]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-mq.c
Merge tag 'pm-4.11-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
[mirror_ubuntu-artful-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-tag.h"
35 #include "blk-stat.h"
36 #include "blk-wbt.h"
37 #include "blk-mq-sched.h"
38
39 static DEFINE_MUTEX(all_q_mutex);
40 static LIST_HEAD(all_q_list);
41
42 /*
43 * Check if any of the ctx's have pending work in this hardware queue
44 */
45 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
46 {
47 return sbitmap_any_bit_set(&hctx->ctx_map) ||
48 !list_empty_careful(&hctx->dispatch) ||
49 blk_mq_sched_has_work(hctx);
50 }
51
52 /*
53 * Mark this ctx as having pending work in this hardware queue
54 */
55 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
56 struct blk_mq_ctx *ctx)
57 {
58 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
59 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
60 }
61
62 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
63 struct blk_mq_ctx *ctx)
64 {
65 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
66 }
67
68 void blk_mq_freeze_queue_start(struct request_queue *q)
69 {
70 int freeze_depth;
71
72 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
73 if (freeze_depth == 1) {
74 percpu_ref_kill(&q->q_usage_counter);
75 blk_mq_run_hw_queues(q, false);
76 }
77 }
78 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
79
80 void blk_mq_freeze_queue_wait(struct request_queue *q)
81 {
82 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
83 }
84 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
85
86 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
87 unsigned long timeout)
88 {
89 return wait_event_timeout(q->mq_freeze_wq,
90 percpu_ref_is_zero(&q->q_usage_counter),
91 timeout);
92 }
93 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
94
95 /*
96 * Guarantee no request is in use, so we can change any data structure of
97 * the queue afterward.
98 */
99 void blk_freeze_queue(struct request_queue *q)
100 {
101 /*
102 * In the !blk_mq case we are only calling this to kill the
103 * q_usage_counter, otherwise this increases the freeze depth
104 * and waits for it to return to zero. For this reason there is
105 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
106 * exported to drivers as the only user for unfreeze is blk_mq.
107 */
108 blk_mq_freeze_queue_start(q);
109 blk_mq_freeze_queue_wait(q);
110 }
111
112 void blk_mq_freeze_queue(struct request_queue *q)
113 {
114 /*
115 * ...just an alias to keep freeze and unfreeze actions balanced
116 * in the blk_mq_* namespace
117 */
118 blk_freeze_queue(q);
119 }
120 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
121
122 void blk_mq_unfreeze_queue(struct request_queue *q)
123 {
124 int freeze_depth;
125
126 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
127 WARN_ON_ONCE(freeze_depth < 0);
128 if (!freeze_depth) {
129 percpu_ref_reinit(&q->q_usage_counter);
130 wake_up_all(&q->mq_freeze_wq);
131 }
132 }
133 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
134
135 /**
136 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
137 * @q: request queue.
138 *
139 * Note: this function does not prevent that the struct request end_io()
140 * callback function is invoked. Additionally, it is not prevented that
141 * new queue_rq() calls occur unless the queue has been stopped first.
142 */
143 void blk_mq_quiesce_queue(struct request_queue *q)
144 {
145 struct blk_mq_hw_ctx *hctx;
146 unsigned int i;
147 bool rcu = false;
148
149 blk_mq_stop_hw_queues(q);
150
151 queue_for_each_hw_ctx(q, hctx, i) {
152 if (hctx->flags & BLK_MQ_F_BLOCKING)
153 synchronize_srcu(&hctx->queue_rq_srcu);
154 else
155 rcu = true;
156 }
157 if (rcu)
158 synchronize_rcu();
159 }
160 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
161
162 void blk_mq_wake_waiters(struct request_queue *q)
163 {
164 struct blk_mq_hw_ctx *hctx;
165 unsigned int i;
166
167 queue_for_each_hw_ctx(q, hctx, i)
168 if (blk_mq_hw_queue_mapped(hctx))
169 blk_mq_tag_wakeup_all(hctx->tags, true);
170
171 /*
172 * If we are called because the queue has now been marked as
173 * dying, we need to ensure that processes currently waiting on
174 * the queue are notified as well.
175 */
176 wake_up_all(&q->mq_freeze_wq);
177 }
178
179 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
180 {
181 return blk_mq_has_free_tags(hctx->tags);
182 }
183 EXPORT_SYMBOL(blk_mq_can_queue);
184
185 void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
186 struct request *rq, unsigned int op)
187 {
188 INIT_LIST_HEAD(&rq->queuelist);
189 /* csd/requeue_work/fifo_time is initialized before use */
190 rq->q = q;
191 rq->mq_ctx = ctx;
192 rq->cmd_flags = op;
193 if (blk_queue_io_stat(q))
194 rq->rq_flags |= RQF_IO_STAT;
195 /* do not touch atomic flags, it needs atomic ops against the timer */
196 rq->cpu = -1;
197 INIT_HLIST_NODE(&rq->hash);
198 RB_CLEAR_NODE(&rq->rb_node);
199 rq->rq_disk = NULL;
200 rq->part = NULL;
201 rq->start_time = jiffies;
202 #ifdef CONFIG_BLK_CGROUP
203 rq->rl = NULL;
204 set_start_time_ns(rq);
205 rq->io_start_time_ns = 0;
206 #endif
207 rq->nr_phys_segments = 0;
208 #if defined(CONFIG_BLK_DEV_INTEGRITY)
209 rq->nr_integrity_segments = 0;
210 #endif
211 rq->special = NULL;
212 /* tag was already set */
213 rq->errors = 0;
214 rq->extra_len = 0;
215
216 INIT_LIST_HEAD(&rq->timeout_list);
217 rq->timeout = 0;
218
219 rq->end_io = NULL;
220 rq->end_io_data = NULL;
221 rq->next_rq = NULL;
222
223 ctx->rq_dispatched[op_is_sync(op)]++;
224 }
225 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
226
227 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
228 unsigned int op)
229 {
230 struct request *rq;
231 unsigned int tag;
232
233 tag = blk_mq_get_tag(data);
234 if (tag != BLK_MQ_TAG_FAIL) {
235 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
236
237 rq = tags->static_rqs[tag];
238
239 if (data->flags & BLK_MQ_REQ_INTERNAL) {
240 rq->tag = -1;
241 rq->internal_tag = tag;
242 } else {
243 if (blk_mq_tag_busy(data->hctx)) {
244 rq->rq_flags = RQF_MQ_INFLIGHT;
245 atomic_inc(&data->hctx->nr_active);
246 }
247 rq->tag = tag;
248 rq->internal_tag = -1;
249 data->hctx->tags->rqs[rq->tag] = rq;
250 }
251
252 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
253 return rq;
254 }
255
256 return NULL;
257 }
258 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
259
260 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
261 unsigned int flags)
262 {
263 struct blk_mq_alloc_data alloc_data = { .flags = flags };
264 struct request *rq;
265 int ret;
266
267 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
268 if (ret)
269 return ERR_PTR(ret);
270
271 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
272
273 blk_mq_put_ctx(alloc_data.ctx);
274 blk_queue_exit(q);
275
276 if (!rq)
277 return ERR_PTR(-EWOULDBLOCK);
278
279 rq->__data_len = 0;
280 rq->__sector = (sector_t) -1;
281 rq->bio = rq->biotail = NULL;
282 return rq;
283 }
284 EXPORT_SYMBOL(blk_mq_alloc_request);
285
286 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
287 unsigned int flags, unsigned int hctx_idx)
288 {
289 struct blk_mq_alloc_data alloc_data = { .flags = flags };
290 struct request *rq;
291 unsigned int cpu;
292 int ret;
293
294 /*
295 * If the tag allocator sleeps we could get an allocation for a
296 * different hardware context. No need to complicate the low level
297 * allocator for this for the rare use case of a command tied to
298 * a specific queue.
299 */
300 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
301 return ERR_PTR(-EINVAL);
302
303 if (hctx_idx >= q->nr_hw_queues)
304 return ERR_PTR(-EIO);
305
306 ret = blk_queue_enter(q, true);
307 if (ret)
308 return ERR_PTR(ret);
309
310 /*
311 * Check if the hardware context is actually mapped to anything.
312 * If not tell the caller that it should skip this queue.
313 */
314 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
315 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
316 blk_queue_exit(q);
317 return ERR_PTR(-EXDEV);
318 }
319 cpu = cpumask_first(alloc_data.hctx->cpumask);
320 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
321
322 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
323
324 blk_mq_put_ctx(alloc_data.ctx);
325 blk_queue_exit(q);
326
327 if (!rq)
328 return ERR_PTR(-EWOULDBLOCK);
329
330 return rq;
331 }
332 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
333
334 void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
335 struct request *rq)
336 {
337 const int sched_tag = rq->internal_tag;
338 struct request_queue *q = rq->q;
339
340 if (rq->rq_flags & RQF_MQ_INFLIGHT)
341 atomic_dec(&hctx->nr_active);
342
343 wbt_done(q->rq_wb, &rq->issue_stat);
344 rq->rq_flags = 0;
345
346 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
347 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
348 if (rq->tag != -1)
349 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
350 if (sched_tag != -1)
351 blk_mq_sched_completed_request(hctx, rq);
352 blk_mq_sched_restart_queues(hctx);
353 blk_queue_exit(q);
354 }
355
356 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
357 struct request *rq)
358 {
359 struct blk_mq_ctx *ctx = rq->mq_ctx;
360
361 ctx->rq_completed[rq_is_sync(rq)]++;
362 __blk_mq_finish_request(hctx, ctx, rq);
363 }
364
365 void blk_mq_finish_request(struct request *rq)
366 {
367 blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
368 }
369
370 void blk_mq_free_request(struct request *rq)
371 {
372 blk_mq_sched_put_request(rq);
373 }
374 EXPORT_SYMBOL_GPL(blk_mq_free_request);
375
376 inline void __blk_mq_end_request(struct request *rq, int error)
377 {
378 blk_account_io_done(rq);
379
380 if (rq->end_io) {
381 wbt_done(rq->q->rq_wb, &rq->issue_stat);
382 rq->end_io(rq, error);
383 } else {
384 if (unlikely(blk_bidi_rq(rq)))
385 blk_mq_free_request(rq->next_rq);
386 blk_mq_free_request(rq);
387 }
388 }
389 EXPORT_SYMBOL(__blk_mq_end_request);
390
391 void blk_mq_end_request(struct request *rq, int error)
392 {
393 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
394 BUG();
395 __blk_mq_end_request(rq, error);
396 }
397 EXPORT_SYMBOL(blk_mq_end_request);
398
399 static void __blk_mq_complete_request_remote(void *data)
400 {
401 struct request *rq = data;
402
403 rq->q->softirq_done_fn(rq);
404 }
405
406 static void blk_mq_ipi_complete_request(struct request *rq)
407 {
408 struct blk_mq_ctx *ctx = rq->mq_ctx;
409 bool shared = false;
410 int cpu;
411
412 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
413 rq->q->softirq_done_fn(rq);
414 return;
415 }
416
417 cpu = get_cpu();
418 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
419 shared = cpus_share_cache(cpu, ctx->cpu);
420
421 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
422 rq->csd.func = __blk_mq_complete_request_remote;
423 rq->csd.info = rq;
424 rq->csd.flags = 0;
425 smp_call_function_single_async(ctx->cpu, &rq->csd);
426 } else {
427 rq->q->softirq_done_fn(rq);
428 }
429 put_cpu();
430 }
431
432 static void blk_mq_stat_add(struct request *rq)
433 {
434 if (rq->rq_flags & RQF_STATS) {
435 /*
436 * We could rq->mq_ctx here, but there's less of a risk
437 * of races if we have the completion event add the stats
438 * to the local software queue.
439 */
440 struct blk_mq_ctx *ctx;
441
442 ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
443 blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
444 }
445 }
446
447 static void __blk_mq_complete_request(struct request *rq)
448 {
449 struct request_queue *q = rq->q;
450
451 blk_mq_stat_add(rq);
452
453 if (!q->softirq_done_fn)
454 blk_mq_end_request(rq, rq->errors);
455 else
456 blk_mq_ipi_complete_request(rq);
457 }
458
459 /**
460 * blk_mq_complete_request - end I/O on a request
461 * @rq: the request being processed
462 *
463 * Description:
464 * Ends all I/O on a request. It does not handle partial completions.
465 * The actual completion happens out-of-order, through a IPI handler.
466 **/
467 void blk_mq_complete_request(struct request *rq, int error)
468 {
469 struct request_queue *q = rq->q;
470
471 if (unlikely(blk_should_fake_timeout(q)))
472 return;
473 if (!blk_mark_rq_complete(rq)) {
474 rq->errors = error;
475 __blk_mq_complete_request(rq);
476 }
477 }
478 EXPORT_SYMBOL(blk_mq_complete_request);
479
480 int blk_mq_request_started(struct request *rq)
481 {
482 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
483 }
484 EXPORT_SYMBOL_GPL(blk_mq_request_started);
485
486 void blk_mq_start_request(struct request *rq)
487 {
488 struct request_queue *q = rq->q;
489
490 blk_mq_sched_started_request(rq);
491
492 trace_block_rq_issue(q, rq);
493
494 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
495 blk_stat_set_issue_time(&rq->issue_stat);
496 rq->rq_flags |= RQF_STATS;
497 wbt_issue(q->rq_wb, &rq->issue_stat);
498 }
499
500 blk_add_timer(rq);
501
502 /*
503 * Ensure that ->deadline is visible before set the started
504 * flag and clear the completed flag.
505 */
506 smp_mb__before_atomic();
507
508 /*
509 * Mark us as started and clear complete. Complete might have been
510 * set if requeue raced with timeout, which then marked it as
511 * complete. So be sure to clear complete again when we start
512 * the request, otherwise we'll ignore the completion event.
513 */
514 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
515 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
516 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
517 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
518
519 if (q->dma_drain_size && blk_rq_bytes(rq)) {
520 /*
521 * Make sure space for the drain appears. We know we can do
522 * this because max_hw_segments has been adjusted to be one
523 * fewer than the device can handle.
524 */
525 rq->nr_phys_segments++;
526 }
527 }
528 EXPORT_SYMBOL(blk_mq_start_request);
529
530 static void __blk_mq_requeue_request(struct request *rq)
531 {
532 struct request_queue *q = rq->q;
533
534 trace_block_rq_requeue(q, rq);
535 wbt_requeue(q->rq_wb, &rq->issue_stat);
536 blk_mq_sched_requeue_request(rq);
537
538 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
539 if (q->dma_drain_size && blk_rq_bytes(rq))
540 rq->nr_phys_segments--;
541 }
542 }
543
544 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
545 {
546 __blk_mq_requeue_request(rq);
547
548 BUG_ON(blk_queued_rq(rq));
549 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
550 }
551 EXPORT_SYMBOL(blk_mq_requeue_request);
552
553 static void blk_mq_requeue_work(struct work_struct *work)
554 {
555 struct request_queue *q =
556 container_of(work, struct request_queue, requeue_work.work);
557 LIST_HEAD(rq_list);
558 struct request *rq, *next;
559 unsigned long flags;
560
561 spin_lock_irqsave(&q->requeue_lock, flags);
562 list_splice_init(&q->requeue_list, &rq_list);
563 spin_unlock_irqrestore(&q->requeue_lock, flags);
564
565 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
566 if (!(rq->rq_flags & RQF_SOFTBARRIER))
567 continue;
568
569 rq->rq_flags &= ~RQF_SOFTBARRIER;
570 list_del_init(&rq->queuelist);
571 blk_mq_sched_insert_request(rq, true, false, false, true);
572 }
573
574 while (!list_empty(&rq_list)) {
575 rq = list_entry(rq_list.next, struct request, queuelist);
576 list_del_init(&rq->queuelist);
577 blk_mq_sched_insert_request(rq, false, false, false, true);
578 }
579
580 blk_mq_run_hw_queues(q, false);
581 }
582
583 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
584 bool kick_requeue_list)
585 {
586 struct request_queue *q = rq->q;
587 unsigned long flags;
588
589 /*
590 * We abuse this flag that is otherwise used by the I/O scheduler to
591 * request head insertation from the workqueue.
592 */
593 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
594
595 spin_lock_irqsave(&q->requeue_lock, flags);
596 if (at_head) {
597 rq->rq_flags |= RQF_SOFTBARRIER;
598 list_add(&rq->queuelist, &q->requeue_list);
599 } else {
600 list_add_tail(&rq->queuelist, &q->requeue_list);
601 }
602 spin_unlock_irqrestore(&q->requeue_lock, flags);
603
604 if (kick_requeue_list)
605 blk_mq_kick_requeue_list(q);
606 }
607 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
608
609 void blk_mq_kick_requeue_list(struct request_queue *q)
610 {
611 kblockd_schedule_delayed_work(&q->requeue_work, 0);
612 }
613 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
614
615 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
616 unsigned long msecs)
617 {
618 kblockd_schedule_delayed_work(&q->requeue_work,
619 msecs_to_jiffies(msecs));
620 }
621 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
622
623 void blk_mq_abort_requeue_list(struct request_queue *q)
624 {
625 unsigned long flags;
626 LIST_HEAD(rq_list);
627
628 spin_lock_irqsave(&q->requeue_lock, flags);
629 list_splice_init(&q->requeue_list, &rq_list);
630 spin_unlock_irqrestore(&q->requeue_lock, flags);
631
632 while (!list_empty(&rq_list)) {
633 struct request *rq;
634
635 rq = list_first_entry(&rq_list, struct request, queuelist);
636 list_del_init(&rq->queuelist);
637 rq->errors = -EIO;
638 blk_mq_end_request(rq, rq->errors);
639 }
640 }
641 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
642
643 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
644 {
645 if (tag < tags->nr_tags) {
646 prefetch(tags->rqs[tag]);
647 return tags->rqs[tag];
648 }
649
650 return NULL;
651 }
652 EXPORT_SYMBOL(blk_mq_tag_to_rq);
653
654 struct blk_mq_timeout_data {
655 unsigned long next;
656 unsigned int next_set;
657 };
658
659 void blk_mq_rq_timed_out(struct request *req, bool reserved)
660 {
661 const struct blk_mq_ops *ops = req->q->mq_ops;
662 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
663
664 /*
665 * We know that complete is set at this point. If STARTED isn't set
666 * anymore, then the request isn't active and the "timeout" should
667 * just be ignored. This can happen due to the bitflag ordering.
668 * Timeout first checks if STARTED is set, and if it is, assumes
669 * the request is active. But if we race with completion, then
670 * we both flags will get cleared. So check here again, and ignore
671 * a timeout event with a request that isn't active.
672 */
673 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
674 return;
675
676 if (ops->timeout)
677 ret = ops->timeout(req, reserved);
678
679 switch (ret) {
680 case BLK_EH_HANDLED:
681 __blk_mq_complete_request(req);
682 break;
683 case BLK_EH_RESET_TIMER:
684 blk_add_timer(req);
685 blk_clear_rq_complete(req);
686 break;
687 case BLK_EH_NOT_HANDLED:
688 break;
689 default:
690 printk(KERN_ERR "block: bad eh return: %d\n", ret);
691 break;
692 }
693 }
694
695 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
696 struct request *rq, void *priv, bool reserved)
697 {
698 struct blk_mq_timeout_data *data = priv;
699
700 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
701 /*
702 * If a request wasn't started before the queue was
703 * marked dying, kill it here or it'll go unnoticed.
704 */
705 if (unlikely(blk_queue_dying(rq->q))) {
706 rq->errors = -EIO;
707 blk_mq_end_request(rq, rq->errors);
708 }
709 return;
710 }
711
712 if (time_after_eq(jiffies, rq->deadline)) {
713 if (!blk_mark_rq_complete(rq))
714 blk_mq_rq_timed_out(rq, reserved);
715 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
716 data->next = rq->deadline;
717 data->next_set = 1;
718 }
719 }
720
721 static void blk_mq_timeout_work(struct work_struct *work)
722 {
723 struct request_queue *q =
724 container_of(work, struct request_queue, timeout_work);
725 struct blk_mq_timeout_data data = {
726 .next = 0,
727 .next_set = 0,
728 };
729 int i;
730
731 /* A deadlock might occur if a request is stuck requiring a
732 * timeout at the same time a queue freeze is waiting
733 * completion, since the timeout code would not be able to
734 * acquire the queue reference here.
735 *
736 * That's why we don't use blk_queue_enter here; instead, we use
737 * percpu_ref_tryget directly, because we need to be able to
738 * obtain a reference even in the short window between the queue
739 * starting to freeze, by dropping the first reference in
740 * blk_mq_freeze_queue_start, and the moment the last request is
741 * consumed, marked by the instant q_usage_counter reaches
742 * zero.
743 */
744 if (!percpu_ref_tryget(&q->q_usage_counter))
745 return;
746
747 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
748
749 if (data.next_set) {
750 data.next = blk_rq_timeout(round_jiffies_up(data.next));
751 mod_timer(&q->timeout, data.next);
752 } else {
753 struct blk_mq_hw_ctx *hctx;
754
755 queue_for_each_hw_ctx(q, hctx, i) {
756 /* the hctx may be unmapped, so check it here */
757 if (blk_mq_hw_queue_mapped(hctx))
758 blk_mq_tag_idle(hctx);
759 }
760 }
761 blk_queue_exit(q);
762 }
763
764 /*
765 * Reverse check our software queue for entries that we could potentially
766 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
767 * too much time checking for merges.
768 */
769 static bool blk_mq_attempt_merge(struct request_queue *q,
770 struct blk_mq_ctx *ctx, struct bio *bio)
771 {
772 struct request *rq;
773 int checked = 8;
774
775 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
776 bool merged = false;
777
778 if (!checked--)
779 break;
780
781 if (!blk_rq_merge_ok(rq, bio))
782 continue;
783
784 switch (blk_try_merge(rq, bio)) {
785 case ELEVATOR_BACK_MERGE:
786 if (blk_mq_sched_allow_merge(q, rq, bio))
787 merged = bio_attempt_back_merge(q, rq, bio);
788 break;
789 case ELEVATOR_FRONT_MERGE:
790 if (blk_mq_sched_allow_merge(q, rq, bio))
791 merged = bio_attempt_front_merge(q, rq, bio);
792 break;
793 case ELEVATOR_DISCARD_MERGE:
794 merged = bio_attempt_discard_merge(q, rq, bio);
795 break;
796 default:
797 continue;
798 }
799
800 if (merged)
801 ctx->rq_merged++;
802 return merged;
803 }
804
805 return false;
806 }
807
808 struct flush_busy_ctx_data {
809 struct blk_mq_hw_ctx *hctx;
810 struct list_head *list;
811 };
812
813 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
814 {
815 struct flush_busy_ctx_data *flush_data = data;
816 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
817 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
818
819 sbitmap_clear_bit(sb, bitnr);
820 spin_lock(&ctx->lock);
821 list_splice_tail_init(&ctx->rq_list, flush_data->list);
822 spin_unlock(&ctx->lock);
823 return true;
824 }
825
826 /*
827 * Process software queues that have been marked busy, splicing them
828 * to the for-dispatch
829 */
830 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
831 {
832 struct flush_busy_ctx_data data = {
833 .hctx = hctx,
834 .list = list,
835 };
836
837 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
838 }
839 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
840
841 static inline unsigned int queued_to_index(unsigned int queued)
842 {
843 if (!queued)
844 return 0;
845
846 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
847 }
848
849 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
850 bool wait)
851 {
852 struct blk_mq_alloc_data data = {
853 .q = rq->q,
854 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
855 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
856 };
857
858 if (rq->tag != -1) {
859 done:
860 if (hctx)
861 *hctx = data.hctx;
862 return true;
863 }
864
865 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
866 data.flags |= BLK_MQ_REQ_RESERVED;
867
868 rq->tag = blk_mq_get_tag(&data);
869 if (rq->tag >= 0) {
870 if (blk_mq_tag_busy(data.hctx)) {
871 rq->rq_flags |= RQF_MQ_INFLIGHT;
872 atomic_inc(&data.hctx->nr_active);
873 }
874 data.hctx->tags->rqs[rq->tag] = rq;
875 goto done;
876 }
877
878 return false;
879 }
880
881 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
882 struct request *rq)
883 {
884 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
885 rq->tag = -1;
886
887 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
888 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
889 atomic_dec(&hctx->nr_active);
890 }
891 }
892
893 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
894 struct request *rq)
895 {
896 if (rq->tag == -1 || rq->internal_tag == -1)
897 return;
898
899 __blk_mq_put_driver_tag(hctx, rq);
900 }
901
902 static void blk_mq_put_driver_tag(struct request *rq)
903 {
904 struct blk_mq_hw_ctx *hctx;
905
906 if (rq->tag == -1 || rq->internal_tag == -1)
907 return;
908
909 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
910 __blk_mq_put_driver_tag(hctx, rq);
911 }
912
913 /*
914 * If we fail getting a driver tag because all the driver tags are already
915 * assigned and on the dispatch list, BUT the first entry does not have a
916 * tag, then we could deadlock. For that case, move entries with assigned
917 * driver tags to the front, leaving the set of tagged requests in the
918 * same order, and the untagged set in the same order.
919 */
920 static bool reorder_tags_to_front(struct list_head *list)
921 {
922 struct request *rq, *tmp, *first = NULL;
923
924 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
925 if (rq == first)
926 break;
927 if (rq->tag != -1) {
928 list_move(&rq->queuelist, list);
929 if (!first)
930 first = rq;
931 }
932 }
933
934 return first != NULL;
935 }
936
937 static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
938 void *key)
939 {
940 struct blk_mq_hw_ctx *hctx;
941
942 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
943
944 list_del(&wait->task_list);
945 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
946 blk_mq_run_hw_queue(hctx, true);
947 return 1;
948 }
949
950 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
951 {
952 struct sbq_wait_state *ws;
953
954 /*
955 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
956 * The thread which wins the race to grab this bit adds the hardware
957 * queue to the wait queue.
958 */
959 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
960 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
961 return false;
962
963 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
964 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
965
966 /*
967 * As soon as this returns, it's no longer safe to fiddle with
968 * hctx->dispatch_wait, since a completion can wake up the wait queue
969 * and unlock the bit.
970 */
971 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
972 return true;
973 }
974
975 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
976 {
977 struct request_queue *q = hctx->queue;
978 struct request *rq;
979 LIST_HEAD(driver_list);
980 struct list_head *dptr;
981 int queued, ret = BLK_MQ_RQ_QUEUE_OK;
982
983 /*
984 * Start off with dptr being NULL, so we start the first request
985 * immediately, even if we have more pending.
986 */
987 dptr = NULL;
988
989 /*
990 * Now process all the entries, sending them to the driver.
991 */
992 queued = 0;
993 while (!list_empty(list)) {
994 struct blk_mq_queue_data bd;
995
996 rq = list_first_entry(list, struct request, queuelist);
997 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
998 if (!queued && reorder_tags_to_front(list))
999 continue;
1000
1001 /*
1002 * The initial allocation attempt failed, so we need to
1003 * rerun the hardware queue when a tag is freed.
1004 */
1005 if (blk_mq_dispatch_wait_add(hctx)) {
1006 /*
1007 * It's possible that a tag was freed in the
1008 * window between the allocation failure and
1009 * adding the hardware queue to the wait queue.
1010 */
1011 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1012 break;
1013 } else {
1014 break;
1015 }
1016 }
1017
1018 list_del_init(&rq->queuelist);
1019
1020 bd.rq = rq;
1021 bd.list = dptr;
1022
1023 /*
1024 * Flag last if we have no more requests, or if we have more
1025 * but can't assign a driver tag to it.
1026 */
1027 if (list_empty(list))
1028 bd.last = true;
1029 else {
1030 struct request *nxt;
1031
1032 nxt = list_first_entry(list, struct request, queuelist);
1033 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1034 }
1035
1036 ret = q->mq_ops->queue_rq(hctx, &bd);
1037 switch (ret) {
1038 case BLK_MQ_RQ_QUEUE_OK:
1039 queued++;
1040 break;
1041 case BLK_MQ_RQ_QUEUE_BUSY:
1042 blk_mq_put_driver_tag_hctx(hctx, rq);
1043 list_add(&rq->queuelist, list);
1044 __blk_mq_requeue_request(rq);
1045 break;
1046 default:
1047 pr_err("blk-mq: bad return on queue: %d\n", ret);
1048 case BLK_MQ_RQ_QUEUE_ERROR:
1049 rq->errors = -EIO;
1050 blk_mq_end_request(rq, rq->errors);
1051 break;
1052 }
1053
1054 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
1055 break;
1056
1057 /*
1058 * We've done the first request. If we have more than 1
1059 * left in the list, set dptr to defer issue.
1060 */
1061 if (!dptr && list->next != list->prev)
1062 dptr = &driver_list;
1063 }
1064
1065 hctx->dispatched[queued_to_index(queued)]++;
1066
1067 /*
1068 * Any items that need requeuing? Stuff them into hctx->dispatch,
1069 * that is where we will continue on next queue run.
1070 */
1071 if (!list_empty(list)) {
1072 /*
1073 * If we got a driver tag for the next request already,
1074 * free it again.
1075 */
1076 rq = list_first_entry(list, struct request, queuelist);
1077 blk_mq_put_driver_tag(rq);
1078
1079 spin_lock(&hctx->lock);
1080 list_splice_init(list, &hctx->dispatch);
1081 spin_unlock(&hctx->lock);
1082
1083 /*
1084 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
1085 * it's possible the queue is stopped and restarted again
1086 * before this. Queue restart will dispatch requests. And since
1087 * requests in rq_list aren't added into hctx->dispatch yet,
1088 * the requests in rq_list might get lost.
1089 *
1090 * blk_mq_run_hw_queue() already checks the STOPPED bit
1091 *
1092 * If RESTART or TAG_WAITING is set, then let completion restart
1093 * the queue instead of potentially looping here.
1094 */
1095 if (!blk_mq_sched_needs_restart(hctx) &&
1096 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1097 blk_mq_run_hw_queue(hctx, true);
1098 }
1099
1100 return queued != 0;
1101 }
1102
1103 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1104 {
1105 int srcu_idx;
1106
1107 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1108 cpu_online(hctx->next_cpu));
1109
1110 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1111 rcu_read_lock();
1112 blk_mq_sched_dispatch_requests(hctx);
1113 rcu_read_unlock();
1114 } else {
1115 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1116 blk_mq_sched_dispatch_requests(hctx);
1117 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1118 }
1119 }
1120
1121 /*
1122 * It'd be great if the workqueue API had a way to pass
1123 * in a mask and had some smarts for more clever placement.
1124 * For now we just round-robin here, switching for every
1125 * BLK_MQ_CPU_WORK_BATCH queued items.
1126 */
1127 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1128 {
1129 if (hctx->queue->nr_hw_queues == 1)
1130 return WORK_CPU_UNBOUND;
1131
1132 if (--hctx->next_cpu_batch <= 0) {
1133 int next_cpu;
1134
1135 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1136 if (next_cpu >= nr_cpu_ids)
1137 next_cpu = cpumask_first(hctx->cpumask);
1138
1139 hctx->next_cpu = next_cpu;
1140 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1141 }
1142
1143 return hctx->next_cpu;
1144 }
1145
1146 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1147 {
1148 if (unlikely(blk_mq_hctx_stopped(hctx) ||
1149 !blk_mq_hw_queue_mapped(hctx)))
1150 return;
1151
1152 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1153 int cpu = get_cpu();
1154 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1155 __blk_mq_run_hw_queue(hctx);
1156 put_cpu();
1157 return;
1158 }
1159
1160 put_cpu();
1161 }
1162
1163 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
1164 }
1165
1166 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1167 {
1168 struct blk_mq_hw_ctx *hctx;
1169 int i;
1170
1171 queue_for_each_hw_ctx(q, hctx, i) {
1172 if (!blk_mq_hctx_has_pending(hctx) ||
1173 blk_mq_hctx_stopped(hctx))
1174 continue;
1175
1176 blk_mq_run_hw_queue(hctx, async);
1177 }
1178 }
1179 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1180
1181 /**
1182 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1183 * @q: request queue.
1184 *
1185 * The caller is responsible for serializing this function against
1186 * blk_mq_{start,stop}_hw_queue().
1187 */
1188 bool blk_mq_queue_stopped(struct request_queue *q)
1189 {
1190 struct blk_mq_hw_ctx *hctx;
1191 int i;
1192
1193 queue_for_each_hw_ctx(q, hctx, i)
1194 if (blk_mq_hctx_stopped(hctx))
1195 return true;
1196
1197 return false;
1198 }
1199 EXPORT_SYMBOL(blk_mq_queue_stopped);
1200
1201 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1202 {
1203 cancel_work(&hctx->run_work);
1204 cancel_delayed_work(&hctx->delay_work);
1205 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1206 }
1207 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1208
1209 void blk_mq_stop_hw_queues(struct request_queue *q)
1210 {
1211 struct blk_mq_hw_ctx *hctx;
1212 int i;
1213
1214 queue_for_each_hw_ctx(q, hctx, i)
1215 blk_mq_stop_hw_queue(hctx);
1216 }
1217 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1218
1219 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1220 {
1221 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1222
1223 blk_mq_run_hw_queue(hctx, false);
1224 }
1225 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1226
1227 void blk_mq_start_hw_queues(struct request_queue *q)
1228 {
1229 struct blk_mq_hw_ctx *hctx;
1230 int i;
1231
1232 queue_for_each_hw_ctx(q, hctx, i)
1233 blk_mq_start_hw_queue(hctx);
1234 }
1235 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1236
1237 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1238 {
1239 if (!blk_mq_hctx_stopped(hctx))
1240 return;
1241
1242 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1243 blk_mq_run_hw_queue(hctx, async);
1244 }
1245 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1246
1247 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1248 {
1249 struct blk_mq_hw_ctx *hctx;
1250 int i;
1251
1252 queue_for_each_hw_ctx(q, hctx, i)
1253 blk_mq_start_stopped_hw_queue(hctx, async);
1254 }
1255 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1256
1257 static void blk_mq_run_work_fn(struct work_struct *work)
1258 {
1259 struct blk_mq_hw_ctx *hctx;
1260
1261 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1262
1263 __blk_mq_run_hw_queue(hctx);
1264 }
1265
1266 static void blk_mq_delay_work_fn(struct work_struct *work)
1267 {
1268 struct blk_mq_hw_ctx *hctx;
1269
1270 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1271
1272 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1273 __blk_mq_run_hw_queue(hctx);
1274 }
1275
1276 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1277 {
1278 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1279 return;
1280
1281 blk_mq_stop_hw_queue(hctx);
1282 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1283 &hctx->delay_work, msecs_to_jiffies(msecs));
1284 }
1285 EXPORT_SYMBOL(blk_mq_delay_queue);
1286
1287 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1288 struct request *rq,
1289 bool at_head)
1290 {
1291 struct blk_mq_ctx *ctx = rq->mq_ctx;
1292
1293 trace_block_rq_insert(hctx->queue, rq);
1294
1295 if (at_head)
1296 list_add(&rq->queuelist, &ctx->rq_list);
1297 else
1298 list_add_tail(&rq->queuelist, &ctx->rq_list);
1299 }
1300
1301 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1302 bool at_head)
1303 {
1304 struct blk_mq_ctx *ctx = rq->mq_ctx;
1305
1306 __blk_mq_insert_req_list(hctx, rq, at_head);
1307 blk_mq_hctx_mark_pending(hctx, ctx);
1308 }
1309
1310 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1311 struct list_head *list)
1312
1313 {
1314 /*
1315 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1316 * offline now
1317 */
1318 spin_lock(&ctx->lock);
1319 while (!list_empty(list)) {
1320 struct request *rq;
1321
1322 rq = list_first_entry(list, struct request, queuelist);
1323 BUG_ON(rq->mq_ctx != ctx);
1324 list_del_init(&rq->queuelist);
1325 __blk_mq_insert_req_list(hctx, rq, false);
1326 }
1327 blk_mq_hctx_mark_pending(hctx, ctx);
1328 spin_unlock(&ctx->lock);
1329 }
1330
1331 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1332 {
1333 struct request *rqa = container_of(a, struct request, queuelist);
1334 struct request *rqb = container_of(b, struct request, queuelist);
1335
1336 return !(rqa->mq_ctx < rqb->mq_ctx ||
1337 (rqa->mq_ctx == rqb->mq_ctx &&
1338 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1339 }
1340
1341 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1342 {
1343 struct blk_mq_ctx *this_ctx;
1344 struct request_queue *this_q;
1345 struct request *rq;
1346 LIST_HEAD(list);
1347 LIST_HEAD(ctx_list);
1348 unsigned int depth;
1349
1350 list_splice_init(&plug->mq_list, &list);
1351
1352 list_sort(NULL, &list, plug_ctx_cmp);
1353
1354 this_q = NULL;
1355 this_ctx = NULL;
1356 depth = 0;
1357
1358 while (!list_empty(&list)) {
1359 rq = list_entry_rq(list.next);
1360 list_del_init(&rq->queuelist);
1361 BUG_ON(!rq->q);
1362 if (rq->mq_ctx != this_ctx) {
1363 if (this_ctx) {
1364 trace_block_unplug(this_q, depth, from_schedule);
1365 blk_mq_sched_insert_requests(this_q, this_ctx,
1366 &ctx_list,
1367 from_schedule);
1368 }
1369
1370 this_ctx = rq->mq_ctx;
1371 this_q = rq->q;
1372 depth = 0;
1373 }
1374
1375 depth++;
1376 list_add_tail(&rq->queuelist, &ctx_list);
1377 }
1378
1379 /*
1380 * If 'this_ctx' is set, we know we have entries to complete
1381 * on 'ctx_list'. Do those.
1382 */
1383 if (this_ctx) {
1384 trace_block_unplug(this_q, depth, from_schedule);
1385 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1386 from_schedule);
1387 }
1388 }
1389
1390 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1391 {
1392 init_request_from_bio(rq, bio);
1393
1394 blk_account_io_start(rq, true);
1395 }
1396
1397 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1398 {
1399 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1400 !blk_queue_nomerges(hctx->queue);
1401 }
1402
1403 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1404 struct blk_mq_ctx *ctx,
1405 struct request *rq, struct bio *bio)
1406 {
1407 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1408 blk_mq_bio_to_request(rq, bio);
1409 spin_lock(&ctx->lock);
1410 insert_rq:
1411 __blk_mq_insert_request(hctx, rq, false);
1412 spin_unlock(&ctx->lock);
1413 return false;
1414 } else {
1415 struct request_queue *q = hctx->queue;
1416
1417 spin_lock(&ctx->lock);
1418 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1419 blk_mq_bio_to_request(rq, bio);
1420 goto insert_rq;
1421 }
1422
1423 spin_unlock(&ctx->lock);
1424 __blk_mq_finish_request(hctx, ctx, rq);
1425 return true;
1426 }
1427 }
1428
1429 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1430 {
1431 if (rq->tag != -1)
1432 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1433
1434 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1435 }
1436
1437 static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie)
1438 {
1439 struct request_queue *q = rq->q;
1440 struct blk_mq_queue_data bd = {
1441 .rq = rq,
1442 .list = NULL,
1443 .last = 1
1444 };
1445 struct blk_mq_hw_ctx *hctx;
1446 blk_qc_t new_cookie;
1447 int ret;
1448
1449 if (q->elevator)
1450 goto insert;
1451
1452 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1453 goto insert;
1454
1455 new_cookie = request_to_qc_t(hctx, rq);
1456
1457 /*
1458 * For OK queue, we are done. For error, kill it. Any other
1459 * error (busy), just add it to our list as we previously
1460 * would have done
1461 */
1462 ret = q->mq_ops->queue_rq(hctx, &bd);
1463 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1464 *cookie = new_cookie;
1465 return;
1466 }
1467
1468 __blk_mq_requeue_request(rq);
1469
1470 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1471 *cookie = BLK_QC_T_NONE;
1472 rq->errors = -EIO;
1473 blk_mq_end_request(rq, rq->errors);
1474 return;
1475 }
1476
1477 insert:
1478 blk_mq_sched_insert_request(rq, false, true, true, false);
1479 }
1480
1481 /*
1482 * Multiple hardware queue variant. This will not use per-process plugs,
1483 * but will attempt to bypass the hctx queueing if we can go straight to
1484 * hardware for SYNC IO.
1485 */
1486 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1487 {
1488 const int is_sync = op_is_sync(bio->bi_opf);
1489 const int is_flush_fua = op_is_flush(bio->bi_opf);
1490 struct blk_mq_alloc_data data = { .flags = 0 };
1491 struct request *rq;
1492 unsigned int request_count = 0, srcu_idx;
1493 struct blk_plug *plug;
1494 struct request *same_queue_rq = NULL;
1495 blk_qc_t cookie;
1496 unsigned int wb_acct;
1497
1498 blk_queue_bounce(q, &bio);
1499
1500 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1501 bio_io_error(bio);
1502 return BLK_QC_T_NONE;
1503 }
1504
1505 blk_queue_split(q, &bio, q->bio_split);
1506
1507 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1508 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1509 return BLK_QC_T_NONE;
1510
1511 if (blk_mq_sched_bio_merge(q, bio))
1512 return BLK_QC_T_NONE;
1513
1514 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1515
1516 trace_block_getrq(q, bio, bio->bi_opf);
1517
1518 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1519 if (unlikely(!rq)) {
1520 __wbt_done(q->rq_wb, wb_acct);
1521 return BLK_QC_T_NONE;
1522 }
1523
1524 wbt_track(&rq->issue_stat, wb_acct);
1525
1526 cookie = request_to_qc_t(data.hctx, rq);
1527
1528 if (unlikely(is_flush_fua)) {
1529 if (q->elevator)
1530 goto elv_insert;
1531 blk_mq_bio_to_request(rq, bio);
1532 blk_insert_flush(rq);
1533 goto run_queue;
1534 }
1535
1536 plug = current->plug;
1537 /*
1538 * If the driver supports defer issued based on 'last', then
1539 * queue it up like normal since we can potentially save some
1540 * CPU this way.
1541 */
1542 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1543 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1544 struct request *old_rq = NULL;
1545
1546 blk_mq_bio_to_request(rq, bio);
1547
1548 /*
1549 * We do limited plugging. If the bio can be merged, do that.
1550 * Otherwise the existing request in the plug list will be
1551 * issued. So the plug list will have one request at most
1552 */
1553 if (plug) {
1554 /*
1555 * The plug list might get flushed before this. If that
1556 * happens, same_queue_rq is invalid and plug list is
1557 * empty
1558 */
1559 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1560 old_rq = same_queue_rq;
1561 list_del_init(&old_rq->queuelist);
1562 }
1563 list_add_tail(&rq->queuelist, &plug->mq_list);
1564 } else /* is_sync */
1565 old_rq = rq;
1566 blk_mq_put_ctx(data.ctx);
1567 if (!old_rq)
1568 goto done;
1569
1570 if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
1571 rcu_read_lock();
1572 blk_mq_try_issue_directly(old_rq, &cookie);
1573 rcu_read_unlock();
1574 } else {
1575 srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
1576 blk_mq_try_issue_directly(old_rq, &cookie);
1577 srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
1578 }
1579 goto done;
1580 }
1581
1582 if (q->elevator) {
1583 elv_insert:
1584 blk_mq_put_ctx(data.ctx);
1585 blk_mq_bio_to_request(rq, bio);
1586 blk_mq_sched_insert_request(rq, false, true,
1587 !is_sync || is_flush_fua, true);
1588 goto done;
1589 }
1590 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1591 /*
1592 * For a SYNC request, send it to the hardware immediately. For
1593 * an ASYNC request, just ensure that we run it later on. The
1594 * latter allows for merging opportunities and more efficient
1595 * dispatching.
1596 */
1597 run_queue:
1598 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1599 }
1600 blk_mq_put_ctx(data.ctx);
1601 done:
1602 return cookie;
1603 }
1604
1605 /*
1606 * Single hardware queue variant. This will attempt to use any per-process
1607 * plug for merging and IO deferral.
1608 */
1609 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1610 {
1611 const int is_sync = op_is_sync(bio->bi_opf);
1612 const int is_flush_fua = op_is_flush(bio->bi_opf);
1613 struct blk_plug *plug;
1614 unsigned int request_count = 0;
1615 struct blk_mq_alloc_data data = { .flags = 0 };
1616 struct request *rq;
1617 blk_qc_t cookie;
1618 unsigned int wb_acct;
1619
1620 blk_queue_bounce(q, &bio);
1621
1622 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1623 bio_io_error(bio);
1624 return BLK_QC_T_NONE;
1625 }
1626
1627 blk_queue_split(q, &bio, q->bio_split);
1628
1629 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1630 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1631 return BLK_QC_T_NONE;
1632 } else
1633 request_count = blk_plug_queued_count(q);
1634
1635 if (blk_mq_sched_bio_merge(q, bio))
1636 return BLK_QC_T_NONE;
1637
1638 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1639
1640 trace_block_getrq(q, bio, bio->bi_opf);
1641
1642 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1643 if (unlikely(!rq)) {
1644 __wbt_done(q->rq_wb, wb_acct);
1645 return BLK_QC_T_NONE;
1646 }
1647
1648 wbt_track(&rq->issue_stat, wb_acct);
1649
1650 cookie = request_to_qc_t(data.hctx, rq);
1651
1652 if (unlikely(is_flush_fua)) {
1653 if (q->elevator)
1654 goto elv_insert;
1655 blk_mq_bio_to_request(rq, bio);
1656 blk_insert_flush(rq);
1657 goto run_queue;
1658 }
1659
1660 /*
1661 * A task plug currently exists. Since this is completely lockless,
1662 * utilize that to temporarily store requests until the task is
1663 * either done or scheduled away.
1664 */
1665 plug = current->plug;
1666 if (plug) {
1667 struct request *last = NULL;
1668
1669 blk_mq_bio_to_request(rq, bio);
1670
1671 /*
1672 * @request_count may become stale because of schedule
1673 * out, so check the list again.
1674 */
1675 if (list_empty(&plug->mq_list))
1676 request_count = 0;
1677 if (!request_count)
1678 trace_block_plug(q);
1679 else
1680 last = list_entry_rq(plug->mq_list.prev);
1681
1682 blk_mq_put_ctx(data.ctx);
1683
1684 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1685 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1686 blk_flush_plug_list(plug, false);
1687 trace_block_plug(q);
1688 }
1689
1690 list_add_tail(&rq->queuelist, &plug->mq_list);
1691 return cookie;
1692 }
1693
1694 if (q->elevator) {
1695 elv_insert:
1696 blk_mq_put_ctx(data.ctx);
1697 blk_mq_bio_to_request(rq, bio);
1698 blk_mq_sched_insert_request(rq, false, true,
1699 !is_sync || is_flush_fua, true);
1700 goto done;
1701 }
1702 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1703 /*
1704 * For a SYNC request, send it to the hardware immediately. For
1705 * an ASYNC request, just ensure that we run it later on. The
1706 * latter allows for merging opportunities and more efficient
1707 * dispatching.
1708 */
1709 run_queue:
1710 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1711 }
1712
1713 blk_mq_put_ctx(data.ctx);
1714 done:
1715 return cookie;
1716 }
1717
1718 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1719 unsigned int hctx_idx)
1720 {
1721 struct page *page;
1722
1723 if (tags->rqs && set->ops->exit_request) {
1724 int i;
1725
1726 for (i = 0; i < tags->nr_tags; i++) {
1727 struct request *rq = tags->static_rqs[i];
1728
1729 if (!rq)
1730 continue;
1731 set->ops->exit_request(set->driver_data, rq,
1732 hctx_idx, i);
1733 tags->static_rqs[i] = NULL;
1734 }
1735 }
1736
1737 while (!list_empty(&tags->page_list)) {
1738 page = list_first_entry(&tags->page_list, struct page, lru);
1739 list_del_init(&page->lru);
1740 /*
1741 * Remove kmemleak object previously allocated in
1742 * blk_mq_init_rq_map().
1743 */
1744 kmemleak_free(page_address(page));
1745 __free_pages(page, page->private);
1746 }
1747 }
1748
1749 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1750 {
1751 kfree(tags->rqs);
1752 tags->rqs = NULL;
1753 kfree(tags->static_rqs);
1754 tags->static_rqs = NULL;
1755
1756 blk_mq_free_tags(tags);
1757 }
1758
1759 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1760 unsigned int hctx_idx,
1761 unsigned int nr_tags,
1762 unsigned int reserved_tags)
1763 {
1764 struct blk_mq_tags *tags;
1765 int node;
1766
1767 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1768 if (node == NUMA_NO_NODE)
1769 node = set->numa_node;
1770
1771 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1772 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1773 if (!tags)
1774 return NULL;
1775
1776 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1777 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1778 node);
1779 if (!tags->rqs) {
1780 blk_mq_free_tags(tags);
1781 return NULL;
1782 }
1783
1784 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1785 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1786 node);
1787 if (!tags->static_rqs) {
1788 kfree(tags->rqs);
1789 blk_mq_free_tags(tags);
1790 return NULL;
1791 }
1792
1793 return tags;
1794 }
1795
1796 static size_t order_to_size(unsigned int order)
1797 {
1798 return (size_t)PAGE_SIZE << order;
1799 }
1800
1801 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1802 unsigned int hctx_idx, unsigned int depth)
1803 {
1804 unsigned int i, j, entries_per_page, max_order = 4;
1805 size_t rq_size, left;
1806 int node;
1807
1808 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1809 if (node == NUMA_NO_NODE)
1810 node = set->numa_node;
1811
1812 INIT_LIST_HEAD(&tags->page_list);
1813
1814 /*
1815 * rq_size is the size of the request plus driver payload, rounded
1816 * to the cacheline size
1817 */
1818 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1819 cache_line_size());
1820 left = rq_size * depth;
1821
1822 for (i = 0; i < depth; ) {
1823 int this_order = max_order;
1824 struct page *page;
1825 int to_do;
1826 void *p;
1827
1828 while (this_order && left < order_to_size(this_order - 1))
1829 this_order--;
1830
1831 do {
1832 page = alloc_pages_node(node,
1833 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1834 this_order);
1835 if (page)
1836 break;
1837 if (!this_order--)
1838 break;
1839 if (order_to_size(this_order) < rq_size)
1840 break;
1841 } while (1);
1842
1843 if (!page)
1844 goto fail;
1845
1846 page->private = this_order;
1847 list_add_tail(&page->lru, &tags->page_list);
1848
1849 p = page_address(page);
1850 /*
1851 * Allow kmemleak to scan these pages as they contain pointers
1852 * to additional allocations like via ops->init_request().
1853 */
1854 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1855 entries_per_page = order_to_size(this_order) / rq_size;
1856 to_do = min(entries_per_page, depth - i);
1857 left -= to_do * rq_size;
1858 for (j = 0; j < to_do; j++) {
1859 struct request *rq = p;
1860
1861 tags->static_rqs[i] = rq;
1862 if (set->ops->init_request) {
1863 if (set->ops->init_request(set->driver_data,
1864 rq, hctx_idx, i,
1865 node)) {
1866 tags->static_rqs[i] = NULL;
1867 goto fail;
1868 }
1869 }
1870
1871 p += rq_size;
1872 i++;
1873 }
1874 }
1875 return 0;
1876
1877 fail:
1878 blk_mq_free_rqs(set, tags, hctx_idx);
1879 return -ENOMEM;
1880 }
1881
1882 /*
1883 * 'cpu' is going away. splice any existing rq_list entries from this
1884 * software queue to the hw queue dispatch list, and ensure that it
1885 * gets run.
1886 */
1887 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1888 {
1889 struct blk_mq_hw_ctx *hctx;
1890 struct blk_mq_ctx *ctx;
1891 LIST_HEAD(tmp);
1892
1893 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1894 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1895
1896 spin_lock(&ctx->lock);
1897 if (!list_empty(&ctx->rq_list)) {
1898 list_splice_init(&ctx->rq_list, &tmp);
1899 blk_mq_hctx_clear_pending(hctx, ctx);
1900 }
1901 spin_unlock(&ctx->lock);
1902
1903 if (list_empty(&tmp))
1904 return 0;
1905
1906 spin_lock(&hctx->lock);
1907 list_splice_tail_init(&tmp, &hctx->dispatch);
1908 spin_unlock(&hctx->lock);
1909
1910 blk_mq_run_hw_queue(hctx, true);
1911 return 0;
1912 }
1913
1914 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1915 {
1916 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1917 &hctx->cpuhp_dead);
1918 }
1919
1920 /* hctx->ctxs will be freed in queue's release handler */
1921 static void blk_mq_exit_hctx(struct request_queue *q,
1922 struct blk_mq_tag_set *set,
1923 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1924 {
1925 unsigned flush_start_tag = set->queue_depth;
1926
1927 blk_mq_tag_idle(hctx);
1928
1929 if (set->ops->exit_request)
1930 set->ops->exit_request(set->driver_data,
1931 hctx->fq->flush_rq, hctx_idx,
1932 flush_start_tag + hctx_idx);
1933
1934 if (set->ops->exit_hctx)
1935 set->ops->exit_hctx(hctx, hctx_idx);
1936
1937 if (hctx->flags & BLK_MQ_F_BLOCKING)
1938 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1939
1940 blk_mq_remove_cpuhp(hctx);
1941 blk_free_flush_queue(hctx->fq);
1942 sbitmap_free(&hctx->ctx_map);
1943 }
1944
1945 static void blk_mq_exit_hw_queues(struct request_queue *q,
1946 struct blk_mq_tag_set *set, int nr_queue)
1947 {
1948 struct blk_mq_hw_ctx *hctx;
1949 unsigned int i;
1950
1951 queue_for_each_hw_ctx(q, hctx, i) {
1952 if (i == nr_queue)
1953 break;
1954 blk_mq_exit_hctx(q, set, hctx, i);
1955 }
1956 }
1957
1958 static int blk_mq_init_hctx(struct request_queue *q,
1959 struct blk_mq_tag_set *set,
1960 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1961 {
1962 int node;
1963 unsigned flush_start_tag = set->queue_depth;
1964
1965 node = hctx->numa_node;
1966 if (node == NUMA_NO_NODE)
1967 node = hctx->numa_node = set->numa_node;
1968
1969 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1970 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1971 spin_lock_init(&hctx->lock);
1972 INIT_LIST_HEAD(&hctx->dispatch);
1973 hctx->queue = q;
1974 hctx->queue_num = hctx_idx;
1975 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1976
1977 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1978
1979 hctx->tags = set->tags[hctx_idx];
1980
1981 /*
1982 * Allocate space for all possible cpus to avoid allocation at
1983 * runtime
1984 */
1985 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1986 GFP_KERNEL, node);
1987 if (!hctx->ctxs)
1988 goto unregister_cpu_notifier;
1989
1990 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1991 node))
1992 goto free_ctxs;
1993
1994 hctx->nr_ctx = 0;
1995
1996 if (set->ops->init_hctx &&
1997 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1998 goto free_bitmap;
1999
2000 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2001 if (!hctx->fq)
2002 goto exit_hctx;
2003
2004 if (set->ops->init_request &&
2005 set->ops->init_request(set->driver_data,
2006 hctx->fq->flush_rq, hctx_idx,
2007 flush_start_tag + hctx_idx, node))
2008 goto free_fq;
2009
2010 if (hctx->flags & BLK_MQ_F_BLOCKING)
2011 init_srcu_struct(&hctx->queue_rq_srcu);
2012
2013 return 0;
2014
2015 free_fq:
2016 kfree(hctx->fq);
2017 exit_hctx:
2018 if (set->ops->exit_hctx)
2019 set->ops->exit_hctx(hctx, hctx_idx);
2020 free_bitmap:
2021 sbitmap_free(&hctx->ctx_map);
2022 free_ctxs:
2023 kfree(hctx->ctxs);
2024 unregister_cpu_notifier:
2025 blk_mq_remove_cpuhp(hctx);
2026 return -1;
2027 }
2028
2029 static void blk_mq_init_cpu_queues(struct request_queue *q,
2030 unsigned int nr_hw_queues)
2031 {
2032 unsigned int i;
2033
2034 for_each_possible_cpu(i) {
2035 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2036 struct blk_mq_hw_ctx *hctx;
2037
2038 __ctx->cpu = i;
2039 spin_lock_init(&__ctx->lock);
2040 INIT_LIST_HEAD(&__ctx->rq_list);
2041 __ctx->queue = q;
2042 blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
2043 blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
2044
2045 /* If the cpu isn't online, the cpu is mapped to first hctx */
2046 if (!cpu_online(i))
2047 continue;
2048
2049 hctx = blk_mq_map_queue(q, i);
2050
2051 /*
2052 * Set local node, IFF we have more than one hw queue. If
2053 * not, we remain on the home node of the device
2054 */
2055 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2056 hctx->numa_node = local_memory_node(cpu_to_node(i));
2057 }
2058 }
2059
2060 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2061 {
2062 int ret = 0;
2063
2064 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2065 set->queue_depth, set->reserved_tags);
2066 if (!set->tags[hctx_idx])
2067 return false;
2068
2069 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2070 set->queue_depth);
2071 if (!ret)
2072 return true;
2073
2074 blk_mq_free_rq_map(set->tags[hctx_idx]);
2075 set->tags[hctx_idx] = NULL;
2076 return false;
2077 }
2078
2079 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2080 unsigned int hctx_idx)
2081 {
2082 if (set->tags[hctx_idx]) {
2083 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2084 blk_mq_free_rq_map(set->tags[hctx_idx]);
2085 set->tags[hctx_idx] = NULL;
2086 }
2087 }
2088
2089 static void blk_mq_map_swqueue(struct request_queue *q,
2090 const struct cpumask *online_mask)
2091 {
2092 unsigned int i, hctx_idx;
2093 struct blk_mq_hw_ctx *hctx;
2094 struct blk_mq_ctx *ctx;
2095 struct blk_mq_tag_set *set = q->tag_set;
2096
2097 /*
2098 * Avoid others reading imcomplete hctx->cpumask through sysfs
2099 */
2100 mutex_lock(&q->sysfs_lock);
2101
2102 queue_for_each_hw_ctx(q, hctx, i) {
2103 cpumask_clear(hctx->cpumask);
2104 hctx->nr_ctx = 0;
2105 }
2106
2107 /*
2108 * Map software to hardware queues
2109 */
2110 for_each_possible_cpu(i) {
2111 /* If the cpu isn't online, the cpu is mapped to first hctx */
2112 if (!cpumask_test_cpu(i, online_mask))
2113 continue;
2114
2115 hctx_idx = q->mq_map[i];
2116 /* unmapped hw queue can be remapped after CPU topo changed */
2117 if (!set->tags[hctx_idx] &&
2118 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2119 /*
2120 * If tags initialization fail for some hctx,
2121 * that hctx won't be brought online. In this
2122 * case, remap the current ctx to hctx[0] which
2123 * is guaranteed to always have tags allocated
2124 */
2125 q->mq_map[i] = 0;
2126 }
2127
2128 ctx = per_cpu_ptr(q->queue_ctx, i);
2129 hctx = blk_mq_map_queue(q, i);
2130
2131 cpumask_set_cpu(i, hctx->cpumask);
2132 ctx->index_hw = hctx->nr_ctx;
2133 hctx->ctxs[hctx->nr_ctx++] = ctx;
2134 }
2135
2136 mutex_unlock(&q->sysfs_lock);
2137
2138 queue_for_each_hw_ctx(q, hctx, i) {
2139 /*
2140 * If no software queues are mapped to this hardware queue,
2141 * disable it and free the request entries.
2142 */
2143 if (!hctx->nr_ctx) {
2144 /* Never unmap queue 0. We need it as a
2145 * fallback in case of a new remap fails
2146 * allocation
2147 */
2148 if (i && set->tags[i])
2149 blk_mq_free_map_and_requests(set, i);
2150
2151 hctx->tags = NULL;
2152 continue;
2153 }
2154
2155 hctx->tags = set->tags[i];
2156 WARN_ON(!hctx->tags);
2157
2158 /*
2159 * Set the map size to the number of mapped software queues.
2160 * This is more accurate and more efficient than looping
2161 * over all possibly mapped software queues.
2162 */
2163 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2164
2165 /*
2166 * Initialize batch roundrobin counts
2167 */
2168 hctx->next_cpu = cpumask_first(hctx->cpumask);
2169 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2170 }
2171 }
2172
2173 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2174 {
2175 struct blk_mq_hw_ctx *hctx;
2176 int i;
2177
2178 queue_for_each_hw_ctx(q, hctx, i) {
2179 if (shared)
2180 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2181 else
2182 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2183 }
2184 }
2185
2186 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2187 {
2188 struct request_queue *q;
2189
2190 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2191 blk_mq_freeze_queue(q);
2192 queue_set_hctx_shared(q, shared);
2193 blk_mq_unfreeze_queue(q);
2194 }
2195 }
2196
2197 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2198 {
2199 struct blk_mq_tag_set *set = q->tag_set;
2200
2201 mutex_lock(&set->tag_list_lock);
2202 list_del_init(&q->tag_set_list);
2203 if (list_is_singular(&set->tag_list)) {
2204 /* just transitioned to unshared */
2205 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2206 /* update existing queue */
2207 blk_mq_update_tag_set_depth(set, false);
2208 }
2209 mutex_unlock(&set->tag_list_lock);
2210 }
2211
2212 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2213 struct request_queue *q)
2214 {
2215 q->tag_set = set;
2216
2217 mutex_lock(&set->tag_list_lock);
2218
2219 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2220 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2221 set->flags |= BLK_MQ_F_TAG_SHARED;
2222 /* update existing queue */
2223 blk_mq_update_tag_set_depth(set, true);
2224 }
2225 if (set->flags & BLK_MQ_F_TAG_SHARED)
2226 queue_set_hctx_shared(q, true);
2227 list_add_tail(&q->tag_set_list, &set->tag_list);
2228
2229 mutex_unlock(&set->tag_list_lock);
2230 }
2231
2232 /*
2233 * It is the actual release handler for mq, but we do it from
2234 * request queue's release handler for avoiding use-after-free
2235 * and headache because q->mq_kobj shouldn't have been introduced,
2236 * but we can't group ctx/kctx kobj without it.
2237 */
2238 void blk_mq_release(struct request_queue *q)
2239 {
2240 struct blk_mq_hw_ctx *hctx;
2241 unsigned int i;
2242
2243 blk_mq_sched_teardown(q);
2244
2245 /* hctx kobj stays in hctx */
2246 queue_for_each_hw_ctx(q, hctx, i) {
2247 if (!hctx)
2248 continue;
2249 kobject_put(&hctx->kobj);
2250 }
2251
2252 q->mq_map = NULL;
2253
2254 kfree(q->queue_hw_ctx);
2255
2256 /*
2257 * release .mq_kobj and sw queue's kobject now because
2258 * both share lifetime with request queue.
2259 */
2260 blk_mq_sysfs_deinit(q);
2261
2262 free_percpu(q->queue_ctx);
2263 }
2264
2265 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2266 {
2267 struct request_queue *uninit_q, *q;
2268
2269 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2270 if (!uninit_q)
2271 return ERR_PTR(-ENOMEM);
2272
2273 q = blk_mq_init_allocated_queue(set, uninit_q);
2274 if (IS_ERR(q))
2275 blk_cleanup_queue(uninit_q);
2276
2277 return q;
2278 }
2279 EXPORT_SYMBOL(blk_mq_init_queue);
2280
2281 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2282 struct request_queue *q)
2283 {
2284 int i, j;
2285 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2286
2287 blk_mq_sysfs_unregister(q);
2288 for (i = 0; i < set->nr_hw_queues; i++) {
2289 int node;
2290
2291 if (hctxs[i])
2292 continue;
2293
2294 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2295 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2296 GFP_KERNEL, node);
2297 if (!hctxs[i])
2298 break;
2299
2300 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2301 node)) {
2302 kfree(hctxs[i]);
2303 hctxs[i] = NULL;
2304 break;
2305 }
2306
2307 atomic_set(&hctxs[i]->nr_active, 0);
2308 hctxs[i]->numa_node = node;
2309 hctxs[i]->queue_num = i;
2310
2311 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2312 free_cpumask_var(hctxs[i]->cpumask);
2313 kfree(hctxs[i]);
2314 hctxs[i] = NULL;
2315 break;
2316 }
2317 blk_mq_hctx_kobj_init(hctxs[i]);
2318 }
2319 for (j = i; j < q->nr_hw_queues; j++) {
2320 struct blk_mq_hw_ctx *hctx = hctxs[j];
2321
2322 if (hctx) {
2323 if (hctx->tags)
2324 blk_mq_free_map_and_requests(set, j);
2325 blk_mq_exit_hctx(q, set, hctx, j);
2326 kobject_put(&hctx->kobj);
2327 hctxs[j] = NULL;
2328
2329 }
2330 }
2331 q->nr_hw_queues = i;
2332 blk_mq_sysfs_register(q);
2333 }
2334
2335 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2336 struct request_queue *q)
2337 {
2338 /* mark the queue as mq asap */
2339 q->mq_ops = set->ops;
2340
2341 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2342 if (!q->queue_ctx)
2343 goto err_exit;
2344
2345 /* init q->mq_kobj and sw queues' kobjects */
2346 blk_mq_sysfs_init(q);
2347
2348 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2349 GFP_KERNEL, set->numa_node);
2350 if (!q->queue_hw_ctx)
2351 goto err_percpu;
2352
2353 q->mq_map = set->mq_map;
2354
2355 blk_mq_realloc_hw_ctxs(set, q);
2356 if (!q->nr_hw_queues)
2357 goto err_hctxs;
2358
2359 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2360 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2361
2362 q->nr_queues = nr_cpu_ids;
2363
2364 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2365
2366 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2367 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2368
2369 q->sg_reserved_size = INT_MAX;
2370
2371 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2372 INIT_LIST_HEAD(&q->requeue_list);
2373 spin_lock_init(&q->requeue_lock);
2374
2375 if (q->nr_hw_queues > 1)
2376 blk_queue_make_request(q, blk_mq_make_request);
2377 else
2378 blk_queue_make_request(q, blk_sq_make_request);
2379
2380 /*
2381 * Do this after blk_queue_make_request() overrides it...
2382 */
2383 q->nr_requests = set->queue_depth;
2384
2385 /*
2386 * Default to classic polling
2387 */
2388 q->poll_nsec = -1;
2389
2390 if (set->ops->complete)
2391 blk_queue_softirq_done(q, set->ops->complete);
2392
2393 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2394
2395 get_online_cpus();
2396 mutex_lock(&all_q_mutex);
2397
2398 list_add_tail(&q->all_q_node, &all_q_list);
2399 blk_mq_add_queue_tag_set(set, q);
2400 blk_mq_map_swqueue(q, cpu_online_mask);
2401
2402 mutex_unlock(&all_q_mutex);
2403 put_online_cpus();
2404
2405 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2406 int ret;
2407
2408 ret = blk_mq_sched_init(q);
2409 if (ret)
2410 return ERR_PTR(ret);
2411 }
2412
2413 return q;
2414
2415 err_hctxs:
2416 kfree(q->queue_hw_ctx);
2417 err_percpu:
2418 free_percpu(q->queue_ctx);
2419 err_exit:
2420 q->mq_ops = NULL;
2421 return ERR_PTR(-ENOMEM);
2422 }
2423 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2424
2425 void blk_mq_free_queue(struct request_queue *q)
2426 {
2427 struct blk_mq_tag_set *set = q->tag_set;
2428
2429 mutex_lock(&all_q_mutex);
2430 list_del_init(&q->all_q_node);
2431 mutex_unlock(&all_q_mutex);
2432
2433 wbt_exit(q);
2434
2435 blk_mq_del_queue_tag_set(q);
2436
2437 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2438 }
2439
2440 /* Basically redo blk_mq_init_queue with queue frozen */
2441 static void blk_mq_queue_reinit(struct request_queue *q,
2442 const struct cpumask *online_mask)
2443 {
2444 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2445
2446 blk_mq_sysfs_unregister(q);
2447
2448 /*
2449 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2450 * we should change hctx numa_node according to new topology (this
2451 * involves free and re-allocate memory, worthy doing?)
2452 */
2453
2454 blk_mq_map_swqueue(q, online_mask);
2455
2456 blk_mq_sysfs_register(q);
2457 }
2458
2459 /*
2460 * New online cpumask which is going to be set in this hotplug event.
2461 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2462 * one-by-one and dynamically allocating this could result in a failure.
2463 */
2464 static struct cpumask cpuhp_online_new;
2465
2466 static void blk_mq_queue_reinit_work(void)
2467 {
2468 struct request_queue *q;
2469
2470 mutex_lock(&all_q_mutex);
2471 /*
2472 * We need to freeze and reinit all existing queues. Freezing
2473 * involves synchronous wait for an RCU grace period and doing it
2474 * one by one may take a long time. Start freezing all queues in
2475 * one swoop and then wait for the completions so that freezing can
2476 * take place in parallel.
2477 */
2478 list_for_each_entry(q, &all_q_list, all_q_node)
2479 blk_mq_freeze_queue_start(q);
2480 list_for_each_entry(q, &all_q_list, all_q_node)
2481 blk_mq_freeze_queue_wait(q);
2482
2483 list_for_each_entry(q, &all_q_list, all_q_node)
2484 blk_mq_queue_reinit(q, &cpuhp_online_new);
2485
2486 list_for_each_entry(q, &all_q_list, all_q_node)
2487 blk_mq_unfreeze_queue(q);
2488
2489 mutex_unlock(&all_q_mutex);
2490 }
2491
2492 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2493 {
2494 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2495 blk_mq_queue_reinit_work();
2496 return 0;
2497 }
2498
2499 /*
2500 * Before hotadded cpu starts handling requests, new mappings must be
2501 * established. Otherwise, these requests in hw queue might never be
2502 * dispatched.
2503 *
2504 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2505 * for CPU0, and ctx1 for CPU1).
2506 *
2507 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2508 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2509 *
2510 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2511 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2512 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2513 * ignored.
2514 */
2515 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2516 {
2517 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2518 cpumask_set_cpu(cpu, &cpuhp_online_new);
2519 blk_mq_queue_reinit_work();
2520 return 0;
2521 }
2522
2523 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2524 {
2525 int i;
2526
2527 for (i = 0; i < set->nr_hw_queues; i++)
2528 if (!__blk_mq_alloc_rq_map(set, i))
2529 goto out_unwind;
2530
2531 return 0;
2532
2533 out_unwind:
2534 while (--i >= 0)
2535 blk_mq_free_rq_map(set->tags[i]);
2536
2537 return -ENOMEM;
2538 }
2539
2540 /*
2541 * Allocate the request maps associated with this tag_set. Note that this
2542 * may reduce the depth asked for, if memory is tight. set->queue_depth
2543 * will be updated to reflect the allocated depth.
2544 */
2545 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2546 {
2547 unsigned int depth;
2548 int err;
2549
2550 depth = set->queue_depth;
2551 do {
2552 err = __blk_mq_alloc_rq_maps(set);
2553 if (!err)
2554 break;
2555
2556 set->queue_depth >>= 1;
2557 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2558 err = -ENOMEM;
2559 break;
2560 }
2561 } while (set->queue_depth);
2562
2563 if (!set->queue_depth || err) {
2564 pr_err("blk-mq: failed to allocate request map\n");
2565 return -ENOMEM;
2566 }
2567
2568 if (depth != set->queue_depth)
2569 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2570 depth, set->queue_depth);
2571
2572 return 0;
2573 }
2574
2575 /*
2576 * Alloc a tag set to be associated with one or more request queues.
2577 * May fail with EINVAL for various error conditions. May adjust the
2578 * requested depth down, if if it too large. In that case, the set
2579 * value will be stored in set->queue_depth.
2580 */
2581 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2582 {
2583 int ret;
2584
2585 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2586
2587 if (!set->nr_hw_queues)
2588 return -EINVAL;
2589 if (!set->queue_depth)
2590 return -EINVAL;
2591 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2592 return -EINVAL;
2593
2594 if (!set->ops->queue_rq)
2595 return -EINVAL;
2596
2597 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2598 pr_info("blk-mq: reduced tag depth to %u\n",
2599 BLK_MQ_MAX_DEPTH);
2600 set->queue_depth = BLK_MQ_MAX_DEPTH;
2601 }
2602
2603 /*
2604 * If a crashdump is active, then we are potentially in a very
2605 * memory constrained environment. Limit us to 1 queue and
2606 * 64 tags to prevent using too much memory.
2607 */
2608 if (is_kdump_kernel()) {
2609 set->nr_hw_queues = 1;
2610 set->queue_depth = min(64U, set->queue_depth);
2611 }
2612 /*
2613 * There is no use for more h/w queues than cpus.
2614 */
2615 if (set->nr_hw_queues > nr_cpu_ids)
2616 set->nr_hw_queues = nr_cpu_ids;
2617
2618 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2619 GFP_KERNEL, set->numa_node);
2620 if (!set->tags)
2621 return -ENOMEM;
2622
2623 ret = -ENOMEM;
2624 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2625 GFP_KERNEL, set->numa_node);
2626 if (!set->mq_map)
2627 goto out_free_tags;
2628
2629 if (set->ops->map_queues)
2630 ret = set->ops->map_queues(set);
2631 else
2632 ret = blk_mq_map_queues(set);
2633 if (ret)
2634 goto out_free_mq_map;
2635
2636 ret = blk_mq_alloc_rq_maps(set);
2637 if (ret)
2638 goto out_free_mq_map;
2639
2640 mutex_init(&set->tag_list_lock);
2641 INIT_LIST_HEAD(&set->tag_list);
2642
2643 return 0;
2644
2645 out_free_mq_map:
2646 kfree(set->mq_map);
2647 set->mq_map = NULL;
2648 out_free_tags:
2649 kfree(set->tags);
2650 set->tags = NULL;
2651 return ret;
2652 }
2653 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2654
2655 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2656 {
2657 int i;
2658
2659 for (i = 0; i < nr_cpu_ids; i++)
2660 blk_mq_free_map_and_requests(set, i);
2661
2662 kfree(set->mq_map);
2663 set->mq_map = NULL;
2664
2665 kfree(set->tags);
2666 set->tags = NULL;
2667 }
2668 EXPORT_SYMBOL(blk_mq_free_tag_set);
2669
2670 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2671 {
2672 struct blk_mq_tag_set *set = q->tag_set;
2673 struct blk_mq_hw_ctx *hctx;
2674 int i, ret;
2675
2676 if (!set)
2677 return -EINVAL;
2678
2679 blk_mq_freeze_queue(q);
2680 blk_mq_quiesce_queue(q);
2681
2682 ret = 0;
2683 queue_for_each_hw_ctx(q, hctx, i) {
2684 if (!hctx->tags)
2685 continue;
2686 /*
2687 * If we're using an MQ scheduler, just update the scheduler
2688 * queue depth. This is similar to what the old code would do.
2689 */
2690 if (!hctx->sched_tags) {
2691 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2692 min(nr, set->queue_depth),
2693 false);
2694 } else {
2695 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2696 nr, true);
2697 }
2698 if (ret)
2699 break;
2700 }
2701
2702 if (!ret)
2703 q->nr_requests = nr;
2704
2705 blk_mq_unfreeze_queue(q);
2706 blk_mq_start_stopped_hw_queues(q, true);
2707
2708 return ret;
2709 }
2710
2711 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2712 {
2713 struct request_queue *q;
2714
2715 if (nr_hw_queues > nr_cpu_ids)
2716 nr_hw_queues = nr_cpu_ids;
2717 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2718 return;
2719
2720 list_for_each_entry(q, &set->tag_list, tag_set_list)
2721 blk_mq_freeze_queue(q);
2722
2723 set->nr_hw_queues = nr_hw_queues;
2724 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2725 blk_mq_realloc_hw_ctxs(set, q);
2726
2727 /*
2728 * Manually set the make_request_fn as blk_queue_make_request
2729 * resets a lot of the queue settings.
2730 */
2731 if (q->nr_hw_queues > 1)
2732 q->make_request_fn = blk_mq_make_request;
2733 else
2734 q->make_request_fn = blk_sq_make_request;
2735
2736 blk_mq_queue_reinit(q, cpu_online_mask);
2737 }
2738
2739 list_for_each_entry(q, &set->tag_list, tag_set_list)
2740 blk_mq_unfreeze_queue(q);
2741 }
2742 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2743
2744 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2745 struct blk_mq_hw_ctx *hctx,
2746 struct request *rq)
2747 {
2748 struct blk_rq_stat stat[2];
2749 unsigned long ret = 0;
2750
2751 /*
2752 * If stats collection isn't on, don't sleep but turn it on for
2753 * future users
2754 */
2755 if (!blk_stat_enable(q))
2756 return 0;
2757
2758 /*
2759 * We don't have to do this once per IO, should optimize this
2760 * to just use the current window of stats until it changes
2761 */
2762 memset(&stat, 0, sizeof(stat));
2763 blk_hctx_stat_get(hctx, stat);
2764
2765 /*
2766 * As an optimistic guess, use half of the mean service time
2767 * for this type of request. We can (and should) make this smarter.
2768 * For instance, if the completion latencies are tight, we can
2769 * get closer than just half the mean. This is especially
2770 * important on devices where the completion latencies are longer
2771 * than ~10 usec.
2772 */
2773 if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
2774 ret = (stat[BLK_STAT_READ].mean + 1) / 2;
2775 else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
2776 ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;
2777
2778 return ret;
2779 }
2780
2781 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2782 struct blk_mq_hw_ctx *hctx,
2783 struct request *rq)
2784 {
2785 struct hrtimer_sleeper hs;
2786 enum hrtimer_mode mode;
2787 unsigned int nsecs;
2788 ktime_t kt;
2789
2790 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2791 return false;
2792
2793 /*
2794 * poll_nsec can be:
2795 *
2796 * -1: don't ever hybrid sleep
2797 * 0: use half of prev avg
2798 * >0: use this specific value
2799 */
2800 if (q->poll_nsec == -1)
2801 return false;
2802 else if (q->poll_nsec > 0)
2803 nsecs = q->poll_nsec;
2804 else
2805 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2806
2807 if (!nsecs)
2808 return false;
2809
2810 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2811
2812 /*
2813 * This will be replaced with the stats tracking code, using
2814 * 'avg_completion_time / 2' as the pre-sleep target.
2815 */
2816 kt = nsecs;
2817
2818 mode = HRTIMER_MODE_REL;
2819 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2820 hrtimer_set_expires(&hs.timer, kt);
2821
2822 hrtimer_init_sleeper(&hs, current);
2823 do {
2824 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2825 break;
2826 set_current_state(TASK_UNINTERRUPTIBLE);
2827 hrtimer_start_expires(&hs.timer, mode);
2828 if (hs.task)
2829 io_schedule();
2830 hrtimer_cancel(&hs.timer);
2831 mode = HRTIMER_MODE_ABS;
2832 } while (hs.task && !signal_pending(current));
2833
2834 __set_current_state(TASK_RUNNING);
2835 destroy_hrtimer_on_stack(&hs.timer);
2836 return true;
2837 }
2838
2839 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2840 {
2841 struct request_queue *q = hctx->queue;
2842 long state;
2843
2844 /*
2845 * If we sleep, have the caller restart the poll loop to reset
2846 * the state. Like for the other success return cases, the
2847 * caller is responsible for checking if the IO completed. If
2848 * the IO isn't complete, we'll get called again and will go
2849 * straight to the busy poll loop.
2850 */
2851 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2852 return true;
2853
2854 hctx->poll_considered++;
2855
2856 state = current->state;
2857 while (!need_resched()) {
2858 int ret;
2859
2860 hctx->poll_invoked++;
2861
2862 ret = q->mq_ops->poll(hctx, rq->tag);
2863 if (ret > 0) {
2864 hctx->poll_success++;
2865 set_current_state(TASK_RUNNING);
2866 return true;
2867 }
2868
2869 if (signal_pending_state(state, current))
2870 set_current_state(TASK_RUNNING);
2871
2872 if (current->state == TASK_RUNNING)
2873 return true;
2874 if (ret < 0)
2875 break;
2876 cpu_relax();
2877 }
2878
2879 return false;
2880 }
2881
2882 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2883 {
2884 struct blk_mq_hw_ctx *hctx;
2885 struct blk_plug *plug;
2886 struct request *rq;
2887
2888 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2889 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2890 return false;
2891
2892 plug = current->plug;
2893 if (plug)
2894 blk_flush_plug_list(plug, false);
2895
2896 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2897 if (!blk_qc_t_is_internal(cookie))
2898 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2899 else
2900 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2901
2902 return __blk_mq_poll(hctx, rq);
2903 }
2904 EXPORT_SYMBOL_GPL(blk_mq_poll);
2905
2906 void blk_mq_disable_hotplug(void)
2907 {
2908 mutex_lock(&all_q_mutex);
2909 }
2910
2911 void blk_mq_enable_hotplug(void)
2912 {
2913 mutex_unlock(&all_q_mutex);
2914 }
2915
2916 static int __init blk_mq_init(void)
2917 {
2918 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2919 blk_mq_hctx_notify_dead);
2920
2921 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2922 blk_mq_queue_reinit_prepare,
2923 blk_mq_queue_reinit_dead);
2924 return 0;
2925 }
2926 subsys_initcall(blk_mq_init);