]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - block/blk-mq.c
Merge branch 'pm-cpufreq'
[mirror_ubuntu-jammy-kernel.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Block multiqueue core code
4 *
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
7 */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30
31 #include <trace/events/block.h>
32
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43
44 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
45
46 static void blk_mq_poll_stats_start(struct request_queue *q);
47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48
49 static int blk_mq_poll_stats_bkt(const struct request *rq)
50 {
51 int ddir, sectors, bucket;
52
53 ddir = rq_data_dir(rq);
54 sectors = blk_rq_stats_sectors(rq);
55
56 bucket = ddir + 2 * ilog2(sectors);
57
58 if (bucket < 0)
59 return -1;
60 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62
63 return bucket;
64 }
65
66 /*
67 * Check if any of the ctx, dispatch list or elevator
68 * have pending work in this hardware queue.
69 */
70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
71 {
72 return !list_empty_careful(&hctx->dispatch) ||
73 sbitmap_any_bit_set(&hctx->ctx_map) ||
74 blk_mq_sched_has_work(hctx);
75 }
76
77 /*
78 * Mark this ctx as having pending work in this hardware queue
79 */
80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81 struct blk_mq_ctx *ctx)
82 {
83 const int bit = ctx->index_hw[hctx->type];
84
85 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86 sbitmap_set_bit(&hctx->ctx_map, bit);
87 }
88
89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90 struct blk_mq_ctx *ctx)
91 {
92 const int bit = ctx->index_hw[hctx->type];
93
94 sbitmap_clear_bit(&hctx->ctx_map, bit);
95 }
96
97 struct mq_inflight {
98 struct hd_struct *part;
99 unsigned int inflight[2];
100 };
101
102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103 struct request *rq, void *priv,
104 bool reserved)
105 {
106 struct mq_inflight *mi = priv;
107
108 if (rq->part == mi->part && blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
109 mi->inflight[rq_data_dir(rq)]++;
110
111 return true;
112 }
113
114 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
115 {
116 struct mq_inflight mi = { .part = part };
117
118 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119
120 return mi.inflight[0] + mi.inflight[1];
121 }
122
123 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
124 unsigned int inflight[2])
125 {
126 struct mq_inflight mi = { .part = part };
127
128 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
129 inflight[0] = mi.inflight[0];
130 inflight[1] = mi.inflight[1];
131 }
132
133 void blk_freeze_queue_start(struct request_queue *q)
134 {
135 mutex_lock(&q->mq_freeze_lock);
136 if (++q->mq_freeze_depth == 1) {
137 percpu_ref_kill(&q->q_usage_counter);
138 mutex_unlock(&q->mq_freeze_lock);
139 if (queue_is_mq(q))
140 blk_mq_run_hw_queues(q, false);
141 } else {
142 mutex_unlock(&q->mq_freeze_lock);
143 }
144 }
145 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
146
147 void blk_mq_freeze_queue_wait(struct request_queue *q)
148 {
149 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
150 }
151 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
152
153 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
154 unsigned long timeout)
155 {
156 return wait_event_timeout(q->mq_freeze_wq,
157 percpu_ref_is_zero(&q->q_usage_counter),
158 timeout);
159 }
160 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
161
162 /*
163 * Guarantee no request is in use, so we can change any data structure of
164 * the queue afterward.
165 */
166 void blk_freeze_queue(struct request_queue *q)
167 {
168 /*
169 * In the !blk_mq case we are only calling this to kill the
170 * q_usage_counter, otherwise this increases the freeze depth
171 * and waits for it to return to zero. For this reason there is
172 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
173 * exported to drivers as the only user for unfreeze is blk_mq.
174 */
175 blk_freeze_queue_start(q);
176 blk_mq_freeze_queue_wait(q);
177 }
178
179 void blk_mq_freeze_queue(struct request_queue *q)
180 {
181 /*
182 * ...just an alias to keep freeze and unfreeze actions balanced
183 * in the blk_mq_* namespace
184 */
185 blk_freeze_queue(q);
186 }
187 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
188
189 void blk_mq_unfreeze_queue(struct request_queue *q)
190 {
191 mutex_lock(&q->mq_freeze_lock);
192 q->mq_freeze_depth--;
193 WARN_ON_ONCE(q->mq_freeze_depth < 0);
194 if (!q->mq_freeze_depth) {
195 percpu_ref_resurrect(&q->q_usage_counter);
196 wake_up_all(&q->mq_freeze_wq);
197 }
198 mutex_unlock(&q->mq_freeze_lock);
199 }
200 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
201
202 /*
203 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
204 * mpt3sas driver such that this function can be removed.
205 */
206 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
207 {
208 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
209 }
210 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
211
212 /**
213 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
214 * @q: request queue.
215 *
216 * Note: this function does not prevent that the struct request end_io()
217 * callback function is invoked. Once this function is returned, we make
218 * sure no dispatch can happen until the queue is unquiesced via
219 * blk_mq_unquiesce_queue().
220 */
221 void blk_mq_quiesce_queue(struct request_queue *q)
222 {
223 struct blk_mq_hw_ctx *hctx;
224 unsigned int i;
225 bool rcu = false;
226
227 blk_mq_quiesce_queue_nowait(q);
228
229 queue_for_each_hw_ctx(q, hctx, i) {
230 if (hctx->flags & BLK_MQ_F_BLOCKING)
231 synchronize_srcu(hctx->srcu);
232 else
233 rcu = true;
234 }
235 if (rcu)
236 synchronize_rcu();
237 }
238 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
239
240 /*
241 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
242 * @q: request queue.
243 *
244 * This function recovers queue into the state before quiescing
245 * which is done by blk_mq_quiesce_queue.
246 */
247 void blk_mq_unquiesce_queue(struct request_queue *q)
248 {
249 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
250
251 /* dispatch requests which are inserted during quiescing */
252 blk_mq_run_hw_queues(q, true);
253 }
254 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
255
256 void blk_mq_wake_waiters(struct request_queue *q)
257 {
258 struct blk_mq_hw_ctx *hctx;
259 unsigned int i;
260
261 queue_for_each_hw_ctx(q, hctx, i)
262 if (blk_mq_hw_queue_mapped(hctx))
263 blk_mq_tag_wakeup_all(hctx->tags, true);
264 }
265
266 /*
267 * Only need start/end time stamping if we have iostat or
268 * blk stats enabled, or using an IO scheduler.
269 */
270 static inline bool blk_mq_need_time_stamp(struct request *rq)
271 {
272 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
273 }
274
275 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
276 unsigned int tag, u64 alloc_time_ns)
277 {
278 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
279 struct request *rq = tags->static_rqs[tag];
280
281 if (data->q->elevator) {
282 rq->tag = BLK_MQ_NO_TAG;
283 rq->internal_tag = tag;
284 } else {
285 rq->tag = tag;
286 rq->internal_tag = BLK_MQ_NO_TAG;
287 }
288
289 /* csd/requeue_work/fifo_time is initialized before use */
290 rq->q = data->q;
291 rq->mq_ctx = data->ctx;
292 rq->mq_hctx = data->hctx;
293 rq->rq_flags = 0;
294 rq->cmd_flags = data->cmd_flags;
295 if (data->flags & BLK_MQ_REQ_PREEMPT)
296 rq->rq_flags |= RQF_PREEMPT;
297 if (blk_queue_io_stat(data->q))
298 rq->rq_flags |= RQF_IO_STAT;
299 INIT_LIST_HEAD(&rq->queuelist);
300 INIT_HLIST_NODE(&rq->hash);
301 RB_CLEAR_NODE(&rq->rb_node);
302 rq->rq_disk = NULL;
303 rq->part = NULL;
304 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
305 rq->alloc_time_ns = alloc_time_ns;
306 #endif
307 if (blk_mq_need_time_stamp(rq))
308 rq->start_time_ns = ktime_get_ns();
309 else
310 rq->start_time_ns = 0;
311 rq->io_start_time_ns = 0;
312 rq->stats_sectors = 0;
313 rq->nr_phys_segments = 0;
314 #if defined(CONFIG_BLK_DEV_INTEGRITY)
315 rq->nr_integrity_segments = 0;
316 #endif
317 blk_crypto_rq_set_defaults(rq);
318 /* tag was already set */
319 WRITE_ONCE(rq->deadline, 0);
320
321 rq->timeout = 0;
322
323 rq->end_io = NULL;
324 rq->end_io_data = NULL;
325
326 data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
327 refcount_set(&rq->ref, 1);
328
329 if (!op_is_flush(data->cmd_flags)) {
330 struct elevator_queue *e = data->q->elevator;
331
332 rq->elv.icq = NULL;
333 if (e && e->type->ops.prepare_request) {
334 if (e->type->icq_cache)
335 blk_mq_sched_assign_ioc(rq);
336
337 e->type->ops.prepare_request(rq);
338 rq->rq_flags |= RQF_ELVPRIV;
339 }
340 }
341
342 data->hctx->queued++;
343 return rq;
344 }
345
346 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
347 {
348 struct request_queue *q = data->q;
349 struct elevator_queue *e = q->elevator;
350 u64 alloc_time_ns = 0;
351 unsigned int tag;
352
353 /* alloc_time includes depth and tag waits */
354 if (blk_queue_rq_alloc_time(q))
355 alloc_time_ns = ktime_get_ns();
356
357 if (data->cmd_flags & REQ_NOWAIT)
358 data->flags |= BLK_MQ_REQ_NOWAIT;
359
360 if (e) {
361 /*
362 * Flush requests are special and go directly to the
363 * dispatch list. Don't include reserved tags in the
364 * limiting, as it isn't useful.
365 */
366 if (!op_is_flush(data->cmd_flags) &&
367 e->type->ops.limit_depth &&
368 !(data->flags & BLK_MQ_REQ_RESERVED))
369 e->type->ops.limit_depth(data->cmd_flags, data);
370 }
371
372 retry:
373 data->ctx = blk_mq_get_ctx(q);
374 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
375 if (!e)
376 blk_mq_tag_busy(data->hctx);
377
378 /*
379 * Waiting allocations only fail because of an inactive hctx. In that
380 * case just retry the hctx assignment and tag allocation as CPU hotplug
381 * should have migrated us to an online CPU by now.
382 */
383 tag = blk_mq_get_tag(data);
384 if (tag == BLK_MQ_NO_TAG) {
385 if (data->flags & BLK_MQ_REQ_NOWAIT)
386 return NULL;
387
388 /*
389 * Give up the CPU and sleep for a random short time to ensure
390 * that thread using a realtime scheduling class are migrated
391 * off the CPU, and thus off the hctx that is going away.
392 */
393 msleep(3);
394 goto retry;
395 }
396 return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
397 }
398
399 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
400 blk_mq_req_flags_t flags)
401 {
402 struct blk_mq_alloc_data data = {
403 .q = q,
404 .flags = flags,
405 .cmd_flags = op,
406 };
407 struct request *rq;
408 int ret;
409
410 ret = blk_queue_enter(q, flags);
411 if (ret)
412 return ERR_PTR(ret);
413
414 rq = __blk_mq_alloc_request(&data);
415 if (!rq)
416 goto out_queue_exit;
417 rq->__data_len = 0;
418 rq->__sector = (sector_t) -1;
419 rq->bio = rq->biotail = NULL;
420 return rq;
421 out_queue_exit:
422 blk_queue_exit(q);
423 return ERR_PTR(-EWOULDBLOCK);
424 }
425 EXPORT_SYMBOL(blk_mq_alloc_request);
426
427 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
428 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
429 {
430 struct blk_mq_alloc_data data = {
431 .q = q,
432 .flags = flags,
433 .cmd_flags = op,
434 };
435 u64 alloc_time_ns = 0;
436 unsigned int cpu;
437 unsigned int tag;
438 int ret;
439
440 /* alloc_time includes depth and tag waits */
441 if (blk_queue_rq_alloc_time(q))
442 alloc_time_ns = ktime_get_ns();
443
444 /*
445 * If the tag allocator sleeps we could get an allocation for a
446 * different hardware context. No need to complicate the low level
447 * allocator for this for the rare use case of a command tied to
448 * a specific queue.
449 */
450 if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
451 return ERR_PTR(-EINVAL);
452
453 if (hctx_idx >= q->nr_hw_queues)
454 return ERR_PTR(-EIO);
455
456 ret = blk_queue_enter(q, flags);
457 if (ret)
458 return ERR_PTR(ret);
459
460 /*
461 * Check if the hardware context is actually mapped to anything.
462 * If not tell the caller that it should skip this queue.
463 */
464 ret = -EXDEV;
465 data.hctx = q->queue_hw_ctx[hctx_idx];
466 if (!blk_mq_hw_queue_mapped(data.hctx))
467 goto out_queue_exit;
468 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
469 data.ctx = __blk_mq_get_ctx(q, cpu);
470
471 if (!q->elevator)
472 blk_mq_tag_busy(data.hctx);
473
474 ret = -EWOULDBLOCK;
475 tag = blk_mq_get_tag(&data);
476 if (tag == BLK_MQ_NO_TAG)
477 goto out_queue_exit;
478 return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
479
480 out_queue_exit:
481 blk_queue_exit(q);
482 return ERR_PTR(ret);
483 }
484 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
485
486 static void __blk_mq_free_request(struct request *rq)
487 {
488 struct request_queue *q = rq->q;
489 struct blk_mq_ctx *ctx = rq->mq_ctx;
490 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
491 const int sched_tag = rq->internal_tag;
492
493 blk_crypto_free_request(rq);
494 blk_pm_mark_last_busy(rq);
495 rq->mq_hctx = NULL;
496 if (rq->tag != BLK_MQ_NO_TAG)
497 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
498 if (sched_tag != BLK_MQ_NO_TAG)
499 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
500 blk_mq_sched_restart(hctx);
501 blk_queue_exit(q);
502 }
503
504 void blk_mq_free_request(struct request *rq)
505 {
506 struct request_queue *q = rq->q;
507 struct elevator_queue *e = q->elevator;
508 struct blk_mq_ctx *ctx = rq->mq_ctx;
509 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
510
511 if (rq->rq_flags & RQF_ELVPRIV) {
512 if (e && e->type->ops.finish_request)
513 e->type->ops.finish_request(rq);
514 if (rq->elv.icq) {
515 put_io_context(rq->elv.icq->ioc);
516 rq->elv.icq = NULL;
517 }
518 }
519
520 ctx->rq_completed[rq_is_sync(rq)]++;
521 if (rq->rq_flags & RQF_MQ_INFLIGHT)
522 __blk_mq_dec_active_requests(hctx);
523
524 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
525 laptop_io_completion(q->backing_dev_info);
526
527 rq_qos_done(q, rq);
528
529 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
530 if (refcount_dec_and_test(&rq->ref))
531 __blk_mq_free_request(rq);
532 }
533 EXPORT_SYMBOL_GPL(blk_mq_free_request);
534
535 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
536 {
537 u64 now = 0;
538
539 if (blk_mq_need_time_stamp(rq))
540 now = ktime_get_ns();
541
542 if (rq->rq_flags & RQF_STATS) {
543 blk_mq_poll_stats_start(rq->q);
544 blk_stat_add(rq, now);
545 }
546
547 blk_mq_sched_completed_request(rq, now);
548
549 blk_account_io_done(rq, now);
550
551 if (rq->end_io) {
552 rq_qos_done(rq->q, rq);
553 rq->end_io(rq, error);
554 } else {
555 blk_mq_free_request(rq);
556 }
557 }
558 EXPORT_SYMBOL(__blk_mq_end_request);
559
560 void blk_mq_end_request(struct request *rq, blk_status_t error)
561 {
562 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
563 BUG();
564 __blk_mq_end_request(rq, error);
565 }
566 EXPORT_SYMBOL(blk_mq_end_request);
567
568 /*
569 * Softirq action handler - move entries to local list and loop over them
570 * while passing them to the queue registered handler.
571 */
572 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
573 {
574 struct list_head *cpu_list, local_list;
575
576 local_irq_disable();
577 cpu_list = this_cpu_ptr(&blk_cpu_done);
578 list_replace_init(cpu_list, &local_list);
579 local_irq_enable();
580
581 while (!list_empty(&local_list)) {
582 struct request *rq;
583
584 rq = list_entry(local_list.next, struct request, ipi_list);
585 list_del_init(&rq->ipi_list);
586 rq->q->mq_ops->complete(rq);
587 }
588 }
589
590 static void blk_mq_trigger_softirq(struct request *rq)
591 {
592 struct list_head *list;
593 unsigned long flags;
594
595 local_irq_save(flags);
596 list = this_cpu_ptr(&blk_cpu_done);
597 list_add_tail(&rq->ipi_list, list);
598
599 /*
600 * If the list only contains our just added request, signal a raise of
601 * the softirq. If there are already entries there, someone already
602 * raised the irq but it hasn't run yet.
603 */
604 if (list->next == &rq->ipi_list)
605 raise_softirq_irqoff(BLOCK_SOFTIRQ);
606 local_irq_restore(flags);
607 }
608
609 static int blk_softirq_cpu_dead(unsigned int cpu)
610 {
611 /*
612 * If a CPU goes away, splice its entries to the current CPU
613 * and trigger a run of the softirq
614 */
615 local_irq_disable();
616 list_splice_init(&per_cpu(blk_cpu_done, cpu),
617 this_cpu_ptr(&blk_cpu_done));
618 raise_softirq_irqoff(BLOCK_SOFTIRQ);
619 local_irq_enable();
620
621 return 0;
622 }
623
624
625 static void __blk_mq_complete_request_remote(void *data)
626 {
627 struct request *rq = data;
628
629 /*
630 * For most of single queue controllers, there is only one irq vector
631 * for handling I/O completion, and the only irq's affinity is set
632 * to all possible CPUs. On most of ARCHs, this affinity means the irq
633 * is handled on one specific CPU.
634 *
635 * So complete I/O requests in softirq context in case of single queue
636 * devices to avoid degrading I/O performance due to irqsoff latency.
637 */
638 if (rq->q->nr_hw_queues == 1)
639 blk_mq_trigger_softirq(rq);
640 else
641 rq->q->mq_ops->complete(rq);
642 }
643
644 static inline bool blk_mq_complete_need_ipi(struct request *rq)
645 {
646 int cpu = raw_smp_processor_id();
647
648 if (!IS_ENABLED(CONFIG_SMP) ||
649 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
650 return false;
651
652 /* same CPU or cache domain? Complete locally */
653 if (cpu == rq->mq_ctx->cpu ||
654 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
655 cpus_share_cache(cpu, rq->mq_ctx->cpu)))
656 return false;
657
658 /* don't try to IPI to an offline CPU */
659 return cpu_online(rq->mq_ctx->cpu);
660 }
661
662 bool blk_mq_complete_request_remote(struct request *rq)
663 {
664 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
665
666 /*
667 * For a polled request, always complete locallly, it's pointless
668 * to redirect the completion.
669 */
670 if (rq->cmd_flags & REQ_HIPRI)
671 return false;
672
673 if (blk_mq_complete_need_ipi(rq)) {
674 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
675 smp_call_function_single_async(rq->mq_ctx->cpu, &rq->csd);
676 } else {
677 if (rq->q->nr_hw_queues > 1)
678 return false;
679 blk_mq_trigger_softirq(rq);
680 }
681
682 return true;
683 }
684 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
685
686 /**
687 * blk_mq_complete_request - end I/O on a request
688 * @rq: the request being processed
689 *
690 * Description:
691 * Complete a request by scheduling the ->complete_rq operation.
692 **/
693 void blk_mq_complete_request(struct request *rq)
694 {
695 if (!blk_mq_complete_request_remote(rq))
696 rq->q->mq_ops->complete(rq);
697 }
698 EXPORT_SYMBOL(blk_mq_complete_request);
699
700 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
701 __releases(hctx->srcu)
702 {
703 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
704 rcu_read_unlock();
705 else
706 srcu_read_unlock(hctx->srcu, srcu_idx);
707 }
708
709 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
710 __acquires(hctx->srcu)
711 {
712 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
713 /* shut up gcc false positive */
714 *srcu_idx = 0;
715 rcu_read_lock();
716 } else
717 *srcu_idx = srcu_read_lock(hctx->srcu);
718 }
719
720 /**
721 * blk_mq_start_request - Start processing a request
722 * @rq: Pointer to request to be started
723 *
724 * Function used by device drivers to notify the block layer that a request
725 * is going to be processed now, so blk layer can do proper initializations
726 * such as starting the timeout timer.
727 */
728 void blk_mq_start_request(struct request *rq)
729 {
730 struct request_queue *q = rq->q;
731
732 trace_block_rq_issue(q, rq);
733
734 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
735 rq->io_start_time_ns = ktime_get_ns();
736 rq->stats_sectors = blk_rq_sectors(rq);
737 rq->rq_flags |= RQF_STATS;
738 rq_qos_issue(q, rq);
739 }
740
741 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
742
743 blk_add_timer(rq);
744 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
745
746 #ifdef CONFIG_BLK_DEV_INTEGRITY
747 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
748 q->integrity.profile->prepare_fn(rq);
749 #endif
750 }
751 EXPORT_SYMBOL(blk_mq_start_request);
752
753 static void __blk_mq_requeue_request(struct request *rq)
754 {
755 struct request_queue *q = rq->q;
756
757 blk_mq_put_driver_tag(rq);
758
759 trace_block_rq_requeue(q, rq);
760 rq_qos_requeue(q, rq);
761
762 if (blk_mq_request_started(rq)) {
763 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
764 rq->rq_flags &= ~RQF_TIMED_OUT;
765 }
766 }
767
768 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
769 {
770 __blk_mq_requeue_request(rq);
771
772 /* this request will be re-inserted to io scheduler queue */
773 blk_mq_sched_requeue_request(rq);
774
775 BUG_ON(!list_empty(&rq->queuelist));
776 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
777 }
778 EXPORT_SYMBOL(blk_mq_requeue_request);
779
780 static void blk_mq_requeue_work(struct work_struct *work)
781 {
782 struct request_queue *q =
783 container_of(work, struct request_queue, requeue_work.work);
784 LIST_HEAD(rq_list);
785 struct request *rq, *next;
786
787 spin_lock_irq(&q->requeue_lock);
788 list_splice_init(&q->requeue_list, &rq_list);
789 spin_unlock_irq(&q->requeue_lock);
790
791 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
792 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
793 continue;
794
795 rq->rq_flags &= ~RQF_SOFTBARRIER;
796 list_del_init(&rq->queuelist);
797 /*
798 * If RQF_DONTPREP, rq has contained some driver specific
799 * data, so insert it to hctx dispatch list to avoid any
800 * merge.
801 */
802 if (rq->rq_flags & RQF_DONTPREP)
803 blk_mq_request_bypass_insert(rq, false, false);
804 else
805 blk_mq_sched_insert_request(rq, true, false, false);
806 }
807
808 while (!list_empty(&rq_list)) {
809 rq = list_entry(rq_list.next, struct request, queuelist);
810 list_del_init(&rq->queuelist);
811 blk_mq_sched_insert_request(rq, false, false, false);
812 }
813
814 blk_mq_run_hw_queues(q, false);
815 }
816
817 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
818 bool kick_requeue_list)
819 {
820 struct request_queue *q = rq->q;
821 unsigned long flags;
822
823 /*
824 * We abuse this flag that is otherwise used by the I/O scheduler to
825 * request head insertion from the workqueue.
826 */
827 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
828
829 spin_lock_irqsave(&q->requeue_lock, flags);
830 if (at_head) {
831 rq->rq_flags |= RQF_SOFTBARRIER;
832 list_add(&rq->queuelist, &q->requeue_list);
833 } else {
834 list_add_tail(&rq->queuelist, &q->requeue_list);
835 }
836 spin_unlock_irqrestore(&q->requeue_lock, flags);
837
838 if (kick_requeue_list)
839 blk_mq_kick_requeue_list(q);
840 }
841
842 void blk_mq_kick_requeue_list(struct request_queue *q)
843 {
844 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
845 }
846 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
847
848 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
849 unsigned long msecs)
850 {
851 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
852 msecs_to_jiffies(msecs));
853 }
854 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
855
856 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
857 {
858 if (tag < tags->nr_tags) {
859 prefetch(tags->rqs[tag]);
860 return tags->rqs[tag];
861 }
862
863 return NULL;
864 }
865 EXPORT_SYMBOL(blk_mq_tag_to_rq);
866
867 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
868 void *priv, bool reserved)
869 {
870 /*
871 * If we find a request that isn't idle and the queue matches,
872 * we know the queue is busy. Return false to stop the iteration.
873 */
874 if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
875 bool *busy = priv;
876
877 *busy = true;
878 return false;
879 }
880
881 return true;
882 }
883
884 bool blk_mq_queue_inflight(struct request_queue *q)
885 {
886 bool busy = false;
887
888 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
889 return busy;
890 }
891 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
892
893 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
894 {
895 req->rq_flags |= RQF_TIMED_OUT;
896 if (req->q->mq_ops->timeout) {
897 enum blk_eh_timer_return ret;
898
899 ret = req->q->mq_ops->timeout(req, reserved);
900 if (ret == BLK_EH_DONE)
901 return;
902 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
903 }
904
905 blk_add_timer(req);
906 }
907
908 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
909 {
910 unsigned long deadline;
911
912 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
913 return false;
914 if (rq->rq_flags & RQF_TIMED_OUT)
915 return false;
916
917 deadline = READ_ONCE(rq->deadline);
918 if (time_after_eq(jiffies, deadline))
919 return true;
920
921 if (*next == 0)
922 *next = deadline;
923 else if (time_after(*next, deadline))
924 *next = deadline;
925 return false;
926 }
927
928 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
929 struct request *rq, void *priv, bool reserved)
930 {
931 unsigned long *next = priv;
932
933 /*
934 * Just do a quick check if it is expired before locking the request in
935 * so we're not unnecessarilly synchronizing across CPUs.
936 */
937 if (!blk_mq_req_expired(rq, next))
938 return true;
939
940 /*
941 * We have reason to believe the request may be expired. Take a
942 * reference on the request to lock this request lifetime into its
943 * currently allocated context to prevent it from being reallocated in
944 * the event the completion by-passes this timeout handler.
945 *
946 * If the reference was already released, then the driver beat the
947 * timeout handler to posting a natural completion.
948 */
949 if (!refcount_inc_not_zero(&rq->ref))
950 return true;
951
952 /*
953 * The request is now locked and cannot be reallocated underneath the
954 * timeout handler's processing. Re-verify this exact request is truly
955 * expired; if it is not expired, then the request was completed and
956 * reallocated as a new request.
957 */
958 if (blk_mq_req_expired(rq, next))
959 blk_mq_rq_timed_out(rq, reserved);
960
961 if (is_flush_rq(rq, hctx))
962 rq->end_io(rq, 0);
963 else if (refcount_dec_and_test(&rq->ref))
964 __blk_mq_free_request(rq);
965
966 return true;
967 }
968
969 static void blk_mq_timeout_work(struct work_struct *work)
970 {
971 struct request_queue *q =
972 container_of(work, struct request_queue, timeout_work);
973 unsigned long next = 0;
974 struct blk_mq_hw_ctx *hctx;
975 int i;
976
977 /* A deadlock might occur if a request is stuck requiring a
978 * timeout at the same time a queue freeze is waiting
979 * completion, since the timeout code would not be able to
980 * acquire the queue reference here.
981 *
982 * That's why we don't use blk_queue_enter here; instead, we use
983 * percpu_ref_tryget directly, because we need to be able to
984 * obtain a reference even in the short window between the queue
985 * starting to freeze, by dropping the first reference in
986 * blk_freeze_queue_start, and the moment the last request is
987 * consumed, marked by the instant q_usage_counter reaches
988 * zero.
989 */
990 if (!percpu_ref_tryget(&q->q_usage_counter))
991 return;
992
993 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
994
995 if (next != 0) {
996 mod_timer(&q->timeout, next);
997 } else {
998 /*
999 * Request timeouts are handled as a forward rolling timer. If
1000 * we end up here it means that no requests are pending and
1001 * also that no request has been pending for a while. Mark
1002 * each hctx as idle.
1003 */
1004 queue_for_each_hw_ctx(q, hctx, i) {
1005 /* the hctx may be unmapped, so check it here */
1006 if (blk_mq_hw_queue_mapped(hctx))
1007 blk_mq_tag_idle(hctx);
1008 }
1009 }
1010 blk_queue_exit(q);
1011 }
1012
1013 struct flush_busy_ctx_data {
1014 struct blk_mq_hw_ctx *hctx;
1015 struct list_head *list;
1016 };
1017
1018 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1019 {
1020 struct flush_busy_ctx_data *flush_data = data;
1021 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1022 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1023 enum hctx_type type = hctx->type;
1024
1025 spin_lock(&ctx->lock);
1026 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1027 sbitmap_clear_bit(sb, bitnr);
1028 spin_unlock(&ctx->lock);
1029 return true;
1030 }
1031
1032 /*
1033 * Process software queues that have been marked busy, splicing them
1034 * to the for-dispatch
1035 */
1036 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1037 {
1038 struct flush_busy_ctx_data data = {
1039 .hctx = hctx,
1040 .list = list,
1041 };
1042
1043 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1044 }
1045 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1046
1047 struct dispatch_rq_data {
1048 struct blk_mq_hw_ctx *hctx;
1049 struct request *rq;
1050 };
1051
1052 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1053 void *data)
1054 {
1055 struct dispatch_rq_data *dispatch_data = data;
1056 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1057 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1058 enum hctx_type type = hctx->type;
1059
1060 spin_lock(&ctx->lock);
1061 if (!list_empty(&ctx->rq_lists[type])) {
1062 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1063 list_del_init(&dispatch_data->rq->queuelist);
1064 if (list_empty(&ctx->rq_lists[type]))
1065 sbitmap_clear_bit(sb, bitnr);
1066 }
1067 spin_unlock(&ctx->lock);
1068
1069 return !dispatch_data->rq;
1070 }
1071
1072 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1073 struct blk_mq_ctx *start)
1074 {
1075 unsigned off = start ? start->index_hw[hctx->type] : 0;
1076 struct dispatch_rq_data data = {
1077 .hctx = hctx,
1078 .rq = NULL,
1079 };
1080
1081 __sbitmap_for_each_set(&hctx->ctx_map, off,
1082 dispatch_rq_from_ctx, &data);
1083
1084 return data.rq;
1085 }
1086
1087 static inline unsigned int queued_to_index(unsigned int queued)
1088 {
1089 if (!queued)
1090 return 0;
1091
1092 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1093 }
1094
1095 static bool __blk_mq_get_driver_tag(struct request *rq)
1096 {
1097 struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1098 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1099 int tag;
1100
1101 blk_mq_tag_busy(rq->mq_hctx);
1102
1103 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1104 bt = rq->mq_hctx->tags->breserved_tags;
1105 tag_offset = 0;
1106 } else {
1107 if (!hctx_may_queue(rq->mq_hctx, bt))
1108 return false;
1109 }
1110
1111 tag = __sbitmap_queue_get(bt);
1112 if (tag == BLK_MQ_NO_TAG)
1113 return false;
1114
1115 rq->tag = tag + tag_offset;
1116 return true;
1117 }
1118
1119 static bool blk_mq_get_driver_tag(struct request *rq)
1120 {
1121 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1122
1123 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1124 return false;
1125
1126 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1127 !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1128 rq->rq_flags |= RQF_MQ_INFLIGHT;
1129 __blk_mq_inc_active_requests(hctx);
1130 }
1131 hctx->tags->rqs[rq->tag] = rq;
1132 return true;
1133 }
1134
1135 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1136 int flags, void *key)
1137 {
1138 struct blk_mq_hw_ctx *hctx;
1139
1140 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1141
1142 spin_lock(&hctx->dispatch_wait_lock);
1143 if (!list_empty(&wait->entry)) {
1144 struct sbitmap_queue *sbq;
1145
1146 list_del_init(&wait->entry);
1147 sbq = hctx->tags->bitmap_tags;
1148 atomic_dec(&sbq->ws_active);
1149 }
1150 spin_unlock(&hctx->dispatch_wait_lock);
1151
1152 blk_mq_run_hw_queue(hctx, true);
1153 return 1;
1154 }
1155
1156 /*
1157 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1158 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1159 * restart. For both cases, take care to check the condition again after
1160 * marking us as waiting.
1161 */
1162 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1163 struct request *rq)
1164 {
1165 struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1166 struct wait_queue_head *wq;
1167 wait_queue_entry_t *wait;
1168 bool ret;
1169
1170 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1171 blk_mq_sched_mark_restart_hctx(hctx);
1172
1173 /*
1174 * It's possible that a tag was freed in the window between the
1175 * allocation failure and adding the hardware queue to the wait
1176 * queue.
1177 *
1178 * Don't clear RESTART here, someone else could have set it.
1179 * At most this will cost an extra queue run.
1180 */
1181 return blk_mq_get_driver_tag(rq);
1182 }
1183
1184 wait = &hctx->dispatch_wait;
1185 if (!list_empty_careful(&wait->entry))
1186 return false;
1187
1188 wq = &bt_wait_ptr(sbq, hctx)->wait;
1189
1190 spin_lock_irq(&wq->lock);
1191 spin_lock(&hctx->dispatch_wait_lock);
1192 if (!list_empty(&wait->entry)) {
1193 spin_unlock(&hctx->dispatch_wait_lock);
1194 spin_unlock_irq(&wq->lock);
1195 return false;
1196 }
1197
1198 atomic_inc(&sbq->ws_active);
1199 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1200 __add_wait_queue(wq, wait);
1201
1202 /*
1203 * It's possible that a tag was freed in the window between the
1204 * allocation failure and adding the hardware queue to the wait
1205 * queue.
1206 */
1207 ret = blk_mq_get_driver_tag(rq);
1208 if (!ret) {
1209 spin_unlock(&hctx->dispatch_wait_lock);
1210 spin_unlock_irq(&wq->lock);
1211 return false;
1212 }
1213
1214 /*
1215 * We got a tag, remove ourselves from the wait queue to ensure
1216 * someone else gets the wakeup.
1217 */
1218 list_del_init(&wait->entry);
1219 atomic_dec(&sbq->ws_active);
1220 spin_unlock(&hctx->dispatch_wait_lock);
1221 spin_unlock_irq(&wq->lock);
1222
1223 return true;
1224 }
1225
1226 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1227 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1228 /*
1229 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1230 * - EWMA is one simple way to compute running average value
1231 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1232 * - take 4 as factor for avoiding to get too small(0) result, and this
1233 * factor doesn't matter because EWMA decreases exponentially
1234 */
1235 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1236 {
1237 unsigned int ewma;
1238
1239 if (hctx->queue->elevator)
1240 return;
1241
1242 ewma = hctx->dispatch_busy;
1243
1244 if (!ewma && !busy)
1245 return;
1246
1247 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1248 if (busy)
1249 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1250 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1251
1252 hctx->dispatch_busy = ewma;
1253 }
1254
1255 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1256
1257 static void blk_mq_handle_dev_resource(struct request *rq,
1258 struct list_head *list)
1259 {
1260 struct request *next =
1261 list_first_entry_or_null(list, struct request, queuelist);
1262
1263 /*
1264 * If an I/O scheduler has been configured and we got a driver tag for
1265 * the next request already, free it.
1266 */
1267 if (next)
1268 blk_mq_put_driver_tag(next);
1269
1270 list_add(&rq->queuelist, list);
1271 __blk_mq_requeue_request(rq);
1272 }
1273
1274 static void blk_mq_handle_zone_resource(struct request *rq,
1275 struct list_head *zone_list)
1276 {
1277 /*
1278 * If we end up here it is because we cannot dispatch a request to a
1279 * specific zone due to LLD level zone-write locking or other zone
1280 * related resource not being available. In this case, set the request
1281 * aside in zone_list for retrying it later.
1282 */
1283 list_add(&rq->queuelist, zone_list);
1284 __blk_mq_requeue_request(rq);
1285 }
1286
1287 enum prep_dispatch {
1288 PREP_DISPATCH_OK,
1289 PREP_DISPATCH_NO_TAG,
1290 PREP_DISPATCH_NO_BUDGET,
1291 };
1292
1293 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1294 bool need_budget)
1295 {
1296 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1297
1298 if (need_budget && !blk_mq_get_dispatch_budget(rq->q)) {
1299 blk_mq_put_driver_tag(rq);
1300 return PREP_DISPATCH_NO_BUDGET;
1301 }
1302
1303 if (!blk_mq_get_driver_tag(rq)) {
1304 /*
1305 * The initial allocation attempt failed, so we need to
1306 * rerun the hardware queue when a tag is freed. The
1307 * waitqueue takes care of that. If the queue is run
1308 * before we add this entry back on the dispatch list,
1309 * we'll re-run it below.
1310 */
1311 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1312 /*
1313 * All budgets not got from this function will be put
1314 * together during handling partial dispatch
1315 */
1316 if (need_budget)
1317 blk_mq_put_dispatch_budget(rq->q);
1318 return PREP_DISPATCH_NO_TAG;
1319 }
1320 }
1321
1322 return PREP_DISPATCH_OK;
1323 }
1324
1325 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1326 static void blk_mq_release_budgets(struct request_queue *q,
1327 unsigned int nr_budgets)
1328 {
1329 int i;
1330
1331 for (i = 0; i < nr_budgets; i++)
1332 blk_mq_put_dispatch_budget(q);
1333 }
1334
1335 /*
1336 * Returns true if we did some work AND can potentially do more.
1337 */
1338 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1339 unsigned int nr_budgets)
1340 {
1341 enum prep_dispatch prep;
1342 struct request_queue *q = hctx->queue;
1343 struct request *rq, *nxt;
1344 int errors, queued;
1345 blk_status_t ret = BLK_STS_OK;
1346 LIST_HEAD(zone_list);
1347
1348 if (list_empty(list))
1349 return false;
1350
1351 /*
1352 * Now process all the entries, sending them to the driver.
1353 */
1354 errors = queued = 0;
1355 do {
1356 struct blk_mq_queue_data bd;
1357
1358 rq = list_first_entry(list, struct request, queuelist);
1359
1360 WARN_ON_ONCE(hctx != rq->mq_hctx);
1361 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1362 if (prep != PREP_DISPATCH_OK)
1363 break;
1364
1365 list_del_init(&rq->queuelist);
1366
1367 bd.rq = rq;
1368
1369 /*
1370 * Flag last if we have no more requests, or if we have more
1371 * but can't assign a driver tag to it.
1372 */
1373 if (list_empty(list))
1374 bd.last = true;
1375 else {
1376 nxt = list_first_entry(list, struct request, queuelist);
1377 bd.last = !blk_mq_get_driver_tag(nxt);
1378 }
1379
1380 /*
1381 * once the request is queued to lld, no need to cover the
1382 * budget any more
1383 */
1384 if (nr_budgets)
1385 nr_budgets--;
1386 ret = q->mq_ops->queue_rq(hctx, &bd);
1387 switch (ret) {
1388 case BLK_STS_OK:
1389 queued++;
1390 break;
1391 case BLK_STS_RESOURCE:
1392 case BLK_STS_DEV_RESOURCE:
1393 blk_mq_handle_dev_resource(rq, list);
1394 goto out;
1395 case BLK_STS_ZONE_RESOURCE:
1396 /*
1397 * Move the request to zone_list and keep going through
1398 * the dispatch list to find more requests the drive can
1399 * accept.
1400 */
1401 blk_mq_handle_zone_resource(rq, &zone_list);
1402 break;
1403 default:
1404 errors++;
1405 blk_mq_end_request(rq, BLK_STS_IOERR);
1406 }
1407 } while (!list_empty(list));
1408 out:
1409 if (!list_empty(&zone_list))
1410 list_splice_tail_init(&zone_list, list);
1411
1412 hctx->dispatched[queued_to_index(queued)]++;
1413
1414 /* If we didn't flush the entire list, we could have told the driver
1415 * there was more coming, but that turned out to be a lie.
1416 */
1417 if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1418 q->mq_ops->commit_rqs(hctx);
1419 /*
1420 * Any items that need requeuing? Stuff them into hctx->dispatch,
1421 * that is where we will continue on next queue run.
1422 */
1423 if (!list_empty(list)) {
1424 bool needs_restart;
1425 /* For non-shared tags, the RESTART check will suffice */
1426 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1427 (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1428 bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET;
1429
1430 blk_mq_release_budgets(q, nr_budgets);
1431
1432 spin_lock(&hctx->lock);
1433 list_splice_tail_init(list, &hctx->dispatch);
1434 spin_unlock(&hctx->lock);
1435
1436 /*
1437 * Order adding requests to hctx->dispatch and checking
1438 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1439 * in blk_mq_sched_restart(). Avoid restart code path to
1440 * miss the new added requests to hctx->dispatch, meantime
1441 * SCHED_RESTART is observed here.
1442 */
1443 smp_mb();
1444
1445 /*
1446 * If SCHED_RESTART was set by the caller of this function and
1447 * it is no longer set that means that it was cleared by another
1448 * thread and hence that a queue rerun is needed.
1449 *
1450 * If 'no_tag' is set, that means that we failed getting
1451 * a driver tag with an I/O scheduler attached. If our dispatch
1452 * waitqueue is no longer active, ensure that we run the queue
1453 * AFTER adding our entries back to the list.
1454 *
1455 * If no I/O scheduler has been configured it is possible that
1456 * the hardware queue got stopped and restarted before requests
1457 * were pushed back onto the dispatch list. Rerun the queue to
1458 * avoid starvation. Notes:
1459 * - blk_mq_run_hw_queue() checks whether or not a queue has
1460 * been stopped before rerunning a queue.
1461 * - Some but not all block drivers stop a queue before
1462 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1463 * and dm-rq.
1464 *
1465 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1466 * bit is set, run queue after a delay to avoid IO stalls
1467 * that could otherwise occur if the queue is idle. We'll do
1468 * similar if we couldn't get budget and SCHED_RESTART is set.
1469 */
1470 needs_restart = blk_mq_sched_needs_restart(hctx);
1471 if (!needs_restart ||
1472 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1473 blk_mq_run_hw_queue(hctx, true);
1474 else if (needs_restart && (ret == BLK_STS_RESOURCE ||
1475 no_budget_avail))
1476 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1477
1478 blk_mq_update_dispatch_busy(hctx, true);
1479 return false;
1480 } else
1481 blk_mq_update_dispatch_busy(hctx, false);
1482
1483 return (queued + errors) != 0;
1484 }
1485
1486 /**
1487 * __blk_mq_run_hw_queue - Run a hardware queue.
1488 * @hctx: Pointer to the hardware queue to run.
1489 *
1490 * Send pending requests to the hardware.
1491 */
1492 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1493 {
1494 int srcu_idx;
1495
1496 /*
1497 * We should be running this queue from one of the CPUs that
1498 * are mapped to it.
1499 *
1500 * There are at least two related races now between setting
1501 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1502 * __blk_mq_run_hw_queue():
1503 *
1504 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1505 * but later it becomes online, then this warning is harmless
1506 * at all
1507 *
1508 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1509 * but later it becomes offline, then the warning can't be
1510 * triggered, and we depend on blk-mq timeout handler to
1511 * handle dispatched requests to this hctx
1512 */
1513 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1514 cpu_online(hctx->next_cpu)) {
1515 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1516 raw_smp_processor_id(),
1517 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1518 dump_stack();
1519 }
1520
1521 /*
1522 * We can't run the queue inline with ints disabled. Ensure that
1523 * we catch bad users of this early.
1524 */
1525 WARN_ON_ONCE(in_interrupt());
1526
1527 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1528
1529 hctx_lock(hctx, &srcu_idx);
1530 blk_mq_sched_dispatch_requests(hctx);
1531 hctx_unlock(hctx, srcu_idx);
1532 }
1533
1534 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1535 {
1536 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1537
1538 if (cpu >= nr_cpu_ids)
1539 cpu = cpumask_first(hctx->cpumask);
1540 return cpu;
1541 }
1542
1543 /*
1544 * It'd be great if the workqueue API had a way to pass
1545 * in a mask and had some smarts for more clever placement.
1546 * For now we just round-robin here, switching for every
1547 * BLK_MQ_CPU_WORK_BATCH queued items.
1548 */
1549 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1550 {
1551 bool tried = false;
1552 int next_cpu = hctx->next_cpu;
1553
1554 if (hctx->queue->nr_hw_queues == 1)
1555 return WORK_CPU_UNBOUND;
1556
1557 if (--hctx->next_cpu_batch <= 0) {
1558 select_cpu:
1559 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1560 cpu_online_mask);
1561 if (next_cpu >= nr_cpu_ids)
1562 next_cpu = blk_mq_first_mapped_cpu(hctx);
1563 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1564 }
1565
1566 /*
1567 * Do unbound schedule if we can't find a online CPU for this hctx,
1568 * and it should only happen in the path of handling CPU DEAD.
1569 */
1570 if (!cpu_online(next_cpu)) {
1571 if (!tried) {
1572 tried = true;
1573 goto select_cpu;
1574 }
1575
1576 /*
1577 * Make sure to re-select CPU next time once after CPUs
1578 * in hctx->cpumask become online again.
1579 */
1580 hctx->next_cpu = next_cpu;
1581 hctx->next_cpu_batch = 1;
1582 return WORK_CPU_UNBOUND;
1583 }
1584
1585 hctx->next_cpu = next_cpu;
1586 return next_cpu;
1587 }
1588
1589 /**
1590 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1591 * @hctx: Pointer to the hardware queue to run.
1592 * @async: If we want to run the queue asynchronously.
1593 * @msecs: Microseconds of delay to wait before running the queue.
1594 *
1595 * If !@async, try to run the queue now. Else, run the queue asynchronously and
1596 * with a delay of @msecs.
1597 */
1598 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1599 unsigned long msecs)
1600 {
1601 if (unlikely(blk_mq_hctx_stopped(hctx)))
1602 return;
1603
1604 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1605 int cpu = get_cpu();
1606 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1607 __blk_mq_run_hw_queue(hctx);
1608 put_cpu();
1609 return;
1610 }
1611
1612 put_cpu();
1613 }
1614
1615 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1616 msecs_to_jiffies(msecs));
1617 }
1618
1619 /**
1620 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1621 * @hctx: Pointer to the hardware queue to run.
1622 * @msecs: Microseconds of delay to wait before running the queue.
1623 *
1624 * Run a hardware queue asynchronously with a delay of @msecs.
1625 */
1626 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1627 {
1628 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1629 }
1630 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1631
1632 /**
1633 * blk_mq_run_hw_queue - Start to run a hardware queue.
1634 * @hctx: Pointer to the hardware queue to run.
1635 * @async: If we want to run the queue asynchronously.
1636 *
1637 * Check if the request queue is not in a quiesced state and if there are
1638 * pending requests to be sent. If this is true, run the queue to send requests
1639 * to hardware.
1640 */
1641 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1642 {
1643 int srcu_idx;
1644 bool need_run;
1645
1646 /*
1647 * When queue is quiesced, we may be switching io scheduler, or
1648 * updating nr_hw_queues, or other things, and we can't run queue
1649 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1650 *
1651 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1652 * quiesced.
1653 */
1654 hctx_lock(hctx, &srcu_idx);
1655 need_run = !blk_queue_quiesced(hctx->queue) &&
1656 blk_mq_hctx_has_pending(hctx);
1657 hctx_unlock(hctx, srcu_idx);
1658
1659 if (need_run)
1660 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1661 }
1662 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1663
1664 /**
1665 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1666 * @q: Pointer to the request queue to run.
1667 * @async: If we want to run the queue asynchronously.
1668 */
1669 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1670 {
1671 struct blk_mq_hw_ctx *hctx;
1672 int i;
1673
1674 queue_for_each_hw_ctx(q, hctx, i) {
1675 if (blk_mq_hctx_stopped(hctx))
1676 continue;
1677
1678 blk_mq_run_hw_queue(hctx, async);
1679 }
1680 }
1681 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1682
1683 /**
1684 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1685 * @q: Pointer to the request queue to run.
1686 * @msecs: Microseconds of delay to wait before running the queues.
1687 */
1688 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1689 {
1690 struct blk_mq_hw_ctx *hctx;
1691 int i;
1692
1693 queue_for_each_hw_ctx(q, hctx, i) {
1694 if (blk_mq_hctx_stopped(hctx))
1695 continue;
1696
1697 blk_mq_delay_run_hw_queue(hctx, msecs);
1698 }
1699 }
1700 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1701
1702 /**
1703 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1704 * @q: request queue.
1705 *
1706 * The caller is responsible for serializing this function against
1707 * blk_mq_{start,stop}_hw_queue().
1708 */
1709 bool blk_mq_queue_stopped(struct request_queue *q)
1710 {
1711 struct blk_mq_hw_ctx *hctx;
1712 int i;
1713
1714 queue_for_each_hw_ctx(q, hctx, i)
1715 if (blk_mq_hctx_stopped(hctx))
1716 return true;
1717
1718 return false;
1719 }
1720 EXPORT_SYMBOL(blk_mq_queue_stopped);
1721
1722 /*
1723 * This function is often used for pausing .queue_rq() by driver when
1724 * there isn't enough resource or some conditions aren't satisfied, and
1725 * BLK_STS_RESOURCE is usually returned.
1726 *
1727 * We do not guarantee that dispatch can be drained or blocked
1728 * after blk_mq_stop_hw_queue() returns. Please use
1729 * blk_mq_quiesce_queue() for that requirement.
1730 */
1731 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1732 {
1733 cancel_delayed_work(&hctx->run_work);
1734
1735 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1736 }
1737 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1738
1739 /*
1740 * This function is often used for pausing .queue_rq() by driver when
1741 * there isn't enough resource or some conditions aren't satisfied, and
1742 * BLK_STS_RESOURCE is usually returned.
1743 *
1744 * We do not guarantee that dispatch can be drained or blocked
1745 * after blk_mq_stop_hw_queues() returns. Please use
1746 * blk_mq_quiesce_queue() for that requirement.
1747 */
1748 void blk_mq_stop_hw_queues(struct request_queue *q)
1749 {
1750 struct blk_mq_hw_ctx *hctx;
1751 int i;
1752
1753 queue_for_each_hw_ctx(q, hctx, i)
1754 blk_mq_stop_hw_queue(hctx);
1755 }
1756 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1757
1758 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1759 {
1760 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1761
1762 blk_mq_run_hw_queue(hctx, false);
1763 }
1764 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1765
1766 void blk_mq_start_hw_queues(struct request_queue *q)
1767 {
1768 struct blk_mq_hw_ctx *hctx;
1769 int i;
1770
1771 queue_for_each_hw_ctx(q, hctx, i)
1772 blk_mq_start_hw_queue(hctx);
1773 }
1774 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1775
1776 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1777 {
1778 if (!blk_mq_hctx_stopped(hctx))
1779 return;
1780
1781 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1782 blk_mq_run_hw_queue(hctx, async);
1783 }
1784 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1785
1786 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1787 {
1788 struct blk_mq_hw_ctx *hctx;
1789 int i;
1790
1791 queue_for_each_hw_ctx(q, hctx, i)
1792 blk_mq_start_stopped_hw_queue(hctx, async);
1793 }
1794 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1795
1796 static void blk_mq_run_work_fn(struct work_struct *work)
1797 {
1798 struct blk_mq_hw_ctx *hctx;
1799
1800 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1801
1802 /*
1803 * If we are stopped, don't run the queue.
1804 */
1805 if (blk_mq_hctx_stopped(hctx))
1806 return;
1807
1808 __blk_mq_run_hw_queue(hctx);
1809 }
1810
1811 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1812 struct request *rq,
1813 bool at_head)
1814 {
1815 struct blk_mq_ctx *ctx = rq->mq_ctx;
1816 enum hctx_type type = hctx->type;
1817
1818 lockdep_assert_held(&ctx->lock);
1819
1820 trace_block_rq_insert(hctx->queue, rq);
1821
1822 if (at_head)
1823 list_add(&rq->queuelist, &ctx->rq_lists[type]);
1824 else
1825 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1826 }
1827
1828 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1829 bool at_head)
1830 {
1831 struct blk_mq_ctx *ctx = rq->mq_ctx;
1832
1833 lockdep_assert_held(&ctx->lock);
1834
1835 __blk_mq_insert_req_list(hctx, rq, at_head);
1836 blk_mq_hctx_mark_pending(hctx, ctx);
1837 }
1838
1839 /**
1840 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1841 * @rq: Pointer to request to be inserted.
1842 * @at_head: true if the request should be inserted at the head of the list.
1843 * @run_queue: If we should run the hardware queue after inserting the request.
1844 *
1845 * Should only be used carefully, when the caller knows we want to
1846 * bypass a potential IO scheduler on the target device.
1847 */
1848 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1849 bool run_queue)
1850 {
1851 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1852
1853 spin_lock(&hctx->lock);
1854 if (at_head)
1855 list_add(&rq->queuelist, &hctx->dispatch);
1856 else
1857 list_add_tail(&rq->queuelist, &hctx->dispatch);
1858 spin_unlock(&hctx->lock);
1859
1860 if (run_queue)
1861 blk_mq_run_hw_queue(hctx, false);
1862 }
1863
1864 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1865 struct list_head *list)
1866
1867 {
1868 struct request *rq;
1869 enum hctx_type type = hctx->type;
1870
1871 /*
1872 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1873 * offline now
1874 */
1875 list_for_each_entry(rq, list, queuelist) {
1876 BUG_ON(rq->mq_ctx != ctx);
1877 trace_block_rq_insert(hctx->queue, rq);
1878 }
1879
1880 spin_lock(&ctx->lock);
1881 list_splice_tail_init(list, &ctx->rq_lists[type]);
1882 blk_mq_hctx_mark_pending(hctx, ctx);
1883 spin_unlock(&ctx->lock);
1884 }
1885
1886 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1887 {
1888 struct request *rqa = container_of(a, struct request, queuelist);
1889 struct request *rqb = container_of(b, struct request, queuelist);
1890
1891 if (rqa->mq_ctx != rqb->mq_ctx)
1892 return rqa->mq_ctx > rqb->mq_ctx;
1893 if (rqa->mq_hctx != rqb->mq_hctx)
1894 return rqa->mq_hctx > rqb->mq_hctx;
1895
1896 return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1897 }
1898
1899 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1900 {
1901 LIST_HEAD(list);
1902
1903 if (list_empty(&plug->mq_list))
1904 return;
1905 list_splice_init(&plug->mq_list, &list);
1906
1907 if (plug->rq_count > 2 && plug->multiple_queues)
1908 list_sort(NULL, &list, plug_rq_cmp);
1909
1910 plug->rq_count = 0;
1911
1912 do {
1913 struct list_head rq_list;
1914 struct request *rq, *head_rq = list_entry_rq(list.next);
1915 struct list_head *pos = &head_rq->queuelist; /* skip first */
1916 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1917 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1918 unsigned int depth = 1;
1919
1920 list_for_each_continue(pos, &list) {
1921 rq = list_entry_rq(pos);
1922 BUG_ON(!rq->q);
1923 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1924 break;
1925 depth++;
1926 }
1927
1928 list_cut_before(&rq_list, &list, pos);
1929 trace_block_unplug(head_rq->q, depth, !from_schedule);
1930 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1931 from_schedule);
1932 } while(!list_empty(&list));
1933 }
1934
1935 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1936 unsigned int nr_segs)
1937 {
1938 int err;
1939
1940 if (bio->bi_opf & REQ_RAHEAD)
1941 rq->cmd_flags |= REQ_FAILFAST_MASK;
1942
1943 rq->__sector = bio->bi_iter.bi_sector;
1944 rq->write_hint = bio->bi_write_hint;
1945 blk_rq_bio_prep(rq, bio, nr_segs);
1946
1947 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
1948 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1949 WARN_ON_ONCE(err);
1950
1951 blk_account_io_start(rq);
1952 }
1953
1954 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1955 struct request *rq,
1956 blk_qc_t *cookie, bool last)
1957 {
1958 struct request_queue *q = rq->q;
1959 struct blk_mq_queue_data bd = {
1960 .rq = rq,
1961 .last = last,
1962 };
1963 blk_qc_t new_cookie;
1964 blk_status_t ret;
1965
1966 new_cookie = request_to_qc_t(hctx, rq);
1967
1968 /*
1969 * For OK queue, we are done. For error, caller may kill it.
1970 * Any other error (busy), just add it to our list as we
1971 * previously would have done.
1972 */
1973 ret = q->mq_ops->queue_rq(hctx, &bd);
1974 switch (ret) {
1975 case BLK_STS_OK:
1976 blk_mq_update_dispatch_busy(hctx, false);
1977 *cookie = new_cookie;
1978 break;
1979 case BLK_STS_RESOURCE:
1980 case BLK_STS_DEV_RESOURCE:
1981 blk_mq_update_dispatch_busy(hctx, true);
1982 __blk_mq_requeue_request(rq);
1983 break;
1984 default:
1985 blk_mq_update_dispatch_busy(hctx, false);
1986 *cookie = BLK_QC_T_NONE;
1987 break;
1988 }
1989
1990 return ret;
1991 }
1992
1993 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1994 struct request *rq,
1995 blk_qc_t *cookie,
1996 bool bypass_insert, bool last)
1997 {
1998 struct request_queue *q = rq->q;
1999 bool run_queue = true;
2000
2001 /*
2002 * RCU or SRCU read lock is needed before checking quiesced flag.
2003 *
2004 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2005 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2006 * and avoid driver to try to dispatch again.
2007 */
2008 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2009 run_queue = false;
2010 bypass_insert = false;
2011 goto insert;
2012 }
2013
2014 if (q->elevator && !bypass_insert)
2015 goto insert;
2016
2017 if (!blk_mq_get_dispatch_budget(q))
2018 goto insert;
2019
2020 if (!blk_mq_get_driver_tag(rq)) {
2021 blk_mq_put_dispatch_budget(q);
2022 goto insert;
2023 }
2024
2025 return __blk_mq_issue_directly(hctx, rq, cookie, last);
2026 insert:
2027 if (bypass_insert)
2028 return BLK_STS_RESOURCE;
2029
2030 blk_mq_sched_insert_request(rq, false, run_queue, false);
2031
2032 return BLK_STS_OK;
2033 }
2034
2035 /**
2036 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2037 * @hctx: Pointer of the associated hardware queue.
2038 * @rq: Pointer to request to be sent.
2039 * @cookie: Request queue cookie.
2040 *
2041 * If the device has enough resources to accept a new request now, send the
2042 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2043 * we can try send it another time in the future. Requests inserted at this
2044 * queue have higher priority.
2045 */
2046 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2047 struct request *rq, blk_qc_t *cookie)
2048 {
2049 blk_status_t ret;
2050 int srcu_idx;
2051
2052 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2053
2054 hctx_lock(hctx, &srcu_idx);
2055
2056 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2057 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2058 blk_mq_request_bypass_insert(rq, false, true);
2059 else if (ret != BLK_STS_OK)
2060 blk_mq_end_request(rq, ret);
2061
2062 hctx_unlock(hctx, srcu_idx);
2063 }
2064
2065 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2066 {
2067 blk_status_t ret;
2068 int srcu_idx;
2069 blk_qc_t unused_cookie;
2070 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2071
2072 hctx_lock(hctx, &srcu_idx);
2073 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2074 hctx_unlock(hctx, srcu_idx);
2075
2076 return ret;
2077 }
2078
2079 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2080 struct list_head *list)
2081 {
2082 int queued = 0;
2083 int errors = 0;
2084
2085 while (!list_empty(list)) {
2086 blk_status_t ret;
2087 struct request *rq = list_first_entry(list, struct request,
2088 queuelist);
2089
2090 list_del_init(&rq->queuelist);
2091 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2092 if (ret != BLK_STS_OK) {
2093 if (ret == BLK_STS_RESOURCE ||
2094 ret == BLK_STS_DEV_RESOURCE) {
2095 blk_mq_request_bypass_insert(rq, false,
2096 list_empty(list));
2097 break;
2098 }
2099 blk_mq_end_request(rq, ret);
2100 errors++;
2101 } else
2102 queued++;
2103 }
2104
2105 /*
2106 * If we didn't flush the entire list, we could have told
2107 * the driver there was more coming, but that turned out to
2108 * be a lie.
2109 */
2110 if ((!list_empty(list) || errors) &&
2111 hctx->queue->mq_ops->commit_rqs && queued)
2112 hctx->queue->mq_ops->commit_rqs(hctx);
2113 }
2114
2115 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2116 {
2117 list_add_tail(&rq->queuelist, &plug->mq_list);
2118 plug->rq_count++;
2119 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2120 struct request *tmp;
2121
2122 tmp = list_first_entry(&plug->mq_list, struct request,
2123 queuelist);
2124 if (tmp->q != rq->q)
2125 plug->multiple_queues = true;
2126 }
2127 }
2128
2129 /**
2130 * blk_mq_submit_bio - Create and send a request to block device.
2131 * @bio: Bio pointer.
2132 *
2133 * Builds up a request structure from @q and @bio and send to the device. The
2134 * request may not be queued directly to hardware if:
2135 * * This request can be merged with another one
2136 * * We want to place request at plug queue for possible future merging
2137 * * There is an IO scheduler active at this queue
2138 *
2139 * It will not queue the request if there is an error with the bio, or at the
2140 * request creation.
2141 *
2142 * Returns: Request queue cookie.
2143 */
2144 blk_qc_t blk_mq_submit_bio(struct bio *bio)
2145 {
2146 struct request_queue *q = bio->bi_disk->queue;
2147 const int is_sync = op_is_sync(bio->bi_opf);
2148 const int is_flush_fua = op_is_flush(bio->bi_opf);
2149 struct blk_mq_alloc_data data = {
2150 .q = q,
2151 };
2152 struct request *rq;
2153 struct blk_plug *plug;
2154 struct request *same_queue_rq = NULL;
2155 unsigned int nr_segs;
2156 blk_qc_t cookie;
2157 blk_status_t ret;
2158
2159 blk_queue_bounce(q, &bio);
2160 __blk_queue_split(&bio, &nr_segs);
2161
2162 if (!bio_integrity_prep(bio))
2163 goto queue_exit;
2164
2165 if (!is_flush_fua && !blk_queue_nomerges(q) &&
2166 blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2167 goto queue_exit;
2168
2169 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2170 goto queue_exit;
2171
2172 rq_qos_throttle(q, bio);
2173
2174 data.cmd_flags = bio->bi_opf;
2175 rq = __blk_mq_alloc_request(&data);
2176 if (unlikely(!rq)) {
2177 rq_qos_cleanup(q, bio);
2178 if (bio->bi_opf & REQ_NOWAIT)
2179 bio_wouldblock_error(bio);
2180 goto queue_exit;
2181 }
2182
2183 trace_block_getrq(q, bio, bio->bi_opf);
2184
2185 rq_qos_track(q, rq, bio);
2186
2187 cookie = request_to_qc_t(data.hctx, rq);
2188
2189 blk_mq_bio_to_request(rq, bio, nr_segs);
2190
2191 ret = blk_crypto_init_request(rq);
2192 if (ret != BLK_STS_OK) {
2193 bio->bi_status = ret;
2194 bio_endio(bio);
2195 blk_mq_free_request(rq);
2196 return BLK_QC_T_NONE;
2197 }
2198
2199 plug = blk_mq_plug(q, bio);
2200 if (unlikely(is_flush_fua)) {
2201 /* Bypass scheduler for flush requests */
2202 blk_insert_flush(rq);
2203 blk_mq_run_hw_queue(data.hctx, true);
2204 } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs ||
2205 !blk_queue_nonrot(q))) {
2206 /*
2207 * Use plugging if we have a ->commit_rqs() hook as well, as
2208 * we know the driver uses bd->last in a smart fashion.
2209 *
2210 * Use normal plugging if this disk is slow HDD, as sequential
2211 * IO may benefit a lot from plug merging.
2212 */
2213 unsigned int request_count = plug->rq_count;
2214 struct request *last = NULL;
2215
2216 if (!request_count)
2217 trace_block_plug(q);
2218 else
2219 last = list_entry_rq(plug->mq_list.prev);
2220
2221 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2222 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2223 blk_flush_plug_list(plug, false);
2224 trace_block_plug(q);
2225 }
2226
2227 blk_add_rq_to_plug(plug, rq);
2228 } else if (q->elevator) {
2229 /* Insert the request at the IO scheduler queue */
2230 blk_mq_sched_insert_request(rq, false, true, true);
2231 } else if (plug && !blk_queue_nomerges(q)) {
2232 /*
2233 * We do limited plugging. If the bio can be merged, do that.
2234 * Otherwise the existing request in the plug list will be
2235 * issued. So the plug list will have one request at most
2236 * The plug list might get flushed before this. If that happens,
2237 * the plug list is empty, and same_queue_rq is invalid.
2238 */
2239 if (list_empty(&plug->mq_list))
2240 same_queue_rq = NULL;
2241 if (same_queue_rq) {
2242 list_del_init(&same_queue_rq->queuelist);
2243 plug->rq_count--;
2244 }
2245 blk_add_rq_to_plug(plug, rq);
2246 trace_block_plug(q);
2247
2248 if (same_queue_rq) {
2249 data.hctx = same_queue_rq->mq_hctx;
2250 trace_block_unplug(q, 1, true);
2251 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2252 &cookie);
2253 }
2254 } else if ((q->nr_hw_queues > 1 && is_sync) ||
2255 !data.hctx->dispatch_busy) {
2256 /*
2257 * There is no scheduler and we can try to send directly
2258 * to the hardware.
2259 */
2260 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2261 } else {
2262 /* Default case. */
2263 blk_mq_sched_insert_request(rq, false, true, true);
2264 }
2265
2266 return cookie;
2267 queue_exit:
2268 blk_queue_exit(q);
2269 return BLK_QC_T_NONE;
2270 }
2271
2272 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2273 unsigned int hctx_idx)
2274 {
2275 struct page *page;
2276
2277 if (tags->rqs && set->ops->exit_request) {
2278 int i;
2279
2280 for (i = 0; i < tags->nr_tags; i++) {
2281 struct request *rq = tags->static_rqs[i];
2282
2283 if (!rq)
2284 continue;
2285 set->ops->exit_request(set, rq, hctx_idx);
2286 tags->static_rqs[i] = NULL;
2287 }
2288 }
2289
2290 while (!list_empty(&tags->page_list)) {
2291 page = list_first_entry(&tags->page_list, struct page, lru);
2292 list_del_init(&page->lru);
2293 /*
2294 * Remove kmemleak object previously allocated in
2295 * blk_mq_alloc_rqs().
2296 */
2297 kmemleak_free(page_address(page));
2298 __free_pages(page, page->private);
2299 }
2300 }
2301
2302 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2303 {
2304 kfree(tags->rqs);
2305 tags->rqs = NULL;
2306 kfree(tags->static_rqs);
2307 tags->static_rqs = NULL;
2308
2309 blk_mq_free_tags(tags, flags);
2310 }
2311
2312 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2313 unsigned int hctx_idx,
2314 unsigned int nr_tags,
2315 unsigned int reserved_tags,
2316 unsigned int flags)
2317 {
2318 struct blk_mq_tags *tags;
2319 int node;
2320
2321 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2322 if (node == NUMA_NO_NODE)
2323 node = set->numa_node;
2324
2325 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2326 if (!tags)
2327 return NULL;
2328
2329 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2330 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2331 node);
2332 if (!tags->rqs) {
2333 blk_mq_free_tags(tags, flags);
2334 return NULL;
2335 }
2336
2337 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2338 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2339 node);
2340 if (!tags->static_rqs) {
2341 kfree(tags->rqs);
2342 blk_mq_free_tags(tags, flags);
2343 return NULL;
2344 }
2345
2346 return tags;
2347 }
2348
2349 static size_t order_to_size(unsigned int order)
2350 {
2351 return (size_t)PAGE_SIZE << order;
2352 }
2353
2354 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2355 unsigned int hctx_idx, int node)
2356 {
2357 int ret;
2358
2359 if (set->ops->init_request) {
2360 ret = set->ops->init_request(set, rq, hctx_idx, node);
2361 if (ret)
2362 return ret;
2363 }
2364
2365 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2366 return 0;
2367 }
2368
2369 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2370 unsigned int hctx_idx, unsigned int depth)
2371 {
2372 unsigned int i, j, entries_per_page, max_order = 4;
2373 size_t rq_size, left;
2374 int node;
2375
2376 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2377 if (node == NUMA_NO_NODE)
2378 node = set->numa_node;
2379
2380 INIT_LIST_HEAD(&tags->page_list);
2381
2382 /*
2383 * rq_size is the size of the request plus driver payload, rounded
2384 * to the cacheline size
2385 */
2386 rq_size = round_up(sizeof(struct request) + set->cmd_size,
2387 cache_line_size());
2388 left = rq_size * depth;
2389
2390 for (i = 0; i < depth; ) {
2391 int this_order = max_order;
2392 struct page *page;
2393 int to_do;
2394 void *p;
2395
2396 while (this_order && left < order_to_size(this_order - 1))
2397 this_order--;
2398
2399 do {
2400 page = alloc_pages_node(node,
2401 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2402 this_order);
2403 if (page)
2404 break;
2405 if (!this_order--)
2406 break;
2407 if (order_to_size(this_order) < rq_size)
2408 break;
2409 } while (1);
2410
2411 if (!page)
2412 goto fail;
2413
2414 page->private = this_order;
2415 list_add_tail(&page->lru, &tags->page_list);
2416
2417 p = page_address(page);
2418 /*
2419 * Allow kmemleak to scan these pages as they contain pointers
2420 * to additional allocations like via ops->init_request().
2421 */
2422 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2423 entries_per_page = order_to_size(this_order) / rq_size;
2424 to_do = min(entries_per_page, depth - i);
2425 left -= to_do * rq_size;
2426 for (j = 0; j < to_do; j++) {
2427 struct request *rq = p;
2428
2429 tags->static_rqs[i] = rq;
2430 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2431 tags->static_rqs[i] = NULL;
2432 goto fail;
2433 }
2434
2435 p += rq_size;
2436 i++;
2437 }
2438 }
2439 return 0;
2440
2441 fail:
2442 blk_mq_free_rqs(set, tags, hctx_idx);
2443 return -ENOMEM;
2444 }
2445
2446 struct rq_iter_data {
2447 struct blk_mq_hw_ctx *hctx;
2448 bool has_rq;
2449 };
2450
2451 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2452 {
2453 struct rq_iter_data *iter_data = data;
2454
2455 if (rq->mq_hctx != iter_data->hctx)
2456 return true;
2457 iter_data->has_rq = true;
2458 return false;
2459 }
2460
2461 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2462 {
2463 struct blk_mq_tags *tags = hctx->sched_tags ?
2464 hctx->sched_tags : hctx->tags;
2465 struct rq_iter_data data = {
2466 .hctx = hctx,
2467 };
2468
2469 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2470 return data.has_rq;
2471 }
2472
2473 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2474 struct blk_mq_hw_ctx *hctx)
2475 {
2476 if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2477 return false;
2478 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2479 return false;
2480 return true;
2481 }
2482
2483 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2484 {
2485 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2486 struct blk_mq_hw_ctx, cpuhp_online);
2487
2488 if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2489 !blk_mq_last_cpu_in_hctx(cpu, hctx))
2490 return 0;
2491
2492 /*
2493 * Prevent new request from being allocated on the current hctx.
2494 *
2495 * The smp_mb__after_atomic() Pairs with the implied barrier in
2496 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is
2497 * seen once we return from the tag allocator.
2498 */
2499 set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2500 smp_mb__after_atomic();
2501
2502 /*
2503 * Try to grab a reference to the queue and wait for any outstanding
2504 * requests. If we could not grab a reference the queue has been
2505 * frozen and there are no requests.
2506 */
2507 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2508 while (blk_mq_hctx_has_requests(hctx))
2509 msleep(5);
2510 percpu_ref_put(&hctx->queue->q_usage_counter);
2511 }
2512
2513 return 0;
2514 }
2515
2516 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2517 {
2518 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2519 struct blk_mq_hw_ctx, cpuhp_online);
2520
2521 if (cpumask_test_cpu(cpu, hctx->cpumask))
2522 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2523 return 0;
2524 }
2525
2526 /*
2527 * 'cpu' is going away. splice any existing rq_list entries from this
2528 * software queue to the hw queue dispatch list, and ensure that it
2529 * gets run.
2530 */
2531 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2532 {
2533 struct blk_mq_hw_ctx *hctx;
2534 struct blk_mq_ctx *ctx;
2535 LIST_HEAD(tmp);
2536 enum hctx_type type;
2537
2538 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2539 if (!cpumask_test_cpu(cpu, hctx->cpumask))
2540 return 0;
2541
2542 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2543 type = hctx->type;
2544
2545 spin_lock(&ctx->lock);
2546 if (!list_empty(&ctx->rq_lists[type])) {
2547 list_splice_init(&ctx->rq_lists[type], &tmp);
2548 blk_mq_hctx_clear_pending(hctx, ctx);
2549 }
2550 spin_unlock(&ctx->lock);
2551
2552 if (list_empty(&tmp))
2553 return 0;
2554
2555 spin_lock(&hctx->lock);
2556 list_splice_tail_init(&tmp, &hctx->dispatch);
2557 spin_unlock(&hctx->lock);
2558
2559 blk_mq_run_hw_queue(hctx, true);
2560 return 0;
2561 }
2562
2563 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2564 {
2565 if (!(hctx->flags & BLK_MQ_F_STACKING))
2566 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2567 &hctx->cpuhp_online);
2568 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2569 &hctx->cpuhp_dead);
2570 }
2571
2572 /* hctx->ctxs will be freed in queue's release handler */
2573 static void blk_mq_exit_hctx(struct request_queue *q,
2574 struct blk_mq_tag_set *set,
2575 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2576 {
2577 if (blk_mq_hw_queue_mapped(hctx))
2578 blk_mq_tag_idle(hctx);
2579
2580 if (set->ops->exit_request)
2581 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2582
2583 if (set->ops->exit_hctx)
2584 set->ops->exit_hctx(hctx, hctx_idx);
2585
2586 blk_mq_remove_cpuhp(hctx);
2587
2588 spin_lock(&q->unused_hctx_lock);
2589 list_add(&hctx->hctx_list, &q->unused_hctx_list);
2590 spin_unlock(&q->unused_hctx_lock);
2591 }
2592
2593 static void blk_mq_exit_hw_queues(struct request_queue *q,
2594 struct blk_mq_tag_set *set, int nr_queue)
2595 {
2596 struct blk_mq_hw_ctx *hctx;
2597 unsigned int i;
2598
2599 queue_for_each_hw_ctx(q, hctx, i) {
2600 if (i == nr_queue)
2601 break;
2602 blk_mq_debugfs_unregister_hctx(hctx);
2603 blk_mq_exit_hctx(q, set, hctx, i);
2604 }
2605 }
2606
2607 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2608 {
2609 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2610
2611 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2612 __alignof__(struct blk_mq_hw_ctx)) !=
2613 sizeof(struct blk_mq_hw_ctx));
2614
2615 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2616 hw_ctx_size += sizeof(struct srcu_struct);
2617
2618 return hw_ctx_size;
2619 }
2620
2621 static int blk_mq_init_hctx(struct request_queue *q,
2622 struct blk_mq_tag_set *set,
2623 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2624 {
2625 hctx->queue_num = hctx_idx;
2626
2627 if (!(hctx->flags & BLK_MQ_F_STACKING))
2628 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2629 &hctx->cpuhp_online);
2630 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2631
2632 hctx->tags = set->tags[hctx_idx];
2633
2634 if (set->ops->init_hctx &&
2635 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2636 goto unregister_cpu_notifier;
2637
2638 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2639 hctx->numa_node))
2640 goto exit_hctx;
2641 return 0;
2642
2643 exit_hctx:
2644 if (set->ops->exit_hctx)
2645 set->ops->exit_hctx(hctx, hctx_idx);
2646 unregister_cpu_notifier:
2647 blk_mq_remove_cpuhp(hctx);
2648 return -1;
2649 }
2650
2651 static struct blk_mq_hw_ctx *
2652 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2653 int node)
2654 {
2655 struct blk_mq_hw_ctx *hctx;
2656 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2657
2658 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2659 if (!hctx)
2660 goto fail_alloc_hctx;
2661
2662 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2663 goto free_hctx;
2664
2665 atomic_set(&hctx->nr_active, 0);
2666 atomic_set(&hctx->elevator_queued, 0);
2667 if (node == NUMA_NO_NODE)
2668 node = set->numa_node;
2669 hctx->numa_node = node;
2670
2671 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2672 spin_lock_init(&hctx->lock);
2673 INIT_LIST_HEAD(&hctx->dispatch);
2674 hctx->queue = q;
2675 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2676
2677 INIT_LIST_HEAD(&hctx->hctx_list);
2678
2679 /*
2680 * Allocate space for all possible cpus to avoid allocation at
2681 * runtime
2682 */
2683 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2684 gfp, node);
2685 if (!hctx->ctxs)
2686 goto free_cpumask;
2687
2688 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2689 gfp, node))
2690 goto free_ctxs;
2691 hctx->nr_ctx = 0;
2692
2693 spin_lock_init(&hctx->dispatch_wait_lock);
2694 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2695 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2696
2697 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2698 if (!hctx->fq)
2699 goto free_bitmap;
2700
2701 if (hctx->flags & BLK_MQ_F_BLOCKING)
2702 init_srcu_struct(hctx->srcu);
2703 blk_mq_hctx_kobj_init(hctx);
2704
2705 return hctx;
2706
2707 free_bitmap:
2708 sbitmap_free(&hctx->ctx_map);
2709 free_ctxs:
2710 kfree(hctx->ctxs);
2711 free_cpumask:
2712 free_cpumask_var(hctx->cpumask);
2713 free_hctx:
2714 kfree(hctx);
2715 fail_alloc_hctx:
2716 return NULL;
2717 }
2718
2719 static void blk_mq_init_cpu_queues(struct request_queue *q,
2720 unsigned int nr_hw_queues)
2721 {
2722 struct blk_mq_tag_set *set = q->tag_set;
2723 unsigned int i, j;
2724
2725 for_each_possible_cpu(i) {
2726 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2727 struct blk_mq_hw_ctx *hctx;
2728 int k;
2729
2730 __ctx->cpu = i;
2731 spin_lock_init(&__ctx->lock);
2732 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2733 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2734
2735 __ctx->queue = q;
2736
2737 /*
2738 * Set local node, IFF we have more than one hw queue. If
2739 * not, we remain on the home node of the device
2740 */
2741 for (j = 0; j < set->nr_maps; j++) {
2742 hctx = blk_mq_map_queue_type(q, j, i);
2743 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2744 hctx->numa_node = cpu_to_node(i);
2745 }
2746 }
2747 }
2748
2749 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2750 int hctx_idx)
2751 {
2752 unsigned int flags = set->flags;
2753 int ret = 0;
2754
2755 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2756 set->queue_depth, set->reserved_tags, flags);
2757 if (!set->tags[hctx_idx])
2758 return false;
2759
2760 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2761 set->queue_depth);
2762 if (!ret)
2763 return true;
2764
2765 blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2766 set->tags[hctx_idx] = NULL;
2767 return false;
2768 }
2769
2770 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2771 unsigned int hctx_idx)
2772 {
2773 unsigned int flags = set->flags;
2774
2775 if (set->tags && set->tags[hctx_idx]) {
2776 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2777 blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2778 set->tags[hctx_idx] = NULL;
2779 }
2780 }
2781
2782 static void blk_mq_map_swqueue(struct request_queue *q)
2783 {
2784 unsigned int i, j, hctx_idx;
2785 struct blk_mq_hw_ctx *hctx;
2786 struct blk_mq_ctx *ctx;
2787 struct blk_mq_tag_set *set = q->tag_set;
2788
2789 queue_for_each_hw_ctx(q, hctx, i) {
2790 cpumask_clear(hctx->cpumask);
2791 hctx->nr_ctx = 0;
2792 hctx->dispatch_from = NULL;
2793 }
2794
2795 /*
2796 * Map software to hardware queues.
2797 *
2798 * If the cpu isn't present, the cpu is mapped to first hctx.
2799 */
2800 for_each_possible_cpu(i) {
2801
2802 ctx = per_cpu_ptr(q->queue_ctx, i);
2803 for (j = 0; j < set->nr_maps; j++) {
2804 if (!set->map[j].nr_queues) {
2805 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2806 HCTX_TYPE_DEFAULT, i);
2807 continue;
2808 }
2809 hctx_idx = set->map[j].mq_map[i];
2810 /* unmapped hw queue can be remapped after CPU topo changed */
2811 if (!set->tags[hctx_idx] &&
2812 !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2813 /*
2814 * If tags initialization fail for some hctx,
2815 * that hctx won't be brought online. In this
2816 * case, remap the current ctx to hctx[0] which
2817 * is guaranteed to always have tags allocated
2818 */
2819 set->map[j].mq_map[i] = 0;
2820 }
2821
2822 hctx = blk_mq_map_queue_type(q, j, i);
2823 ctx->hctxs[j] = hctx;
2824 /*
2825 * If the CPU is already set in the mask, then we've
2826 * mapped this one already. This can happen if
2827 * devices share queues across queue maps.
2828 */
2829 if (cpumask_test_cpu(i, hctx->cpumask))
2830 continue;
2831
2832 cpumask_set_cpu(i, hctx->cpumask);
2833 hctx->type = j;
2834 ctx->index_hw[hctx->type] = hctx->nr_ctx;
2835 hctx->ctxs[hctx->nr_ctx++] = ctx;
2836
2837 /*
2838 * If the nr_ctx type overflows, we have exceeded the
2839 * amount of sw queues we can support.
2840 */
2841 BUG_ON(!hctx->nr_ctx);
2842 }
2843
2844 for (; j < HCTX_MAX_TYPES; j++)
2845 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2846 HCTX_TYPE_DEFAULT, i);
2847 }
2848
2849 queue_for_each_hw_ctx(q, hctx, i) {
2850 /*
2851 * If no software queues are mapped to this hardware queue,
2852 * disable it and free the request entries.
2853 */
2854 if (!hctx->nr_ctx) {
2855 /* Never unmap queue 0. We need it as a
2856 * fallback in case of a new remap fails
2857 * allocation
2858 */
2859 if (i && set->tags[i])
2860 blk_mq_free_map_and_requests(set, i);
2861
2862 hctx->tags = NULL;
2863 continue;
2864 }
2865
2866 hctx->tags = set->tags[i];
2867 WARN_ON(!hctx->tags);
2868
2869 /*
2870 * Set the map size to the number of mapped software queues.
2871 * This is more accurate and more efficient than looping
2872 * over all possibly mapped software queues.
2873 */
2874 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2875
2876 /*
2877 * Initialize batch roundrobin counts
2878 */
2879 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2880 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2881 }
2882 }
2883
2884 /*
2885 * Caller needs to ensure that we're either frozen/quiesced, or that
2886 * the queue isn't live yet.
2887 */
2888 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2889 {
2890 struct blk_mq_hw_ctx *hctx;
2891 int i;
2892
2893 queue_for_each_hw_ctx(q, hctx, i) {
2894 if (shared)
2895 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2896 else
2897 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2898 }
2899 }
2900
2901 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
2902 bool shared)
2903 {
2904 struct request_queue *q;
2905
2906 lockdep_assert_held(&set->tag_list_lock);
2907
2908 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2909 blk_mq_freeze_queue(q);
2910 queue_set_hctx_shared(q, shared);
2911 blk_mq_unfreeze_queue(q);
2912 }
2913 }
2914
2915 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2916 {
2917 struct blk_mq_tag_set *set = q->tag_set;
2918
2919 mutex_lock(&set->tag_list_lock);
2920 list_del(&q->tag_set_list);
2921 if (list_is_singular(&set->tag_list)) {
2922 /* just transitioned to unshared */
2923 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2924 /* update existing queue */
2925 blk_mq_update_tag_set_shared(set, false);
2926 }
2927 mutex_unlock(&set->tag_list_lock);
2928 INIT_LIST_HEAD(&q->tag_set_list);
2929 }
2930
2931 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2932 struct request_queue *q)
2933 {
2934 mutex_lock(&set->tag_list_lock);
2935
2936 /*
2937 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2938 */
2939 if (!list_empty(&set->tag_list) &&
2940 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2941 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2942 /* update existing queue */
2943 blk_mq_update_tag_set_shared(set, true);
2944 }
2945 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
2946 queue_set_hctx_shared(q, true);
2947 list_add_tail(&q->tag_set_list, &set->tag_list);
2948
2949 mutex_unlock(&set->tag_list_lock);
2950 }
2951
2952 /* All allocations will be freed in release handler of q->mq_kobj */
2953 static int blk_mq_alloc_ctxs(struct request_queue *q)
2954 {
2955 struct blk_mq_ctxs *ctxs;
2956 int cpu;
2957
2958 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2959 if (!ctxs)
2960 return -ENOMEM;
2961
2962 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2963 if (!ctxs->queue_ctx)
2964 goto fail;
2965
2966 for_each_possible_cpu(cpu) {
2967 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2968 ctx->ctxs = ctxs;
2969 }
2970
2971 q->mq_kobj = &ctxs->kobj;
2972 q->queue_ctx = ctxs->queue_ctx;
2973
2974 return 0;
2975 fail:
2976 kfree(ctxs);
2977 return -ENOMEM;
2978 }
2979
2980 /*
2981 * It is the actual release handler for mq, but we do it from
2982 * request queue's release handler for avoiding use-after-free
2983 * and headache because q->mq_kobj shouldn't have been introduced,
2984 * but we can't group ctx/kctx kobj without it.
2985 */
2986 void blk_mq_release(struct request_queue *q)
2987 {
2988 struct blk_mq_hw_ctx *hctx, *next;
2989 int i;
2990
2991 queue_for_each_hw_ctx(q, hctx, i)
2992 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
2993
2994 /* all hctx are in .unused_hctx_list now */
2995 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
2996 list_del_init(&hctx->hctx_list);
2997 kobject_put(&hctx->kobj);
2998 }
2999
3000 kfree(q->queue_hw_ctx);
3001
3002 /*
3003 * release .mq_kobj and sw queue's kobject now because
3004 * both share lifetime with request queue.
3005 */
3006 blk_mq_sysfs_deinit(q);
3007 }
3008
3009 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3010 void *queuedata)
3011 {
3012 struct request_queue *uninit_q, *q;
3013
3014 uninit_q = blk_alloc_queue(set->numa_node);
3015 if (!uninit_q)
3016 return ERR_PTR(-ENOMEM);
3017 uninit_q->queuedata = queuedata;
3018
3019 /*
3020 * Initialize the queue without an elevator. device_add_disk() will do
3021 * the initialization.
3022 */
3023 q = blk_mq_init_allocated_queue(set, uninit_q, false);
3024 if (IS_ERR(q))
3025 blk_cleanup_queue(uninit_q);
3026
3027 return q;
3028 }
3029 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
3030
3031 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3032 {
3033 return blk_mq_init_queue_data(set, NULL);
3034 }
3035 EXPORT_SYMBOL(blk_mq_init_queue);
3036
3037 /*
3038 * Helper for setting up a queue with mq ops, given queue depth, and
3039 * the passed in mq ops flags.
3040 */
3041 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
3042 const struct blk_mq_ops *ops,
3043 unsigned int queue_depth,
3044 unsigned int set_flags)
3045 {
3046 struct request_queue *q;
3047 int ret;
3048
3049 memset(set, 0, sizeof(*set));
3050 set->ops = ops;
3051 set->nr_hw_queues = 1;
3052 set->nr_maps = 1;
3053 set->queue_depth = queue_depth;
3054 set->numa_node = NUMA_NO_NODE;
3055 set->flags = set_flags;
3056
3057 ret = blk_mq_alloc_tag_set(set);
3058 if (ret)
3059 return ERR_PTR(ret);
3060
3061 q = blk_mq_init_queue(set);
3062 if (IS_ERR(q)) {
3063 blk_mq_free_tag_set(set);
3064 return q;
3065 }
3066
3067 return q;
3068 }
3069 EXPORT_SYMBOL(blk_mq_init_sq_queue);
3070
3071 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3072 struct blk_mq_tag_set *set, struct request_queue *q,
3073 int hctx_idx, int node)
3074 {
3075 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3076
3077 /* reuse dead hctx first */
3078 spin_lock(&q->unused_hctx_lock);
3079 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3080 if (tmp->numa_node == node) {
3081 hctx = tmp;
3082 break;
3083 }
3084 }
3085 if (hctx)
3086 list_del_init(&hctx->hctx_list);
3087 spin_unlock(&q->unused_hctx_lock);
3088
3089 if (!hctx)
3090 hctx = blk_mq_alloc_hctx(q, set, node);
3091 if (!hctx)
3092 goto fail;
3093
3094 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3095 goto free_hctx;
3096
3097 return hctx;
3098
3099 free_hctx:
3100 kobject_put(&hctx->kobj);
3101 fail:
3102 return NULL;
3103 }
3104
3105 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3106 struct request_queue *q)
3107 {
3108 int i, j, end;
3109 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3110
3111 if (q->nr_hw_queues < set->nr_hw_queues) {
3112 struct blk_mq_hw_ctx **new_hctxs;
3113
3114 new_hctxs = kcalloc_node(set->nr_hw_queues,
3115 sizeof(*new_hctxs), GFP_KERNEL,
3116 set->numa_node);
3117 if (!new_hctxs)
3118 return;
3119 if (hctxs)
3120 memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3121 sizeof(*hctxs));
3122 q->queue_hw_ctx = new_hctxs;
3123 kfree(hctxs);
3124 hctxs = new_hctxs;
3125 }
3126
3127 /* protect against switching io scheduler */
3128 mutex_lock(&q->sysfs_lock);
3129 for (i = 0; i < set->nr_hw_queues; i++) {
3130 int node;
3131 struct blk_mq_hw_ctx *hctx;
3132
3133 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3134 /*
3135 * If the hw queue has been mapped to another numa node,
3136 * we need to realloc the hctx. If allocation fails, fallback
3137 * to use the previous one.
3138 */
3139 if (hctxs[i] && (hctxs[i]->numa_node == node))
3140 continue;
3141
3142 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3143 if (hctx) {
3144 if (hctxs[i])
3145 blk_mq_exit_hctx(q, set, hctxs[i], i);
3146 hctxs[i] = hctx;
3147 } else {
3148 if (hctxs[i])
3149 pr_warn("Allocate new hctx on node %d fails,\
3150 fallback to previous one on node %d\n",
3151 node, hctxs[i]->numa_node);
3152 else
3153 break;
3154 }
3155 }
3156 /*
3157 * Increasing nr_hw_queues fails. Free the newly allocated
3158 * hctxs and keep the previous q->nr_hw_queues.
3159 */
3160 if (i != set->nr_hw_queues) {
3161 j = q->nr_hw_queues;
3162 end = i;
3163 } else {
3164 j = i;
3165 end = q->nr_hw_queues;
3166 q->nr_hw_queues = set->nr_hw_queues;
3167 }
3168
3169 for (; j < end; j++) {
3170 struct blk_mq_hw_ctx *hctx = hctxs[j];
3171
3172 if (hctx) {
3173 if (hctx->tags)
3174 blk_mq_free_map_and_requests(set, j);
3175 blk_mq_exit_hctx(q, set, hctx, j);
3176 hctxs[j] = NULL;
3177 }
3178 }
3179 mutex_unlock(&q->sysfs_lock);
3180 }
3181
3182 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3183 struct request_queue *q,
3184 bool elevator_init)
3185 {
3186 /* mark the queue as mq asap */
3187 q->mq_ops = set->ops;
3188
3189 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3190 blk_mq_poll_stats_bkt,
3191 BLK_MQ_POLL_STATS_BKTS, q);
3192 if (!q->poll_cb)
3193 goto err_exit;
3194
3195 if (blk_mq_alloc_ctxs(q))
3196 goto err_poll;
3197
3198 /* init q->mq_kobj and sw queues' kobjects */
3199 blk_mq_sysfs_init(q);
3200
3201 INIT_LIST_HEAD(&q->unused_hctx_list);
3202 spin_lock_init(&q->unused_hctx_lock);
3203
3204 blk_mq_realloc_hw_ctxs(set, q);
3205 if (!q->nr_hw_queues)
3206 goto err_hctxs;
3207
3208 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3209 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3210
3211 q->tag_set = set;
3212
3213 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3214 if (set->nr_maps > HCTX_TYPE_POLL &&
3215 set->map[HCTX_TYPE_POLL].nr_queues)
3216 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3217
3218 q->sg_reserved_size = INT_MAX;
3219
3220 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3221 INIT_LIST_HEAD(&q->requeue_list);
3222 spin_lock_init(&q->requeue_lock);
3223
3224 q->nr_requests = set->queue_depth;
3225
3226 /*
3227 * Default to classic polling
3228 */
3229 q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3230
3231 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3232 blk_mq_add_queue_tag_set(set, q);
3233 blk_mq_map_swqueue(q);
3234
3235 if (elevator_init)
3236 elevator_init_mq(q);
3237
3238 return q;
3239
3240 err_hctxs:
3241 kfree(q->queue_hw_ctx);
3242 q->nr_hw_queues = 0;
3243 blk_mq_sysfs_deinit(q);
3244 err_poll:
3245 blk_stat_free_callback(q->poll_cb);
3246 q->poll_cb = NULL;
3247 err_exit:
3248 q->mq_ops = NULL;
3249 return ERR_PTR(-ENOMEM);
3250 }
3251 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3252
3253 /* tags can _not_ be used after returning from blk_mq_exit_queue */
3254 void blk_mq_exit_queue(struct request_queue *q)
3255 {
3256 struct blk_mq_tag_set *set = q->tag_set;
3257
3258 blk_mq_del_queue_tag_set(q);
3259 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3260 }
3261
3262 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3263 {
3264 int i;
3265
3266 for (i = 0; i < set->nr_hw_queues; i++) {
3267 if (!__blk_mq_alloc_map_and_request(set, i))
3268 goto out_unwind;
3269 cond_resched();
3270 }
3271
3272 return 0;
3273
3274 out_unwind:
3275 while (--i >= 0)
3276 blk_mq_free_map_and_requests(set, i);
3277
3278 return -ENOMEM;
3279 }
3280
3281 /*
3282 * Allocate the request maps associated with this tag_set. Note that this
3283 * may reduce the depth asked for, if memory is tight. set->queue_depth
3284 * will be updated to reflect the allocated depth.
3285 */
3286 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3287 {
3288 unsigned int depth;
3289 int err;
3290
3291 depth = set->queue_depth;
3292 do {
3293 err = __blk_mq_alloc_rq_maps(set);
3294 if (!err)
3295 break;
3296
3297 set->queue_depth >>= 1;
3298 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3299 err = -ENOMEM;
3300 break;
3301 }
3302 } while (set->queue_depth);
3303
3304 if (!set->queue_depth || err) {
3305 pr_err("blk-mq: failed to allocate request map\n");
3306 return -ENOMEM;
3307 }
3308
3309 if (depth != set->queue_depth)
3310 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3311 depth, set->queue_depth);
3312
3313 return 0;
3314 }
3315
3316 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3317 {
3318 /*
3319 * blk_mq_map_queues() and multiple .map_queues() implementations
3320 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3321 * number of hardware queues.
3322 */
3323 if (set->nr_maps == 1)
3324 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3325
3326 if (set->ops->map_queues && !is_kdump_kernel()) {
3327 int i;
3328
3329 /*
3330 * transport .map_queues is usually done in the following
3331 * way:
3332 *
3333 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3334 * mask = get_cpu_mask(queue)
3335 * for_each_cpu(cpu, mask)
3336 * set->map[x].mq_map[cpu] = queue;
3337 * }
3338 *
3339 * When we need to remap, the table has to be cleared for
3340 * killing stale mapping since one CPU may not be mapped
3341 * to any hw queue.
3342 */
3343 for (i = 0; i < set->nr_maps; i++)
3344 blk_mq_clear_mq_map(&set->map[i]);
3345
3346 return set->ops->map_queues(set);
3347 } else {
3348 BUG_ON(set->nr_maps > 1);
3349 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3350 }
3351 }
3352
3353 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3354 int cur_nr_hw_queues, int new_nr_hw_queues)
3355 {
3356 struct blk_mq_tags **new_tags;
3357
3358 if (cur_nr_hw_queues >= new_nr_hw_queues)
3359 return 0;
3360
3361 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3362 GFP_KERNEL, set->numa_node);
3363 if (!new_tags)
3364 return -ENOMEM;
3365
3366 if (set->tags)
3367 memcpy(new_tags, set->tags, cur_nr_hw_queues *
3368 sizeof(*set->tags));
3369 kfree(set->tags);
3370 set->tags = new_tags;
3371 set->nr_hw_queues = new_nr_hw_queues;
3372
3373 return 0;
3374 }
3375
3376 /*
3377 * Alloc a tag set to be associated with one or more request queues.
3378 * May fail with EINVAL for various error conditions. May adjust the
3379 * requested depth down, if it's too large. In that case, the set
3380 * value will be stored in set->queue_depth.
3381 */
3382 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3383 {
3384 int i, ret;
3385
3386 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3387
3388 if (!set->nr_hw_queues)
3389 return -EINVAL;
3390 if (!set->queue_depth)
3391 return -EINVAL;
3392 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3393 return -EINVAL;
3394
3395 if (!set->ops->queue_rq)
3396 return -EINVAL;
3397
3398 if (!set->ops->get_budget ^ !set->ops->put_budget)
3399 return -EINVAL;
3400
3401 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3402 pr_info("blk-mq: reduced tag depth to %u\n",
3403 BLK_MQ_MAX_DEPTH);
3404 set->queue_depth = BLK_MQ_MAX_DEPTH;
3405 }
3406
3407 if (!set->nr_maps)
3408 set->nr_maps = 1;
3409 else if (set->nr_maps > HCTX_MAX_TYPES)
3410 return -EINVAL;
3411
3412 /*
3413 * If a crashdump is active, then we are potentially in a very
3414 * memory constrained environment. Limit us to 1 queue and
3415 * 64 tags to prevent using too much memory.
3416 */
3417 if (is_kdump_kernel()) {
3418 set->nr_hw_queues = 1;
3419 set->nr_maps = 1;
3420 set->queue_depth = min(64U, set->queue_depth);
3421 }
3422 /*
3423 * There is no use for more h/w queues than cpus if we just have
3424 * a single map
3425 */
3426 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3427 set->nr_hw_queues = nr_cpu_ids;
3428
3429 if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0)
3430 return -ENOMEM;
3431
3432 ret = -ENOMEM;
3433 for (i = 0; i < set->nr_maps; i++) {
3434 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3435 sizeof(set->map[i].mq_map[0]),
3436 GFP_KERNEL, set->numa_node);
3437 if (!set->map[i].mq_map)
3438 goto out_free_mq_map;
3439 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3440 }
3441
3442 ret = blk_mq_update_queue_map(set);
3443 if (ret)
3444 goto out_free_mq_map;
3445
3446 ret = blk_mq_alloc_map_and_requests(set);
3447 if (ret)
3448 goto out_free_mq_map;
3449
3450 if (blk_mq_is_sbitmap_shared(set->flags)) {
3451 atomic_set(&set->active_queues_shared_sbitmap, 0);
3452
3453 if (blk_mq_init_shared_sbitmap(set, set->flags)) {
3454 ret = -ENOMEM;
3455 goto out_free_mq_rq_maps;
3456 }
3457 }
3458
3459 mutex_init(&set->tag_list_lock);
3460 INIT_LIST_HEAD(&set->tag_list);
3461
3462 return 0;
3463
3464 out_free_mq_rq_maps:
3465 for (i = 0; i < set->nr_hw_queues; i++)
3466 blk_mq_free_map_and_requests(set, i);
3467 out_free_mq_map:
3468 for (i = 0; i < set->nr_maps; i++) {
3469 kfree(set->map[i].mq_map);
3470 set->map[i].mq_map = NULL;
3471 }
3472 kfree(set->tags);
3473 set->tags = NULL;
3474 return ret;
3475 }
3476 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3477
3478 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3479 {
3480 int i, j;
3481
3482 for (i = 0; i < set->nr_hw_queues; i++)
3483 blk_mq_free_map_and_requests(set, i);
3484
3485 if (blk_mq_is_sbitmap_shared(set->flags))
3486 blk_mq_exit_shared_sbitmap(set);
3487
3488 for (j = 0; j < set->nr_maps; j++) {
3489 kfree(set->map[j].mq_map);
3490 set->map[j].mq_map = NULL;
3491 }
3492
3493 kfree(set->tags);
3494 set->tags = NULL;
3495 }
3496 EXPORT_SYMBOL(blk_mq_free_tag_set);
3497
3498 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3499 {
3500 struct blk_mq_tag_set *set = q->tag_set;
3501 struct blk_mq_hw_ctx *hctx;
3502 int i, ret;
3503
3504 if (!set)
3505 return -EINVAL;
3506
3507 if (q->nr_requests == nr)
3508 return 0;
3509
3510 blk_mq_freeze_queue(q);
3511 blk_mq_quiesce_queue(q);
3512
3513 ret = 0;
3514 queue_for_each_hw_ctx(q, hctx, i) {
3515 if (!hctx->tags)
3516 continue;
3517 /*
3518 * If we're using an MQ scheduler, just update the scheduler
3519 * queue depth. This is similar to what the old code would do.
3520 */
3521 if (!hctx->sched_tags) {
3522 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3523 false);
3524 if (!ret && blk_mq_is_sbitmap_shared(set->flags))
3525 blk_mq_tag_resize_shared_sbitmap(set, nr);
3526 } else {
3527 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3528 nr, true);
3529 }
3530 if (ret)
3531 break;
3532 if (q->elevator && q->elevator->type->ops.depth_updated)
3533 q->elevator->type->ops.depth_updated(hctx);
3534 }
3535
3536 if (!ret)
3537 q->nr_requests = nr;
3538
3539 blk_mq_unquiesce_queue(q);
3540 blk_mq_unfreeze_queue(q);
3541
3542 return ret;
3543 }
3544
3545 /*
3546 * request_queue and elevator_type pair.
3547 * It is just used by __blk_mq_update_nr_hw_queues to cache
3548 * the elevator_type associated with a request_queue.
3549 */
3550 struct blk_mq_qe_pair {
3551 struct list_head node;
3552 struct request_queue *q;
3553 struct elevator_type *type;
3554 };
3555
3556 /*
3557 * Cache the elevator_type in qe pair list and switch the
3558 * io scheduler to 'none'
3559 */
3560 static bool blk_mq_elv_switch_none(struct list_head *head,
3561 struct request_queue *q)
3562 {
3563 struct blk_mq_qe_pair *qe;
3564
3565 if (!q->elevator)
3566 return true;
3567
3568 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3569 if (!qe)
3570 return false;
3571
3572 INIT_LIST_HEAD(&qe->node);
3573 qe->q = q;
3574 qe->type = q->elevator->type;
3575 list_add(&qe->node, head);
3576
3577 mutex_lock(&q->sysfs_lock);
3578 /*
3579 * After elevator_switch_mq, the previous elevator_queue will be
3580 * released by elevator_release. The reference of the io scheduler
3581 * module get by elevator_get will also be put. So we need to get
3582 * a reference of the io scheduler module here to prevent it to be
3583 * removed.
3584 */
3585 __module_get(qe->type->elevator_owner);
3586 elevator_switch_mq(q, NULL);
3587 mutex_unlock(&q->sysfs_lock);
3588
3589 return true;
3590 }
3591
3592 static void blk_mq_elv_switch_back(struct list_head *head,
3593 struct request_queue *q)
3594 {
3595 struct blk_mq_qe_pair *qe;
3596 struct elevator_type *t = NULL;
3597
3598 list_for_each_entry(qe, head, node)
3599 if (qe->q == q) {
3600 t = qe->type;
3601 break;
3602 }
3603
3604 if (!t)
3605 return;
3606
3607 list_del(&qe->node);
3608 kfree(qe);
3609
3610 mutex_lock(&q->sysfs_lock);
3611 elevator_switch_mq(q, t);
3612 mutex_unlock(&q->sysfs_lock);
3613 }
3614
3615 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3616 int nr_hw_queues)
3617 {
3618 struct request_queue *q;
3619 LIST_HEAD(head);
3620 int prev_nr_hw_queues;
3621
3622 lockdep_assert_held(&set->tag_list_lock);
3623
3624 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3625 nr_hw_queues = nr_cpu_ids;
3626 if (nr_hw_queues < 1)
3627 return;
3628 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3629 return;
3630
3631 list_for_each_entry(q, &set->tag_list, tag_set_list)
3632 blk_mq_freeze_queue(q);
3633 /*
3634 * Switch IO scheduler to 'none', cleaning up the data associated
3635 * with the previous scheduler. We will switch back once we are done
3636 * updating the new sw to hw queue mappings.
3637 */
3638 list_for_each_entry(q, &set->tag_list, tag_set_list)
3639 if (!blk_mq_elv_switch_none(&head, q))
3640 goto switch_back;
3641
3642 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3643 blk_mq_debugfs_unregister_hctxs(q);
3644 blk_mq_sysfs_unregister(q);
3645 }
3646
3647 prev_nr_hw_queues = set->nr_hw_queues;
3648 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3649 0)
3650 goto reregister;
3651
3652 set->nr_hw_queues = nr_hw_queues;
3653 fallback:
3654 blk_mq_update_queue_map(set);
3655 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3656 blk_mq_realloc_hw_ctxs(set, q);
3657 if (q->nr_hw_queues != set->nr_hw_queues) {
3658 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3659 nr_hw_queues, prev_nr_hw_queues);
3660 set->nr_hw_queues = prev_nr_hw_queues;
3661 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3662 goto fallback;
3663 }
3664 blk_mq_map_swqueue(q);
3665 }
3666
3667 reregister:
3668 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3669 blk_mq_sysfs_register(q);
3670 blk_mq_debugfs_register_hctxs(q);
3671 }
3672
3673 switch_back:
3674 list_for_each_entry(q, &set->tag_list, tag_set_list)
3675 blk_mq_elv_switch_back(&head, q);
3676
3677 list_for_each_entry(q, &set->tag_list, tag_set_list)
3678 blk_mq_unfreeze_queue(q);
3679 }
3680
3681 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3682 {
3683 mutex_lock(&set->tag_list_lock);
3684 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3685 mutex_unlock(&set->tag_list_lock);
3686 }
3687 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3688
3689 /* Enable polling stats and return whether they were already enabled. */
3690 static bool blk_poll_stats_enable(struct request_queue *q)
3691 {
3692 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3693 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3694 return true;
3695 blk_stat_add_callback(q, q->poll_cb);
3696 return false;
3697 }
3698
3699 static void blk_mq_poll_stats_start(struct request_queue *q)
3700 {
3701 /*
3702 * We don't arm the callback if polling stats are not enabled or the
3703 * callback is already active.
3704 */
3705 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3706 blk_stat_is_active(q->poll_cb))
3707 return;
3708
3709 blk_stat_activate_msecs(q->poll_cb, 100);
3710 }
3711
3712 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3713 {
3714 struct request_queue *q = cb->data;
3715 int bucket;
3716
3717 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3718 if (cb->stat[bucket].nr_samples)
3719 q->poll_stat[bucket] = cb->stat[bucket];
3720 }
3721 }
3722
3723 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3724 struct request *rq)
3725 {
3726 unsigned long ret = 0;
3727 int bucket;
3728
3729 /*
3730 * If stats collection isn't on, don't sleep but turn it on for
3731 * future users
3732 */
3733 if (!blk_poll_stats_enable(q))
3734 return 0;
3735
3736 /*
3737 * As an optimistic guess, use half of the mean service time
3738 * for this type of request. We can (and should) make this smarter.
3739 * For instance, if the completion latencies are tight, we can
3740 * get closer than just half the mean. This is especially
3741 * important on devices where the completion latencies are longer
3742 * than ~10 usec. We do use the stats for the relevant IO size
3743 * if available which does lead to better estimates.
3744 */
3745 bucket = blk_mq_poll_stats_bkt(rq);
3746 if (bucket < 0)
3747 return ret;
3748
3749 if (q->poll_stat[bucket].nr_samples)
3750 ret = (q->poll_stat[bucket].mean + 1) / 2;
3751
3752 return ret;
3753 }
3754
3755 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3756 struct request *rq)
3757 {
3758 struct hrtimer_sleeper hs;
3759 enum hrtimer_mode mode;
3760 unsigned int nsecs;
3761 ktime_t kt;
3762
3763 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3764 return false;
3765
3766 /*
3767 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3768 *
3769 * 0: use half of prev avg
3770 * >0: use this specific value
3771 */
3772 if (q->poll_nsec > 0)
3773 nsecs = q->poll_nsec;
3774 else
3775 nsecs = blk_mq_poll_nsecs(q, rq);
3776
3777 if (!nsecs)
3778 return false;
3779
3780 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3781
3782 /*
3783 * This will be replaced with the stats tracking code, using
3784 * 'avg_completion_time / 2' as the pre-sleep target.
3785 */
3786 kt = nsecs;
3787
3788 mode = HRTIMER_MODE_REL;
3789 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3790 hrtimer_set_expires(&hs.timer, kt);
3791
3792 do {
3793 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3794 break;
3795 set_current_state(TASK_UNINTERRUPTIBLE);
3796 hrtimer_sleeper_start_expires(&hs, mode);
3797 if (hs.task)
3798 io_schedule();
3799 hrtimer_cancel(&hs.timer);
3800 mode = HRTIMER_MODE_ABS;
3801 } while (hs.task && !signal_pending(current));
3802
3803 __set_current_state(TASK_RUNNING);
3804 destroy_hrtimer_on_stack(&hs.timer);
3805 return true;
3806 }
3807
3808 static bool blk_mq_poll_hybrid(struct request_queue *q,
3809 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3810 {
3811 struct request *rq;
3812
3813 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3814 return false;
3815
3816 if (!blk_qc_t_is_internal(cookie))
3817 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3818 else {
3819 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3820 /*
3821 * With scheduling, if the request has completed, we'll
3822 * get a NULL return here, as we clear the sched tag when
3823 * that happens. The request still remains valid, like always,
3824 * so we should be safe with just the NULL check.
3825 */
3826 if (!rq)
3827 return false;
3828 }
3829
3830 return blk_mq_poll_hybrid_sleep(q, rq);
3831 }
3832
3833 /**
3834 * blk_poll - poll for IO completions
3835 * @q: the queue
3836 * @cookie: cookie passed back at IO submission time
3837 * @spin: whether to spin for completions
3838 *
3839 * Description:
3840 * Poll for completions on the passed in queue. Returns number of
3841 * completed entries found. If @spin is true, then blk_poll will continue
3842 * looping until at least one completion is found, unless the task is
3843 * otherwise marked running (or we need to reschedule).
3844 */
3845 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3846 {
3847 struct blk_mq_hw_ctx *hctx;
3848 long state;
3849
3850 if (!blk_qc_t_valid(cookie) ||
3851 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3852 return 0;
3853
3854 if (current->plug)
3855 blk_flush_plug_list(current->plug, false);
3856
3857 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3858
3859 /*
3860 * If we sleep, have the caller restart the poll loop to reset
3861 * the state. Like for the other success return cases, the
3862 * caller is responsible for checking if the IO completed. If
3863 * the IO isn't complete, we'll get called again and will go
3864 * straight to the busy poll loop.
3865 */
3866 if (blk_mq_poll_hybrid(q, hctx, cookie))
3867 return 1;
3868
3869 hctx->poll_considered++;
3870
3871 state = current->state;
3872 do {
3873 int ret;
3874
3875 hctx->poll_invoked++;
3876
3877 ret = q->mq_ops->poll(hctx);
3878 if (ret > 0) {
3879 hctx->poll_success++;
3880 __set_current_state(TASK_RUNNING);
3881 return ret;
3882 }
3883
3884 if (signal_pending_state(state, current))
3885 __set_current_state(TASK_RUNNING);
3886
3887 if (current->state == TASK_RUNNING)
3888 return 1;
3889 if (ret < 0 || !spin)
3890 break;
3891 cpu_relax();
3892 } while (!need_resched());
3893
3894 __set_current_state(TASK_RUNNING);
3895 return 0;
3896 }
3897 EXPORT_SYMBOL_GPL(blk_poll);
3898
3899 unsigned int blk_mq_rq_cpu(struct request *rq)
3900 {
3901 return rq->mq_ctx->cpu;
3902 }
3903 EXPORT_SYMBOL(blk_mq_rq_cpu);
3904
3905 static int __init blk_mq_init(void)
3906 {
3907 int i;
3908
3909 for_each_possible_cpu(i)
3910 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3911 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
3912
3913 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
3914 "block/softirq:dead", NULL,
3915 blk_softirq_cpu_dead);
3916 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3917 blk_mq_hctx_notify_dead);
3918 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
3919 blk_mq_hctx_notify_online,
3920 blk_mq_hctx_notify_offline);
3921 return 0;
3922 }
3923 subsys_initcall(blk_mq_init);