]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - block/blk-mq.c
blk-mq: Use proper cpumask iterator
[mirror_ubuntu-zesty-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
25
26 #include <trace/events/block.h>
27
28 #include <linux/blk-mq.h>
29 #include "blk.h"
30 #include "blk-mq.h"
31 #include "blk-mq-tag.h"
32
33 static DEFINE_MUTEX(all_q_mutex);
34 static LIST_HEAD(all_q_list);
35
36 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
37
38 /*
39 * Check if any of the ctx's have pending work in this hardware queue
40 */
41 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
42 {
43 unsigned int i;
44
45 for (i = 0; i < hctx->ctx_map.size; i++)
46 if (hctx->ctx_map.map[i].word)
47 return true;
48
49 return false;
50 }
51
52 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
53 struct blk_mq_ctx *ctx)
54 {
55 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
56 }
57
58 #define CTX_TO_BIT(hctx, ctx) \
59 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
60
61 /*
62 * Mark this ctx as having pending work in this hardware queue
63 */
64 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
65 struct blk_mq_ctx *ctx)
66 {
67 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
68
69 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
70 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
71 }
72
73 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
74 struct blk_mq_ctx *ctx)
75 {
76 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
77
78 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
79 }
80
81 void blk_mq_freeze_queue_start(struct request_queue *q)
82 {
83 int freeze_depth;
84
85 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
86 if (freeze_depth == 1) {
87 percpu_ref_kill(&q->q_usage_counter);
88 blk_mq_run_hw_queues(q, false);
89 }
90 }
91 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
92
93 static void blk_mq_freeze_queue_wait(struct request_queue *q)
94 {
95 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
96 }
97
98 /*
99 * Guarantee no request is in use, so we can change any data structure of
100 * the queue afterward.
101 */
102 void blk_freeze_queue(struct request_queue *q)
103 {
104 /*
105 * In the !blk_mq case we are only calling this to kill the
106 * q_usage_counter, otherwise this increases the freeze depth
107 * and waits for it to return to zero. For this reason there is
108 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
109 * exported to drivers as the only user for unfreeze is blk_mq.
110 */
111 blk_mq_freeze_queue_start(q);
112 blk_mq_freeze_queue_wait(q);
113 }
114
115 void blk_mq_freeze_queue(struct request_queue *q)
116 {
117 /*
118 * ...just an alias to keep freeze and unfreeze actions balanced
119 * in the blk_mq_* namespace
120 */
121 blk_freeze_queue(q);
122 }
123 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
124
125 void blk_mq_unfreeze_queue(struct request_queue *q)
126 {
127 int freeze_depth;
128
129 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
130 WARN_ON_ONCE(freeze_depth < 0);
131 if (!freeze_depth) {
132 percpu_ref_reinit(&q->q_usage_counter);
133 wake_up_all(&q->mq_freeze_wq);
134 }
135 }
136 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
137
138 void blk_mq_wake_waiters(struct request_queue *q)
139 {
140 struct blk_mq_hw_ctx *hctx;
141 unsigned int i;
142
143 queue_for_each_hw_ctx(q, hctx, i)
144 if (blk_mq_hw_queue_mapped(hctx))
145 blk_mq_tag_wakeup_all(hctx->tags, true);
146
147 /*
148 * If we are called because the queue has now been marked as
149 * dying, we need to ensure that processes currently waiting on
150 * the queue are notified as well.
151 */
152 wake_up_all(&q->mq_freeze_wq);
153 }
154
155 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
156 {
157 return blk_mq_has_free_tags(hctx->tags);
158 }
159 EXPORT_SYMBOL(blk_mq_can_queue);
160
161 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
162 struct request *rq, unsigned int rw_flags)
163 {
164 if (blk_queue_io_stat(q))
165 rw_flags |= REQ_IO_STAT;
166
167 INIT_LIST_HEAD(&rq->queuelist);
168 /* csd/requeue_work/fifo_time is initialized before use */
169 rq->q = q;
170 rq->mq_ctx = ctx;
171 rq->cmd_flags |= rw_flags;
172 /* do not touch atomic flags, it needs atomic ops against the timer */
173 rq->cpu = -1;
174 INIT_HLIST_NODE(&rq->hash);
175 RB_CLEAR_NODE(&rq->rb_node);
176 rq->rq_disk = NULL;
177 rq->part = NULL;
178 rq->start_time = jiffies;
179 #ifdef CONFIG_BLK_CGROUP
180 rq->rl = NULL;
181 set_start_time_ns(rq);
182 rq->io_start_time_ns = 0;
183 #endif
184 rq->nr_phys_segments = 0;
185 #if defined(CONFIG_BLK_DEV_INTEGRITY)
186 rq->nr_integrity_segments = 0;
187 #endif
188 rq->special = NULL;
189 /* tag was already set */
190 rq->errors = 0;
191
192 rq->cmd = rq->__cmd;
193
194 rq->extra_len = 0;
195 rq->sense_len = 0;
196 rq->resid_len = 0;
197 rq->sense = NULL;
198
199 INIT_LIST_HEAD(&rq->timeout_list);
200 rq->timeout = 0;
201
202 rq->end_io = NULL;
203 rq->end_io_data = NULL;
204 rq->next_rq = NULL;
205
206 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
207 }
208
209 static struct request *
210 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
211 {
212 struct request *rq;
213 unsigned int tag;
214
215 tag = blk_mq_get_tag(data);
216 if (tag != BLK_MQ_TAG_FAIL) {
217 rq = data->hctx->tags->rqs[tag];
218
219 if (blk_mq_tag_busy(data->hctx)) {
220 rq->cmd_flags = REQ_MQ_INFLIGHT;
221 atomic_inc(&data->hctx->nr_active);
222 }
223
224 rq->tag = tag;
225 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
226 return rq;
227 }
228
229 return NULL;
230 }
231
232 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
233 unsigned int flags)
234 {
235 struct blk_mq_ctx *ctx;
236 struct blk_mq_hw_ctx *hctx;
237 struct request *rq;
238 struct blk_mq_alloc_data alloc_data;
239 int ret;
240
241 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
242 if (ret)
243 return ERR_PTR(ret);
244
245 ctx = blk_mq_get_ctx(q);
246 hctx = q->mq_ops->map_queue(q, ctx->cpu);
247 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
248
249 rq = __blk_mq_alloc_request(&alloc_data, rw);
250 if (!rq && !(flags & BLK_MQ_REQ_NOWAIT)) {
251 __blk_mq_run_hw_queue(hctx);
252 blk_mq_put_ctx(ctx);
253
254 ctx = blk_mq_get_ctx(q);
255 hctx = q->mq_ops->map_queue(q, ctx->cpu);
256 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
257 rq = __blk_mq_alloc_request(&alloc_data, rw);
258 ctx = alloc_data.ctx;
259 }
260 blk_mq_put_ctx(ctx);
261 if (!rq) {
262 blk_queue_exit(q);
263 return ERR_PTR(-EWOULDBLOCK);
264 }
265 return rq;
266 }
267 EXPORT_SYMBOL(blk_mq_alloc_request);
268
269 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
270 struct blk_mq_ctx *ctx, struct request *rq)
271 {
272 const int tag = rq->tag;
273 struct request_queue *q = rq->q;
274
275 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
276 atomic_dec(&hctx->nr_active);
277 rq->cmd_flags = 0;
278
279 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
280 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
281 blk_queue_exit(q);
282 }
283
284 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
285 {
286 struct blk_mq_ctx *ctx = rq->mq_ctx;
287
288 ctx->rq_completed[rq_is_sync(rq)]++;
289 __blk_mq_free_request(hctx, ctx, rq);
290
291 }
292 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
293
294 void blk_mq_free_request(struct request *rq)
295 {
296 struct blk_mq_hw_ctx *hctx;
297 struct request_queue *q = rq->q;
298
299 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
300 blk_mq_free_hctx_request(hctx, rq);
301 }
302 EXPORT_SYMBOL_GPL(blk_mq_free_request);
303
304 inline void __blk_mq_end_request(struct request *rq, int error)
305 {
306 blk_account_io_done(rq);
307
308 if (rq->end_io) {
309 rq->end_io(rq, error);
310 } else {
311 if (unlikely(blk_bidi_rq(rq)))
312 blk_mq_free_request(rq->next_rq);
313 blk_mq_free_request(rq);
314 }
315 }
316 EXPORT_SYMBOL(__blk_mq_end_request);
317
318 void blk_mq_end_request(struct request *rq, int error)
319 {
320 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
321 BUG();
322 __blk_mq_end_request(rq, error);
323 }
324 EXPORT_SYMBOL(blk_mq_end_request);
325
326 static void __blk_mq_complete_request_remote(void *data)
327 {
328 struct request *rq = data;
329
330 rq->q->softirq_done_fn(rq);
331 }
332
333 static void blk_mq_ipi_complete_request(struct request *rq)
334 {
335 struct blk_mq_ctx *ctx = rq->mq_ctx;
336 bool shared = false;
337 int cpu;
338
339 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
340 rq->q->softirq_done_fn(rq);
341 return;
342 }
343
344 cpu = get_cpu();
345 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
346 shared = cpus_share_cache(cpu, ctx->cpu);
347
348 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
349 rq->csd.func = __blk_mq_complete_request_remote;
350 rq->csd.info = rq;
351 rq->csd.flags = 0;
352 smp_call_function_single_async(ctx->cpu, &rq->csd);
353 } else {
354 rq->q->softirq_done_fn(rq);
355 }
356 put_cpu();
357 }
358
359 static void __blk_mq_complete_request(struct request *rq)
360 {
361 struct request_queue *q = rq->q;
362
363 if (!q->softirq_done_fn)
364 blk_mq_end_request(rq, rq->errors);
365 else
366 blk_mq_ipi_complete_request(rq);
367 }
368
369 /**
370 * blk_mq_complete_request - end I/O on a request
371 * @rq: the request being processed
372 *
373 * Description:
374 * Ends all I/O on a request. It does not handle partial completions.
375 * The actual completion happens out-of-order, through a IPI handler.
376 **/
377 void blk_mq_complete_request(struct request *rq, int error)
378 {
379 struct request_queue *q = rq->q;
380
381 if (unlikely(blk_should_fake_timeout(q)))
382 return;
383 if (!blk_mark_rq_complete(rq)) {
384 rq->errors = error;
385 __blk_mq_complete_request(rq);
386 }
387 }
388 EXPORT_SYMBOL(blk_mq_complete_request);
389
390 int blk_mq_request_started(struct request *rq)
391 {
392 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
393 }
394 EXPORT_SYMBOL_GPL(blk_mq_request_started);
395
396 void blk_mq_start_request(struct request *rq)
397 {
398 struct request_queue *q = rq->q;
399
400 trace_block_rq_issue(q, rq);
401
402 rq->resid_len = blk_rq_bytes(rq);
403 if (unlikely(blk_bidi_rq(rq)))
404 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
405
406 blk_add_timer(rq);
407
408 /*
409 * Ensure that ->deadline is visible before set the started
410 * flag and clear the completed flag.
411 */
412 smp_mb__before_atomic();
413
414 /*
415 * Mark us as started and clear complete. Complete might have been
416 * set if requeue raced with timeout, which then marked it as
417 * complete. So be sure to clear complete again when we start
418 * the request, otherwise we'll ignore the completion event.
419 */
420 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
421 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
422 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
423 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
424
425 if (q->dma_drain_size && blk_rq_bytes(rq)) {
426 /*
427 * Make sure space for the drain appears. We know we can do
428 * this because max_hw_segments has been adjusted to be one
429 * fewer than the device can handle.
430 */
431 rq->nr_phys_segments++;
432 }
433 }
434 EXPORT_SYMBOL(blk_mq_start_request);
435
436 static void __blk_mq_requeue_request(struct request *rq)
437 {
438 struct request_queue *q = rq->q;
439
440 trace_block_rq_requeue(q, rq);
441
442 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
443 if (q->dma_drain_size && blk_rq_bytes(rq))
444 rq->nr_phys_segments--;
445 }
446 }
447
448 void blk_mq_requeue_request(struct request *rq)
449 {
450 __blk_mq_requeue_request(rq);
451
452 BUG_ON(blk_queued_rq(rq));
453 blk_mq_add_to_requeue_list(rq, true);
454 }
455 EXPORT_SYMBOL(blk_mq_requeue_request);
456
457 static void blk_mq_requeue_work(struct work_struct *work)
458 {
459 struct request_queue *q =
460 container_of(work, struct request_queue, requeue_work);
461 LIST_HEAD(rq_list);
462 struct request *rq, *next;
463 unsigned long flags;
464
465 spin_lock_irqsave(&q->requeue_lock, flags);
466 list_splice_init(&q->requeue_list, &rq_list);
467 spin_unlock_irqrestore(&q->requeue_lock, flags);
468
469 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
470 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
471 continue;
472
473 rq->cmd_flags &= ~REQ_SOFTBARRIER;
474 list_del_init(&rq->queuelist);
475 blk_mq_insert_request(rq, true, false, false);
476 }
477
478 while (!list_empty(&rq_list)) {
479 rq = list_entry(rq_list.next, struct request, queuelist);
480 list_del_init(&rq->queuelist);
481 blk_mq_insert_request(rq, false, false, false);
482 }
483
484 /*
485 * Use the start variant of queue running here, so that running
486 * the requeue work will kick stopped queues.
487 */
488 blk_mq_start_hw_queues(q);
489 }
490
491 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
492 {
493 struct request_queue *q = rq->q;
494 unsigned long flags;
495
496 /*
497 * We abuse this flag that is otherwise used by the I/O scheduler to
498 * request head insertation from the workqueue.
499 */
500 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
501
502 spin_lock_irqsave(&q->requeue_lock, flags);
503 if (at_head) {
504 rq->cmd_flags |= REQ_SOFTBARRIER;
505 list_add(&rq->queuelist, &q->requeue_list);
506 } else {
507 list_add_tail(&rq->queuelist, &q->requeue_list);
508 }
509 spin_unlock_irqrestore(&q->requeue_lock, flags);
510 }
511 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
512
513 void blk_mq_cancel_requeue_work(struct request_queue *q)
514 {
515 cancel_work_sync(&q->requeue_work);
516 }
517 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
518
519 void blk_mq_kick_requeue_list(struct request_queue *q)
520 {
521 kblockd_schedule_work(&q->requeue_work);
522 }
523 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
524
525 void blk_mq_abort_requeue_list(struct request_queue *q)
526 {
527 unsigned long flags;
528 LIST_HEAD(rq_list);
529
530 spin_lock_irqsave(&q->requeue_lock, flags);
531 list_splice_init(&q->requeue_list, &rq_list);
532 spin_unlock_irqrestore(&q->requeue_lock, flags);
533
534 while (!list_empty(&rq_list)) {
535 struct request *rq;
536
537 rq = list_first_entry(&rq_list, struct request, queuelist);
538 list_del_init(&rq->queuelist);
539 rq->errors = -EIO;
540 blk_mq_end_request(rq, rq->errors);
541 }
542 }
543 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
544
545 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
546 {
547 return tags->rqs[tag];
548 }
549 EXPORT_SYMBOL(blk_mq_tag_to_rq);
550
551 struct blk_mq_timeout_data {
552 unsigned long next;
553 unsigned int next_set;
554 };
555
556 void blk_mq_rq_timed_out(struct request *req, bool reserved)
557 {
558 struct blk_mq_ops *ops = req->q->mq_ops;
559 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
560
561 /*
562 * We know that complete is set at this point. If STARTED isn't set
563 * anymore, then the request isn't active and the "timeout" should
564 * just be ignored. This can happen due to the bitflag ordering.
565 * Timeout first checks if STARTED is set, and if it is, assumes
566 * the request is active. But if we race with completion, then
567 * we both flags will get cleared. So check here again, and ignore
568 * a timeout event with a request that isn't active.
569 */
570 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
571 return;
572
573 if (ops->timeout)
574 ret = ops->timeout(req, reserved);
575
576 switch (ret) {
577 case BLK_EH_HANDLED:
578 __blk_mq_complete_request(req);
579 break;
580 case BLK_EH_RESET_TIMER:
581 blk_add_timer(req);
582 blk_clear_rq_complete(req);
583 break;
584 case BLK_EH_NOT_HANDLED:
585 break;
586 default:
587 printk(KERN_ERR "block: bad eh return: %d\n", ret);
588 break;
589 }
590 }
591
592 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
593 struct request *rq, void *priv, bool reserved)
594 {
595 struct blk_mq_timeout_data *data = priv;
596
597 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
598 /*
599 * If a request wasn't started before the queue was
600 * marked dying, kill it here or it'll go unnoticed.
601 */
602 if (unlikely(blk_queue_dying(rq->q))) {
603 rq->errors = -EIO;
604 blk_mq_end_request(rq, rq->errors);
605 }
606 return;
607 }
608 if (rq->cmd_flags & REQ_NO_TIMEOUT)
609 return;
610
611 if (time_after_eq(jiffies, rq->deadline)) {
612 if (!blk_mark_rq_complete(rq))
613 blk_mq_rq_timed_out(rq, reserved);
614 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
615 data->next = rq->deadline;
616 data->next_set = 1;
617 }
618 }
619
620 static void blk_mq_timeout_work(struct work_struct *work)
621 {
622 struct request_queue *q =
623 container_of(work, struct request_queue, timeout_work);
624 struct blk_mq_timeout_data data = {
625 .next = 0,
626 .next_set = 0,
627 };
628 int i;
629
630 if (blk_queue_enter(q, true))
631 return;
632
633 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
634
635 if (data.next_set) {
636 data.next = blk_rq_timeout(round_jiffies_up(data.next));
637 mod_timer(&q->timeout, data.next);
638 } else {
639 struct blk_mq_hw_ctx *hctx;
640
641 queue_for_each_hw_ctx(q, hctx, i) {
642 /* the hctx may be unmapped, so check it here */
643 if (blk_mq_hw_queue_mapped(hctx))
644 blk_mq_tag_idle(hctx);
645 }
646 }
647 blk_queue_exit(q);
648 }
649
650 /*
651 * Reverse check our software queue for entries that we could potentially
652 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
653 * too much time checking for merges.
654 */
655 static bool blk_mq_attempt_merge(struct request_queue *q,
656 struct blk_mq_ctx *ctx, struct bio *bio)
657 {
658 struct request *rq;
659 int checked = 8;
660
661 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
662 int el_ret;
663
664 if (!checked--)
665 break;
666
667 if (!blk_rq_merge_ok(rq, bio))
668 continue;
669
670 el_ret = blk_try_merge(rq, bio);
671 if (el_ret == ELEVATOR_BACK_MERGE) {
672 if (bio_attempt_back_merge(q, rq, bio)) {
673 ctx->rq_merged++;
674 return true;
675 }
676 break;
677 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
678 if (bio_attempt_front_merge(q, rq, bio)) {
679 ctx->rq_merged++;
680 return true;
681 }
682 break;
683 }
684 }
685
686 return false;
687 }
688
689 /*
690 * Process software queues that have been marked busy, splicing them
691 * to the for-dispatch
692 */
693 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
694 {
695 struct blk_mq_ctx *ctx;
696 int i;
697
698 for (i = 0; i < hctx->ctx_map.size; i++) {
699 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
700 unsigned int off, bit;
701
702 if (!bm->word)
703 continue;
704
705 bit = 0;
706 off = i * hctx->ctx_map.bits_per_word;
707 do {
708 bit = find_next_bit(&bm->word, bm->depth, bit);
709 if (bit >= bm->depth)
710 break;
711
712 ctx = hctx->ctxs[bit + off];
713 clear_bit(bit, &bm->word);
714 spin_lock(&ctx->lock);
715 list_splice_tail_init(&ctx->rq_list, list);
716 spin_unlock(&ctx->lock);
717
718 bit++;
719 } while (1);
720 }
721 }
722
723 /*
724 * Run this hardware queue, pulling any software queues mapped to it in.
725 * Note that this function currently has various problems around ordering
726 * of IO. In particular, we'd like FIFO behaviour on handling existing
727 * items on the hctx->dispatch list. Ignore that for now.
728 */
729 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
730 {
731 struct request_queue *q = hctx->queue;
732 struct request *rq;
733 LIST_HEAD(rq_list);
734 LIST_HEAD(driver_list);
735 struct list_head *dptr;
736 int queued;
737
738 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
739
740 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
741 return;
742
743 hctx->run++;
744
745 /*
746 * Touch any software queue that has pending entries.
747 */
748 flush_busy_ctxs(hctx, &rq_list);
749
750 /*
751 * If we have previous entries on our dispatch list, grab them
752 * and stuff them at the front for more fair dispatch.
753 */
754 if (!list_empty_careful(&hctx->dispatch)) {
755 spin_lock(&hctx->lock);
756 if (!list_empty(&hctx->dispatch))
757 list_splice_init(&hctx->dispatch, &rq_list);
758 spin_unlock(&hctx->lock);
759 }
760
761 /*
762 * Start off with dptr being NULL, so we start the first request
763 * immediately, even if we have more pending.
764 */
765 dptr = NULL;
766
767 /*
768 * Now process all the entries, sending them to the driver.
769 */
770 queued = 0;
771 while (!list_empty(&rq_list)) {
772 struct blk_mq_queue_data bd;
773 int ret;
774
775 rq = list_first_entry(&rq_list, struct request, queuelist);
776 list_del_init(&rq->queuelist);
777
778 bd.rq = rq;
779 bd.list = dptr;
780 bd.last = list_empty(&rq_list);
781
782 ret = q->mq_ops->queue_rq(hctx, &bd);
783 switch (ret) {
784 case BLK_MQ_RQ_QUEUE_OK:
785 queued++;
786 continue;
787 case BLK_MQ_RQ_QUEUE_BUSY:
788 list_add(&rq->queuelist, &rq_list);
789 __blk_mq_requeue_request(rq);
790 break;
791 default:
792 pr_err("blk-mq: bad return on queue: %d\n", ret);
793 case BLK_MQ_RQ_QUEUE_ERROR:
794 rq->errors = -EIO;
795 blk_mq_end_request(rq, rq->errors);
796 break;
797 }
798
799 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
800 break;
801
802 /*
803 * We've done the first request. If we have more than 1
804 * left in the list, set dptr to defer issue.
805 */
806 if (!dptr && rq_list.next != rq_list.prev)
807 dptr = &driver_list;
808 }
809
810 if (!queued)
811 hctx->dispatched[0]++;
812 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
813 hctx->dispatched[ilog2(queued) + 1]++;
814
815 /*
816 * Any items that need requeuing? Stuff them into hctx->dispatch,
817 * that is where we will continue on next queue run.
818 */
819 if (!list_empty(&rq_list)) {
820 spin_lock(&hctx->lock);
821 list_splice(&rq_list, &hctx->dispatch);
822 spin_unlock(&hctx->lock);
823 /*
824 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
825 * it's possible the queue is stopped and restarted again
826 * before this. Queue restart will dispatch requests. And since
827 * requests in rq_list aren't added into hctx->dispatch yet,
828 * the requests in rq_list might get lost.
829 *
830 * blk_mq_run_hw_queue() already checks the STOPPED bit
831 **/
832 blk_mq_run_hw_queue(hctx, true);
833 }
834 }
835
836 /*
837 * It'd be great if the workqueue API had a way to pass
838 * in a mask and had some smarts for more clever placement.
839 * For now we just round-robin here, switching for every
840 * BLK_MQ_CPU_WORK_BATCH queued items.
841 */
842 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
843 {
844 if (hctx->queue->nr_hw_queues == 1)
845 return WORK_CPU_UNBOUND;
846
847 if (--hctx->next_cpu_batch <= 0) {
848 int cpu = hctx->next_cpu, next_cpu;
849
850 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
851 if (next_cpu >= nr_cpu_ids)
852 next_cpu = cpumask_first(hctx->cpumask);
853
854 hctx->next_cpu = next_cpu;
855 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
856
857 return cpu;
858 }
859
860 return hctx->next_cpu;
861 }
862
863 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
864 {
865 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
866 !blk_mq_hw_queue_mapped(hctx)))
867 return;
868
869 if (!async) {
870 int cpu = get_cpu();
871 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
872 __blk_mq_run_hw_queue(hctx);
873 put_cpu();
874 return;
875 }
876
877 put_cpu();
878 }
879
880 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
881 &hctx->run_work, 0);
882 }
883
884 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
885 {
886 struct blk_mq_hw_ctx *hctx;
887 int i;
888
889 queue_for_each_hw_ctx(q, hctx, i) {
890 if ((!blk_mq_hctx_has_pending(hctx) &&
891 list_empty_careful(&hctx->dispatch)) ||
892 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
893 continue;
894
895 blk_mq_run_hw_queue(hctx, async);
896 }
897 }
898 EXPORT_SYMBOL(blk_mq_run_hw_queues);
899
900 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
901 {
902 cancel_delayed_work(&hctx->run_work);
903 cancel_delayed_work(&hctx->delay_work);
904 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
905 }
906 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
907
908 void blk_mq_stop_hw_queues(struct request_queue *q)
909 {
910 struct blk_mq_hw_ctx *hctx;
911 int i;
912
913 queue_for_each_hw_ctx(q, hctx, i)
914 blk_mq_stop_hw_queue(hctx);
915 }
916 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
917
918 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
919 {
920 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
921
922 blk_mq_run_hw_queue(hctx, false);
923 }
924 EXPORT_SYMBOL(blk_mq_start_hw_queue);
925
926 void blk_mq_start_hw_queues(struct request_queue *q)
927 {
928 struct blk_mq_hw_ctx *hctx;
929 int i;
930
931 queue_for_each_hw_ctx(q, hctx, i)
932 blk_mq_start_hw_queue(hctx);
933 }
934 EXPORT_SYMBOL(blk_mq_start_hw_queues);
935
936 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
937 {
938 struct blk_mq_hw_ctx *hctx;
939 int i;
940
941 queue_for_each_hw_ctx(q, hctx, i) {
942 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
943 continue;
944
945 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
946 blk_mq_run_hw_queue(hctx, async);
947 }
948 }
949 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
950
951 static void blk_mq_run_work_fn(struct work_struct *work)
952 {
953 struct blk_mq_hw_ctx *hctx;
954
955 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
956
957 __blk_mq_run_hw_queue(hctx);
958 }
959
960 static void blk_mq_delay_work_fn(struct work_struct *work)
961 {
962 struct blk_mq_hw_ctx *hctx;
963
964 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
965
966 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
967 __blk_mq_run_hw_queue(hctx);
968 }
969
970 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
971 {
972 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
973 return;
974
975 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
976 &hctx->delay_work, msecs_to_jiffies(msecs));
977 }
978 EXPORT_SYMBOL(blk_mq_delay_queue);
979
980 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
981 struct blk_mq_ctx *ctx,
982 struct request *rq,
983 bool at_head)
984 {
985 trace_block_rq_insert(hctx->queue, rq);
986
987 if (at_head)
988 list_add(&rq->queuelist, &ctx->rq_list);
989 else
990 list_add_tail(&rq->queuelist, &ctx->rq_list);
991 }
992
993 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
994 struct request *rq, bool at_head)
995 {
996 struct blk_mq_ctx *ctx = rq->mq_ctx;
997
998 __blk_mq_insert_req_list(hctx, ctx, rq, at_head);
999 blk_mq_hctx_mark_pending(hctx, ctx);
1000 }
1001
1002 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1003 bool async)
1004 {
1005 struct request_queue *q = rq->q;
1006 struct blk_mq_hw_ctx *hctx;
1007 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
1008
1009 current_ctx = blk_mq_get_ctx(q);
1010 if (!cpu_online(ctx->cpu))
1011 rq->mq_ctx = ctx = current_ctx;
1012
1013 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1014
1015 spin_lock(&ctx->lock);
1016 __blk_mq_insert_request(hctx, rq, at_head);
1017 spin_unlock(&ctx->lock);
1018
1019 if (run_queue)
1020 blk_mq_run_hw_queue(hctx, async);
1021
1022 blk_mq_put_ctx(current_ctx);
1023 }
1024
1025 static void blk_mq_insert_requests(struct request_queue *q,
1026 struct blk_mq_ctx *ctx,
1027 struct list_head *list,
1028 int depth,
1029 bool from_schedule)
1030
1031 {
1032 struct blk_mq_hw_ctx *hctx;
1033 struct blk_mq_ctx *current_ctx;
1034
1035 trace_block_unplug(q, depth, !from_schedule);
1036
1037 current_ctx = blk_mq_get_ctx(q);
1038
1039 if (!cpu_online(ctx->cpu))
1040 ctx = current_ctx;
1041 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1042
1043 /*
1044 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1045 * offline now
1046 */
1047 spin_lock(&ctx->lock);
1048 while (!list_empty(list)) {
1049 struct request *rq;
1050
1051 rq = list_first_entry(list, struct request, queuelist);
1052 list_del_init(&rq->queuelist);
1053 rq->mq_ctx = ctx;
1054 __blk_mq_insert_req_list(hctx, ctx, rq, false);
1055 }
1056 blk_mq_hctx_mark_pending(hctx, ctx);
1057 spin_unlock(&ctx->lock);
1058
1059 blk_mq_run_hw_queue(hctx, from_schedule);
1060 blk_mq_put_ctx(current_ctx);
1061 }
1062
1063 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1064 {
1065 struct request *rqa = container_of(a, struct request, queuelist);
1066 struct request *rqb = container_of(b, struct request, queuelist);
1067
1068 return !(rqa->mq_ctx < rqb->mq_ctx ||
1069 (rqa->mq_ctx == rqb->mq_ctx &&
1070 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1071 }
1072
1073 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1074 {
1075 struct blk_mq_ctx *this_ctx;
1076 struct request_queue *this_q;
1077 struct request *rq;
1078 LIST_HEAD(list);
1079 LIST_HEAD(ctx_list);
1080 unsigned int depth;
1081
1082 list_splice_init(&plug->mq_list, &list);
1083
1084 list_sort(NULL, &list, plug_ctx_cmp);
1085
1086 this_q = NULL;
1087 this_ctx = NULL;
1088 depth = 0;
1089
1090 while (!list_empty(&list)) {
1091 rq = list_entry_rq(list.next);
1092 list_del_init(&rq->queuelist);
1093 BUG_ON(!rq->q);
1094 if (rq->mq_ctx != this_ctx) {
1095 if (this_ctx) {
1096 blk_mq_insert_requests(this_q, this_ctx,
1097 &ctx_list, depth,
1098 from_schedule);
1099 }
1100
1101 this_ctx = rq->mq_ctx;
1102 this_q = rq->q;
1103 depth = 0;
1104 }
1105
1106 depth++;
1107 list_add_tail(&rq->queuelist, &ctx_list);
1108 }
1109
1110 /*
1111 * If 'this_ctx' is set, we know we have entries to complete
1112 * on 'ctx_list'. Do those.
1113 */
1114 if (this_ctx) {
1115 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1116 from_schedule);
1117 }
1118 }
1119
1120 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1121 {
1122 init_request_from_bio(rq, bio);
1123
1124 if (blk_do_io_stat(rq))
1125 blk_account_io_start(rq, 1);
1126 }
1127
1128 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1129 {
1130 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1131 !blk_queue_nomerges(hctx->queue);
1132 }
1133
1134 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1135 struct blk_mq_ctx *ctx,
1136 struct request *rq, struct bio *bio)
1137 {
1138 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1139 blk_mq_bio_to_request(rq, bio);
1140 spin_lock(&ctx->lock);
1141 insert_rq:
1142 __blk_mq_insert_request(hctx, rq, false);
1143 spin_unlock(&ctx->lock);
1144 return false;
1145 } else {
1146 struct request_queue *q = hctx->queue;
1147
1148 spin_lock(&ctx->lock);
1149 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1150 blk_mq_bio_to_request(rq, bio);
1151 goto insert_rq;
1152 }
1153
1154 spin_unlock(&ctx->lock);
1155 __blk_mq_free_request(hctx, ctx, rq);
1156 return true;
1157 }
1158 }
1159
1160 struct blk_map_ctx {
1161 struct blk_mq_hw_ctx *hctx;
1162 struct blk_mq_ctx *ctx;
1163 };
1164
1165 static struct request *blk_mq_map_request(struct request_queue *q,
1166 struct bio *bio,
1167 struct blk_map_ctx *data)
1168 {
1169 struct blk_mq_hw_ctx *hctx;
1170 struct blk_mq_ctx *ctx;
1171 struct request *rq;
1172 int rw = bio_data_dir(bio);
1173 struct blk_mq_alloc_data alloc_data;
1174
1175 blk_queue_enter_live(q);
1176 ctx = blk_mq_get_ctx(q);
1177 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1178
1179 if (rw_is_sync(bio->bi_rw))
1180 rw |= REQ_SYNC;
1181
1182 trace_block_getrq(q, bio, rw);
1183 blk_mq_set_alloc_data(&alloc_data, q, BLK_MQ_REQ_NOWAIT, ctx, hctx);
1184 rq = __blk_mq_alloc_request(&alloc_data, rw);
1185 if (unlikely(!rq)) {
1186 __blk_mq_run_hw_queue(hctx);
1187 blk_mq_put_ctx(ctx);
1188 trace_block_sleeprq(q, bio, rw);
1189
1190 ctx = blk_mq_get_ctx(q);
1191 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1192 blk_mq_set_alloc_data(&alloc_data, q, 0, ctx, hctx);
1193 rq = __blk_mq_alloc_request(&alloc_data, rw);
1194 ctx = alloc_data.ctx;
1195 hctx = alloc_data.hctx;
1196 }
1197
1198 hctx->queued++;
1199 data->hctx = hctx;
1200 data->ctx = ctx;
1201 return rq;
1202 }
1203
1204 static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie)
1205 {
1206 int ret;
1207 struct request_queue *q = rq->q;
1208 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
1209 rq->mq_ctx->cpu);
1210 struct blk_mq_queue_data bd = {
1211 .rq = rq,
1212 .list = NULL,
1213 .last = 1
1214 };
1215 blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1216
1217 /*
1218 * For OK queue, we are done. For error, kill it. Any other
1219 * error (busy), just add it to our list as we previously
1220 * would have done
1221 */
1222 ret = q->mq_ops->queue_rq(hctx, &bd);
1223 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1224 *cookie = new_cookie;
1225 return 0;
1226 }
1227
1228 __blk_mq_requeue_request(rq);
1229
1230 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1231 *cookie = BLK_QC_T_NONE;
1232 rq->errors = -EIO;
1233 blk_mq_end_request(rq, rq->errors);
1234 return 0;
1235 }
1236
1237 return -1;
1238 }
1239
1240 /*
1241 * Multiple hardware queue variant. This will not use per-process plugs,
1242 * but will attempt to bypass the hctx queueing if we can go straight to
1243 * hardware for SYNC IO.
1244 */
1245 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1246 {
1247 const int is_sync = rw_is_sync(bio->bi_rw);
1248 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1249 struct blk_map_ctx data;
1250 struct request *rq;
1251 unsigned int request_count = 0;
1252 struct blk_plug *plug;
1253 struct request *same_queue_rq = NULL;
1254 blk_qc_t cookie;
1255
1256 blk_queue_bounce(q, &bio);
1257
1258 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1259 bio_io_error(bio);
1260 return BLK_QC_T_NONE;
1261 }
1262
1263 blk_queue_split(q, &bio, q->bio_split);
1264
1265 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1266 if (blk_attempt_plug_merge(q, bio, &request_count,
1267 &same_queue_rq))
1268 return BLK_QC_T_NONE;
1269 } else
1270 request_count = blk_plug_queued_count(q);
1271
1272 rq = blk_mq_map_request(q, bio, &data);
1273 if (unlikely(!rq))
1274 return BLK_QC_T_NONE;
1275
1276 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1277
1278 if (unlikely(is_flush_fua)) {
1279 blk_mq_bio_to_request(rq, bio);
1280 blk_insert_flush(rq);
1281 goto run_queue;
1282 }
1283
1284 plug = current->plug;
1285 /*
1286 * If the driver supports defer issued based on 'last', then
1287 * queue it up like normal since we can potentially save some
1288 * CPU this way.
1289 */
1290 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1291 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1292 struct request *old_rq = NULL;
1293
1294 blk_mq_bio_to_request(rq, bio);
1295
1296 /*
1297 * We do limited pluging. If the bio can be merged, do that.
1298 * Otherwise the existing request in the plug list will be
1299 * issued. So the plug list will have one request at most
1300 */
1301 if (plug) {
1302 /*
1303 * The plug list might get flushed before this. If that
1304 * happens, same_queue_rq is invalid and plug list is
1305 * empty
1306 */
1307 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1308 old_rq = same_queue_rq;
1309 list_del_init(&old_rq->queuelist);
1310 }
1311 list_add_tail(&rq->queuelist, &plug->mq_list);
1312 } else /* is_sync */
1313 old_rq = rq;
1314 blk_mq_put_ctx(data.ctx);
1315 if (!old_rq)
1316 goto done;
1317 if (!blk_mq_direct_issue_request(old_rq, &cookie))
1318 goto done;
1319 blk_mq_insert_request(old_rq, false, true, true);
1320 goto done;
1321 }
1322
1323 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1324 /*
1325 * For a SYNC request, send it to the hardware immediately. For
1326 * an ASYNC request, just ensure that we run it later on. The
1327 * latter allows for merging opportunities and more efficient
1328 * dispatching.
1329 */
1330 run_queue:
1331 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1332 }
1333 blk_mq_put_ctx(data.ctx);
1334 done:
1335 return cookie;
1336 }
1337
1338 /*
1339 * Single hardware queue variant. This will attempt to use any per-process
1340 * plug for merging and IO deferral.
1341 */
1342 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1343 {
1344 const int is_sync = rw_is_sync(bio->bi_rw);
1345 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1346 struct blk_plug *plug;
1347 unsigned int request_count = 0;
1348 struct blk_map_ctx data;
1349 struct request *rq;
1350 blk_qc_t cookie;
1351
1352 blk_queue_bounce(q, &bio);
1353
1354 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1355 bio_io_error(bio);
1356 return BLK_QC_T_NONE;
1357 }
1358
1359 blk_queue_split(q, &bio, q->bio_split);
1360
1361 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1362 blk_attempt_plug_merge(q, bio, &request_count, NULL))
1363 return BLK_QC_T_NONE;
1364
1365 rq = blk_mq_map_request(q, bio, &data);
1366 if (unlikely(!rq))
1367 return BLK_QC_T_NONE;
1368
1369 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1370
1371 if (unlikely(is_flush_fua)) {
1372 blk_mq_bio_to_request(rq, bio);
1373 blk_insert_flush(rq);
1374 goto run_queue;
1375 }
1376
1377 /*
1378 * A task plug currently exists. Since this is completely lockless,
1379 * utilize that to temporarily store requests until the task is
1380 * either done or scheduled away.
1381 */
1382 plug = current->plug;
1383 if (plug) {
1384 blk_mq_bio_to_request(rq, bio);
1385 if (!request_count)
1386 trace_block_plug(q);
1387
1388 blk_mq_put_ctx(data.ctx);
1389
1390 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1391 blk_flush_plug_list(plug, false);
1392 trace_block_plug(q);
1393 }
1394
1395 list_add_tail(&rq->queuelist, &plug->mq_list);
1396 return cookie;
1397 }
1398
1399 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1400 /*
1401 * For a SYNC request, send it to the hardware immediately. For
1402 * an ASYNC request, just ensure that we run it later on. The
1403 * latter allows for merging opportunities and more efficient
1404 * dispatching.
1405 */
1406 run_queue:
1407 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1408 }
1409
1410 blk_mq_put_ctx(data.ctx);
1411 return cookie;
1412 }
1413
1414 /*
1415 * Default mapping to a software queue, since we use one per CPU.
1416 */
1417 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1418 {
1419 return q->queue_hw_ctx[q->mq_map[cpu]];
1420 }
1421 EXPORT_SYMBOL(blk_mq_map_queue);
1422
1423 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1424 struct blk_mq_tags *tags, unsigned int hctx_idx)
1425 {
1426 struct page *page;
1427
1428 if (tags->rqs && set->ops->exit_request) {
1429 int i;
1430
1431 for (i = 0; i < tags->nr_tags; i++) {
1432 if (!tags->rqs[i])
1433 continue;
1434 set->ops->exit_request(set->driver_data, tags->rqs[i],
1435 hctx_idx, i);
1436 tags->rqs[i] = NULL;
1437 }
1438 }
1439
1440 while (!list_empty(&tags->page_list)) {
1441 page = list_first_entry(&tags->page_list, struct page, lru);
1442 list_del_init(&page->lru);
1443 /*
1444 * Remove kmemleak object previously allocated in
1445 * blk_mq_init_rq_map().
1446 */
1447 kmemleak_free(page_address(page));
1448 __free_pages(page, page->private);
1449 }
1450
1451 kfree(tags->rqs);
1452
1453 blk_mq_free_tags(tags);
1454 }
1455
1456 static size_t order_to_size(unsigned int order)
1457 {
1458 return (size_t)PAGE_SIZE << order;
1459 }
1460
1461 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1462 unsigned int hctx_idx)
1463 {
1464 struct blk_mq_tags *tags;
1465 unsigned int i, j, entries_per_page, max_order = 4;
1466 size_t rq_size, left;
1467
1468 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1469 set->numa_node,
1470 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1471 if (!tags)
1472 return NULL;
1473
1474 INIT_LIST_HEAD(&tags->page_list);
1475
1476 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1477 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1478 set->numa_node);
1479 if (!tags->rqs) {
1480 blk_mq_free_tags(tags);
1481 return NULL;
1482 }
1483
1484 /*
1485 * rq_size is the size of the request plus driver payload, rounded
1486 * to the cacheline size
1487 */
1488 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1489 cache_line_size());
1490 left = rq_size * set->queue_depth;
1491
1492 for (i = 0; i < set->queue_depth; ) {
1493 int this_order = max_order;
1494 struct page *page;
1495 int to_do;
1496 void *p;
1497
1498 while (left < order_to_size(this_order - 1) && this_order)
1499 this_order--;
1500
1501 do {
1502 page = alloc_pages_node(set->numa_node,
1503 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1504 this_order);
1505 if (page)
1506 break;
1507 if (!this_order--)
1508 break;
1509 if (order_to_size(this_order) < rq_size)
1510 break;
1511 } while (1);
1512
1513 if (!page)
1514 goto fail;
1515
1516 page->private = this_order;
1517 list_add_tail(&page->lru, &tags->page_list);
1518
1519 p = page_address(page);
1520 /*
1521 * Allow kmemleak to scan these pages as they contain pointers
1522 * to additional allocations like via ops->init_request().
1523 */
1524 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1525 entries_per_page = order_to_size(this_order) / rq_size;
1526 to_do = min(entries_per_page, set->queue_depth - i);
1527 left -= to_do * rq_size;
1528 for (j = 0; j < to_do; j++) {
1529 tags->rqs[i] = p;
1530 if (set->ops->init_request) {
1531 if (set->ops->init_request(set->driver_data,
1532 tags->rqs[i], hctx_idx, i,
1533 set->numa_node)) {
1534 tags->rqs[i] = NULL;
1535 goto fail;
1536 }
1537 }
1538
1539 p += rq_size;
1540 i++;
1541 }
1542 }
1543 return tags;
1544
1545 fail:
1546 blk_mq_free_rq_map(set, tags, hctx_idx);
1547 return NULL;
1548 }
1549
1550 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1551 {
1552 kfree(bitmap->map);
1553 }
1554
1555 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1556 {
1557 unsigned int bpw = 8, total, num_maps, i;
1558
1559 bitmap->bits_per_word = bpw;
1560
1561 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1562 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1563 GFP_KERNEL, node);
1564 if (!bitmap->map)
1565 return -ENOMEM;
1566
1567 total = nr_cpu_ids;
1568 for (i = 0; i < num_maps; i++) {
1569 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1570 total -= bitmap->map[i].depth;
1571 }
1572
1573 return 0;
1574 }
1575
1576 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1577 {
1578 struct request_queue *q = hctx->queue;
1579 struct blk_mq_ctx *ctx;
1580 LIST_HEAD(tmp);
1581
1582 /*
1583 * Move ctx entries to new CPU, if this one is going away.
1584 */
1585 ctx = __blk_mq_get_ctx(q, cpu);
1586
1587 spin_lock(&ctx->lock);
1588 if (!list_empty(&ctx->rq_list)) {
1589 list_splice_init(&ctx->rq_list, &tmp);
1590 blk_mq_hctx_clear_pending(hctx, ctx);
1591 }
1592 spin_unlock(&ctx->lock);
1593
1594 if (list_empty(&tmp))
1595 return NOTIFY_OK;
1596
1597 ctx = blk_mq_get_ctx(q);
1598 spin_lock(&ctx->lock);
1599
1600 while (!list_empty(&tmp)) {
1601 struct request *rq;
1602
1603 rq = list_first_entry(&tmp, struct request, queuelist);
1604 rq->mq_ctx = ctx;
1605 list_move_tail(&rq->queuelist, &ctx->rq_list);
1606 }
1607
1608 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1609 blk_mq_hctx_mark_pending(hctx, ctx);
1610
1611 spin_unlock(&ctx->lock);
1612
1613 blk_mq_run_hw_queue(hctx, true);
1614 blk_mq_put_ctx(ctx);
1615 return NOTIFY_OK;
1616 }
1617
1618 static int blk_mq_hctx_notify(void *data, unsigned long action,
1619 unsigned int cpu)
1620 {
1621 struct blk_mq_hw_ctx *hctx = data;
1622
1623 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1624 return blk_mq_hctx_cpu_offline(hctx, cpu);
1625
1626 /*
1627 * In case of CPU online, tags may be reallocated
1628 * in blk_mq_map_swqueue() after mapping is updated.
1629 */
1630
1631 return NOTIFY_OK;
1632 }
1633
1634 /* hctx->ctxs will be freed in queue's release handler */
1635 static void blk_mq_exit_hctx(struct request_queue *q,
1636 struct blk_mq_tag_set *set,
1637 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1638 {
1639 unsigned flush_start_tag = set->queue_depth;
1640
1641 blk_mq_tag_idle(hctx);
1642
1643 if (set->ops->exit_request)
1644 set->ops->exit_request(set->driver_data,
1645 hctx->fq->flush_rq, hctx_idx,
1646 flush_start_tag + hctx_idx);
1647
1648 if (set->ops->exit_hctx)
1649 set->ops->exit_hctx(hctx, hctx_idx);
1650
1651 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1652 blk_free_flush_queue(hctx->fq);
1653 blk_mq_free_bitmap(&hctx->ctx_map);
1654 }
1655
1656 static void blk_mq_exit_hw_queues(struct request_queue *q,
1657 struct blk_mq_tag_set *set, int nr_queue)
1658 {
1659 struct blk_mq_hw_ctx *hctx;
1660 unsigned int i;
1661
1662 queue_for_each_hw_ctx(q, hctx, i) {
1663 if (i == nr_queue)
1664 break;
1665 blk_mq_exit_hctx(q, set, hctx, i);
1666 }
1667 }
1668
1669 static void blk_mq_free_hw_queues(struct request_queue *q,
1670 struct blk_mq_tag_set *set)
1671 {
1672 struct blk_mq_hw_ctx *hctx;
1673 unsigned int i;
1674
1675 queue_for_each_hw_ctx(q, hctx, i)
1676 free_cpumask_var(hctx->cpumask);
1677 }
1678
1679 static int blk_mq_init_hctx(struct request_queue *q,
1680 struct blk_mq_tag_set *set,
1681 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1682 {
1683 int node;
1684 unsigned flush_start_tag = set->queue_depth;
1685
1686 node = hctx->numa_node;
1687 if (node == NUMA_NO_NODE)
1688 node = hctx->numa_node = set->numa_node;
1689
1690 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1691 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1692 spin_lock_init(&hctx->lock);
1693 INIT_LIST_HEAD(&hctx->dispatch);
1694 hctx->queue = q;
1695 hctx->queue_num = hctx_idx;
1696 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1697
1698 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1699 blk_mq_hctx_notify, hctx);
1700 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1701
1702 hctx->tags = set->tags[hctx_idx];
1703
1704 /*
1705 * Allocate space for all possible cpus to avoid allocation at
1706 * runtime
1707 */
1708 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1709 GFP_KERNEL, node);
1710 if (!hctx->ctxs)
1711 goto unregister_cpu_notifier;
1712
1713 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1714 goto free_ctxs;
1715
1716 hctx->nr_ctx = 0;
1717
1718 if (set->ops->init_hctx &&
1719 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1720 goto free_bitmap;
1721
1722 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1723 if (!hctx->fq)
1724 goto exit_hctx;
1725
1726 if (set->ops->init_request &&
1727 set->ops->init_request(set->driver_data,
1728 hctx->fq->flush_rq, hctx_idx,
1729 flush_start_tag + hctx_idx, node))
1730 goto free_fq;
1731
1732 return 0;
1733
1734 free_fq:
1735 kfree(hctx->fq);
1736 exit_hctx:
1737 if (set->ops->exit_hctx)
1738 set->ops->exit_hctx(hctx, hctx_idx);
1739 free_bitmap:
1740 blk_mq_free_bitmap(&hctx->ctx_map);
1741 free_ctxs:
1742 kfree(hctx->ctxs);
1743 unregister_cpu_notifier:
1744 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1745
1746 return -1;
1747 }
1748
1749 static int blk_mq_init_hw_queues(struct request_queue *q,
1750 struct blk_mq_tag_set *set)
1751 {
1752 struct blk_mq_hw_ctx *hctx;
1753 unsigned int i;
1754
1755 /*
1756 * Initialize hardware queues
1757 */
1758 queue_for_each_hw_ctx(q, hctx, i) {
1759 if (blk_mq_init_hctx(q, set, hctx, i))
1760 break;
1761 }
1762
1763 if (i == q->nr_hw_queues)
1764 return 0;
1765
1766 /*
1767 * Init failed
1768 */
1769 blk_mq_exit_hw_queues(q, set, i);
1770
1771 return 1;
1772 }
1773
1774 static void blk_mq_init_cpu_queues(struct request_queue *q,
1775 unsigned int nr_hw_queues)
1776 {
1777 unsigned int i;
1778
1779 for_each_possible_cpu(i) {
1780 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1781 struct blk_mq_hw_ctx *hctx;
1782
1783 memset(__ctx, 0, sizeof(*__ctx));
1784 __ctx->cpu = i;
1785 spin_lock_init(&__ctx->lock);
1786 INIT_LIST_HEAD(&__ctx->rq_list);
1787 __ctx->queue = q;
1788
1789 /* If the cpu isn't online, the cpu is mapped to first hctx */
1790 if (!cpu_online(i))
1791 continue;
1792
1793 hctx = q->mq_ops->map_queue(q, i);
1794
1795 /*
1796 * Set local node, IFF we have more than one hw queue. If
1797 * not, we remain on the home node of the device
1798 */
1799 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1800 hctx->numa_node = cpu_to_node(i);
1801 }
1802 }
1803
1804 static void blk_mq_map_swqueue(struct request_queue *q,
1805 const struct cpumask *online_mask)
1806 {
1807 unsigned int i;
1808 struct blk_mq_hw_ctx *hctx;
1809 struct blk_mq_ctx *ctx;
1810 struct blk_mq_tag_set *set = q->tag_set;
1811
1812 /*
1813 * Avoid others reading imcomplete hctx->cpumask through sysfs
1814 */
1815 mutex_lock(&q->sysfs_lock);
1816
1817 queue_for_each_hw_ctx(q, hctx, i) {
1818 cpumask_clear(hctx->cpumask);
1819 hctx->nr_ctx = 0;
1820 }
1821
1822 /*
1823 * Map software to hardware queues
1824 */
1825 for_each_possible_cpu(i) {
1826 /* If the cpu isn't online, the cpu is mapped to first hctx */
1827 if (!cpumask_test_cpu(i, online_mask))
1828 continue;
1829
1830 ctx = per_cpu_ptr(q->queue_ctx, i);
1831 hctx = q->mq_ops->map_queue(q, i);
1832 cpumask_set_cpu(i, hctx->cpumask);
1833 ctx->index_hw = hctx->nr_ctx;
1834 hctx->ctxs[hctx->nr_ctx++] = ctx;
1835 }
1836
1837 mutex_unlock(&q->sysfs_lock);
1838
1839 queue_for_each_hw_ctx(q, hctx, i) {
1840 struct blk_mq_ctxmap *map = &hctx->ctx_map;
1841
1842 /*
1843 * If no software queues are mapped to this hardware queue,
1844 * disable it and free the request entries.
1845 */
1846 if (!hctx->nr_ctx) {
1847 if (set->tags[i]) {
1848 blk_mq_free_rq_map(set, set->tags[i], i);
1849 set->tags[i] = NULL;
1850 }
1851 hctx->tags = NULL;
1852 continue;
1853 }
1854
1855 /* unmapped hw queue can be remapped after CPU topo changed */
1856 if (!set->tags[i])
1857 set->tags[i] = blk_mq_init_rq_map(set, i);
1858 hctx->tags = set->tags[i];
1859 WARN_ON(!hctx->tags);
1860
1861 cpumask_copy(hctx->tags->cpumask, hctx->cpumask);
1862 /*
1863 * Set the map size to the number of mapped software queues.
1864 * This is more accurate and more efficient than looping
1865 * over all possibly mapped software queues.
1866 */
1867 map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1868
1869 /*
1870 * Initialize batch roundrobin counts
1871 */
1872 hctx->next_cpu = cpumask_first(hctx->cpumask);
1873 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1874 }
1875 }
1876
1877 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1878 {
1879 struct blk_mq_hw_ctx *hctx;
1880 int i;
1881
1882 queue_for_each_hw_ctx(q, hctx, i) {
1883 if (shared)
1884 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1885 else
1886 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1887 }
1888 }
1889
1890 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
1891 {
1892 struct request_queue *q;
1893
1894 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1895 blk_mq_freeze_queue(q);
1896 queue_set_hctx_shared(q, shared);
1897 blk_mq_unfreeze_queue(q);
1898 }
1899 }
1900
1901 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1902 {
1903 struct blk_mq_tag_set *set = q->tag_set;
1904
1905 mutex_lock(&set->tag_list_lock);
1906 list_del_init(&q->tag_set_list);
1907 if (list_is_singular(&set->tag_list)) {
1908 /* just transitioned to unshared */
1909 set->flags &= ~BLK_MQ_F_TAG_SHARED;
1910 /* update existing queue */
1911 blk_mq_update_tag_set_depth(set, false);
1912 }
1913 mutex_unlock(&set->tag_list_lock);
1914 }
1915
1916 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1917 struct request_queue *q)
1918 {
1919 q->tag_set = set;
1920
1921 mutex_lock(&set->tag_list_lock);
1922
1923 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
1924 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
1925 set->flags |= BLK_MQ_F_TAG_SHARED;
1926 /* update existing queue */
1927 blk_mq_update_tag_set_depth(set, true);
1928 }
1929 if (set->flags & BLK_MQ_F_TAG_SHARED)
1930 queue_set_hctx_shared(q, true);
1931 list_add_tail(&q->tag_set_list, &set->tag_list);
1932
1933 mutex_unlock(&set->tag_list_lock);
1934 }
1935
1936 /*
1937 * It is the actual release handler for mq, but we do it from
1938 * request queue's release handler for avoiding use-after-free
1939 * and headache because q->mq_kobj shouldn't have been introduced,
1940 * but we can't group ctx/kctx kobj without it.
1941 */
1942 void blk_mq_release(struct request_queue *q)
1943 {
1944 struct blk_mq_hw_ctx *hctx;
1945 unsigned int i;
1946
1947 /* hctx kobj stays in hctx */
1948 queue_for_each_hw_ctx(q, hctx, i) {
1949 if (!hctx)
1950 continue;
1951 kfree(hctx->ctxs);
1952 kfree(hctx);
1953 }
1954
1955 kfree(q->mq_map);
1956 q->mq_map = NULL;
1957
1958 kfree(q->queue_hw_ctx);
1959
1960 /* ctx kobj stays in queue_ctx */
1961 free_percpu(q->queue_ctx);
1962 }
1963
1964 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1965 {
1966 struct request_queue *uninit_q, *q;
1967
1968 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1969 if (!uninit_q)
1970 return ERR_PTR(-ENOMEM);
1971
1972 q = blk_mq_init_allocated_queue(set, uninit_q);
1973 if (IS_ERR(q))
1974 blk_cleanup_queue(uninit_q);
1975
1976 return q;
1977 }
1978 EXPORT_SYMBOL(blk_mq_init_queue);
1979
1980 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
1981 struct request_queue *q)
1982 {
1983 struct blk_mq_hw_ctx **hctxs;
1984 struct blk_mq_ctx __percpu *ctx;
1985 unsigned int *map;
1986 int i;
1987
1988 ctx = alloc_percpu(struct blk_mq_ctx);
1989 if (!ctx)
1990 return ERR_PTR(-ENOMEM);
1991
1992 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1993 set->numa_node);
1994
1995 if (!hctxs)
1996 goto err_percpu;
1997
1998 map = blk_mq_make_queue_map(set);
1999 if (!map)
2000 goto err_map;
2001
2002 for (i = 0; i < set->nr_hw_queues; i++) {
2003 int node = blk_mq_hw_queue_to_node(map, i);
2004
2005 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2006 GFP_KERNEL, node);
2007 if (!hctxs[i])
2008 goto err_hctxs;
2009
2010 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2011 node))
2012 goto err_hctxs;
2013
2014 atomic_set(&hctxs[i]->nr_active, 0);
2015 hctxs[i]->numa_node = node;
2016 hctxs[i]->queue_num = i;
2017 }
2018
2019 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2020 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2021
2022 q->nr_queues = nr_cpu_ids;
2023 q->nr_hw_queues = set->nr_hw_queues;
2024 q->mq_map = map;
2025
2026 q->queue_ctx = ctx;
2027 q->queue_hw_ctx = hctxs;
2028
2029 q->mq_ops = set->ops;
2030 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2031
2032 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2033 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2034
2035 q->sg_reserved_size = INT_MAX;
2036
2037 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
2038 INIT_LIST_HEAD(&q->requeue_list);
2039 spin_lock_init(&q->requeue_lock);
2040
2041 if (q->nr_hw_queues > 1)
2042 blk_queue_make_request(q, blk_mq_make_request);
2043 else
2044 blk_queue_make_request(q, blk_sq_make_request);
2045
2046 /*
2047 * Do this after blk_queue_make_request() overrides it...
2048 */
2049 q->nr_requests = set->queue_depth;
2050
2051 if (set->ops->complete)
2052 blk_queue_softirq_done(q, set->ops->complete);
2053
2054 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2055
2056 if (blk_mq_init_hw_queues(q, set))
2057 goto err_hctxs;
2058
2059 get_online_cpus();
2060 mutex_lock(&all_q_mutex);
2061
2062 list_add_tail(&q->all_q_node, &all_q_list);
2063 blk_mq_add_queue_tag_set(set, q);
2064 blk_mq_map_swqueue(q, cpu_online_mask);
2065
2066 mutex_unlock(&all_q_mutex);
2067 put_online_cpus();
2068
2069 return q;
2070
2071 err_hctxs:
2072 kfree(map);
2073 for (i = 0; i < set->nr_hw_queues; i++) {
2074 if (!hctxs[i])
2075 break;
2076 free_cpumask_var(hctxs[i]->cpumask);
2077 kfree(hctxs[i]);
2078 }
2079 err_map:
2080 kfree(hctxs);
2081 err_percpu:
2082 free_percpu(ctx);
2083 return ERR_PTR(-ENOMEM);
2084 }
2085 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2086
2087 void blk_mq_free_queue(struct request_queue *q)
2088 {
2089 struct blk_mq_tag_set *set = q->tag_set;
2090
2091 mutex_lock(&all_q_mutex);
2092 list_del_init(&q->all_q_node);
2093 mutex_unlock(&all_q_mutex);
2094
2095 blk_mq_del_queue_tag_set(q);
2096
2097 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2098 blk_mq_free_hw_queues(q, set);
2099 }
2100
2101 /* Basically redo blk_mq_init_queue with queue frozen */
2102 static void blk_mq_queue_reinit(struct request_queue *q,
2103 const struct cpumask *online_mask)
2104 {
2105 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2106
2107 blk_mq_sysfs_unregister(q);
2108
2109 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask);
2110
2111 /*
2112 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2113 * we should change hctx numa_node according to new topology (this
2114 * involves free and re-allocate memory, worthy doing?)
2115 */
2116
2117 blk_mq_map_swqueue(q, online_mask);
2118
2119 blk_mq_sysfs_register(q);
2120 }
2121
2122 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2123 unsigned long action, void *hcpu)
2124 {
2125 struct request_queue *q;
2126 int cpu = (unsigned long)hcpu;
2127 /*
2128 * New online cpumask which is going to be set in this hotplug event.
2129 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2130 * one-by-one and dynamically allocating this could result in a failure.
2131 */
2132 static struct cpumask online_new;
2133
2134 /*
2135 * Before hotadded cpu starts handling requests, new mappings must
2136 * be established. Otherwise, these requests in hw queue might
2137 * never be dispatched.
2138 *
2139 * For example, there is a single hw queue (hctx) and two CPU queues
2140 * (ctx0 for CPU0, and ctx1 for CPU1).
2141 *
2142 * Now CPU1 is just onlined and a request is inserted into
2143 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
2144 * still zero.
2145 *
2146 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
2147 * set in pending bitmap and tries to retrieve requests in
2148 * hctx->ctxs[0]->rq_list. But htx->ctxs[0] is a pointer to ctx0,
2149 * so the request in ctx1->rq_list is ignored.
2150 */
2151 switch (action & ~CPU_TASKS_FROZEN) {
2152 case CPU_DEAD:
2153 case CPU_UP_CANCELED:
2154 cpumask_copy(&online_new, cpu_online_mask);
2155 break;
2156 case CPU_UP_PREPARE:
2157 cpumask_copy(&online_new, cpu_online_mask);
2158 cpumask_set_cpu(cpu, &online_new);
2159 break;
2160 default:
2161 return NOTIFY_OK;
2162 }
2163
2164 mutex_lock(&all_q_mutex);
2165
2166 /*
2167 * We need to freeze and reinit all existing queues. Freezing
2168 * involves synchronous wait for an RCU grace period and doing it
2169 * one by one may take a long time. Start freezing all queues in
2170 * one swoop and then wait for the completions so that freezing can
2171 * take place in parallel.
2172 */
2173 list_for_each_entry(q, &all_q_list, all_q_node)
2174 blk_mq_freeze_queue_start(q);
2175 list_for_each_entry(q, &all_q_list, all_q_node) {
2176 blk_mq_freeze_queue_wait(q);
2177
2178 /*
2179 * timeout handler can't touch hw queue during the
2180 * reinitialization
2181 */
2182 del_timer_sync(&q->timeout);
2183 }
2184
2185 list_for_each_entry(q, &all_q_list, all_q_node)
2186 blk_mq_queue_reinit(q, &online_new);
2187
2188 list_for_each_entry(q, &all_q_list, all_q_node)
2189 blk_mq_unfreeze_queue(q);
2190
2191 mutex_unlock(&all_q_mutex);
2192 return NOTIFY_OK;
2193 }
2194
2195 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2196 {
2197 int i;
2198
2199 for (i = 0; i < set->nr_hw_queues; i++) {
2200 set->tags[i] = blk_mq_init_rq_map(set, i);
2201 if (!set->tags[i])
2202 goto out_unwind;
2203 }
2204
2205 return 0;
2206
2207 out_unwind:
2208 while (--i >= 0)
2209 blk_mq_free_rq_map(set, set->tags[i], i);
2210
2211 return -ENOMEM;
2212 }
2213
2214 /*
2215 * Allocate the request maps associated with this tag_set. Note that this
2216 * may reduce the depth asked for, if memory is tight. set->queue_depth
2217 * will be updated to reflect the allocated depth.
2218 */
2219 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2220 {
2221 unsigned int depth;
2222 int err;
2223
2224 depth = set->queue_depth;
2225 do {
2226 err = __blk_mq_alloc_rq_maps(set);
2227 if (!err)
2228 break;
2229
2230 set->queue_depth >>= 1;
2231 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2232 err = -ENOMEM;
2233 break;
2234 }
2235 } while (set->queue_depth);
2236
2237 if (!set->queue_depth || err) {
2238 pr_err("blk-mq: failed to allocate request map\n");
2239 return -ENOMEM;
2240 }
2241
2242 if (depth != set->queue_depth)
2243 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2244 depth, set->queue_depth);
2245
2246 return 0;
2247 }
2248
2249 struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
2250 {
2251 return tags->cpumask;
2252 }
2253 EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);
2254
2255 /*
2256 * Alloc a tag set to be associated with one or more request queues.
2257 * May fail with EINVAL for various error conditions. May adjust the
2258 * requested depth down, if if it too large. In that case, the set
2259 * value will be stored in set->queue_depth.
2260 */
2261 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2262 {
2263 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2264
2265 if (!set->nr_hw_queues)
2266 return -EINVAL;
2267 if (!set->queue_depth)
2268 return -EINVAL;
2269 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2270 return -EINVAL;
2271
2272 if (!set->ops->queue_rq || !set->ops->map_queue)
2273 return -EINVAL;
2274
2275 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2276 pr_info("blk-mq: reduced tag depth to %u\n",
2277 BLK_MQ_MAX_DEPTH);
2278 set->queue_depth = BLK_MQ_MAX_DEPTH;
2279 }
2280
2281 /*
2282 * If a crashdump is active, then we are potentially in a very
2283 * memory constrained environment. Limit us to 1 queue and
2284 * 64 tags to prevent using too much memory.
2285 */
2286 if (is_kdump_kernel()) {
2287 set->nr_hw_queues = 1;
2288 set->queue_depth = min(64U, set->queue_depth);
2289 }
2290
2291 set->tags = kmalloc_node(set->nr_hw_queues *
2292 sizeof(struct blk_mq_tags *),
2293 GFP_KERNEL, set->numa_node);
2294 if (!set->tags)
2295 return -ENOMEM;
2296
2297 if (blk_mq_alloc_rq_maps(set))
2298 goto enomem;
2299
2300 mutex_init(&set->tag_list_lock);
2301 INIT_LIST_HEAD(&set->tag_list);
2302
2303 return 0;
2304 enomem:
2305 kfree(set->tags);
2306 set->tags = NULL;
2307 return -ENOMEM;
2308 }
2309 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2310
2311 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2312 {
2313 int i;
2314
2315 for (i = 0; i < set->nr_hw_queues; i++) {
2316 if (set->tags[i])
2317 blk_mq_free_rq_map(set, set->tags[i], i);
2318 }
2319
2320 kfree(set->tags);
2321 set->tags = NULL;
2322 }
2323 EXPORT_SYMBOL(blk_mq_free_tag_set);
2324
2325 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2326 {
2327 struct blk_mq_tag_set *set = q->tag_set;
2328 struct blk_mq_hw_ctx *hctx;
2329 int i, ret;
2330
2331 if (!set || nr > set->queue_depth)
2332 return -EINVAL;
2333
2334 ret = 0;
2335 queue_for_each_hw_ctx(q, hctx, i) {
2336 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2337 if (ret)
2338 break;
2339 }
2340
2341 if (!ret)
2342 q->nr_requests = nr;
2343
2344 return ret;
2345 }
2346
2347 void blk_mq_disable_hotplug(void)
2348 {
2349 mutex_lock(&all_q_mutex);
2350 }
2351
2352 void blk_mq_enable_hotplug(void)
2353 {
2354 mutex_unlock(&all_q_mutex);
2355 }
2356
2357 static int __init blk_mq_init(void)
2358 {
2359 blk_mq_cpu_init();
2360
2361 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2362
2363 return 0;
2364 }
2365 subsys_initcall(blk_mq_init);