]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - block/blk-mq.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/hid/hid
[mirror_ubuntu-hirsute-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-pm.h"
37 #include "blk-stat.h"
38 #include "blk-mq-sched.h"
39 #include "blk-rq-qos.h"
40
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46 int ddir, bytes, bucket;
47
48 ddir = rq_data_dir(rq);
49 bytes = blk_rq_bytes(rq);
50
51 bucket = ddir + 2*(ilog2(bytes) - 9);
52
53 if (bucket < 0)
54 return -1;
55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58 return bucket;
59 }
60
61 /*
62 * Check if any of the ctx's have pending work in this hardware queue
63 */
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66 return !list_empty_careful(&hctx->dispatch) ||
67 sbitmap_any_bit_set(&hctx->ctx_map) ||
68 blk_mq_sched_has_work(hctx);
69 }
70
71 /*
72 * Mark this ctx as having pending work in this hardware queue
73 */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 struct blk_mq_ctx *ctx)
76 {
77 const int bit = ctx->index_hw[hctx->type];
78
79 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
80 sbitmap_set_bit(&hctx->ctx_map, bit);
81 }
82
83 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
84 struct blk_mq_ctx *ctx)
85 {
86 const int bit = ctx->index_hw[hctx->type];
87
88 sbitmap_clear_bit(&hctx->ctx_map, bit);
89 }
90
91 struct mq_inflight {
92 struct hd_struct *part;
93 unsigned int *inflight;
94 };
95
96 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
97 struct request *rq, void *priv,
98 bool reserved)
99 {
100 struct mq_inflight *mi = priv;
101
102 /*
103 * index[0] counts the specific partition that was asked for.
104 */
105 if (rq->part == mi->part)
106 mi->inflight[0]++;
107
108 return true;
109 }
110
111 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
112 {
113 unsigned inflight[2];
114 struct mq_inflight mi = { .part = part, .inflight = inflight, };
115
116 inflight[0] = inflight[1] = 0;
117 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
118
119 return inflight[0];
120 }
121
122 static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
123 struct request *rq, void *priv,
124 bool reserved)
125 {
126 struct mq_inflight *mi = priv;
127
128 if (rq->part == mi->part)
129 mi->inflight[rq_data_dir(rq)]++;
130
131 return true;
132 }
133
134 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
135 unsigned int inflight[2])
136 {
137 struct mq_inflight mi = { .part = part, .inflight = inflight, };
138
139 inflight[0] = inflight[1] = 0;
140 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
141 }
142
143 void blk_freeze_queue_start(struct request_queue *q)
144 {
145 int freeze_depth;
146
147 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
148 if (freeze_depth == 1) {
149 percpu_ref_kill(&q->q_usage_counter);
150 if (queue_is_mq(q))
151 blk_mq_run_hw_queues(q, false);
152 }
153 }
154 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
155
156 void blk_mq_freeze_queue_wait(struct request_queue *q)
157 {
158 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
159 }
160 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
161
162 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
163 unsigned long timeout)
164 {
165 return wait_event_timeout(q->mq_freeze_wq,
166 percpu_ref_is_zero(&q->q_usage_counter),
167 timeout);
168 }
169 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
170
171 /*
172 * Guarantee no request is in use, so we can change any data structure of
173 * the queue afterward.
174 */
175 void blk_freeze_queue(struct request_queue *q)
176 {
177 /*
178 * In the !blk_mq case we are only calling this to kill the
179 * q_usage_counter, otherwise this increases the freeze depth
180 * and waits for it to return to zero. For this reason there is
181 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
182 * exported to drivers as the only user for unfreeze is blk_mq.
183 */
184 blk_freeze_queue_start(q);
185 blk_mq_freeze_queue_wait(q);
186 }
187
188 void blk_mq_freeze_queue(struct request_queue *q)
189 {
190 /*
191 * ...just an alias to keep freeze and unfreeze actions balanced
192 * in the blk_mq_* namespace
193 */
194 blk_freeze_queue(q);
195 }
196 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
197
198 void blk_mq_unfreeze_queue(struct request_queue *q)
199 {
200 int freeze_depth;
201
202 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
203 WARN_ON_ONCE(freeze_depth < 0);
204 if (!freeze_depth) {
205 percpu_ref_resurrect(&q->q_usage_counter);
206 wake_up_all(&q->mq_freeze_wq);
207 }
208 }
209 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
210
211 /*
212 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
213 * mpt3sas driver such that this function can be removed.
214 */
215 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
216 {
217 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
218 }
219 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
220
221 /**
222 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
223 * @q: request queue.
224 *
225 * Note: this function does not prevent that the struct request end_io()
226 * callback function is invoked. Once this function is returned, we make
227 * sure no dispatch can happen until the queue is unquiesced via
228 * blk_mq_unquiesce_queue().
229 */
230 void blk_mq_quiesce_queue(struct request_queue *q)
231 {
232 struct blk_mq_hw_ctx *hctx;
233 unsigned int i;
234 bool rcu = false;
235
236 blk_mq_quiesce_queue_nowait(q);
237
238 queue_for_each_hw_ctx(q, hctx, i) {
239 if (hctx->flags & BLK_MQ_F_BLOCKING)
240 synchronize_srcu(hctx->srcu);
241 else
242 rcu = true;
243 }
244 if (rcu)
245 synchronize_rcu();
246 }
247 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
248
249 /*
250 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
251 * @q: request queue.
252 *
253 * This function recovers queue into the state before quiescing
254 * which is done by blk_mq_quiesce_queue.
255 */
256 void blk_mq_unquiesce_queue(struct request_queue *q)
257 {
258 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
259
260 /* dispatch requests which are inserted during quiescing */
261 blk_mq_run_hw_queues(q, true);
262 }
263 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
264
265 void blk_mq_wake_waiters(struct request_queue *q)
266 {
267 struct blk_mq_hw_ctx *hctx;
268 unsigned int i;
269
270 queue_for_each_hw_ctx(q, hctx, i)
271 if (blk_mq_hw_queue_mapped(hctx))
272 blk_mq_tag_wakeup_all(hctx->tags, true);
273 }
274
275 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
276 {
277 return blk_mq_has_free_tags(hctx->tags);
278 }
279 EXPORT_SYMBOL(blk_mq_can_queue);
280
281 /*
282 * Only need start/end time stamping if we have stats enabled, or using
283 * an IO scheduler.
284 */
285 static inline bool blk_mq_need_time_stamp(struct request *rq)
286 {
287 return (rq->rq_flags & RQF_IO_STAT) || rq->q->elevator;
288 }
289
290 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
291 unsigned int tag, unsigned int op)
292 {
293 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
294 struct request *rq = tags->static_rqs[tag];
295 req_flags_t rq_flags = 0;
296
297 if (data->flags & BLK_MQ_REQ_INTERNAL) {
298 rq->tag = -1;
299 rq->internal_tag = tag;
300 } else {
301 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
302 rq_flags = RQF_MQ_INFLIGHT;
303 atomic_inc(&data->hctx->nr_active);
304 }
305 rq->tag = tag;
306 rq->internal_tag = -1;
307 data->hctx->tags->rqs[rq->tag] = rq;
308 }
309
310 /* csd/requeue_work/fifo_time is initialized before use */
311 rq->q = data->q;
312 rq->mq_ctx = data->ctx;
313 rq->mq_hctx = data->hctx;
314 rq->rq_flags = rq_flags;
315 rq->cmd_flags = op;
316 if (data->flags & BLK_MQ_REQ_PREEMPT)
317 rq->rq_flags |= RQF_PREEMPT;
318 if (blk_queue_io_stat(data->q))
319 rq->rq_flags |= RQF_IO_STAT;
320 INIT_LIST_HEAD(&rq->queuelist);
321 INIT_HLIST_NODE(&rq->hash);
322 RB_CLEAR_NODE(&rq->rb_node);
323 rq->rq_disk = NULL;
324 rq->part = NULL;
325 if (blk_mq_need_time_stamp(rq))
326 rq->start_time_ns = ktime_get_ns();
327 else
328 rq->start_time_ns = 0;
329 rq->io_start_time_ns = 0;
330 rq->nr_phys_segments = 0;
331 #if defined(CONFIG_BLK_DEV_INTEGRITY)
332 rq->nr_integrity_segments = 0;
333 #endif
334 rq->special = NULL;
335 /* tag was already set */
336 rq->extra_len = 0;
337 WRITE_ONCE(rq->deadline, 0);
338
339 rq->timeout = 0;
340
341 rq->end_io = NULL;
342 rq->end_io_data = NULL;
343 rq->next_rq = NULL;
344
345 data->ctx->rq_dispatched[op_is_sync(op)]++;
346 refcount_set(&rq->ref, 1);
347 return rq;
348 }
349
350 static struct request *blk_mq_get_request(struct request_queue *q,
351 struct bio *bio,
352 struct blk_mq_alloc_data *data)
353 {
354 struct elevator_queue *e = q->elevator;
355 struct request *rq;
356 unsigned int tag;
357 bool put_ctx_on_error = false;
358
359 blk_queue_enter_live(q);
360 data->q = q;
361 if (likely(!data->ctx)) {
362 data->ctx = blk_mq_get_ctx(q);
363 put_ctx_on_error = true;
364 }
365 if (likely(!data->hctx))
366 data->hctx = blk_mq_map_queue(q, data->cmd_flags,
367 data->ctx->cpu);
368 if (data->cmd_flags & REQ_NOWAIT)
369 data->flags |= BLK_MQ_REQ_NOWAIT;
370
371 if (e) {
372 data->flags |= BLK_MQ_REQ_INTERNAL;
373
374 /*
375 * Flush requests are special and go directly to the
376 * dispatch list. Don't include reserved tags in the
377 * limiting, as it isn't useful.
378 */
379 if (!op_is_flush(data->cmd_flags) &&
380 e->type->ops.limit_depth &&
381 !(data->flags & BLK_MQ_REQ_RESERVED))
382 e->type->ops.limit_depth(data->cmd_flags, data);
383 } else {
384 blk_mq_tag_busy(data->hctx);
385 }
386
387 tag = blk_mq_get_tag(data);
388 if (tag == BLK_MQ_TAG_FAIL) {
389 if (put_ctx_on_error) {
390 blk_mq_put_ctx(data->ctx);
391 data->ctx = NULL;
392 }
393 blk_queue_exit(q);
394 return NULL;
395 }
396
397 rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags);
398 if (!op_is_flush(data->cmd_flags)) {
399 rq->elv.icq = NULL;
400 if (e && e->type->ops.prepare_request) {
401 if (e->type->icq_cache)
402 blk_mq_sched_assign_ioc(rq);
403
404 e->type->ops.prepare_request(rq, bio);
405 rq->rq_flags |= RQF_ELVPRIV;
406 }
407 }
408 data->hctx->queued++;
409 return rq;
410 }
411
412 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
413 blk_mq_req_flags_t flags)
414 {
415 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
416 struct request *rq;
417 int ret;
418
419 ret = blk_queue_enter(q, flags);
420 if (ret)
421 return ERR_PTR(ret);
422
423 rq = blk_mq_get_request(q, NULL, &alloc_data);
424 blk_queue_exit(q);
425
426 if (!rq)
427 return ERR_PTR(-EWOULDBLOCK);
428
429 blk_mq_put_ctx(alloc_data.ctx);
430
431 rq->__data_len = 0;
432 rq->__sector = (sector_t) -1;
433 rq->bio = rq->biotail = NULL;
434 return rq;
435 }
436 EXPORT_SYMBOL(blk_mq_alloc_request);
437
438 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
439 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
440 {
441 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
442 struct request *rq;
443 unsigned int cpu;
444 int ret;
445
446 /*
447 * If the tag allocator sleeps we could get an allocation for a
448 * different hardware context. No need to complicate the low level
449 * allocator for this for the rare use case of a command tied to
450 * a specific queue.
451 */
452 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
453 return ERR_PTR(-EINVAL);
454
455 if (hctx_idx >= q->nr_hw_queues)
456 return ERR_PTR(-EIO);
457
458 ret = blk_queue_enter(q, flags);
459 if (ret)
460 return ERR_PTR(ret);
461
462 /*
463 * Check if the hardware context is actually mapped to anything.
464 * If not tell the caller that it should skip this queue.
465 */
466 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
467 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
468 blk_queue_exit(q);
469 return ERR_PTR(-EXDEV);
470 }
471 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
472 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
473
474 rq = blk_mq_get_request(q, NULL, &alloc_data);
475 blk_queue_exit(q);
476
477 if (!rq)
478 return ERR_PTR(-EWOULDBLOCK);
479
480 return rq;
481 }
482 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
483
484 static void __blk_mq_free_request(struct request *rq)
485 {
486 struct request_queue *q = rq->q;
487 struct blk_mq_ctx *ctx = rq->mq_ctx;
488 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
489 const int sched_tag = rq->internal_tag;
490
491 blk_pm_mark_last_busy(rq);
492 rq->mq_hctx = NULL;
493 if (rq->tag != -1)
494 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
495 if (sched_tag != -1)
496 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
497 blk_mq_sched_restart(hctx);
498 blk_queue_exit(q);
499 }
500
501 void blk_mq_free_request(struct request *rq)
502 {
503 struct request_queue *q = rq->q;
504 struct elevator_queue *e = q->elevator;
505 struct blk_mq_ctx *ctx = rq->mq_ctx;
506 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
507
508 if (rq->rq_flags & RQF_ELVPRIV) {
509 if (e && e->type->ops.finish_request)
510 e->type->ops.finish_request(rq);
511 if (rq->elv.icq) {
512 put_io_context(rq->elv.icq->ioc);
513 rq->elv.icq = NULL;
514 }
515 }
516
517 ctx->rq_completed[rq_is_sync(rq)]++;
518 if (rq->rq_flags & RQF_MQ_INFLIGHT)
519 atomic_dec(&hctx->nr_active);
520
521 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
522 laptop_io_completion(q->backing_dev_info);
523
524 rq_qos_done(q, rq);
525
526 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
527 if (refcount_dec_and_test(&rq->ref))
528 __blk_mq_free_request(rq);
529 }
530 EXPORT_SYMBOL_GPL(blk_mq_free_request);
531
532 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
533 {
534 u64 now = 0;
535
536 if (blk_mq_need_time_stamp(rq))
537 now = ktime_get_ns();
538
539 if (rq->rq_flags & RQF_STATS) {
540 blk_mq_poll_stats_start(rq->q);
541 blk_stat_add(rq, now);
542 }
543
544 if (rq->internal_tag != -1)
545 blk_mq_sched_completed_request(rq, now);
546
547 blk_account_io_done(rq, now);
548
549 if (rq->end_io) {
550 rq_qos_done(rq->q, rq);
551 rq->end_io(rq, error);
552 } else {
553 if (unlikely(blk_bidi_rq(rq)))
554 blk_mq_free_request(rq->next_rq);
555 blk_mq_free_request(rq);
556 }
557 }
558 EXPORT_SYMBOL(__blk_mq_end_request);
559
560 void blk_mq_end_request(struct request *rq, blk_status_t error)
561 {
562 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
563 BUG();
564 __blk_mq_end_request(rq, error);
565 }
566 EXPORT_SYMBOL(blk_mq_end_request);
567
568 static void __blk_mq_complete_request_remote(void *data)
569 {
570 struct request *rq = data;
571 struct request_queue *q = rq->q;
572
573 q->mq_ops->complete(rq);
574 }
575
576 static void __blk_mq_complete_request(struct request *rq)
577 {
578 struct blk_mq_ctx *ctx = rq->mq_ctx;
579 struct request_queue *q = rq->q;
580 bool shared = false;
581 int cpu;
582
583 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
584 /*
585 * Most of single queue controllers, there is only one irq vector
586 * for handling IO completion, and the only irq's affinity is set
587 * as all possible CPUs. On most of ARCHs, this affinity means the
588 * irq is handled on one specific CPU.
589 *
590 * So complete IO reqeust in softirq context in case of single queue
591 * for not degrading IO performance by irqsoff latency.
592 */
593 if (q->nr_hw_queues == 1) {
594 __blk_complete_request(rq);
595 return;
596 }
597
598 /*
599 * For a polled request, always complete locallly, it's pointless
600 * to redirect the completion.
601 */
602 if ((rq->cmd_flags & REQ_HIPRI) ||
603 !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
604 q->mq_ops->complete(rq);
605 return;
606 }
607
608 cpu = get_cpu();
609 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
610 shared = cpus_share_cache(cpu, ctx->cpu);
611
612 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
613 rq->csd.func = __blk_mq_complete_request_remote;
614 rq->csd.info = rq;
615 rq->csd.flags = 0;
616 smp_call_function_single_async(ctx->cpu, &rq->csd);
617 } else {
618 q->mq_ops->complete(rq);
619 }
620 put_cpu();
621 }
622
623 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
624 __releases(hctx->srcu)
625 {
626 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
627 rcu_read_unlock();
628 else
629 srcu_read_unlock(hctx->srcu, srcu_idx);
630 }
631
632 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
633 __acquires(hctx->srcu)
634 {
635 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
636 /* shut up gcc false positive */
637 *srcu_idx = 0;
638 rcu_read_lock();
639 } else
640 *srcu_idx = srcu_read_lock(hctx->srcu);
641 }
642
643 /**
644 * blk_mq_complete_request - end I/O on a request
645 * @rq: the request being processed
646 *
647 * Description:
648 * Ends all I/O on a request. It does not handle partial completions.
649 * The actual completion happens out-of-order, through a IPI handler.
650 **/
651 bool blk_mq_complete_request(struct request *rq)
652 {
653 if (unlikely(blk_should_fake_timeout(rq->q)))
654 return false;
655 __blk_mq_complete_request(rq);
656 return true;
657 }
658 EXPORT_SYMBOL(blk_mq_complete_request);
659
660 int blk_mq_request_started(struct request *rq)
661 {
662 return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
663 }
664 EXPORT_SYMBOL_GPL(blk_mq_request_started);
665
666 void blk_mq_start_request(struct request *rq)
667 {
668 struct request_queue *q = rq->q;
669
670 blk_mq_sched_started_request(rq);
671
672 trace_block_rq_issue(q, rq);
673
674 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
675 rq->io_start_time_ns = ktime_get_ns();
676 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
677 rq->throtl_size = blk_rq_sectors(rq);
678 #endif
679 rq->rq_flags |= RQF_STATS;
680 rq_qos_issue(q, rq);
681 }
682
683 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
684
685 blk_add_timer(rq);
686 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
687
688 if (q->dma_drain_size && blk_rq_bytes(rq)) {
689 /*
690 * Make sure space for the drain appears. We know we can do
691 * this because max_hw_segments has been adjusted to be one
692 * fewer than the device can handle.
693 */
694 rq->nr_phys_segments++;
695 }
696 }
697 EXPORT_SYMBOL(blk_mq_start_request);
698
699 static void __blk_mq_requeue_request(struct request *rq)
700 {
701 struct request_queue *q = rq->q;
702
703 blk_mq_put_driver_tag(rq);
704
705 trace_block_rq_requeue(q, rq);
706 rq_qos_requeue(q, rq);
707
708 if (blk_mq_request_started(rq)) {
709 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
710 rq->rq_flags &= ~RQF_TIMED_OUT;
711 if (q->dma_drain_size && blk_rq_bytes(rq))
712 rq->nr_phys_segments--;
713 }
714 }
715
716 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
717 {
718 __blk_mq_requeue_request(rq);
719
720 /* this request will be re-inserted to io scheduler queue */
721 blk_mq_sched_requeue_request(rq);
722
723 BUG_ON(!list_empty(&rq->queuelist));
724 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
725 }
726 EXPORT_SYMBOL(blk_mq_requeue_request);
727
728 static void blk_mq_requeue_work(struct work_struct *work)
729 {
730 struct request_queue *q =
731 container_of(work, struct request_queue, requeue_work.work);
732 LIST_HEAD(rq_list);
733 struct request *rq, *next;
734
735 spin_lock_irq(&q->requeue_lock);
736 list_splice_init(&q->requeue_list, &rq_list);
737 spin_unlock_irq(&q->requeue_lock);
738
739 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
740 if (!(rq->rq_flags & RQF_SOFTBARRIER))
741 continue;
742
743 rq->rq_flags &= ~RQF_SOFTBARRIER;
744 list_del_init(&rq->queuelist);
745 blk_mq_sched_insert_request(rq, true, false, false);
746 }
747
748 while (!list_empty(&rq_list)) {
749 rq = list_entry(rq_list.next, struct request, queuelist);
750 list_del_init(&rq->queuelist);
751 blk_mq_sched_insert_request(rq, false, false, false);
752 }
753
754 blk_mq_run_hw_queues(q, false);
755 }
756
757 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
758 bool kick_requeue_list)
759 {
760 struct request_queue *q = rq->q;
761 unsigned long flags;
762
763 /*
764 * We abuse this flag that is otherwise used by the I/O scheduler to
765 * request head insertion from the workqueue.
766 */
767 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
768
769 spin_lock_irqsave(&q->requeue_lock, flags);
770 if (at_head) {
771 rq->rq_flags |= RQF_SOFTBARRIER;
772 list_add(&rq->queuelist, &q->requeue_list);
773 } else {
774 list_add_tail(&rq->queuelist, &q->requeue_list);
775 }
776 spin_unlock_irqrestore(&q->requeue_lock, flags);
777
778 if (kick_requeue_list)
779 blk_mq_kick_requeue_list(q);
780 }
781 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
782
783 void blk_mq_kick_requeue_list(struct request_queue *q)
784 {
785 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
786 }
787 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
788
789 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
790 unsigned long msecs)
791 {
792 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
793 msecs_to_jiffies(msecs));
794 }
795 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
796
797 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
798 {
799 if (tag < tags->nr_tags) {
800 prefetch(tags->rqs[tag]);
801 return tags->rqs[tag];
802 }
803
804 return NULL;
805 }
806 EXPORT_SYMBOL(blk_mq_tag_to_rq);
807
808 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
809 void *priv, bool reserved)
810 {
811 /*
812 * If we find a request that is inflight and the queue matches,
813 * we know the queue is busy. Return false to stop the iteration.
814 */
815 if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
816 bool *busy = priv;
817
818 *busy = true;
819 return false;
820 }
821
822 return true;
823 }
824
825 bool blk_mq_queue_inflight(struct request_queue *q)
826 {
827 bool busy = false;
828
829 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
830 return busy;
831 }
832 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
833
834 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
835 {
836 req->rq_flags |= RQF_TIMED_OUT;
837 if (req->q->mq_ops->timeout) {
838 enum blk_eh_timer_return ret;
839
840 ret = req->q->mq_ops->timeout(req, reserved);
841 if (ret == BLK_EH_DONE)
842 return;
843 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
844 }
845
846 blk_add_timer(req);
847 }
848
849 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
850 {
851 unsigned long deadline;
852
853 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
854 return false;
855 if (rq->rq_flags & RQF_TIMED_OUT)
856 return false;
857
858 deadline = READ_ONCE(rq->deadline);
859 if (time_after_eq(jiffies, deadline))
860 return true;
861
862 if (*next == 0)
863 *next = deadline;
864 else if (time_after(*next, deadline))
865 *next = deadline;
866 return false;
867 }
868
869 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
870 struct request *rq, void *priv, bool reserved)
871 {
872 unsigned long *next = priv;
873
874 /*
875 * Just do a quick check if it is expired before locking the request in
876 * so we're not unnecessarilly synchronizing across CPUs.
877 */
878 if (!blk_mq_req_expired(rq, next))
879 return true;
880
881 /*
882 * We have reason to believe the request may be expired. Take a
883 * reference on the request to lock this request lifetime into its
884 * currently allocated context to prevent it from being reallocated in
885 * the event the completion by-passes this timeout handler.
886 *
887 * If the reference was already released, then the driver beat the
888 * timeout handler to posting a natural completion.
889 */
890 if (!refcount_inc_not_zero(&rq->ref))
891 return true;
892
893 /*
894 * The request is now locked and cannot be reallocated underneath the
895 * timeout handler's processing. Re-verify this exact request is truly
896 * expired; if it is not expired, then the request was completed and
897 * reallocated as a new request.
898 */
899 if (blk_mq_req_expired(rq, next))
900 blk_mq_rq_timed_out(rq, reserved);
901 if (refcount_dec_and_test(&rq->ref))
902 __blk_mq_free_request(rq);
903
904 return true;
905 }
906
907 static void blk_mq_timeout_work(struct work_struct *work)
908 {
909 struct request_queue *q =
910 container_of(work, struct request_queue, timeout_work);
911 unsigned long next = 0;
912 struct blk_mq_hw_ctx *hctx;
913 int i;
914
915 /* A deadlock might occur if a request is stuck requiring a
916 * timeout at the same time a queue freeze is waiting
917 * completion, since the timeout code would not be able to
918 * acquire the queue reference here.
919 *
920 * That's why we don't use blk_queue_enter here; instead, we use
921 * percpu_ref_tryget directly, because we need to be able to
922 * obtain a reference even in the short window between the queue
923 * starting to freeze, by dropping the first reference in
924 * blk_freeze_queue_start, and the moment the last request is
925 * consumed, marked by the instant q_usage_counter reaches
926 * zero.
927 */
928 if (!percpu_ref_tryget(&q->q_usage_counter))
929 return;
930
931 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
932
933 if (next != 0) {
934 mod_timer(&q->timeout, next);
935 } else {
936 /*
937 * Request timeouts are handled as a forward rolling timer. If
938 * we end up here it means that no requests are pending and
939 * also that no request has been pending for a while. Mark
940 * each hctx as idle.
941 */
942 queue_for_each_hw_ctx(q, hctx, i) {
943 /* the hctx may be unmapped, so check it here */
944 if (blk_mq_hw_queue_mapped(hctx))
945 blk_mq_tag_idle(hctx);
946 }
947 }
948 blk_queue_exit(q);
949 }
950
951 struct flush_busy_ctx_data {
952 struct blk_mq_hw_ctx *hctx;
953 struct list_head *list;
954 };
955
956 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
957 {
958 struct flush_busy_ctx_data *flush_data = data;
959 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
960 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
961 enum hctx_type type = hctx->type;
962
963 spin_lock(&ctx->lock);
964 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
965 sbitmap_clear_bit(sb, bitnr);
966 spin_unlock(&ctx->lock);
967 return true;
968 }
969
970 /*
971 * Process software queues that have been marked busy, splicing them
972 * to the for-dispatch
973 */
974 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
975 {
976 struct flush_busy_ctx_data data = {
977 .hctx = hctx,
978 .list = list,
979 };
980
981 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
982 }
983 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
984
985 struct dispatch_rq_data {
986 struct blk_mq_hw_ctx *hctx;
987 struct request *rq;
988 };
989
990 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
991 void *data)
992 {
993 struct dispatch_rq_data *dispatch_data = data;
994 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
995 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
996 enum hctx_type type = hctx->type;
997
998 spin_lock(&ctx->lock);
999 if (!list_empty(&ctx->rq_lists[type])) {
1000 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1001 list_del_init(&dispatch_data->rq->queuelist);
1002 if (list_empty(&ctx->rq_lists[type]))
1003 sbitmap_clear_bit(sb, bitnr);
1004 }
1005 spin_unlock(&ctx->lock);
1006
1007 return !dispatch_data->rq;
1008 }
1009
1010 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1011 struct blk_mq_ctx *start)
1012 {
1013 unsigned off = start ? start->index_hw[hctx->type] : 0;
1014 struct dispatch_rq_data data = {
1015 .hctx = hctx,
1016 .rq = NULL,
1017 };
1018
1019 __sbitmap_for_each_set(&hctx->ctx_map, off,
1020 dispatch_rq_from_ctx, &data);
1021
1022 return data.rq;
1023 }
1024
1025 static inline unsigned int queued_to_index(unsigned int queued)
1026 {
1027 if (!queued)
1028 return 0;
1029
1030 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1031 }
1032
1033 bool blk_mq_get_driver_tag(struct request *rq)
1034 {
1035 struct blk_mq_alloc_data data = {
1036 .q = rq->q,
1037 .hctx = rq->mq_hctx,
1038 .flags = BLK_MQ_REQ_NOWAIT,
1039 .cmd_flags = rq->cmd_flags,
1040 };
1041 bool shared;
1042
1043 if (rq->tag != -1)
1044 goto done;
1045
1046 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1047 data.flags |= BLK_MQ_REQ_RESERVED;
1048
1049 shared = blk_mq_tag_busy(data.hctx);
1050 rq->tag = blk_mq_get_tag(&data);
1051 if (rq->tag >= 0) {
1052 if (shared) {
1053 rq->rq_flags |= RQF_MQ_INFLIGHT;
1054 atomic_inc(&data.hctx->nr_active);
1055 }
1056 data.hctx->tags->rqs[rq->tag] = rq;
1057 }
1058
1059 done:
1060 return rq->tag != -1;
1061 }
1062
1063 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1064 int flags, void *key)
1065 {
1066 struct blk_mq_hw_ctx *hctx;
1067
1068 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1069
1070 spin_lock(&hctx->dispatch_wait_lock);
1071 list_del_init(&wait->entry);
1072 spin_unlock(&hctx->dispatch_wait_lock);
1073
1074 blk_mq_run_hw_queue(hctx, true);
1075 return 1;
1076 }
1077
1078 /*
1079 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1080 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1081 * restart. For both cases, take care to check the condition again after
1082 * marking us as waiting.
1083 */
1084 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1085 struct request *rq)
1086 {
1087 struct wait_queue_head *wq;
1088 wait_queue_entry_t *wait;
1089 bool ret;
1090
1091 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1092 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
1093 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
1094
1095 /*
1096 * It's possible that a tag was freed in the window between the
1097 * allocation failure and adding the hardware queue to the wait
1098 * queue.
1099 *
1100 * Don't clear RESTART here, someone else could have set it.
1101 * At most this will cost an extra queue run.
1102 */
1103 return blk_mq_get_driver_tag(rq);
1104 }
1105
1106 wait = &hctx->dispatch_wait;
1107 if (!list_empty_careful(&wait->entry))
1108 return false;
1109
1110 wq = &bt_wait_ptr(&hctx->tags->bitmap_tags, hctx)->wait;
1111
1112 spin_lock_irq(&wq->lock);
1113 spin_lock(&hctx->dispatch_wait_lock);
1114 if (!list_empty(&wait->entry)) {
1115 spin_unlock(&hctx->dispatch_wait_lock);
1116 spin_unlock_irq(&wq->lock);
1117 return false;
1118 }
1119
1120 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1121 __add_wait_queue(wq, wait);
1122
1123 /*
1124 * It's possible that a tag was freed in the window between the
1125 * allocation failure and adding the hardware queue to the wait
1126 * queue.
1127 */
1128 ret = blk_mq_get_driver_tag(rq);
1129 if (!ret) {
1130 spin_unlock(&hctx->dispatch_wait_lock);
1131 spin_unlock_irq(&wq->lock);
1132 return false;
1133 }
1134
1135 /*
1136 * We got a tag, remove ourselves from the wait queue to ensure
1137 * someone else gets the wakeup.
1138 */
1139 list_del_init(&wait->entry);
1140 spin_unlock(&hctx->dispatch_wait_lock);
1141 spin_unlock_irq(&wq->lock);
1142
1143 return true;
1144 }
1145
1146 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1147 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1148 /*
1149 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1150 * - EWMA is one simple way to compute running average value
1151 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1152 * - take 4 as factor for avoiding to get too small(0) result, and this
1153 * factor doesn't matter because EWMA decreases exponentially
1154 */
1155 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1156 {
1157 unsigned int ewma;
1158
1159 if (hctx->queue->elevator)
1160 return;
1161
1162 ewma = hctx->dispatch_busy;
1163
1164 if (!ewma && !busy)
1165 return;
1166
1167 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1168 if (busy)
1169 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1170 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1171
1172 hctx->dispatch_busy = ewma;
1173 }
1174
1175 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1176
1177 /*
1178 * Returns true if we did some work AND can potentially do more.
1179 */
1180 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1181 bool got_budget)
1182 {
1183 struct blk_mq_hw_ctx *hctx;
1184 struct request *rq, *nxt;
1185 bool no_tag = false;
1186 int errors, queued;
1187 blk_status_t ret = BLK_STS_OK;
1188
1189 if (list_empty(list))
1190 return false;
1191
1192 WARN_ON(!list_is_singular(list) && got_budget);
1193
1194 /*
1195 * Now process all the entries, sending them to the driver.
1196 */
1197 errors = queued = 0;
1198 do {
1199 struct blk_mq_queue_data bd;
1200
1201 rq = list_first_entry(list, struct request, queuelist);
1202
1203 hctx = rq->mq_hctx;
1204 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1205 break;
1206
1207 if (!blk_mq_get_driver_tag(rq)) {
1208 /*
1209 * The initial allocation attempt failed, so we need to
1210 * rerun the hardware queue when a tag is freed. The
1211 * waitqueue takes care of that. If the queue is run
1212 * before we add this entry back on the dispatch list,
1213 * we'll re-run it below.
1214 */
1215 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1216 blk_mq_put_dispatch_budget(hctx);
1217 /*
1218 * For non-shared tags, the RESTART check
1219 * will suffice.
1220 */
1221 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1222 no_tag = true;
1223 break;
1224 }
1225 }
1226
1227 list_del_init(&rq->queuelist);
1228
1229 bd.rq = rq;
1230
1231 /*
1232 * Flag last if we have no more requests, or if we have more
1233 * but can't assign a driver tag to it.
1234 */
1235 if (list_empty(list))
1236 bd.last = true;
1237 else {
1238 nxt = list_first_entry(list, struct request, queuelist);
1239 bd.last = !blk_mq_get_driver_tag(nxt);
1240 }
1241
1242 ret = q->mq_ops->queue_rq(hctx, &bd);
1243 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1244 /*
1245 * If an I/O scheduler has been configured and we got a
1246 * driver tag for the next request already, free it
1247 * again.
1248 */
1249 if (!list_empty(list)) {
1250 nxt = list_first_entry(list, struct request, queuelist);
1251 blk_mq_put_driver_tag(nxt);
1252 }
1253 list_add(&rq->queuelist, list);
1254 __blk_mq_requeue_request(rq);
1255 break;
1256 }
1257
1258 if (unlikely(ret != BLK_STS_OK)) {
1259 errors++;
1260 blk_mq_end_request(rq, BLK_STS_IOERR);
1261 continue;
1262 }
1263
1264 queued++;
1265 } while (!list_empty(list));
1266
1267 hctx->dispatched[queued_to_index(queued)]++;
1268
1269 /*
1270 * Any items that need requeuing? Stuff them into hctx->dispatch,
1271 * that is where we will continue on next queue run.
1272 */
1273 if (!list_empty(list)) {
1274 bool needs_restart;
1275
1276 /*
1277 * If we didn't flush the entire list, we could have told
1278 * the driver there was more coming, but that turned out to
1279 * be a lie.
1280 */
1281 if (q->mq_ops->commit_rqs)
1282 q->mq_ops->commit_rqs(hctx);
1283
1284 spin_lock(&hctx->lock);
1285 list_splice_init(list, &hctx->dispatch);
1286 spin_unlock(&hctx->lock);
1287
1288 /*
1289 * If SCHED_RESTART was set by the caller of this function and
1290 * it is no longer set that means that it was cleared by another
1291 * thread and hence that a queue rerun is needed.
1292 *
1293 * If 'no_tag' is set, that means that we failed getting
1294 * a driver tag with an I/O scheduler attached. If our dispatch
1295 * waitqueue is no longer active, ensure that we run the queue
1296 * AFTER adding our entries back to the list.
1297 *
1298 * If no I/O scheduler has been configured it is possible that
1299 * the hardware queue got stopped and restarted before requests
1300 * were pushed back onto the dispatch list. Rerun the queue to
1301 * avoid starvation. Notes:
1302 * - blk_mq_run_hw_queue() checks whether or not a queue has
1303 * been stopped before rerunning a queue.
1304 * - Some but not all block drivers stop a queue before
1305 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1306 * and dm-rq.
1307 *
1308 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1309 * bit is set, run queue after a delay to avoid IO stalls
1310 * that could otherwise occur if the queue is idle.
1311 */
1312 needs_restart = blk_mq_sched_needs_restart(hctx);
1313 if (!needs_restart ||
1314 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1315 blk_mq_run_hw_queue(hctx, true);
1316 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1317 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1318
1319 blk_mq_update_dispatch_busy(hctx, true);
1320 return false;
1321 } else
1322 blk_mq_update_dispatch_busy(hctx, false);
1323
1324 /*
1325 * If the host/device is unable to accept more work, inform the
1326 * caller of that.
1327 */
1328 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1329 return false;
1330
1331 return (queued + errors) != 0;
1332 }
1333
1334 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1335 {
1336 int srcu_idx;
1337
1338 /*
1339 * We should be running this queue from one of the CPUs that
1340 * are mapped to it.
1341 *
1342 * There are at least two related races now between setting
1343 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1344 * __blk_mq_run_hw_queue():
1345 *
1346 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1347 * but later it becomes online, then this warning is harmless
1348 * at all
1349 *
1350 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1351 * but later it becomes offline, then the warning can't be
1352 * triggered, and we depend on blk-mq timeout handler to
1353 * handle dispatched requests to this hctx
1354 */
1355 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1356 cpu_online(hctx->next_cpu)) {
1357 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1358 raw_smp_processor_id(),
1359 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1360 dump_stack();
1361 }
1362
1363 /*
1364 * We can't run the queue inline with ints disabled. Ensure that
1365 * we catch bad users of this early.
1366 */
1367 WARN_ON_ONCE(in_interrupt());
1368
1369 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1370
1371 hctx_lock(hctx, &srcu_idx);
1372 blk_mq_sched_dispatch_requests(hctx);
1373 hctx_unlock(hctx, srcu_idx);
1374 }
1375
1376 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1377 {
1378 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1379
1380 if (cpu >= nr_cpu_ids)
1381 cpu = cpumask_first(hctx->cpumask);
1382 return cpu;
1383 }
1384
1385 /*
1386 * It'd be great if the workqueue API had a way to pass
1387 * in a mask and had some smarts for more clever placement.
1388 * For now we just round-robin here, switching for every
1389 * BLK_MQ_CPU_WORK_BATCH queued items.
1390 */
1391 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1392 {
1393 bool tried = false;
1394 int next_cpu = hctx->next_cpu;
1395
1396 if (hctx->queue->nr_hw_queues == 1)
1397 return WORK_CPU_UNBOUND;
1398
1399 if (--hctx->next_cpu_batch <= 0) {
1400 select_cpu:
1401 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1402 cpu_online_mask);
1403 if (next_cpu >= nr_cpu_ids)
1404 next_cpu = blk_mq_first_mapped_cpu(hctx);
1405 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1406 }
1407
1408 /*
1409 * Do unbound schedule if we can't find a online CPU for this hctx,
1410 * and it should only happen in the path of handling CPU DEAD.
1411 */
1412 if (!cpu_online(next_cpu)) {
1413 if (!tried) {
1414 tried = true;
1415 goto select_cpu;
1416 }
1417
1418 /*
1419 * Make sure to re-select CPU next time once after CPUs
1420 * in hctx->cpumask become online again.
1421 */
1422 hctx->next_cpu = next_cpu;
1423 hctx->next_cpu_batch = 1;
1424 return WORK_CPU_UNBOUND;
1425 }
1426
1427 hctx->next_cpu = next_cpu;
1428 return next_cpu;
1429 }
1430
1431 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1432 unsigned long msecs)
1433 {
1434 if (unlikely(blk_mq_hctx_stopped(hctx)))
1435 return;
1436
1437 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1438 int cpu = get_cpu();
1439 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1440 __blk_mq_run_hw_queue(hctx);
1441 put_cpu();
1442 return;
1443 }
1444
1445 put_cpu();
1446 }
1447
1448 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1449 msecs_to_jiffies(msecs));
1450 }
1451
1452 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1453 {
1454 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1455 }
1456 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1457
1458 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1459 {
1460 int srcu_idx;
1461 bool need_run;
1462
1463 /*
1464 * When queue is quiesced, we may be switching io scheduler, or
1465 * updating nr_hw_queues, or other things, and we can't run queue
1466 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1467 *
1468 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1469 * quiesced.
1470 */
1471 hctx_lock(hctx, &srcu_idx);
1472 need_run = !blk_queue_quiesced(hctx->queue) &&
1473 blk_mq_hctx_has_pending(hctx);
1474 hctx_unlock(hctx, srcu_idx);
1475
1476 if (need_run) {
1477 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1478 return true;
1479 }
1480
1481 return false;
1482 }
1483 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1484
1485 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1486 {
1487 struct blk_mq_hw_ctx *hctx;
1488 int i;
1489
1490 queue_for_each_hw_ctx(q, hctx, i) {
1491 if (blk_mq_hctx_stopped(hctx))
1492 continue;
1493
1494 blk_mq_run_hw_queue(hctx, async);
1495 }
1496 }
1497 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1498
1499 /**
1500 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1501 * @q: request queue.
1502 *
1503 * The caller is responsible for serializing this function against
1504 * blk_mq_{start,stop}_hw_queue().
1505 */
1506 bool blk_mq_queue_stopped(struct request_queue *q)
1507 {
1508 struct blk_mq_hw_ctx *hctx;
1509 int i;
1510
1511 queue_for_each_hw_ctx(q, hctx, i)
1512 if (blk_mq_hctx_stopped(hctx))
1513 return true;
1514
1515 return false;
1516 }
1517 EXPORT_SYMBOL(blk_mq_queue_stopped);
1518
1519 /*
1520 * This function is often used for pausing .queue_rq() by driver when
1521 * there isn't enough resource or some conditions aren't satisfied, and
1522 * BLK_STS_RESOURCE is usually returned.
1523 *
1524 * We do not guarantee that dispatch can be drained or blocked
1525 * after blk_mq_stop_hw_queue() returns. Please use
1526 * blk_mq_quiesce_queue() for that requirement.
1527 */
1528 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1529 {
1530 cancel_delayed_work(&hctx->run_work);
1531
1532 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1533 }
1534 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1535
1536 /*
1537 * This function is often used for pausing .queue_rq() by driver when
1538 * there isn't enough resource or some conditions aren't satisfied, and
1539 * BLK_STS_RESOURCE is usually returned.
1540 *
1541 * We do not guarantee that dispatch can be drained or blocked
1542 * after blk_mq_stop_hw_queues() returns. Please use
1543 * blk_mq_quiesce_queue() for that requirement.
1544 */
1545 void blk_mq_stop_hw_queues(struct request_queue *q)
1546 {
1547 struct blk_mq_hw_ctx *hctx;
1548 int i;
1549
1550 queue_for_each_hw_ctx(q, hctx, i)
1551 blk_mq_stop_hw_queue(hctx);
1552 }
1553 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1554
1555 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1556 {
1557 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1558
1559 blk_mq_run_hw_queue(hctx, false);
1560 }
1561 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1562
1563 void blk_mq_start_hw_queues(struct request_queue *q)
1564 {
1565 struct blk_mq_hw_ctx *hctx;
1566 int i;
1567
1568 queue_for_each_hw_ctx(q, hctx, i)
1569 blk_mq_start_hw_queue(hctx);
1570 }
1571 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1572
1573 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1574 {
1575 if (!blk_mq_hctx_stopped(hctx))
1576 return;
1577
1578 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1579 blk_mq_run_hw_queue(hctx, async);
1580 }
1581 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1582
1583 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1584 {
1585 struct blk_mq_hw_ctx *hctx;
1586 int i;
1587
1588 queue_for_each_hw_ctx(q, hctx, i)
1589 blk_mq_start_stopped_hw_queue(hctx, async);
1590 }
1591 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1592
1593 static void blk_mq_run_work_fn(struct work_struct *work)
1594 {
1595 struct blk_mq_hw_ctx *hctx;
1596
1597 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1598
1599 /*
1600 * If we are stopped, don't run the queue.
1601 */
1602 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1603 return;
1604
1605 __blk_mq_run_hw_queue(hctx);
1606 }
1607
1608 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1609 struct request *rq,
1610 bool at_head)
1611 {
1612 struct blk_mq_ctx *ctx = rq->mq_ctx;
1613 enum hctx_type type = hctx->type;
1614
1615 lockdep_assert_held(&ctx->lock);
1616
1617 trace_block_rq_insert(hctx->queue, rq);
1618
1619 if (at_head)
1620 list_add(&rq->queuelist, &ctx->rq_lists[type]);
1621 else
1622 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1623 }
1624
1625 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1626 bool at_head)
1627 {
1628 struct blk_mq_ctx *ctx = rq->mq_ctx;
1629
1630 lockdep_assert_held(&ctx->lock);
1631
1632 __blk_mq_insert_req_list(hctx, rq, at_head);
1633 blk_mq_hctx_mark_pending(hctx, ctx);
1634 }
1635
1636 /*
1637 * Should only be used carefully, when the caller knows we want to
1638 * bypass a potential IO scheduler on the target device.
1639 */
1640 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1641 {
1642 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1643
1644 spin_lock(&hctx->lock);
1645 list_add_tail(&rq->queuelist, &hctx->dispatch);
1646 spin_unlock(&hctx->lock);
1647
1648 if (run_queue)
1649 blk_mq_run_hw_queue(hctx, false);
1650 }
1651
1652 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1653 struct list_head *list)
1654
1655 {
1656 struct request *rq;
1657 enum hctx_type type = hctx->type;
1658
1659 /*
1660 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1661 * offline now
1662 */
1663 list_for_each_entry(rq, list, queuelist) {
1664 BUG_ON(rq->mq_ctx != ctx);
1665 trace_block_rq_insert(hctx->queue, rq);
1666 }
1667
1668 spin_lock(&ctx->lock);
1669 list_splice_tail_init(list, &ctx->rq_lists[type]);
1670 blk_mq_hctx_mark_pending(hctx, ctx);
1671 spin_unlock(&ctx->lock);
1672 }
1673
1674 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1675 {
1676 struct request *rqa = container_of(a, struct request, queuelist);
1677 struct request *rqb = container_of(b, struct request, queuelist);
1678
1679 if (rqa->mq_ctx < rqb->mq_ctx)
1680 return -1;
1681 else if (rqa->mq_ctx > rqb->mq_ctx)
1682 return 1;
1683 else if (rqa->mq_hctx < rqb->mq_hctx)
1684 return -1;
1685 else if (rqa->mq_hctx > rqb->mq_hctx)
1686 return 1;
1687
1688 return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1689 }
1690
1691 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1692 {
1693 struct blk_mq_hw_ctx *this_hctx;
1694 struct blk_mq_ctx *this_ctx;
1695 struct request_queue *this_q;
1696 struct request *rq;
1697 LIST_HEAD(list);
1698 LIST_HEAD(rq_list);
1699 unsigned int depth;
1700
1701 list_splice_init(&plug->mq_list, &list);
1702 plug->rq_count = 0;
1703
1704 if (plug->rq_count > 2 && plug->multiple_queues)
1705 list_sort(NULL, &list, plug_rq_cmp);
1706
1707 this_q = NULL;
1708 this_hctx = NULL;
1709 this_ctx = NULL;
1710 depth = 0;
1711
1712 while (!list_empty(&list)) {
1713 rq = list_entry_rq(list.next);
1714 list_del_init(&rq->queuelist);
1715 BUG_ON(!rq->q);
1716 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) {
1717 if (this_hctx) {
1718 trace_block_unplug(this_q, depth, !from_schedule);
1719 blk_mq_sched_insert_requests(this_hctx, this_ctx,
1720 &rq_list,
1721 from_schedule);
1722 }
1723
1724 this_q = rq->q;
1725 this_ctx = rq->mq_ctx;
1726 this_hctx = rq->mq_hctx;
1727 depth = 0;
1728 }
1729
1730 depth++;
1731 list_add_tail(&rq->queuelist, &rq_list);
1732 }
1733
1734 /*
1735 * If 'this_hctx' is set, we know we have entries to complete
1736 * on 'rq_list'. Do those.
1737 */
1738 if (this_hctx) {
1739 trace_block_unplug(this_q, depth, !from_schedule);
1740 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1741 from_schedule);
1742 }
1743 }
1744
1745 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1746 {
1747 blk_init_request_from_bio(rq, bio);
1748
1749 blk_account_io_start(rq, true);
1750 }
1751
1752 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1753 struct request *rq,
1754 blk_qc_t *cookie, bool last)
1755 {
1756 struct request_queue *q = rq->q;
1757 struct blk_mq_queue_data bd = {
1758 .rq = rq,
1759 .last = last,
1760 };
1761 blk_qc_t new_cookie;
1762 blk_status_t ret;
1763
1764 new_cookie = request_to_qc_t(hctx, rq);
1765
1766 /*
1767 * For OK queue, we are done. For error, caller may kill it.
1768 * Any other error (busy), just add it to our list as we
1769 * previously would have done.
1770 */
1771 ret = q->mq_ops->queue_rq(hctx, &bd);
1772 switch (ret) {
1773 case BLK_STS_OK:
1774 blk_mq_update_dispatch_busy(hctx, false);
1775 *cookie = new_cookie;
1776 break;
1777 case BLK_STS_RESOURCE:
1778 case BLK_STS_DEV_RESOURCE:
1779 blk_mq_update_dispatch_busy(hctx, true);
1780 __blk_mq_requeue_request(rq);
1781 break;
1782 default:
1783 blk_mq_update_dispatch_busy(hctx, false);
1784 *cookie = BLK_QC_T_NONE;
1785 break;
1786 }
1787
1788 return ret;
1789 }
1790
1791 blk_status_t blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1792 struct request *rq,
1793 blk_qc_t *cookie,
1794 bool bypass, bool last)
1795 {
1796 struct request_queue *q = rq->q;
1797 bool run_queue = true;
1798 blk_status_t ret = BLK_STS_RESOURCE;
1799 int srcu_idx;
1800 bool force = false;
1801
1802 hctx_lock(hctx, &srcu_idx);
1803 /*
1804 * hctx_lock is needed before checking quiesced flag.
1805 *
1806 * When queue is stopped or quiesced, ignore 'bypass', insert
1807 * and return BLK_STS_OK to caller, and avoid driver to try to
1808 * dispatch again.
1809 */
1810 if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q))) {
1811 run_queue = false;
1812 bypass = false;
1813 goto out_unlock;
1814 }
1815
1816 if (unlikely(q->elevator && !bypass))
1817 goto out_unlock;
1818
1819 if (!blk_mq_get_dispatch_budget(hctx))
1820 goto out_unlock;
1821
1822 if (!blk_mq_get_driver_tag(rq)) {
1823 blk_mq_put_dispatch_budget(hctx);
1824 goto out_unlock;
1825 }
1826
1827 /*
1828 * Always add a request that has been through
1829 *.queue_rq() to the hardware dispatch list.
1830 */
1831 force = true;
1832 ret = __blk_mq_issue_directly(hctx, rq, cookie, last);
1833 out_unlock:
1834 hctx_unlock(hctx, srcu_idx);
1835 switch (ret) {
1836 case BLK_STS_OK:
1837 break;
1838 case BLK_STS_DEV_RESOURCE:
1839 case BLK_STS_RESOURCE:
1840 if (force) {
1841 blk_mq_request_bypass_insert(rq, run_queue);
1842 /*
1843 * We have to return BLK_STS_OK for the DM
1844 * to avoid livelock. Otherwise, we return
1845 * the real result to indicate whether the
1846 * request is direct-issued successfully.
1847 */
1848 ret = bypass ? BLK_STS_OK : ret;
1849 } else if (!bypass) {
1850 blk_mq_sched_insert_request(rq, false,
1851 run_queue, false);
1852 }
1853 break;
1854 default:
1855 if (!bypass)
1856 blk_mq_end_request(rq, ret);
1857 break;
1858 }
1859
1860 return ret;
1861 }
1862
1863 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1864 struct list_head *list)
1865 {
1866 blk_qc_t unused;
1867 blk_status_t ret = BLK_STS_OK;
1868
1869 while (!list_empty(list)) {
1870 struct request *rq = list_first_entry(list, struct request,
1871 queuelist);
1872
1873 list_del_init(&rq->queuelist);
1874 if (ret == BLK_STS_OK)
1875 ret = blk_mq_try_issue_directly(hctx, rq, &unused,
1876 false,
1877 list_empty(list));
1878 else
1879 blk_mq_sched_insert_request(rq, false, true, false);
1880 }
1881
1882 /*
1883 * If we didn't flush the entire list, we could have told
1884 * the driver there was more coming, but that turned out to
1885 * be a lie.
1886 */
1887 if (ret != BLK_STS_OK && hctx->queue->mq_ops->commit_rqs)
1888 hctx->queue->mq_ops->commit_rqs(hctx);
1889 }
1890
1891 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1892 {
1893 list_add_tail(&rq->queuelist, &plug->mq_list);
1894 plug->rq_count++;
1895 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
1896 struct request *tmp;
1897
1898 tmp = list_first_entry(&plug->mq_list, struct request,
1899 queuelist);
1900 if (tmp->q != rq->q)
1901 plug->multiple_queues = true;
1902 }
1903 }
1904
1905 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1906 {
1907 const int is_sync = op_is_sync(bio->bi_opf);
1908 const int is_flush_fua = op_is_flush(bio->bi_opf);
1909 struct blk_mq_alloc_data data = { .flags = 0, .cmd_flags = bio->bi_opf };
1910 struct request *rq;
1911 struct blk_plug *plug;
1912 struct request *same_queue_rq = NULL;
1913 blk_qc_t cookie;
1914
1915 blk_queue_bounce(q, &bio);
1916
1917 blk_queue_split(q, &bio);
1918
1919 if (!bio_integrity_prep(bio))
1920 return BLK_QC_T_NONE;
1921
1922 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1923 blk_attempt_plug_merge(q, bio, &same_queue_rq))
1924 return BLK_QC_T_NONE;
1925
1926 if (blk_mq_sched_bio_merge(q, bio))
1927 return BLK_QC_T_NONE;
1928
1929 rq_qos_throttle(q, bio);
1930
1931 rq = blk_mq_get_request(q, bio, &data);
1932 if (unlikely(!rq)) {
1933 rq_qos_cleanup(q, bio);
1934 if (bio->bi_opf & REQ_NOWAIT)
1935 bio_wouldblock_error(bio);
1936 return BLK_QC_T_NONE;
1937 }
1938
1939 trace_block_getrq(q, bio, bio->bi_opf);
1940
1941 rq_qos_track(q, rq, bio);
1942
1943 cookie = request_to_qc_t(data.hctx, rq);
1944
1945 plug = current->plug;
1946 if (unlikely(is_flush_fua)) {
1947 blk_mq_put_ctx(data.ctx);
1948 blk_mq_bio_to_request(rq, bio);
1949
1950 /* bypass scheduler for flush rq */
1951 blk_insert_flush(rq);
1952 blk_mq_run_hw_queue(data.hctx, true);
1953 } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs)) {
1954 /*
1955 * Use plugging if we have a ->commit_rqs() hook as well, as
1956 * we know the driver uses bd->last in a smart fashion.
1957 */
1958 unsigned int request_count = plug->rq_count;
1959 struct request *last = NULL;
1960
1961 blk_mq_put_ctx(data.ctx);
1962 blk_mq_bio_to_request(rq, bio);
1963
1964 if (!request_count)
1965 trace_block_plug(q);
1966 else
1967 last = list_entry_rq(plug->mq_list.prev);
1968
1969 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1970 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1971 blk_flush_plug_list(plug, false);
1972 trace_block_plug(q);
1973 }
1974
1975 blk_add_rq_to_plug(plug, rq);
1976 } else if (plug && !blk_queue_nomerges(q)) {
1977 blk_mq_bio_to_request(rq, bio);
1978
1979 /*
1980 * We do limited plugging. If the bio can be merged, do that.
1981 * Otherwise the existing request in the plug list will be
1982 * issued. So the plug list will have one request at most
1983 * The plug list might get flushed before this. If that happens,
1984 * the plug list is empty, and same_queue_rq is invalid.
1985 */
1986 if (list_empty(&plug->mq_list))
1987 same_queue_rq = NULL;
1988 if (same_queue_rq) {
1989 list_del_init(&same_queue_rq->queuelist);
1990 plug->rq_count--;
1991 }
1992 blk_add_rq_to_plug(plug, rq);
1993
1994 blk_mq_put_ctx(data.ctx);
1995
1996 if (same_queue_rq) {
1997 data.hctx = same_queue_rq->mq_hctx;
1998 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1999 &cookie, false, true);
2000 }
2001 } else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
2002 !data.hctx->dispatch_busy)) {
2003 blk_mq_put_ctx(data.ctx);
2004 blk_mq_bio_to_request(rq, bio);
2005 blk_mq_try_issue_directly(data.hctx, rq, &cookie, false, true);
2006 } else {
2007 blk_mq_put_ctx(data.ctx);
2008 blk_mq_bio_to_request(rq, bio);
2009 blk_mq_sched_insert_request(rq, false, true, true);
2010 }
2011
2012 return cookie;
2013 }
2014
2015 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2016 unsigned int hctx_idx)
2017 {
2018 struct page *page;
2019
2020 if (tags->rqs && set->ops->exit_request) {
2021 int i;
2022
2023 for (i = 0; i < tags->nr_tags; i++) {
2024 struct request *rq = tags->static_rqs[i];
2025
2026 if (!rq)
2027 continue;
2028 set->ops->exit_request(set, rq, hctx_idx);
2029 tags->static_rqs[i] = NULL;
2030 }
2031 }
2032
2033 while (!list_empty(&tags->page_list)) {
2034 page = list_first_entry(&tags->page_list, struct page, lru);
2035 list_del_init(&page->lru);
2036 /*
2037 * Remove kmemleak object previously allocated in
2038 * blk_mq_init_rq_map().
2039 */
2040 kmemleak_free(page_address(page));
2041 __free_pages(page, page->private);
2042 }
2043 }
2044
2045 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2046 {
2047 kfree(tags->rqs);
2048 tags->rqs = NULL;
2049 kfree(tags->static_rqs);
2050 tags->static_rqs = NULL;
2051
2052 blk_mq_free_tags(tags);
2053 }
2054
2055 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2056 unsigned int hctx_idx,
2057 unsigned int nr_tags,
2058 unsigned int reserved_tags)
2059 {
2060 struct blk_mq_tags *tags;
2061 int node;
2062
2063 node = blk_mq_hw_queue_to_node(&set->map[0], hctx_idx);
2064 if (node == NUMA_NO_NODE)
2065 node = set->numa_node;
2066
2067 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2068 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2069 if (!tags)
2070 return NULL;
2071
2072 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2073 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2074 node);
2075 if (!tags->rqs) {
2076 blk_mq_free_tags(tags);
2077 return NULL;
2078 }
2079
2080 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2081 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2082 node);
2083 if (!tags->static_rqs) {
2084 kfree(tags->rqs);
2085 blk_mq_free_tags(tags);
2086 return NULL;
2087 }
2088
2089 return tags;
2090 }
2091
2092 static size_t order_to_size(unsigned int order)
2093 {
2094 return (size_t)PAGE_SIZE << order;
2095 }
2096
2097 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2098 unsigned int hctx_idx, int node)
2099 {
2100 int ret;
2101
2102 if (set->ops->init_request) {
2103 ret = set->ops->init_request(set, rq, hctx_idx, node);
2104 if (ret)
2105 return ret;
2106 }
2107
2108 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2109 return 0;
2110 }
2111
2112 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2113 unsigned int hctx_idx, unsigned int depth)
2114 {
2115 unsigned int i, j, entries_per_page, max_order = 4;
2116 size_t rq_size, left;
2117 int node;
2118
2119 node = blk_mq_hw_queue_to_node(&set->map[0], hctx_idx);
2120 if (node == NUMA_NO_NODE)
2121 node = set->numa_node;
2122
2123 INIT_LIST_HEAD(&tags->page_list);
2124
2125 /*
2126 * rq_size is the size of the request plus driver payload, rounded
2127 * to the cacheline size
2128 */
2129 rq_size = round_up(sizeof(struct request) + set->cmd_size,
2130 cache_line_size());
2131 left = rq_size * depth;
2132
2133 for (i = 0; i < depth; ) {
2134 int this_order = max_order;
2135 struct page *page;
2136 int to_do;
2137 void *p;
2138
2139 while (this_order && left < order_to_size(this_order - 1))
2140 this_order--;
2141
2142 do {
2143 page = alloc_pages_node(node,
2144 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2145 this_order);
2146 if (page)
2147 break;
2148 if (!this_order--)
2149 break;
2150 if (order_to_size(this_order) < rq_size)
2151 break;
2152 } while (1);
2153
2154 if (!page)
2155 goto fail;
2156
2157 page->private = this_order;
2158 list_add_tail(&page->lru, &tags->page_list);
2159
2160 p = page_address(page);
2161 /*
2162 * Allow kmemleak to scan these pages as they contain pointers
2163 * to additional allocations like via ops->init_request().
2164 */
2165 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2166 entries_per_page = order_to_size(this_order) / rq_size;
2167 to_do = min(entries_per_page, depth - i);
2168 left -= to_do * rq_size;
2169 for (j = 0; j < to_do; j++) {
2170 struct request *rq = p;
2171
2172 tags->static_rqs[i] = rq;
2173 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2174 tags->static_rqs[i] = NULL;
2175 goto fail;
2176 }
2177
2178 p += rq_size;
2179 i++;
2180 }
2181 }
2182 return 0;
2183
2184 fail:
2185 blk_mq_free_rqs(set, tags, hctx_idx);
2186 return -ENOMEM;
2187 }
2188
2189 /*
2190 * 'cpu' is going away. splice any existing rq_list entries from this
2191 * software queue to the hw queue dispatch list, and ensure that it
2192 * gets run.
2193 */
2194 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2195 {
2196 struct blk_mq_hw_ctx *hctx;
2197 struct blk_mq_ctx *ctx;
2198 LIST_HEAD(tmp);
2199 enum hctx_type type;
2200
2201 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2202 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2203 type = hctx->type;
2204
2205 spin_lock(&ctx->lock);
2206 if (!list_empty(&ctx->rq_lists[type])) {
2207 list_splice_init(&ctx->rq_lists[type], &tmp);
2208 blk_mq_hctx_clear_pending(hctx, ctx);
2209 }
2210 spin_unlock(&ctx->lock);
2211
2212 if (list_empty(&tmp))
2213 return 0;
2214
2215 spin_lock(&hctx->lock);
2216 list_splice_tail_init(&tmp, &hctx->dispatch);
2217 spin_unlock(&hctx->lock);
2218
2219 blk_mq_run_hw_queue(hctx, true);
2220 return 0;
2221 }
2222
2223 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2224 {
2225 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2226 &hctx->cpuhp_dead);
2227 }
2228
2229 /* hctx->ctxs will be freed in queue's release handler */
2230 static void blk_mq_exit_hctx(struct request_queue *q,
2231 struct blk_mq_tag_set *set,
2232 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2233 {
2234 if (blk_mq_hw_queue_mapped(hctx))
2235 blk_mq_tag_idle(hctx);
2236
2237 if (set->ops->exit_request)
2238 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2239
2240 if (set->ops->exit_hctx)
2241 set->ops->exit_hctx(hctx, hctx_idx);
2242
2243 if (hctx->flags & BLK_MQ_F_BLOCKING)
2244 cleanup_srcu_struct(hctx->srcu);
2245
2246 blk_mq_remove_cpuhp(hctx);
2247 blk_free_flush_queue(hctx->fq);
2248 sbitmap_free(&hctx->ctx_map);
2249 }
2250
2251 static void blk_mq_exit_hw_queues(struct request_queue *q,
2252 struct blk_mq_tag_set *set, int nr_queue)
2253 {
2254 struct blk_mq_hw_ctx *hctx;
2255 unsigned int i;
2256
2257 queue_for_each_hw_ctx(q, hctx, i) {
2258 if (i == nr_queue)
2259 break;
2260 blk_mq_debugfs_unregister_hctx(hctx);
2261 blk_mq_exit_hctx(q, set, hctx, i);
2262 }
2263 }
2264
2265 static int blk_mq_init_hctx(struct request_queue *q,
2266 struct blk_mq_tag_set *set,
2267 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2268 {
2269 int node;
2270
2271 node = hctx->numa_node;
2272 if (node == NUMA_NO_NODE)
2273 node = hctx->numa_node = set->numa_node;
2274
2275 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2276 spin_lock_init(&hctx->lock);
2277 INIT_LIST_HEAD(&hctx->dispatch);
2278 hctx->queue = q;
2279 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2280
2281 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2282
2283 hctx->tags = set->tags[hctx_idx];
2284
2285 /*
2286 * Allocate space for all possible cpus to avoid allocation at
2287 * runtime
2288 */
2289 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2290 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node);
2291 if (!hctx->ctxs)
2292 goto unregister_cpu_notifier;
2293
2294 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2295 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node))
2296 goto free_ctxs;
2297
2298 hctx->nr_ctx = 0;
2299
2300 spin_lock_init(&hctx->dispatch_wait_lock);
2301 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2302 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2303
2304 if (set->ops->init_hctx &&
2305 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2306 goto free_bitmap;
2307
2308 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2309 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2310 if (!hctx->fq)
2311 goto exit_hctx;
2312
2313 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2314 goto free_fq;
2315
2316 if (hctx->flags & BLK_MQ_F_BLOCKING)
2317 init_srcu_struct(hctx->srcu);
2318
2319 return 0;
2320
2321 free_fq:
2322 kfree(hctx->fq);
2323 exit_hctx:
2324 if (set->ops->exit_hctx)
2325 set->ops->exit_hctx(hctx, hctx_idx);
2326 free_bitmap:
2327 sbitmap_free(&hctx->ctx_map);
2328 free_ctxs:
2329 kfree(hctx->ctxs);
2330 unregister_cpu_notifier:
2331 blk_mq_remove_cpuhp(hctx);
2332 return -1;
2333 }
2334
2335 static void blk_mq_init_cpu_queues(struct request_queue *q,
2336 unsigned int nr_hw_queues)
2337 {
2338 struct blk_mq_tag_set *set = q->tag_set;
2339 unsigned int i, j;
2340
2341 for_each_possible_cpu(i) {
2342 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2343 struct blk_mq_hw_ctx *hctx;
2344 int k;
2345
2346 __ctx->cpu = i;
2347 spin_lock_init(&__ctx->lock);
2348 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2349 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2350
2351 __ctx->queue = q;
2352
2353 /*
2354 * Set local node, IFF we have more than one hw queue. If
2355 * not, we remain on the home node of the device
2356 */
2357 for (j = 0; j < set->nr_maps; j++) {
2358 hctx = blk_mq_map_queue_type(q, j, i);
2359 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2360 hctx->numa_node = local_memory_node(cpu_to_node(i));
2361 }
2362 }
2363 }
2364
2365 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2366 {
2367 int ret = 0;
2368
2369 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2370 set->queue_depth, set->reserved_tags);
2371 if (!set->tags[hctx_idx])
2372 return false;
2373
2374 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2375 set->queue_depth);
2376 if (!ret)
2377 return true;
2378
2379 blk_mq_free_rq_map(set->tags[hctx_idx]);
2380 set->tags[hctx_idx] = NULL;
2381 return false;
2382 }
2383
2384 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2385 unsigned int hctx_idx)
2386 {
2387 if (set->tags && set->tags[hctx_idx]) {
2388 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2389 blk_mq_free_rq_map(set->tags[hctx_idx]);
2390 set->tags[hctx_idx] = NULL;
2391 }
2392 }
2393
2394 static void blk_mq_map_swqueue(struct request_queue *q)
2395 {
2396 unsigned int i, j, hctx_idx;
2397 struct blk_mq_hw_ctx *hctx;
2398 struct blk_mq_ctx *ctx;
2399 struct blk_mq_tag_set *set = q->tag_set;
2400
2401 /*
2402 * Avoid others reading imcomplete hctx->cpumask through sysfs
2403 */
2404 mutex_lock(&q->sysfs_lock);
2405
2406 queue_for_each_hw_ctx(q, hctx, i) {
2407 cpumask_clear(hctx->cpumask);
2408 hctx->nr_ctx = 0;
2409 hctx->dispatch_from = NULL;
2410 }
2411
2412 /*
2413 * Map software to hardware queues.
2414 *
2415 * If the cpu isn't present, the cpu is mapped to first hctx.
2416 */
2417 for_each_possible_cpu(i) {
2418 hctx_idx = set->map[0].mq_map[i];
2419 /* unmapped hw queue can be remapped after CPU topo changed */
2420 if (!set->tags[hctx_idx] &&
2421 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2422 /*
2423 * If tags initialization fail for some hctx,
2424 * that hctx won't be brought online. In this
2425 * case, remap the current ctx to hctx[0] which
2426 * is guaranteed to always have tags allocated
2427 */
2428 set->map[0].mq_map[i] = 0;
2429 }
2430
2431 ctx = per_cpu_ptr(q->queue_ctx, i);
2432 for (j = 0; j < set->nr_maps; j++) {
2433 if (!set->map[j].nr_queues)
2434 continue;
2435
2436 hctx = blk_mq_map_queue_type(q, j, i);
2437
2438 /*
2439 * If the CPU is already set in the mask, then we've
2440 * mapped this one already. This can happen if
2441 * devices share queues across queue maps.
2442 */
2443 if (cpumask_test_cpu(i, hctx->cpumask))
2444 continue;
2445
2446 cpumask_set_cpu(i, hctx->cpumask);
2447 hctx->type = j;
2448 ctx->index_hw[hctx->type] = hctx->nr_ctx;
2449 hctx->ctxs[hctx->nr_ctx++] = ctx;
2450
2451 /*
2452 * If the nr_ctx type overflows, we have exceeded the
2453 * amount of sw queues we can support.
2454 */
2455 BUG_ON(!hctx->nr_ctx);
2456 }
2457 }
2458
2459 mutex_unlock(&q->sysfs_lock);
2460
2461 queue_for_each_hw_ctx(q, hctx, i) {
2462 /*
2463 * If no software queues are mapped to this hardware queue,
2464 * disable it and free the request entries.
2465 */
2466 if (!hctx->nr_ctx) {
2467 /* Never unmap queue 0. We need it as a
2468 * fallback in case of a new remap fails
2469 * allocation
2470 */
2471 if (i && set->tags[i])
2472 blk_mq_free_map_and_requests(set, i);
2473
2474 hctx->tags = NULL;
2475 continue;
2476 }
2477
2478 hctx->tags = set->tags[i];
2479 WARN_ON(!hctx->tags);
2480
2481 /*
2482 * Set the map size to the number of mapped software queues.
2483 * This is more accurate and more efficient than looping
2484 * over all possibly mapped software queues.
2485 */
2486 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2487
2488 /*
2489 * Initialize batch roundrobin counts
2490 */
2491 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2492 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2493 }
2494 }
2495
2496 /*
2497 * Caller needs to ensure that we're either frozen/quiesced, or that
2498 * the queue isn't live yet.
2499 */
2500 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2501 {
2502 struct blk_mq_hw_ctx *hctx;
2503 int i;
2504
2505 queue_for_each_hw_ctx(q, hctx, i) {
2506 if (shared)
2507 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2508 else
2509 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2510 }
2511 }
2512
2513 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2514 bool shared)
2515 {
2516 struct request_queue *q;
2517
2518 lockdep_assert_held(&set->tag_list_lock);
2519
2520 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2521 blk_mq_freeze_queue(q);
2522 queue_set_hctx_shared(q, shared);
2523 blk_mq_unfreeze_queue(q);
2524 }
2525 }
2526
2527 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2528 {
2529 struct blk_mq_tag_set *set = q->tag_set;
2530
2531 mutex_lock(&set->tag_list_lock);
2532 list_del_rcu(&q->tag_set_list);
2533 if (list_is_singular(&set->tag_list)) {
2534 /* just transitioned to unshared */
2535 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2536 /* update existing queue */
2537 blk_mq_update_tag_set_depth(set, false);
2538 }
2539 mutex_unlock(&set->tag_list_lock);
2540 INIT_LIST_HEAD(&q->tag_set_list);
2541 }
2542
2543 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2544 struct request_queue *q)
2545 {
2546 mutex_lock(&set->tag_list_lock);
2547
2548 /*
2549 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2550 */
2551 if (!list_empty(&set->tag_list) &&
2552 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2553 set->flags |= BLK_MQ_F_TAG_SHARED;
2554 /* update existing queue */
2555 blk_mq_update_tag_set_depth(set, true);
2556 }
2557 if (set->flags & BLK_MQ_F_TAG_SHARED)
2558 queue_set_hctx_shared(q, true);
2559 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2560
2561 mutex_unlock(&set->tag_list_lock);
2562 }
2563
2564 /* All allocations will be freed in release handler of q->mq_kobj */
2565 static int blk_mq_alloc_ctxs(struct request_queue *q)
2566 {
2567 struct blk_mq_ctxs *ctxs;
2568 int cpu;
2569
2570 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2571 if (!ctxs)
2572 return -ENOMEM;
2573
2574 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2575 if (!ctxs->queue_ctx)
2576 goto fail;
2577
2578 for_each_possible_cpu(cpu) {
2579 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2580 ctx->ctxs = ctxs;
2581 }
2582
2583 q->mq_kobj = &ctxs->kobj;
2584 q->queue_ctx = ctxs->queue_ctx;
2585
2586 return 0;
2587 fail:
2588 kfree(ctxs);
2589 return -ENOMEM;
2590 }
2591
2592 /*
2593 * It is the actual release handler for mq, but we do it from
2594 * request queue's release handler for avoiding use-after-free
2595 * and headache because q->mq_kobj shouldn't have been introduced,
2596 * but we can't group ctx/kctx kobj without it.
2597 */
2598 void blk_mq_release(struct request_queue *q)
2599 {
2600 struct blk_mq_hw_ctx *hctx;
2601 unsigned int i;
2602
2603 /* hctx kobj stays in hctx */
2604 queue_for_each_hw_ctx(q, hctx, i) {
2605 if (!hctx)
2606 continue;
2607 kobject_put(&hctx->kobj);
2608 }
2609
2610 kfree(q->queue_hw_ctx);
2611
2612 /*
2613 * release .mq_kobj and sw queue's kobject now because
2614 * both share lifetime with request queue.
2615 */
2616 blk_mq_sysfs_deinit(q);
2617 }
2618
2619 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2620 {
2621 struct request_queue *uninit_q, *q;
2622
2623 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2624 if (!uninit_q)
2625 return ERR_PTR(-ENOMEM);
2626
2627 q = blk_mq_init_allocated_queue(set, uninit_q);
2628 if (IS_ERR(q))
2629 blk_cleanup_queue(uninit_q);
2630
2631 return q;
2632 }
2633 EXPORT_SYMBOL(blk_mq_init_queue);
2634
2635 /*
2636 * Helper for setting up a queue with mq ops, given queue depth, and
2637 * the passed in mq ops flags.
2638 */
2639 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2640 const struct blk_mq_ops *ops,
2641 unsigned int queue_depth,
2642 unsigned int set_flags)
2643 {
2644 struct request_queue *q;
2645 int ret;
2646
2647 memset(set, 0, sizeof(*set));
2648 set->ops = ops;
2649 set->nr_hw_queues = 1;
2650 set->nr_maps = 1;
2651 set->queue_depth = queue_depth;
2652 set->numa_node = NUMA_NO_NODE;
2653 set->flags = set_flags;
2654
2655 ret = blk_mq_alloc_tag_set(set);
2656 if (ret)
2657 return ERR_PTR(ret);
2658
2659 q = blk_mq_init_queue(set);
2660 if (IS_ERR(q)) {
2661 blk_mq_free_tag_set(set);
2662 return q;
2663 }
2664
2665 return q;
2666 }
2667 EXPORT_SYMBOL(blk_mq_init_sq_queue);
2668
2669 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2670 {
2671 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2672
2673 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2674 __alignof__(struct blk_mq_hw_ctx)) !=
2675 sizeof(struct blk_mq_hw_ctx));
2676
2677 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2678 hw_ctx_size += sizeof(struct srcu_struct);
2679
2680 return hw_ctx_size;
2681 }
2682
2683 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2684 struct blk_mq_tag_set *set, struct request_queue *q,
2685 int hctx_idx, int node)
2686 {
2687 struct blk_mq_hw_ctx *hctx;
2688
2689 hctx = kzalloc_node(blk_mq_hw_ctx_size(set),
2690 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2691 node);
2692 if (!hctx)
2693 return NULL;
2694
2695 if (!zalloc_cpumask_var_node(&hctx->cpumask,
2696 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2697 node)) {
2698 kfree(hctx);
2699 return NULL;
2700 }
2701
2702 atomic_set(&hctx->nr_active, 0);
2703 hctx->numa_node = node;
2704 hctx->queue_num = hctx_idx;
2705
2706 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) {
2707 free_cpumask_var(hctx->cpumask);
2708 kfree(hctx);
2709 return NULL;
2710 }
2711 blk_mq_hctx_kobj_init(hctx);
2712
2713 return hctx;
2714 }
2715
2716 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2717 struct request_queue *q)
2718 {
2719 int i, j, end;
2720 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2721
2722 /* protect against switching io scheduler */
2723 mutex_lock(&q->sysfs_lock);
2724 for (i = 0; i < set->nr_hw_queues; i++) {
2725 int node;
2726 struct blk_mq_hw_ctx *hctx;
2727
2728 node = blk_mq_hw_queue_to_node(&set->map[0], i);
2729 /*
2730 * If the hw queue has been mapped to another numa node,
2731 * we need to realloc the hctx. If allocation fails, fallback
2732 * to use the previous one.
2733 */
2734 if (hctxs[i] && (hctxs[i]->numa_node == node))
2735 continue;
2736
2737 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2738 if (hctx) {
2739 if (hctxs[i]) {
2740 blk_mq_exit_hctx(q, set, hctxs[i], i);
2741 kobject_put(&hctxs[i]->kobj);
2742 }
2743 hctxs[i] = hctx;
2744 } else {
2745 if (hctxs[i])
2746 pr_warn("Allocate new hctx on node %d fails,\
2747 fallback to previous one on node %d\n",
2748 node, hctxs[i]->numa_node);
2749 else
2750 break;
2751 }
2752 }
2753 /*
2754 * Increasing nr_hw_queues fails. Free the newly allocated
2755 * hctxs and keep the previous q->nr_hw_queues.
2756 */
2757 if (i != set->nr_hw_queues) {
2758 j = q->nr_hw_queues;
2759 end = i;
2760 } else {
2761 j = i;
2762 end = q->nr_hw_queues;
2763 q->nr_hw_queues = set->nr_hw_queues;
2764 }
2765
2766 for (; j < end; j++) {
2767 struct blk_mq_hw_ctx *hctx = hctxs[j];
2768
2769 if (hctx) {
2770 if (hctx->tags)
2771 blk_mq_free_map_and_requests(set, j);
2772 blk_mq_exit_hctx(q, set, hctx, j);
2773 kobject_put(&hctx->kobj);
2774 hctxs[j] = NULL;
2775
2776 }
2777 }
2778 mutex_unlock(&q->sysfs_lock);
2779 }
2780
2781 /*
2782 * Maximum number of hardware queues we support. For single sets, we'll never
2783 * have more than the CPUs (software queues). For multiple sets, the tag_set
2784 * user may have set ->nr_hw_queues larger.
2785 */
2786 static unsigned int nr_hw_queues(struct blk_mq_tag_set *set)
2787 {
2788 if (set->nr_maps == 1)
2789 return nr_cpu_ids;
2790
2791 return max(set->nr_hw_queues, nr_cpu_ids);
2792 }
2793
2794 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2795 struct request_queue *q)
2796 {
2797 /* mark the queue as mq asap */
2798 q->mq_ops = set->ops;
2799
2800 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2801 blk_mq_poll_stats_bkt,
2802 BLK_MQ_POLL_STATS_BKTS, q);
2803 if (!q->poll_cb)
2804 goto err_exit;
2805
2806 if (blk_mq_alloc_ctxs(q))
2807 goto err_exit;
2808
2809 /* init q->mq_kobj and sw queues' kobjects */
2810 blk_mq_sysfs_init(q);
2811
2812 q->nr_queues = nr_hw_queues(set);
2813 q->queue_hw_ctx = kcalloc_node(q->nr_queues, sizeof(*(q->queue_hw_ctx)),
2814 GFP_KERNEL, set->numa_node);
2815 if (!q->queue_hw_ctx)
2816 goto err_sys_init;
2817
2818 blk_mq_realloc_hw_ctxs(set, q);
2819 if (!q->nr_hw_queues)
2820 goto err_hctxs;
2821
2822 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2823 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2824
2825 q->tag_set = set;
2826
2827 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2828 if (set->nr_maps > HCTX_TYPE_POLL &&
2829 set->map[HCTX_TYPE_POLL].nr_queues)
2830 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2831
2832 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2833 blk_queue_flag_set(QUEUE_FLAG_NO_SG_MERGE, q);
2834
2835 q->sg_reserved_size = INT_MAX;
2836
2837 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2838 INIT_LIST_HEAD(&q->requeue_list);
2839 spin_lock_init(&q->requeue_lock);
2840
2841 blk_queue_make_request(q, blk_mq_make_request);
2842
2843 /*
2844 * Do this after blk_queue_make_request() overrides it...
2845 */
2846 q->nr_requests = set->queue_depth;
2847
2848 /*
2849 * Default to classic polling
2850 */
2851 q->poll_nsec = -1;
2852
2853 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2854 blk_mq_add_queue_tag_set(set, q);
2855 blk_mq_map_swqueue(q);
2856
2857 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2858 int ret;
2859
2860 ret = elevator_init_mq(q);
2861 if (ret)
2862 return ERR_PTR(ret);
2863 }
2864
2865 return q;
2866
2867 err_hctxs:
2868 kfree(q->queue_hw_ctx);
2869 err_sys_init:
2870 blk_mq_sysfs_deinit(q);
2871 err_exit:
2872 q->mq_ops = NULL;
2873 return ERR_PTR(-ENOMEM);
2874 }
2875 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2876
2877 void blk_mq_free_queue(struct request_queue *q)
2878 {
2879 struct blk_mq_tag_set *set = q->tag_set;
2880
2881 blk_mq_del_queue_tag_set(q);
2882 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2883 }
2884
2885 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2886 {
2887 int i;
2888
2889 for (i = 0; i < set->nr_hw_queues; i++)
2890 if (!__blk_mq_alloc_rq_map(set, i))
2891 goto out_unwind;
2892
2893 return 0;
2894
2895 out_unwind:
2896 while (--i >= 0)
2897 blk_mq_free_rq_map(set->tags[i]);
2898
2899 return -ENOMEM;
2900 }
2901
2902 /*
2903 * Allocate the request maps associated with this tag_set. Note that this
2904 * may reduce the depth asked for, if memory is tight. set->queue_depth
2905 * will be updated to reflect the allocated depth.
2906 */
2907 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2908 {
2909 unsigned int depth;
2910 int err;
2911
2912 depth = set->queue_depth;
2913 do {
2914 err = __blk_mq_alloc_rq_maps(set);
2915 if (!err)
2916 break;
2917
2918 set->queue_depth >>= 1;
2919 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2920 err = -ENOMEM;
2921 break;
2922 }
2923 } while (set->queue_depth);
2924
2925 if (!set->queue_depth || err) {
2926 pr_err("blk-mq: failed to allocate request map\n");
2927 return -ENOMEM;
2928 }
2929
2930 if (depth != set->queue_depth)
2931 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2932 depth, set->queue_depth);
2933
2934 return 0;
2935 }
2936
2937 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2938 {
2939 if (set->ops->map_queues && !is_kdump_kernel()) {
2940 int i;
2941
2942 /*
2943 * transport .map_queues is usually done in the following
2944 * way:
2945 *
2946 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2947 * mask = get_cpu_mask(queue)
2948 * for_each_cpu(cpu, mask)
2949 * set->map[x].mq_map[cpu] = queue;
2950 * }
2951 *
2952 * When we need to remap, the table has to be cleared for
2953 * killing stale mapping since one CPU may not be mapped
2954 * to any hw queue.
2955 */
2956 for (i = 0; i < set->nr_maps; i++)
2957 blk_mq_clear_mq_map(&set->map[i]);
2958
2959 return set->ops->map_queues(set);
2960 } else {
2961 BUG_ON(set->nr_maps > 1);
2962 return blk_mq_map_queues(&set->map[0]);
2963 }
2964 }
2965
2966 /*
2967 * Alloc a tag set to be associated with one or more request queues.
2968 * May fail with EINVAL for various error conditions. May adjust the
2969 * requested depth down, if it's too large. In that case, the set
2970 * value will be stored in set->queue_depth.
2971 */
2972 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2973 {
2974 int i, ret;
2975
2976 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2977
2978 if (!set->nr_hw_queues)
2979 return -EINVAL;
2980 if (!set->queue_depth)
2981 return -EINVAL;
2982 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2983 return -EINVAL;
2984
2985 if (!set->ops->queue_rq)
2986 return -EINVAL;
2987
2988 if (!set->ops->get_budget ^ !set->ops->put_budget)
2989 return -EINVAL;
2990
2991 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2992 pr_info("blk-mq: reduced tag depth to %u\n",
2993 BLK_MQ_MAX_DEPTH);
2994 set->queue_depth = BLK_MQ_MAX_DEPTH;
2995 }
2996
2997 if (!set->nr_maps)
2998 set->nr_maps = 1;
2999 else if (set->nr_maps > HCTX_MAX_TYPES)
3000 return -EINVAL;
3001
3002 /*
3003 * If a crashdump is active, then we are potentially in a very
3004 * memory constrained environment. Limit us to 1 queue and
3005 * 64 tags to prevent using too much memory.
3006 */
3007 if (is_kdump_kernel()) {
3008 set->nr_hw_queues = 1;
3009 set->nr_maps = 1;
3010 set->queue_depth = min(64U, set->queue_depth);
3011 }
3012 /*
3013 * There is no use for more h/w queues than cpus if we just have
3014 * a single map
3015 */
3016 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3017 set->nr_hw_queues = nr_cpu_ids;
3018
3019 set->tags = kcalloc_node(nr_hw_queues(set), sizeof(struct blk_mq_tags *),
3020 GFP_KERNEL, set->numa_node);
3021 if (!set->tags)
3022 return -ENOMEM;
3023
3024 ret = -ENOMEM;
3025 for (i = 0; i < set->nr_maps; i++) {
3026 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3027 sizeof(set->map[i].mq_map[0]),
3028 GFP_KERNEL, set->numa_node);
3029 if (!set->map[i].mq_map)
3030 goto out_free_mq_map;
3031 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3032 }
3033
3034 ret = blk_mq_update_queue_map(set);
3035 if (ret)
3036 goto out_free_mq_map;
3037
3038 ret = blk_mq_alloc_rq_maps(set);
3039 if (ret)
3040 goto out_free_mq_map;
3041
3042 mutex_init(&set->tag_list_lock);
3043 INIT_LIST_HEAD(&set->tag_list);
3044
3045 return 0;
3046
3047 out_free_mq_map:
3048 for (i = 0; i < set->nr_maps; i++) {
3049 kfree(set->map[i].mq_map);
3050 set->map[i].mq_map = NULL;
3051 }
3052 kfree(set->tags);
3053 set->tags = NULL;
3054 return ret;
3055 }
3056 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3057
3058 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3059 {
3060 int i, j;
3061
3062 for (i = 0; i < nr_hw_queues(set); i++)
3063 blk_mq_free_map_and_requests(set, i);
3064
3065 for (j = 0; j < set->nr_maps; j++) {
3066 kfree(set->map[j].mq_map);
3067 set->map[j].mq_map = NULL;
3068 }
3069
3070 kfree(set->tags);
3071 set->tags = NULL;
3072 }
3073 EXPORT_SYMBOL(blk_mq_free_tag_set);
3074
3075 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3076 {
3077 struct blk_mq_tag_set *set = q->tag_set;
3078 struct blk_mq_hw_ctx *hctx;
3079 int i, ret;
3080
3081 if (!set)
3082 return -EINVAL;
3083
3084 blk_mq_freeze_queue(q);
3085 blk_mq_quiesce_queue(q);
3086
3087 ret = 0;
3088 queue_for_each_hw_ctx(q, hctx, i) {
3089 if (!hctx->tags)
3090 continue;
3091 /*
3092 * If we're using an MQ scheduler, just update the scheduler
3093 * queue depth. This is similar to what the old code would do.
3094 */
3095 if (!hctx->sched_tags) {
3096 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3097 false);
3098 } else {
3099 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3100 nr, true);
3101 }
3102 if (ret)
3103 break;
3104 }
3105
3106 if (!ret)
3107 q->nr_requests = nr;
3108
3109 blk_mq_unquiesce_queue(q);
3110 blk_mq_unfreeze_queue(q);
3111
3112 return ret;
3113 }
3114
3115 /*
3116 * request_queue and elevator_type pair.
3117 * It is just used by __blk_mq_update_nr_hw_queues to cache
3118 * the elevator_type associated with a request_queue.
3119 */
3120 struct blk_mq_qe_pair {
3121 struct list_head node;
3122 struct request_queue *q;
3123 struct elevator_type *type;
3124 };
3125
3126 /*
3127 * Cache the elevator_type in qe pair list and switch the
3128 * io scheduler to 'none'
3129 */
3130 static bool blk_mq_elv_switch_none(struct list_head *head,
3131 struct request_queue *q)
3132 {
3133 struct blk_mq_qe_pair *qe;
3134
3135 if (!q->elevator)
3136 return true;
3137
3138 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3139 if (!qe)
3140 return false;
3141
3142 INIT_LIST_HEAD(&qe->node);
3143 qe->q = q;
3144 qe->type = q->elevator->type;
3145 list_add(&qe->node, head);
3146
3147 mutex_lock(&q->sysfs_lock);
3148 /*
3149 * After elevator_switch_mq, the previous elevator_queue will be
3150 * released by elevator_release. The reference of the io scheduler
3151 * module get by elevator_get will also be put. So we need to get
3152 * a reference of the io scheduler module here to prevent it to be
3153 * removed.
3154 */
3155 __module_get(qe->type->elevator_owner);
3156 elevator_switch_mq(q, NULL);
3157 mutex_unlock(&q->sysfs_lock);
3158
3159 return true;
3160 }
3161
3162 static void blk_mq_elv_switch_back(struct list_head *head,
3163 struct request_queue *q)
3164 {
3165 struct blk_mq_qe_pair *qe;
3166 struct elevator_type *t = NULL;
3167
3168 list_for_each_entry(qe, head, node)
3169 if (qe->q == q) {
3170 t = qe->type;
3171 break;
3172 }
3173
3174 if (!t)
3175 return;
3176
3177 list_del(&qe->node);
3178 kfree(qe);
3179
3180 mutex_lock(&q->sysfs_lock);
3181 elevator_switch_mq(q, t);
3182 mutex_unlock(&q->sysfs_lock);
3183 }
3184
3185 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3186 int nr_hw_queues)
3187 {
3188 struct request_queue *q;
3189 LIST_HEAD(head);
3190 int prev_nr_hw_queues;
3191
3192 lockdep_assert_held(&set->tag_list_lock);
3193
3194 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3195 nr_hw_queues = nr_cpu_ids;
3196 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3197 return;
3198
3199 list_for_each_entry(q, &set->tag_list, tag_set_list)
3200 blk_mq_freeze_queue(q);
3201 /*
3202 * Sync with blk_mq_queue_tag_busy_iter.
3203 */
3204 synchronize_rcu();
3205 /*
3206 * Switch IO scheduler to 'none', cleaning up the data associated
3207 * with the previous scheduler. We will switch back once we are done
3208 * updating the new sw to hw queue mappings.
3209 */
3210 list_for_each_entry(q, &set->tag_list, tag_set_list)
3211 if (!blk_mq_elv_switch_none(&head, q))
3212 goto switch_back;
3213
3214 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3215 blk_mq_debugfs_unregister_hctxs(q);
3216 blk_mq_sysfs_unregister(q);
3217 }
3218
3219 prev_nr_hw_queues = set->nr_hw_queues;
3220 set->nr_hw_queues = nr_hw_queues;
3221 blk_mq_update_queue_map(set);
3222 fallback:
3223 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3224 blk_mq_realloc_hw_ctxs(set, q);
3225 if (q->nr_hw_queues != set->nr_hw_queues) {
3226 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3227 nr_hw_queues, prev_nr_hw_queues);
3228 set->nr_hw_queues = prev_nr_hw_queues;
3229 blk_mq_map_queues(&set->map[0]);
3230 goto fallback;
3231 }
3232 blk_mq_map_swqueue(q);
3233 }
3234
3235 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3236 blk_mq_sysfs_register(q);
3237 blk_mq_debugfs_register_hctxs(q);
3238 }
3239
3240 switch_back:
3241 list_for_each_entry(q, &set->tag_list, tag_set_list)
3242 blk_mq_elv_switch_back(&head, q);
3243
3244 list_for_each_entry(q, &set->tag_list, tag_set_list)
3245 blk_mq_unfreeze_queue(q);
3246 }
3247
3248 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3249 {
3250 mutex_lock(&set->tag_list_lock);
3251 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3252 mutex_unlock(&set->tag_list_lock);
3253 }
3254 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3255
3256 /* Enable polling stats and return whether they were already enabled. */
3257 static bool blk_poll_stats_enable(struct request_queue *q)
3258 {
3259 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3260 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3261 return true;
3262 blk_stat_add_callback(q, q->poll_cb);
3263 return false;
3264 }
3265
3266 static void blk_mq_poll_stats_start(struct request_queue *q)
3267 {
3268 /*
3269 * We don't arm the callback if polling stats are not enabled or the
3270 * callback is already active.
3271 */
3272 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3273 blk_stat_is_active(q->poll_cb))
3274 return;
3275
3276 blk_stat_activate_msecs(q->poll_cb, 100);
3277 }
3278
3279 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3280 {
3281 struct request_queue *q = cb->data;
3282 int bucket;
3283
3284 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3285 if (cb->stat[bucket].nr_samples)
3286 q->poll_stat[bucket] = cb->stat[bucket];
3287 }
3288 }
3289
3290 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3291 struct blk_mq_hw_ctx *hctx,
3292 struct request *rq)
3293 {
3294 unsigned long ret = 0;
3295 int bucket;
3296
3297 /*
3298 * If stats collection isn't on, don't sleep but turn it on for
3299 * future users
3300 */
3301 if (!blk_poll_stats_enable(q))
3302 return 0;
3303
3304 /*
3305 * As an optimistic guess, use half of the mean service time
3306 * for this type of request. We can (and should) make this smarter.
3307 * For instance, if the completion latencies are tight, we can
3308 * get closer than just half the mean. This is especially
3309 * important on devices where the completion latencies are longer
3310 * than ~10 usec. We do use the stats for the relevant IO size
3311 * if available which does lead to better estimates.
3312 */
3313 bucket = blk_mq_poll_stats_bkt(rq);
3314 if (bucket < 0)
3315 return ret;
3316
3317 if (q->poll_stat[bucket].nr_samples)
3318 ret = (q->poll_stat[bucket].mean + 1) / 2;
3319
3320 return ret;
3321 }
3322
3323 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3324 struct blk_mq_hw_ctx *hctx,
3325 struct request *rq)
3326 {
3327 struct hrtimer_sleeper hs;
3328 enum hrtimer_mode mode;
3329 unsigned int nsecs;
3330 ktime_t kt;
3331
3332 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3333 return false;
3334
3335 /*
3336 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3337 *
3338 * 0: use half of prev avg
3339 * >0: use this specific value
3340 */
3341 if (q->poll_nsec > 0)
3342 nsecs = q->poll_nsec;
3343 else
3344 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3345
3346 if (!nsecs)
3347 return false;
3348
3349 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3350
3351 /*
3352 * This will be replaced with the stats tracking code, using
3353 * 'avg_completion_time / 2' as the pre-sleep target.
3354 */
3355 kt = nsecs;
3356
3357 mode = HRTIMER_MODE_REL;
3358 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3359 hrtimer_set_expires(&hs.timer, kt);
3360
3361 hrtimer_init_sleeper(&hs, current);
3362 do {
3363 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3364 break;
3365 set_current_state(TASK_UNINTERRUPTIBLE);
3366 hrtimer_start_expires(&hs.timer, mode);
3367 if (hs.task)
3368 io_schedule();
3369 hrtimer_cancel(&hs.timer);
3370 mode = HRTIMER_MODE_ABS;
3371 } while (hs.task && !signal_pending(current));
3372
3373 __set_current_state(TASK_RUNNING);
3374 destroy_hrtimer_on_stack(&hs.timer);
3375 return true;
3376 }
3377
3378 static bool blk_mq_poll_hybrid(struct request_queue *q,
3379 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3380 {
3381 struct request *rq;
3382
3383 if (q->poll_nsec == -1)
3384 return false;
3385
3386 if (!blk_qc_t_is_internal(cookie))
3387 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3388 else {
3389 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3390 /*
3391 * With scheduling, if the request has completed, we'll
3392 * get a NULL return here, as we clear the sched tag when
3393 * that happens. The request still remains valid, like always,
3394 * so we should be safe with just the NULL check.
3395 */
3396 if (!rq)
3397 return false;
3398 }
3399
3400 return blk_mq_poll_hybrid_sleep(q, hctx, rq);
3401 }
3402
3403 /**
3404 * blk_poll - poll for IO completions
3405 * @q: the queue
3406 * @cookie: cookie passed back at IO submission time
3407 * @spin: whether to spin for completions
3408 *
3409 * Description:
3410 * Poll for completions on the passed in queue. Returns number of
3411 * completed entries found. If @spin is true, then blk_poll will continue
3412 * looping until at least one completion is found, unless the task is
3413 * otherwise marked running (or we need to reschedule).
3414 */
3415 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3416 {
3417 struct blk_mq_hw_ctx *hctx;
3418 long state;
3419
3420 if (!blk_qc_t_valid(cookie) ||
3421 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3422 return 0;
3423
3424 if (current->plug)
3425 blk_flush_plug_list(current->plug, false);
3426
3427 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3428
3429 /*
3430 * If we sleep, have the caller restart the poll loop to reset
3431 * the state. Like for the other success return cases, the
3432 * caller is responsible for checking if the IO completed. If
3433 * the IO isn't complete, we'll get called again and will go
3434 * straight to the busy poll loop.
3435 */
3436 if (blk_mq_poll_hybrid(q, hctx, cookie))
3437 return 1;
3438
3439 hctx->poll_considered++;
3440
3441 state = current->state;
3442 do {
3443 int ret;
3444
3445 hctx->poll_invoked++;
3446
3447 ret = q->mq_ops->poll(hctx);
3448 if (ret > 0) {
3449 hctx->poll_success++;
3450 __set_current_state(TASK_RUNNING);
3451 return ret;
3452 }
3453
3454 if (signal_pending_state(state, current))
3455 __set_current_state(TASK_RUNNING);
3456
3457 if (current->state == TASK_RUNNING)
3458 return 1;
3459 if (ret < 0 || !spin)
3460 break;
3461 cpu_relax();
3462 } while (!need_resched());
3463
3464 __set_current_state(TASK_RUNNING);
3465 return 0;
3466 }
3467 EXPORT_SYMBOL_GPL(blk_poll);
3468
3469 unsigned int blk_mq_rq_cpu(struct request *rq)
3470 {
3471 return rq->mq_ctx->cpu;
3472 }
3473 EXPORT_SYMBOL(blk_mq_rq_cpu);
3474
3475 static int __init blk_mq_init(void)
3476 {
3477 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3478 blk_mq_hctx_notify_dead);
3479 return 0;
3480 }
3481 subsys_initcall(blk_mq_init);