ops->exit_hctx(hctx, hctx_idx);
1719 free_bitmap:
1720 blk_mq_free_bitmap(&hctx->ctx_map);
1721 free_ctxs:
1722 kfree(hctx->ctxs);
1723 unregister_cpu_notifier:
1724 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1725
1726 return -1;
1727 }
1728
1729 static int blk_mq_init_hw_queues(struct request_queue *q,
1730 struct blk_mq_tag_set *set)
1731 {
1732 struct blk_mq_hw_ctx *hctx;
1733 unsigned int i;
1734
1735 /*
1736 * Initialize hardware queues
1737 */
1738 queue_for_each_hw_ctx(q, hctx, i) {
1739 if (blk_mq_init_hctx(q, set, hctx, i))
1740 break;
1741 }
1742
1743 if (i == q->nr_hw_queues)
1744 return 0;
1745
1746 /*
1747 * Init failed
1748 */
1749 blk_mq_exit_hw_queues(q, set, i);
1750
1751 return 1;
1752 }
1753
1754 static void blk_mq_init_cpu_queues(struct request_queue *q,
1755 unsigned int nr_hw_queues)
1756 {
1757 unsigned int i;
1758
1759 for_each_possible_cpu(i) {
1760 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1761 struct blk_mq_hw_ctx *hctx;
1762
1763 memset(__ctx, 0, sizeof(*__ctx));
1764 __ctx->cpu = i;
1765 spin_lock_init(&__ctx->lock);
1766 INIT_LIST_HEAD(&__ctx->rq_list);
1767 __ctx->queue = q;
1768
1769 /* If the cpu isn't online, the cpu is mapped to first hctx */
1770 if (!cpu_online(i))
1771 continue;
1772
1773 hctx = q->mq_ops->map_queue(q, i);
1774
1775 /*
1776 * Set local node, IFF we have more than one hw queue. If
1777 * not, we remain on the home node of the device
1778 */
1779 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1780 hctx->numa_node = cpu_to_node(i);
1781 }
1782 }
1783
1784 static void blk_mq_map_swqueue(struct request_queue *q,
1785 const struct cpumask *online_mask)
1786 {
1787 unsigned int i;
1788 struct blk_mq_hw_ctx *hctx;
1789 struct blk_mq_ctx *ctx;
1790 struct blk_mq_tag_set *set = q->tag_set;
1791
1792 /*
1793 * Avoid others reading imcomplete hctx->cpumask through sysfs
1794 */
1795 mutex_lock(&q->sysfs_lock);
1796
1797 queue_for_each_hw_ctx(q, hctx, i) {
1798 cpumask_clear(hctx->cpumask);
1799 hctx->nr_ctx = 0;
1800 }
1801
1802 /*
1803 * Map software to hardware queues
1804 */
1805 queue_for_each_ctx(q, ctx, i) {
1806 /* If the cpu isn't online, the cpu is mapped to first hctx */
1807 if (!cpumask_test_cpu(i, online_mask))
1808 continue;
1809
1810 hctx = q->mq_ops->map_queue(q, i);
1811 cpumask_set_cpu(i, hctx->cpumask);
1812 ctx->index_hw = hctx->nr_ctx;
1813 hctx->ctxs[hctx->nr_ctx++] = ctx;
1814 }
1815
1816 mutex_unlock(&q->sysfs_lock);
1817
1818 queue_for_each_hw_ctx(q, hctx, i) {
1819 struct blk_mq_ctxmap *map = &hctx->ctx_map;
1820
1821 /*
1822 * If no software queues are mapped to this hardware queue,
1823 * disable it and free the request entries.
1824 */
1825 if (!hctx->nr_ctx) {
1826 if (set->tags[i]) {
1827 blk_mq_free_rq_map(set, set->tags[i], i);
1828 set->tags[i] = NULL;
1829 }
1830 hctx->tags = NULL;
1831 continue;
1832 }
1833
1834 /* unmapped hw queue can be remapped after CPU topo changed */
1835 if (!set->tags[i])
1836 set->tags[i] = blk_mq_init_rq_map(set, i);
1837 hctx->tags = set->tags[i];
1838 WARN_ON(!hctx->tags);
1839
1840 /*
1841 * Set the map size to the number of mapped software queues.
1842 * This is more accurate and more efficient than looping
1843 * over all possibly mapped software queues.
1844 */
1845 map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1846
1847 /*
1848 * Initialize batch roundrobin counts
1849 */
1850 hctx->next_cpu = cpumask_first(hctx->cpumask);
1851 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1852 }
1853
1854 queue_for_each_ctx(q, ctx, i) {
1855 if (!cpumask_test_cpu(i, online_mask))
1856 continue;
1857
1858 hctx = q->mq_ops->map_queue(q, i);
1859 cpumask_set_cpu(i, hctx->tags->cpumask);
1860 }
1861 }
1862
1863 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1864 {
1865 struct blk_mq_hw_ctx *hctx;
1866 struct request_queue *q;
1867 bool shared;
1868 int i;
1869
1870 if (set->tag_list.next == set->tag_list.prev)
1871 shared = false;
1872 else
1873 shared = true;
1874
1875 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1876 blk_mq_freeze_queue(q);
1877
1878 queue_for_each_hw_ctx(q, hctx, i) {
1879 if (shared)
1880 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1881 else
1882 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1883 }
1884 blk_mq_unfreeze_queue(q);
1885 }
1886 }
1887
1888 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1889 {
1890 struct blk_mq_tag_set *set = q->tag_set;
1891
1892 mutex_lock(&set->tag_list_lock);
1893 list_del_init(&q->tag_set_list);
1894 blk_mq_update_tag_set_depth(set);
1895 mutex_unlock(&set->tag_list_lock);
1896 }
1897
1898 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1899 struct request_queue *q)
1900 {
1901 q->tag_set = set;
1902
1903 mutex_lock(&set->tag_list_lock);
1904 list_add_tail(&q->tag_set_list, &set->tag_list);
1905 blk_mq_update_tag_set_depth(set);
1906 mutex_unlock(&set->tag_list_lock);
1907 }
1908
1909 /*
1910 * It is the actual release handler for mq, but we do it from
1911 * request queue's release handler for avoiding use-after-free
1912 * and headache because q->mq_kobj shouldn't have been introduced,
1913 * but we can't group ctx/kctx kobj without it.
1914 */
1915 void blk_mq_release(struct request_queue *q)
1916 {
1917 struct blk_mq_hw_ctx *hctx;
1918 unsigned int i;
1919
1920 /* hctx kobj stays in hctx */
1921 queue_for_each_hw_ctx(q, hctx, i) {
1922 if (!hctx)
1923 continue;
1924 kfree(hctx->ctxs);
1925 kfree(hctx);
1926 }
1927
1928 kfree(q->mq_map);
1929 q->mq_map = NULL;
1930
1931 kfree(q->queue_hw_ctx);
1932
1933 /* ctx kobj stays in queue_ctx */
1934 free_percpu(q->queue_ctx);
1935 }
1936
1937 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1938 {
1939 struct request_queue *uninit_q, *q;
1940
1941 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1942 if (!uninit_q)
1943 return ERR_PTR(-ENOMEM);
1944
1945 q = blk_mq_init_allocated_queue(set, uninit_q);
1946 if (IS_ERR(q))
1947 blk_cleanup_queue(uninit_q);
1948
1949 return q;
1950 }
1951 EXPORT_SYMBOL(blk_mq_init_queue);
1952
1953 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
1954 struct request_queue *q)
1955 {
1956 struct blk_mq_hw_ctx **hctxs;
1957 struct blk_mq_ctx __percpu *ctx;
1958 unsigned int *map;
1959 int i;
1960
1961 ctx = alloc_percpu(struct blk_mq_ctx);
1962 if (!ctx)
1963 return ERR_PTR(-ENOMEM);
1964
1965 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1966 set->numa_node);
1967
1968 if (!hctxs)
1969 goto err_percpu;
1970
1971 map = blk_mq_make_queue_map(set);
1972 if (!map)
1973 goto err_map;
1974
1975 for (i = 0; i < set->nr_hw_queues; i++) {
1976 int node = blk_mq_hw_queue_to_node(map, i);
1977
1978 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1979 GFP_KERNEL, node);
1980 if (!hctxs[i])
1981 goto err_hctxs;
1982
1983 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1984 node))
1985 goto err_hctxs;
1986
1987 atomic_set(&hctxs[i]->nr_active, 0);
1988 hctxs[i]->numa_node = node;
1989 hctxs[i]->queue_num = i;
1990 }
1991
1992 /*
1993 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1994 * See blk_register_queue() for details.
1995 */
1996 if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release,
1997 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1998 goto err_hctxs;
1999
2000 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
2001 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2002
2003 q->nr_queues = nr_cpu_ids;
2004 q->nr_hw_queues = set->nr_hw_queues;
2005 q->mq_map = map;
2006
2007 q->queue_ctx = ctx;
2008 q->queue_hw_ctx = hctxs;
2009
2010 q->mq_ops = set->ops;
2011 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2012
2013 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2014 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2015
2016 q->sg_reserved_size = INT_MAX;
2017
2018 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
2019 INIT_LIST_HEAD(&q->requeue_list);
2020 spin_lock_init(&q->requeue_lock);
2021
2022 if (q->nr_hw_queues > 1)
2023 blk_queue_make_request(q, blk_mq_make_request);
2024 else
2025 blk_queue_make_request(q, blk_sq_make_request);
2026
2027 /*
2028 * Do this after blk_queue_make_request() overrides it...
2029 */
2030 q->nr_requests = set->queue_depth;
2031
2032 if (set->ops->complete)
2033 blk_queue_softirq_done(q, set->ops->complete);
2034
2035 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2036
2037 if (blk_mq_init_hw_queues(q, set))
2038 goto err_hctxs;
2039
2040 get_online_cpus();
2041 mutex_lock(&all_q_mutex);
2042
2043 list_add_tail(&q->all_q_node, &all_q_list);
2044 blk_mq_add_queue_tag_set(set, q);
2045 blk_mq_map_swqueue(q, cpu_online_mask);
2046
2047 mutex_unlock(&all_q_mutex);
2048 put_online_cpus();
2049
2050 return q;
2051
2052 err_hctxs:
2053 kfree(map);
2054 for (i = 0; i < set->nr_hw_queues; i++) {
2055 if (!hctxs[i])
2056 break;
2057 free_cpumask_var(hctxs[i]->cpumask);
2058 kfree(hctxs[i]);
2059 }
2060 err_map:
2061 kfree(hctxs);
2062 err_percpu:
2063 free_percpu(ctx);
2064 return ERR_PTR(-ENOMEM);
2065 }
2066 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2067
2068 void blk_mq_free_queue(struct request_queue *q)
2069 {
2070 struct blk_mq_tag_set *set = q->tag_set;
2071
2072 mutex_lock(&all_q_mutex);
2073 list_del_init(&q->all_q_node);
2074 mutex_unlock(&all_q_mutex);
2075
2076 blk_mq_del_queue_tag_set(q);
2077
2078 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2079 blk_mq_free_hw_queues(q, set);
2080
2081 percpu_ref_exit(&q->mq_usage_counter);
2082 }
2083
2084 /* Basically redo blk_mq_init_queue with queue frozen */
2085 static void blk_mq_queue_reinit(struct request_queue *q,
2086 const struct cpumask *online_mask)
2087 {
2088 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2089
2090 blk_mq_sysfs_unregister(q);
2091
2092 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask);
2093
2094 /*
2095 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2096 * we should change hctx numa_node according to new topology (this
2097 * involves free and re-allocate memory, worthy doing?)
2098 */
2099
2100 blk_mq_map_swqueue(q, online_mask);
2101
2102 blk_mq_sysfs_register(q);
2103 }
2104
2105 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2106 unsigned long action, void *hcpu)
2107 {
2108 struct request_queue *q;
2109 int cpu = (unsigned long)hcpu;
2110 /*
2111 * New online cpumask which is going to be set in this hotplug event.
2112 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2113 * one-by-one and dynamically allocating this could result in a failure.
2114 */
2115 static struct cpumask online_new;
2116
2117 /*
2118 * Before hotadded cpu starts handling requests, new mappings must
2119 * be established. Otherwise, these requests in hw queue might
2120 * never be dispatched.
2121 *
2122 * For example, there is a single hw queue (hctx) and two CPU queues
2123 * (ctx0 for CPU0, and ctx1 for CPU1).
2124 *
2125 * Now CPU1 is just onlined and a request is inserted into
2126 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
2127 * still zero.
2128 *
2129 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
2130 * set in pending bitmap and tries to retrieve requests in
2131 * hctx->ctxs[0]->rq_list. But htx->ctxs[0] is a pointer to ctx0,
2132 * so the request in ctx1->rq_list is ignored.
2133 */
2134 switch (action & ~CPU_TASKS_FROZEN) {
2135 case CPU_DEAD:
2136 case CPU_UP_CANCELED:
2137 cpumask_copy(&online_new, cpu_online_mask);
2138 break;
2139 case CPU_UP_PREPARE:
2140 cpumask_copy(&online_new, cpu_online_mask);
2141 cpumask_set_cpu(cpu, &online_new);
2142 break;
2143 default:
2144 return NOTIFY_OK;
2145 }
2146
2147 mutex_lock(&all_q_mutex);
2148
2149 /*
2150 * We need to freeze and reinit all existing queues. Freezing
2151 * involves synchronous wait for an RCU grace period and doing it
2152 * one by one may take a long time. Start freezing all queues in
2153 * one swoop and then wait for the completions so that freezing can
2154 * take place in parallel.
2155 */
2156 list_for_each_entry(q, &all_q_list, all_q_node)
2157 blk_mq_freeze_queue_start(q);
2158 list_for_each_entry(q, &all_q_list, all_q_node) {
2159 blk_mq_freeze_queue_wait(q);
2160
2161 /*
2162 * timeout handler can't touch hw queue during the
2163 * reinitialization
2164 */
2165 del_timer_sync(&q->timeout);
2166 }
2167
2168 list_for_each_entry(q, &all_q_list, all_q_node)
2169 blk_mq_queue_reinit(q, &online_new);
2170
2171 list_for_each_entry(q, &all_q_list, all_q_node)
2172 blk_mq_unfreeze_queue(q);
2173
2174 mutex_unlock(&all_q_mutex);
2175 return NOTIFY_OK;
2176 }
2177
2178 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2179 {
2180 int i;
2181
2182 for (i = 0; i < set->nr_hw_queues; i++) {
2183 set->tags[i] = blk_mq_init_rq_map(set, i);
2184 if (!set->tags[i])
2185 goto out_unwind;
2186 }
2187
2188 return 0;
2189
2190 out_unwind:
2191 while (--i >= 0)
2192 blk_mq_free_rq_map(set, set->tags[i], i);
2193
2194 return -ENOMEM;
2195 }
2196
2197 /*
2198 * Allocate the request maps associated with this tag_set. Note that this
2199 * may reduce the depth asked for, if memory is tight. set->queue_depth
2200 * will be updated to reflect the allocated depth.
2201 */
2202 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2203 {
2204 unsigned int depth;
2205 int err;
2206
2207 depth = set->queue_depth;
2208 do {
2209 err = __blk_mq_alloc_rq_maps(set);
2210 if (!err)
2211 break;
2212
2213 set->queue_depth >>= 1;
2214 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2215 err = -ENOMEM;
2216 break;
2217 }
2218 } while (set->queue_depth);
2219
2220 if (!set->queue_depth || err) {
2221 pr_err("blk-mq: failed to allocate request map\n");
2222 return -ENOMEM;
2223 }
2224
2225 if (depth != set->queue_depth)
2226 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2227 depth, set->queue_depth);
2228
2229 return 0;
2230 }
2231
2232 struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
2233 {
2234 return tags->cpumask;
2235 }
2236 EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);
2237
2238 /*
2239 * Alloc a tag set to be associated with one or more request queues.
2240 * May fail with EINVAL for various error conditions. May adjust the
2241 * requested depth down, if if it too large. In that case, the set
2242 * value will be stored in set->queue_depth.
2243 */
2244 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2245 {
2246 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2247
2248 if (!set->nr_hw_queues)
2249 return -EINVAL;
2250 if (!set->queue_depth)
2251 return -EINVAL;
2252 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2253 return -EINVAL;
2254
2255 if (!set->ops->queue_rq || !set->ops->map_queue)
2256 return -EINVAL;
2257
2258 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2259 pr_info("blk-mq: reduced tag depth to %u\n",
2260 BLK_MQ_MAX_DEPTH);
2261 set->queue_depth = BLK_MQ_MAX_DEPTH;
2262 }
2263
2264 /*
2265 * If a crashdump is active, then we are potentially in a very
2266 * memory constrained environment. Limit us to 1 queue and
2267 * 64 tags to prevent using too much memory.
2268 */
2269 if (is_kdump_kernel()) {
2270 set->nr_hw_queues = 1;
2271 set->queue_depth = min(64U, set->queue_depth);
2272 }
2273
2274 set->tags = kmalloc_node(set->nr_hw_queues *
2275 sizeof(struct blk_mq_tags *),
2276 GFP_KERNEL, set->numa_node);
2277 if (!set->tags)
2278 return -ENOMEM;
2279
2280 if (blk_mq_alloc_rq_maps(set))
2281 goto enomem;
2282
2283 mutex_init(&set->tag_list_lock);
2284 INIT_LIST_HEAD(&set->tag_list);
2285
2286 return 0;
2287 enomem:
2288 kfree(set->tags);
2289 set->tags = NULL;
2290 return -ENOMEM;
2291 }
2292 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2293
2294 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2295 {
2296 int i;
2297
2298 for (i = 0; i < set->nr_hw_queues; i++) {
2299 if (set->tags[i])
2300 blk_mq_free_rq_map(set, set->tags[i], i);
2301 }
2302
2303 kfree(set->tags);
2304 set->tags = NULL;
2305 }
2306 EXPORT_SYMBOL(blk_mq_free_tag_set);
2307
2308 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2309 {
2310 struct blk_mq_tag_set *set = q->tag_set;
2311 struct blk_mq_hw_ctx *hctx;
2312 int i, ret;
2313
2314 if (!set || nr > set->queue_depth)
2315 return -EINVAL;
2316
2317 ret = 0;
2318 queue_for_each_hw_ctx(q, hctx, i) {
2319 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2320 if (ret)
2321 break;
2322 }
2323
2324 if (!ret)
2325 q->nr_requests = nr;
2326
2327 return ret;
2328 }
2329
2330 void blk_mq_disable_hotplug(void)
2331 {
2332 mutex_lock(&all_q_mutex);
2333 }
2334
2335 void blk_mq_enable_hotplug(void)
2336 {
2337 mutex_unlock(&all_q_mutex);
2338 }
2339
2340 static int __init blk_mq_init(void)
2341 {
2342 blk_mq_cpu_init();
2343
2344 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2345
2346 return 0;
2347 }
2348 subsys_initcall(blk_mq_init);