]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-mq.c
Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/zohar/linux...
[mirror_ubuntu-artful-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23 #include <linux/crash_dump.h>
24
25 #include <trace/events/block.h>
26
27 #include <linux/blk-mq.h>
28 #include "blk.h"
29 #include "blk-mq.h"
30 #include "blk-mq-tag.h"
31
32 static DEFINE_MUTEX(all_q_mutex);
33 static LIST_HEAD(all_q_list);
34
35 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
36
37 /*
38 * Check if any of the ctx's have pending work in this hardware queue
39 */
40 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
41 {
42 unsigned int i;
43
44 for (i = 0; i < hctx->ctx_map.map_size; i++)
45 if (hctx->ctx_map.map[i].word)
46 return true;
47
48 return false;
49 }
50
51 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
52 struct blk_mq_ctx *ctx)
53 {
54 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
55 }
56
57 #define CTX_TO_BIT(hctx, ctx) \
58 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
59
60 /*
61 * Mark this ctx as having pending work in this hardware queue
62 */
63 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
64 struct blk_mq_ctx *ctx)
65 {
66 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
67
68 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
69 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
70 }
71
72 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
73 struct blk_mq_ctx *ctx)
74 {
75 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
76
77 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
78 }
79
80 static int blk_mq_queue_enter(struct request_queue *q)
81 {
82 while (true) {
83 int ret;
84
85 if (percpu_ref_tryget_live(&q->mq_usage_counter))
86 return 0;
87
88 ret = wait_event_interruptible(q->mq_freeze_wq,
89 !q->mq_freeze_depth || blk_queue_dying(q));
90 if (blk_queue_dying(q))
91 return -ENODEV;
92 if (ret)
93 return ret;
94 }
95 }
96
97 static void blk_mq_queue_exit(struct request_queue *q)
98 {
99 percpu_ref_put(&q->mq_usage_counter);
100 }
101
102 static void blk_mq_usage_counter_release(struct percpu_ref *ref)
103 {
104 struct request_queue *q =
105 container_of(ref, struct request_queue, mq_usage_counter);
106
107 wake_up_all(&q->mq_freeze_wq);
108 }
109
110 static void blk_mq_freeze_queue_start(struct request_queue *q)
111 {
112 bool freeze;
113
114 spin_lock_irq(q->queue_lock);
115 freeze = !q->mq_freeze_depth++;
116 spin_unlock_irq(q->queue_lock);
117
118 if (freeze) {
119 percpu_ref_kill(&q->mq_usage_counter);
120 blk_mq_run_queues(q, false);
121 }
122 }
123
124 static void blk_mq_freeze_queue_wait(struct request_queue *q)
125 {
126 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
127 }
128
129 /*
130 * Guarantee no request is in use, so we can change any data structure of
131 * the queue afterward.
132 */
133 void blk_mq_freeze_queue(struct request_queue *q)
134 {
135 blk_mq_freeze_queue_start(q);
136 blk_mq_freeze_queue_wait(q);
137 }
138
139 static void blk_mq_unfreeze_queue(struct request_queue *q)
140 {
141 bool wake;
142
143 spin_lock_irq(q->queue_lock);
144 wake = !--q->mq_freeze_depth;
145 WARN_ON_ONCE(q->mq_freeze_depth < 0);
146 spin_unlock_irq(q->queue_lock);
147 if (wake) {
148 percpu_ref_reinit(&q->mq_usage_counter);
149 wake_up_all(&q->mq_freeze_wq);
150 }
151 }
152
153 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
154 {
155 return blk_mq_has_free_tags(hctx->tags);
156 }
157 EXPORT_SYMBOL(blk_mq_can_queue);
158
159 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
160 struct request *rq, unsigned int rw_flags)
161 {
162 if (blk_queue_io_stat(q))
163 rw_flags |= REQ_IO_STAT;
164
165 INIT_LIST_HEAD(&rq->queuelist);
166 /* csd/requeue_work/fifo_time is initialized before use */
167 rq->q = q;
168 rq->mq_ctx = ctx;
169 rq->cmd_flags |= rw_flags;
170 /* do not touch atomic flags, it needs atomic ops against the timer */
171 rq->cpu = -1;
172 INIT_HLIST_NODE(&rq->hash);
173 RB_CLEAR_NODE(&rq->rb_node);
174 rq->rq_disk = NULL;
175 rq->part = NULL;
176 rq->start_time = jiffies;
177 #ifdef CONFIG_BLK_CGROUP
178 rq->rl = NULL;
179 set_start_time_ns(rq);
180 rq->io_start_time_ns = 0;
181 #endif
182 rq->nr_phys_segments = 0;
183 #if defined(CONFIG_BLK_DEV_INTEGRITY)
184 rq->nr_integrity_segments = 0;
185 #endif
186 rq->special = NULL;
187 /* tag was already set */
188 rq->errors = 0;
189
190 rq->cmd = rq->__cmd;
191
192 rq->extra_len = 0;
193 rq->sense_len = 0;
194 rq->resid_len = 0;
195 rq->sense = NULL;
196
197 INIT_LIST_HEAD(&rq->timeout_list);
198 rq->timeout = 0;
199
200 rq->end_io = NULL;
201 rq->end_io_data = NULL;
202 rq->next_rq = NULL;
203
204 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
205 }
206
207 static struct request *
208 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
209 {
210 struct request *rq;
211 unsigned int tag;
212
213 tag = blk_mq_get_tag(data);
214 if (tag != BLK_MQ_TAG_FAIL) {
215 rq = data->hctx->tags->rqs[tag];
216
217 if (blk_mq_tag_busy(data->hctx)) {
218 rq->cmd_flags = REQ_MQ_INFLIGHT;
219 atomic_inc(&data->hctx->nr_active);
220 }
221
222 rq->tag = tag;
223 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
224 return rq;
225 }
226
227 return NULL;
228 }
229
230 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
231 bool reserved)
232 {
233 struct blk_mq_ctx *ctx;
234 struct blk_mq_hw_ctx *hctx;
235 struct request *rq;
236 struct blk_mq_alloc_data alloc_data;
237 int ret;
238
239 ret = blk_mq_queue_enter(q);
240 if (ret)
241 return ERR_PTR(ret);
242
243 ctx = blk_mq_get_ctx(q);
244 hctx = q->mq_ops->map_queue(q, ctx->cpu);
245 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
246 reserved, ctx, hctx);
247
248 rq = __blk_mq_alloc_request(&alloc_data, rw);
249 if (!rq && (gfp & __GFP_WAIT)) {
250 __blk_mq_run_hw_queue(hctx);
251 blk_mq_put_ctx(ctx);
252
253 ctx = blk_mq_get_ctx(q);
254 hctx = q->mq_ops->map_queue(q, ctx->cpu);
255 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
256 hctx);
257 rq = __blk_mq_alloc_request(&alloc_data, rw);
258 ctx = alloc_data.ctx;
259 }
260 blk_mq_put_ctx(ctx);
261 if (!rq)
262 return ERR_PTR(-EWOULDBLOCK);
263 return rq;
264 }
265 EXPORT_SYMBOL(blk_mq_alloc_request);
266
267 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
268 struct blk_mq_ctx *ctx, struct request *rq)
269 {
270 const int tag = rq->tag;
271 struct request_queue *q = rq->q;
272
273 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
274 atomic_dec(&hctx->nr_active);
275 rq->cmd_flags = 0;
276
277 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
278 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
279 blk_mq_queue_exit(q);
280 }
281
282 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
283 {
284 struct blk_mq_ctx *ctx = rq->mq_ctx;
285
286 ctx->rq_completed[rq_is_sync(rq)]++;
287 __blk_mq_free_request(hctx, ctx, rq);
288
289 }
290 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
291
292 void blk_mq_free_request(struct request *rq)
293 {
294 struct blk_mq_hw_ctx *hctx;
295 struct request_queue *q = rq->q;
296
297 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
298 blk_mq_free_hctx_request(hctx, rq);
299 }
300 EXPORT_SYMBOL_GPL(blk_mq_free_request);
301
302 inline void __blk_mq_end_request(struct request *rq, int error)
303 {
304 blk_account_io_done(rq);
305
306 if (rq->end_io) {
307 rq->end_io(rq, error);
308 } else {
309 if (unlikely(blk_bidi_rq(rq)))
310 blk_mq_free_request(rq->next_rq);
311 blk_mq_free_request(rq);
312 }
313 }
314 EXPORT_SYMBOL(__blk_mq_end_request);
315
316 void blk_mq_end_request(struct request *rq, int error)
317 {
318 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
319 BUG();
320 __blk_mq_end_request(rq, error);
321 }
322 EXPORT_SYMBOL(blk_mq_end_request);
323
324 static void __blk_mq_complete_request_remote(void *data)
325 {
326 struct request *rq = data;
327
328 rq->q->softirq_done_fn(rq);
329 }
330
331 static void blk_mq_ipi_complete_request(struct request *rq)
332 {
333 struct blk_mq_ctx *ctx = rq->mq_ctx;
334 bool shared = false;
335 int cpu;
336
337 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
338 rq->q->softirq_done_fn(rq);
339 return;
340 }
341
342 cpu = get_cpu();
343 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
344 shared = cpus_share_cache(cpu, ctx->cpu);
345
346 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
347 rq->csd.func = __blk_mq_complete_request_remote;
348 rq->csd.info = rq;
349 rq->csd.flags = 0;
350 smp_call_function_single_async(ctx->cpu, &rq->csd);
351 } else {
352 rq->q->softirq_done_fn(rq);
353 }
354 put_cpu();
355 }
356
357 void __blk_mq_complete_request(struct request *rq)
358 {
359 struct request_queue *q = rq->q;
360
361 if (!q->softirq_done_fn)
362 blk_mq_end_request(rq, rq->errors);
363 else
364 blk_mq_ipi_complete_request(rq);
365 }
366
367 /**
368 * blk_mq_complete_request - end I/O on a request
369 * @rq: the request being processed
370 *
371 * Description:
372 * Ends all I/O on a request. It does not handle partial completions.
373 * The actual completion happens out-of-order, through a IPI handler.
374 **/
375 void blk_mq_complete_request(struct request *rq)
376 {
377 struct request_queue *q = rq->q;
378
379 if (unlikely(blk_should_fake_timeout(q)))
380 return;
381 if (!blk_mark_rq_complete(rq))
382 __blk_mq_complete_request(rq);
383 }
384 EXPORT_SYMBOL(blk_mq_complete_request);
385
386 void blk_mq_start_request(struct request *rq)
387 {
388 struct request_queue *q = rq->q;
389
390 trace_block_rq_issue(q, rq);
391
392 rq->resid_len = blk_rq_bytes(rq);
393 if (unlikely(blk_bidi_rq(rq)))
394 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
395
396 blk_add_timer(rq);
397
398 /*
399 * Ensure that ->deadline is visible before set the started
400 * flag and clear the completed flag.
401 */
402 smp_mb__before_atomic();
403
404 /*
405 * Mark us as started and clear complete. Complete might have been
406 * set if requeue raced with timeout, which then marked it as
407 * complete. So be sure to clear complete again when we start
408 * the request, otherwise we'll ignore the completion event.
409 */
410 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
411 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
412 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
413 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
414
415 if (q->dma_drain_size && blk_rq_bytes(rq)) {
416 /*
417 * Make sure space for the drain appears. We know we can do
418 * this because max_hw_segments has been adjusted to be one
419 * fewer than the device can handle.
420 */
421 rq->nr_phys_segments++;
422 }
423 }
424 EXPORT_SYMBOL(blk_mq_start_request);
425
426 static void __blk_mq_requeue_request(struct request *rq)
427 {
428 struct request_queue *q = rq->q;
429
430 trace_block_rq_requeue(q, rq);
431
432 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
433 if (q->dma_drain_size && blk_rq_bytes(rq))
434 rq->nr_phys_segments--;
435 }
436 }
437
438 void blk_mq_requeue_request(struct request *rq)
439 {
440 __blk_mq_requeue_request(rq);
441
442 BUG_ON(blk_queued_rq(rq));
443 blk_mq_add_to_requeue_list(rq, true);
444 }
445 EXPORT_SYMBOL(blk_mq_requeue_request);
446
447 static void blk_mq_requeue_work(struct work_struct *work)
448 {
449 struct request_queue *q =
450 container_of(work, struct request_queue, requeue_work);
451 LIST_HEAD(rq_list);
452 struct request *rq, *next;
453 unsigned long flags;
454
455 spin_lock_irqsave(&q->requeue_lock, flags);
456 list_splice_init(&q->requeue_list, &rq_list);
457 spin_unlock_irqrestore(&q->requeue_lock, flags);
458
459 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
460 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
461 continue;
462
463 rq->cmd_flags &= ~REQ_SOFTBARRIER;
464 list_del_init(&rq->queuelist);
465 blk_mq_insert_request(rq, true, false, false);
466 }
467
468 while (!list_empty(&rq_list)) {
469 rq = list_entry(rq_list.next, struct request, queuelist);
470 list_del_init(&rq->queuelist);
471 blk_mq_insert_request(rq, false, false, false);
472 }
473
474 /*
475 * Use the start variant of queue running here, so that running
476 * the requeue work will kick stopped queues.
477 */
478 blk_mq_start_hw_queues(q);
479 }
480
481 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
482 {
483 struct request_queue *q = rq->q;
484 unsigned long flags;
485
486 /*
487 * We abuse this flag that is otherwise used by the I/O scheduler to
488 * request head insertation from the workqueue.
489 */
490 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
491
492 spin_lock_irqsave(&q->requeue_lock, flags);
493 if (at_head) {
494 rq->cmd_flags |= REQ_SOFTBARRIER;
495 list_add(&rq->queuelist, &q->requeue_list);
496 } else {
497 list_add_tail(&rq->queuelist, &q->requeue_list);
498 }
499 spin_unlock_irqrestore(&q->requeue_lock, flags);
500 }
501 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
502
503 void blk_mq_kick_requeue_list(struct request_queue *q)
504 {
505 kblockd_schedule_work(&q->requeue_work);
506 }
507 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
508
509 static inline bool is_flush_request(struct request *rq,
510 struct blk_flush_queue *fq, unsigned int tag)
511 {
512 return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
513 fq->flush_rq->tag == tag);
514 }
515
516 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
517 {
518 struct request *rq = tags->rqs[tag];
519 /* mq_ctx of flush rq is always cloned from the corresponding req */
520 struct blk_flush_queue *fq = blk_get_flush_queue(rq->q, rq->mq_ctx);
521
522 if (!is_flush_request(rq, fq, tag))
523 return rq;
524
525 return fq->flush_rq;
526 }
527 EXPORT_SYMBOL(blk_mq_tag_to_rq);
528
529 struct blk_mq_timeout_data {
530 unsigned long next;
531 unsigned int next_set;
532 };
533
534 void blk_mq_rq_timed_out(struct request *req, bool reserved)
535 {
536 struct blk_mq_ops *ops = req->q->mq_ops;
537 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
538
539 /*
540 * We know that complete is set at this point. If STARTED isn't set
541 * anymore, then the request isn't active and the "timeout" should
542 * just be ignored. This can happen due to the bitflag ordering.
543 * Timeout first checks if STARTED is set, and if it is, assumes
544 * the request is active. But if we race with completion, then
545 * we both flags will get cleared. So check here again, and ignore
546 * a timeout event with a request that isn't active.
547 */
548 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
549 return;
550
551 if (ops->timeout)
552 ret = ops->timeout(req, reserved);
553
554 switch (ret) {
555 case BLK_EH_HANDLED:
556 __blk_mq_complete_request(req);
557 break;
558 case BLK_EH_RESET_TIMER:
559 blk_add_timer(req);
560 blk_clear_rq_complete(req);
561 break;
562 case BLK_EH_NOT_HANDLED:
563 break;
564 default:
565 printk(KERN_ERR "block: bad eh return: %d\n", ret);
566 break;
567 }
568 }
569
570 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
571 struct request *rq, void *priv, bool reserved)
572 {
573 struct blk_mq_timeout_data *data = priv;
574
575 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
576 return;
577
578 if (time_after_eq(jiffies, rq->deadline)) {
579 if (!blk_mark_rq_complete(rq))
580 blk_mq_rq_timed_out(rq, reserved);
581 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
582 data->next = rq->deadline;
583 data->next_set = 1;
584 }
585 }
586
587 static void blk_mq_rq_timer(unsigned long priv)
588 {
589 struct request_queue *q = (struct request_queue *)priv;
590 struct blk_mq_timeout_data data = {
591 .next = 0,
592 .next_set = 0,
593 };
594 struct blk_mq_hw_ctx *hctx;
595 int i;
596
597 queue_for_each_hw_ctx(q, hctx, i) {
598 /*
599 * If not software queues are currently mapped to this
600 * hardware queue, there's nothing to check
601 */
602 if (!blk_mq_hw_queue_mapped(hctx))
603 continue;
604
605 blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data);
606 }
607
608 if (data.next_set) {
609 data.next = blk_rq_timeout(round_jiffies_up(data.next));
610 mod_timer(&q->timeout, data.next);
611 } else {
612 queue_for_each_hw_ctx(q, hctx, i)
613 blk_mq_tag_idle(hctx);
614 }
615 }
616
617 /*
618 * Reverse check our software queue for entries that we could potentially
619 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
620 * too much time checking for merges.
621 */
622 static bool blk_mq_attempt_merge(struct request_queue *q,
623 struct blk_mq_ctx *ctx, struct bio *bio)
624 {
625 struct request *rq;
626 int checked = 8;
627
628 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
629 int el_ret;
630
631 if (!checked--)
632 break;
633
634 if (!blk_rq_merge_ok(rq, bio))
635 continue;
636
637 el_ret = blk_try_merge(rq, bio);
638 if (el_ret == ELEVATOR_BACK_MERGE) {
639 if (bio_attempt_back_merge(q, rq, bio)) {
640 ctx->rq_merged++;
641 return true;
642 }
643 break;
644 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
645 if (bio_attempt_front_merge(q, rq, bio)) {
646 ctx->rq_merged++;
647 return true;
648 }
649 break;
650 }
651 }
652
653 return false;
654 }
655
656 /*
657 * Process software queues that have been marked busy, splicing them
658 * to the for-dispatch
659 */
660 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
661 {
662 struct blk_mq_ctx *ctx;
663 int i;
664
665 for (i = 0; i < hctx->ctx_map.map_size; i++) {
666 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
667 unsigned int off, bit;
668
669 if (!bm->word)
670 continue;
671
672 bit = 0;
673 off = i * hctx->ctx_map.bits_per_word;
674 do {
675 bit = find_next_bit(&bm->word, bm->depth, bit);
676 if (bit >= bm->depth)
677 break;
678
679 ctx = hctx->ctxs[bit + off];
680 clear_bit(bit, &bm->word);
681 spin_lock(&ctx->lock);
682 list_splice_tail_init(&ctx->rq_list, list);
683 spin_unlock(&ctx->lock);
684
685 bit++;
686 } while (1);
687 }
688 }
689
690 /*
691 * Run this hardware queue, pulling any software queues mapped to it in.
692 * Note that this function currently has various problems around ordering
693 * of IO. In particular, we'd like FIFO behaviour on handling existing
694 * items on the hctx->dispatch list. Ignore that for now.
695 */
696 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
697 {
698 struct request_queue *q = hctx->queue;
699 struct request *rq;
700 LIST_HEAD(rq_list);
701 LIST_HEAD(driver_list);
702 struct list_head *dptr;
703 int queued;
704
705 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
706
707 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
708 return;
709
710 hctx->run++;
711
712 /*
713 * Touch any software queue that has pending entries.
714 */
715 flush_busy_ctxs(hctx, &rq_list);
716
717 /*
718 * If we have previous entries on our dispatch list, grab them
719 * and stuff them at the front for more fair dispatch.
720 */
721 if (!list_empty_careful(&hctx->dispatch)) {
722 spin_lock(&hctx->lock);
723 if (!list_empty(&hctx->dispatch))
724 list_splice_init(&hctx->dispatch, &rq_list);
725 spin_unlock(&hctx->lock);
726 }
727
728 /*
729 * Start off with dptr being NULL, so we start the first request
730 * immediately, even if we have more pending.
731 */
732 dptr = NULL;
733
734 /*
735 * Now process all the entries, sending them to the driver.
736 */
737 queued = 0;
738 while (!list_empty(&rq_list)) {
739 struct blk_mq_queue_data bd;
740 int ret;
741
742 rq = list_first_entry(&rq_list, struct request, queuelist);
743 list_del_init(&rq->queuelist);
744
745 bd.rq = rq;
746 bd.list = dptr;
747 bd.last = list_empty(&rq_list);
748
749 ret = q->mq_ops->queue_rq(hctx, &bd);
750 switch (ret) {
751 case BLK_MQ_RQ_QUEUE_OK:
752 queued++;
753 continue;
754 case BLK_MQ_RQ_QUEUE_BUSY:
755 list_add(&rq->queuelist, &rq_list);
756 __blk_mq_requeue_request(rq);
757 break;
758 default:
759 pr_err("blk-mq: bad return on queue: %d\n", ret);
760 case BLK_MQ_RQ_QUEUE_ERROR:
761 rq->errors = -EIO;
762 blk_mq_end_request(rq, rq->errors);
763 break;
764 }
765
766 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
767 break;
768
769 /*
770 * We've done the first request. If we have more than 1
771 * left in the list, set dptr to defer issue.
772 */
773 if (!dptr && rq_list.next != rq_list.prev)
774 dptr = &driver_list;
775 }
776
777 if (!queued)
778 hctx->dispatched[0]++;
779 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
780 hctx->dispatched[ilog2(queued) + 1]++;
781
782 /*
783 * Any items that need requeuing? Stuff them into hctx->dispatch,
784 * that is where we will continue on next queue run.
785 */
786 if (!list_empty(&rq_list)) {
787 spin_lock(&hctx->lock);
788 list_splice(&rq_list, &hctx->dispatch);
789 spin_unlock(&hctx->lock);
790 }
791 }
792
793 /*
794 * It'd be great if the workqueue API had a way to pass
795 * in a mask and had some smarts for more clever placement.
796 * For now we just round-robin here, switching for every
797 * BLK_MQ_CPU_WORK_BATCH queued items.
798 */
799 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
800 {
801 if (hctx->queue->nr_hw_queues == 1)
802 return WORK_CPU_UNBOUND;
803
804 if (--hctx->next_cpu_batch <= 0) {
805 int cpu = hctx->next_cpu, next_cpu;
806
807 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
808 if (next_cpu >= nr_cpu_ids)
809 next_cpu = cpumask_first(hctx->cpumask);
810
811 hctx->next_cpu = next_cpu;
812 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
813
814 return cpu;
815 }
816
817 return hctx->next_cpu;
818 }
819
820 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
821 {
822 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
823 !blk_mq_hw_queue_mapped(hctx)))
824 return;
825
826 if (!async) {
827 int cpu = get_cpu();
828 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
829 __blk_mq_run_hw_queue(hctx);
830 put_cpu();
831 return;
832 }
833
834 put_cpu();
835 }
836
837 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
838 &hctx->run_work, 0);
839 }
840
841 void blk_mq_run_queues(struct request_queue *q, bool async)
842 {
843 struct blk_mq_hw_ctx *hctx;
844 int i;
845
846 queue_for_each_hw_ctx(q, hctx, i) {
847 if ((!blk_mq_hctx_has_pending(hctx) &&
848 list_empty_careful(&hctx->dispatch)) ||
849 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
850 continue;
851
852 blk_mq_run_hw_queue(hctx, async);
853 }
854 }
855 EXPORT_SYMBOL(blk_mq_run_queues);
856
857 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
858 {
859 cancel_delayed_work(&hctx->run_work);
860 cancel_delayed_work(&hctx->delay_work);
861 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
862 }
863 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
864
865 void blk_mq_stop_hw_queues(struct request_queue *q)
866 {
867 struct blk_mq_hw_ctx *hctx;
868 int i;
869
870 queue_for_each_hw_ctx(q, hctx, i)
871 blk_mq_stop_hw_queue(hctx);
872 }
873 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
874
875 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
876 {
877 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
878
879 blk_mq_run_hw_queue(hctx, false);
880 }
881 EXPORT_SYMBOL(blk_mq_start_hw_queue);
882
883 void blk_mq_start_hw_queues(struct request_queue *q)
884 {
885 struct blk_mq_hw_ctx *hctx;
886 int i;
887
888 queue_for_each_hw_ctx(q, hctx, i)
889 blk_mq_start_hw_queue(hctx);
890 }
891 EXPORT_SYMBOL(blk_mq_start_hw_queues);
892
893
894 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
895 {
896 struct blk_mq_hw_ctx *hctx;
897 int i;
898
899 queue_for_each_hw_ctx(q, hctx, i) {
900 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
901 continue;
902
903 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
904 blk_mq_run_hw_queue(hctx, async);
905 }
906 }
907 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
908
909 static void blk_mq_run_work_fn(struct work_struct *work)
910 {
911 struct blk_mq_hw_ctx *hctx;
912
913 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
914
915 __blk_mq_run_hw_queue(hctx);
916 }
917
918 static void blk_mq_delay_work_fn(struct work_struct *work)
919 {
920 struct blk_mq_hw_ctx *hctx;
921
922 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
923
924 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
925 __blk_mq_run_hw_queue(hctx);
926 }
927
928 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
929 {
930 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
931 return;
932
933 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
934 &hctx->delay_work, msecs_to_jiffies(msecs));
935 }
936 EXPORT_SYMBOL(blk_mq_delay_queue);
937
938 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
939 struct request *rq, bool at_head)
940 {
941 struct blk_mq_ctx *ctx = rq->mq_ctx;
942
943 trace_block_rq_insert(hctx->queue, rq);
944
945 if (at_head)
946 list_add(&rq->queuelist, &ctx->rq_list);
947 else
948 list_add_tail(&rq->queuelist, &ctx->rq_list);
949
950 blk_mq_hctx_mark_pending(hctx, ctx);
951 }
952
953 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
954 bool async)
955 {
956 struct request_queue *q = rq->q;
957 struct blk_mq_hw_ctx *hctx;
958 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
959
960 current_ctx = blk_mq_get_ctx(q);
961 if (!cpu_online(ctx->cpu))
962 rq->mq_ctx = ctx = current_ctx;
963
964 hctx = q->mq_ops->map_queue(q, ctx->cpu);
965
966 spin_lock(&ctx->lock);
967 __blk_mq_insert_request(hctx, rq, at_head);
968 spin_unlock(&ctx->lock);
969
970 if (run_queue)
971 blk_mq_run_hw_queue(hctx, async);
972
973 blk_mq_put_ctx(current_ctx);
974 }
975
976 static void blk_mq_insert_requests(struct request_queue *q,
977 struct blk_mq_ctx *ctx,
978 struct list_head *list,
979 int depth,
980 bool from_schedule)
981
982 {
983 struct blk_mq_hw_ctx *hctx;
984 struct blk_mq_ctx *current_ctx;
985
986 trace_block_unplug(q, depth, !from_schedule);
987
988 current_ctx = blk_mq_get_ctx(q);
989
990 if (!cpu_online(ctx->cpu))
991 ctx = current_ctx;
992 hctx = q->mq_ops->map_queue(q, ctx->cpu);
993
994 /*
995 * preemption doesn't flush plug list, so it's possible ctx->cpu is
996 * offline now
997 */
998 spin_lock(&ctx->lock);
999 while (!list_empty(list)) {
1000 struct request *rq;
1001
1002 rq = list_first_entry(list, struct request, queuelist);
1003 list_del_init(&rq->queuelist);
1004 rq->mq_ctx = ctx;
1005 __blk_mq_insert_request(hctx, rq, false);
1006 }
1007 spin_unlock(&ctx->lock);
1008
1009 blk_mq_run_hw_queue(hctx, from_schedule);
1010 blk_mq_put_ctx(current_ctx);
1011 }
1012
1013 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1014 {
1015 struct request *rqa = container_of(a, struct request, queuelist);
1016 struct request *rqb = container_of(b, struct request, queuelist);
1017
1018 return !(rqa->mq_ctx < rqb->mq_ctx ||
1019 (rqa->mq_ctx == rqb->mq_ctx &&
1020 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1021 }
1022
1023 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1024 {
1025 struct blk_mq_ctx *this_ctx;
1026 struct request_queue *this_q;
1027 struct request *rq;
1028 LIST_HEAD(list);
1029 LIST_HEAD(ctx_list);
1030 unsigned int depth;
1031
1032 list_splice_init(&plug->mq_list, &list);
1033
1034 list_sort(NULL, &list, plug_ctx_cmp);
1035
1036 this_q = NULL;
1037 this_ctx = NULL;
1038 depth = 0;
1039
1040 while (!list_empty(&list)) {
1041 rq = list_entry_rq(list.next);
1042 list_del_init(&rq->queuelist);
1043 BUG_ON(!rq->q);
1044 if (rq->mq_ctx != this_ctx) {
1045 if (this_ctx) {
1046 blk_mq_insert_requests(this_q, this_ctx,
1047 &ctx_list, depth,
1048 from_schedule);
1049 }
1050
1051 this_ctx = rq->mq_ctx;
1052 this_q = rq->q;
1053 depth = 0;
1054 }
1055
1056 depth++;
1057 list_add_tail(&rq->queuelist, &ctx_list);
1058 }
1059
1060 /*
1061 * If 'this_ctx' is set, we know we have entries to complete
1062 * on 'ctx_list'. Do those.
1063 */
1064 if (this_ctx) {
1065 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1066 from_schedule);
1067 }
1068 }
1069
1070 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1071 {
1072 init_request_from_bio(rq, bio);
1073
1074 if (blk_do_io_stat(rq))
1075 blk_account_io_start(rq, 1);
1076 }
1077
1078 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1079 {
1080 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1081 !blk_queue_nomerges(hctx->queue);
1082 }
1083
1084 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1085 struct blk_mq_ctx *ctx,
1086 struct request *rq, struct bio *bio)
1087 {
1088 if (!hctx_allow_merges(hctx)) {
1089 blk_mq_bio_to_request(rq, bio);
1090 spin_lock(&ctx->lock);
1091 insert_rq:
1092 __blk_mq_insert_request(hctx, rq, false);
1093 spin_unlock(&ctx->lock);
1094 return false;
1095 } else {
1096 struct request_queue *q = hctx->queue;
1097
1098 spin_lock(&ctx->lock);
1099 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1100 blk_mq_bio_to_request(rq, bio);
1101 goto insert_rq;
1102 }
1103
1104 spin_unlock(&ctx->lock);
1105 __blk_mq_free_request(hctx, ctx, rq);
1106 return true;
1107 }
1108 }
1109
1110 struct blk_map_ctx {
1111 struct blk_mq_hw_ctx *hctx;
1112 struct blk_mq_ctx *ctx;
1113 };
1114
1115 static struct request *blk_mq_map_request(struct request_queue *q,
1116 struct bio *bio,
1117 struct blk_map_ctx *data)
1118 {
1119 struct blk_mq_hw_ctx *hctx;
1120 struct blk_mq_ctx *ctx;
1121 struct request *rq;
1122 int rw = bio_data_dir(bio);
1123 struct blk_mq_alloc_data alloc_data;
1124
1125 if (unlikely(blk_mq_queue_enter(q))) {
1126 bio_endio(bio, -EIO);
1127 return NULL;
1128 }
1129
1130 ctx = blk_mq_get_ctx(q);
1131 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1132
1133 if (rw_is_sync(bio->bi_rw))
1134 rw |= REQ_SYNC;
1135
1136 trace_block_getrq(q, bio, rw);
1137 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1138 hctx);
1139 rq = __blk_mq_alloc_request(&alloc_data, rw);
1140 if (unlikely(!rq)) {
1141 __blk_mq_run_hw_queue(hctx);
1142 blk_mq_put_ctx(ctx);
1143 trace_block_sleeprq(q, bio, rw);
1144
1145 ctx = blk_mq_get_ctx(q);
1146 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1147 blk_mq_set_alloc_data(&alloc_data, q,
1148 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1149 rq = __blk_mq_alloc_request(&alloc_data, rw);
1150 ctx = alloc_data.ctx;
1151 hctx = alloc_data.hctx;
1152 }
1153
1154 hctx->queued++;
1155 data->hctx = hctx;
1156 data->ctx = ctx;
1157 return rq;
1158 }
1159
1160 /*
1161 * Multiple hardware queue variant. This will not use per-process plugs,
1162 * but will attempt to bypass the hctx queueing if we can go straight to
1163 * hardware for SYNC IO.
1164 */
1165 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1166 {
1167 const int is_sync = rw_is_sync(bio->bi_rw);
1168 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1169 struct blk_map_ctx data;
1170 struct request *rq;
1171
1172 blk_queue_bounce(q, &bio);
1173
1174 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1175 bio_endio(bio, -EIO);
1176 return;
1177 }
1178
1179 rq = blk_mq_map_request(q, bio, &data);
1180 if (unlikely(!rq))
1181 return;
1182
1183 if (unlikely(is_flush_fua)) {
1184 blk_mq_bio_to_request(rq, bio);
1185 blk_insert_flush(rq);
1186 goto run_queue;
1187 }
1188
1189 /*
1190 * If the driver supports defer issued based on 'last', then
1191 * queue it up like normal since we can potentially save some
1192 * CPU this way.
1193 */
1194 if (is_sync && !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1195 struct blk_mq_queue_data bd = {
1196 .rq = rq,
1197 .list = NULL,
1198 .last = 1
1199 };
1200 int ret;
1201
1202 blk_mq_bio_to_request(rq, bio);
1203
1204 /*
1205 * For OK queue, we are done. For error, kill it. Any other
1206 * error (busy), just add it to our list as we previously
1207 * would have done
1208 */
1209 ret = q->mq_ops->queue_rq(data.hctx, &bd);
1210 if (ret == BLK_MQ_RQ_QUEUE_OK)
1211 goto done;
1212 else {
1213 __blk_mq_requeue_request(rq);
1214
1215 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1216 rq->errors = -EIO;
1217 blk_mq_end_request(rq, rq->errors);
1218 goto done;
1219 }
1220 }
1221 }
1222
1223 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1224 /*
1225 * For a SYNC request, send it to the hardware immediately. For
1226 * an ASYNC request, just ensure that we run it later on. The
1227 * latter allows for merging opportunities and more efficient
1228 * dispatching.
1229 */
1230 run_queue:
1231 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1232 }
1233 done:
1234 blk_mq_put_ctx(data.ctx);
1235 }
1236
1237 /*
1238 * Single hardware queue variant. This will attempt to use any per-process
1239 * plug for merging and IO deferral.
1240 */
1241 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1242 {
1243 const int is_sync = rw_is_sync(bio->bi_rw);
1244 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1245 unsigned int use_plug, request_count = 0;
1246 struct blk_map_ctx data;
1247 struct request *rq;
1248
1249 /*
1250 * If we have multiple hardware queues, just go directly to
1251 * one of those for sync IO.
1252 */
1253 use_plug = !is_flush_fua && !is_sync;
1254
1255 blk_queue_bounce(q, &bio);
1256
1257 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1258 bio_endio(bio, -EIO);
1259 return;
1260 }
1261
1262 if (use_plug && !blk_queue_nomerges(q) &&
1263 blk_attempt_plug_merge(q, bio, &request_count))
1264 return;
1265
1266 rq = blk_mq_map_request(q, bio, &data);
1267 if (unlikely(!rq))
1268 return;
1269
1270 if (unlikely(is_flush_fua)) {
1271 blk_mq_bio_to_request(rq, bio);
1272 blk_insert_flush(rq);
1273 goto run_queue;
1274 }
1275
1276 /*
1277 * A task plug currently exists. Since this is completely lockless,
1278 * utilize that to temporarily store requests until the task is
1279 * either done or scheduled away.
1280 */
1281 if (use_plug) {
1282 struct blk_plug *plug = current->plug;
1283
1284 if (plug) {
1285 blk_mq_bio_to_request(rq, bio);
1286 if (list_empty(&plug->mq_list))
1287 trace_block_plug(q);
1288 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1289 blk_flush_plug_list(plug, false);
1290 trace_block_plug(q);
1291 }
1292 list_add_tail(&rq->queuelist, &plug->mq_list);
1293 blk_mq_put_ctx(data.ctx);
1294 return;
1295 }
1296 }
1297
1298 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1299 /*
1300 * For a SYNC request, send it to the hardware immediately. For
1301 * an ASYNC request, just ensure that we run it later on. The
1302 * latter allows for merging opportunities and more efficient
1303 * dispatching.
1304 */
1305 run_queue:
1306 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1307 }
1308
1309 blk_mq_put_ctx(data.ctx);
1310 }
1311
1312 /*
1313 * Default mapping to a software queue, since we use one per CPU.
1314 */
1315 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1316 {
1317 return q->queue_hw_ctx[q->mq_map[cpu]];
1318 }
1319 EXPORT_SYMBOL(blk_mq_map_queue);
1320
1321 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1322 struct blk_mq_tags *tags, unsigned int hctx_idx)
1323 {
1324 struct page *page;
1325
1326 if (tags->rqs && set->ops->exit_request) {
1327 int i;
1328
1329 for (i = 0; i < tags->nr_tags; i++) {
1330 if (!tags->rqs[i])
1331 continue;
1332 set->ops->exit_request(set->driver_data, tags->rqs[i],
1333 hctx_idx, i);
1334 tags->rqs[i] = NULL;
1335 }
1336 }
1337
1338 while (!list_empty(&tags->page_list)) {
1339 page = list_first_entry(&tags->page_list, struct page, lru);
1340 list_del_init(&page->lru);
1341 __free_pages(page, page->private);
1342 }
1343
1344 kfree(tags->rqs);
1345
1346 blk_mq_free_tags(tags);
1347 }
1348
1349 static size_t order_to_size(unsigned int order)
1350 {
1351 return (size_t)PAGE_SIZE << order;
1352 }
1353
1354 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1355 unsigned int hctx_idx)
1356 {
1357 struct blk_mq_tags *tags;
1358 unsigned int i, j, entries_per_page, max_order = 4;
1359 size_t rq_size, left;
1360
1361 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1362 set->numa_node);
1363 if (!tags)
1364 return NULL;
1365
1366 INIT_LIST_HEAD(&tags->page_list);
1367
1368 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1369 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1370 set->numa_node);
1371 if (!tags->rqs) {
1372 blk_mq_free_tags(tags);
1373 return NULL;
1374 }
1375
1376 /*
1377 * rq_size is the size of the request plus driver payload, rounded
1378 * to the cacheline size
1379 */
1380 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1381 cache_line_size());
1382 left = rq_size * set->queue_depth;
1383
1384 for (i = 0; i < set->queue_depth; ) {
1385 int this_order = max_order;
1386 struct page *page;
1387 int to_do;
1388 void *p;
1389
1390 while (left < order_to_size(this_order - 1) && this_order)
1391 this_order--;
1392
1393 do {
1394 page = alloc_pages_node(set->numa_node,
1395 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1396 this_order);
1397 if (page)
1398 break;
1399 if (!this_order--)
1400 break;
1401 if (order_to_size(this_order) < rq_size)
1402 break;
1403 } while (1);
1404
1405 if (!page)
1406 goto fail;
1407
1408 page->private = this_order;
1409 list_add_tail(&page->lru, &tags->page_list);
1410
1411 p = page_address(page);
1412 entries_per_page = order_to_size(this_order) / rq_size;
1413 to_do = min(entries_per_page, set->queue_depth - i);
1414 left -= to_do * rq_size;
1415 for (j = 0; j < to_do; j++) {
1416 tags->rqs[i] = p;
1417 tags->rqs[i]->atomic_flags = 0;
1418 tags->rqs[i]->cmd_flags = 0;
1419 if (set->ops->init_request) {
1420 if (set->ops->init_request(set->driver_data,
1421 tags->rqs[i], hctx_idx, i,
1422 set->numa_node)) {
1423 tags->rqs[i] = NULL;
1424 goto fail;
1425 }
1426 }
1427
1428 p += rq_size;
1429 i++;
1430 }
1431 }
1432
1433 return tags;
1434
1435 fail:
1436 blk_mq_free_rq_map(set, tags, hctx_idx);
1437 return NULL;
1438 }
1439
1440 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1441 {
1442 kfree(bitmap->map);
1443 }
1444
1445 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1446 {
1447 unsigned int bpw = 8, total, num_maps, i;
1448
1449 bitmap->bits_per_word = bpw;
1450
1451 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1452 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1453 GFP_KERNEL, node);
1454 if (!bitmap->map)
1455 return -ENOMEM;
1456
1457 bitmap->map_size = num_maps;
1458
1459 total = nr_cpu_ids;
1460 for (i = 0; i < num_maps; i++) {
1461 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1462 total -= bitmap->map[i].depth;
1463 }
1464
1465 return 0;
1466 }
1467
1468 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1469 {
1470 struct request_queue *q = hctx->queue;
1471 struct blk_mq_ctx *ctx;
1472 LIST_HEAD(tmp);
1473
1474 /*
1475 * Move ctx entries to new CPU, if this one is going away.
1476 */
1477 ctx = __blk_mq_get_ctx(q, cpu);
1478
1479 spin_lock(&ctx->lock);
1480 if (!list_empty(&ctx->rq_list)) {
1481 list_splice_init(&ctx->rq_list, &tmp);
1482 blk_mq_hctx_clear_pending(hctx, ctx);
1483 }
1484 spin_unlock(&ctx->lock);
1485
1486 if (list_empty(&tmp))
1487 return NOTIFY_OK;
1488
1489 ctx = blk_mq_get_ctx(q);
1490 spin_lock(&ctx->lock);
1491
1492 while (!list_empty(&tmp)) {
1493 struct request *rq;
1494
1495 rq = list_first_entry(&tmp, struct request, queuelist);
1496 rq->mq_ctx = ctx;
1497 list_move_tail(&rq->queuelist, &ctx->rq_list);
1498 }
1499
1500 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1501 blk_mq_hctx_mark_pending(hctx, ctx);
1502
1503 spin_unlock(&ctx->lock);
1504
1505 blk_mq_run_hw_queue(hctx, true);
1506 blk_mq_put_ctx(ctx);
1507 return NOTIFY_OK;
1508 }
1509
1510 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1511 {
1512 struct request_queue *q = hctx->queue;
1513 struct blk_mq_tag_set *set = q->tag_set;
1514
1515 if (set->tags[hctx->queue_num])
1516 return NOTIFY_OK;
1517
1518 set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1519 if (!set->tags[hctx->queue_num])
1520 return NOTIFY_STOP;
1521
1522 hctx->tags = set->tags[hctx->queue_num];
1523 return NOTIFY_OK;
1524 }
1525
1526 static int blk_mq_hctx_notify(void *data, unsigned long action,
1527 unsigned int cpu)
1528 {
1529 struct blk_mq_hw_ctx *hctx = data;
1530
1531 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1532 return blk_mq_hctx_cpu_offline(hctx, cpu);
1533 else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1534 return blk_mq_hctx_cpu_online(hctx, cpu);
1535
1536 return NOTIFY_OK;
1537 }
1538
1539 static void blk_mq_exit_hctx(struct request_queue *q,
1540 struct blk_mq_tag_set *set,
1541 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1542 {
1543 unsigned flush_start_tag = set->queue_depth;
1544
1545 blk_mq_tag_idle(hctx);
1546
1547 if (set->ops->exit_request)
1548 set->ops->exit_request(set->driver_data,
1549 hctx->fq->flush_rq, hctx_idx,
1550 flush_start_tag + hctx_idx);
1551
1552 if (set->ops->exit_hctx)
1553 set->ops->exit_hctx(hctx, hctx_idx);
1554
1555 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1556 blk_free_flush_queue(hctx->fq);
1557 kfree(hctx->ctxs);
1558 blk_mq_free_bitmap(&hctx->ctx_map);
1559 }
1560
1561 static void blk_mq_exit_hw_queues(struct request_queue *q,
1562 struct blk_mq_tag_set *set, int nr_queue)
1563 {
1564 struct blk_mq_hw_ctx *hctx;
1565 unsigned int i;
1566
1567 queue_for_each_hw_ctx(q, hctx, i) {
1568 if (i == nr_queue)
1569 break;
1570 blk_mq_exit_hctx(q, set, hctx, i);
1571 }
1572 }
1573
1574 static void blk_mq_free_hw_queues(struct request_queue *q,
1575 struct blk_mq_tag_set *set)
1576 {
1577 struct blk_mq_hw_ctx *hctx;
1578 unsigned int i;
1579
1580 queue_for_each_hw_ctx(q, hctx, i) {
1581 free_cpumask_var(hctx->cpumask);
1582 kfree(hctx);
1583 }
1584 }
1585
1586 static int blk_mq_init_hctx(struct request_queue *q,
1587 struct blk_mq_tag_set *set,
1588 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1589 {
1590 int node;
1591 unsigned flush_start_tag = set->queue_depth;
1592
1593 node = hctx->numa_node;
1594 if (node == NUMA_NO_NODE)
1595 node = hctx->numa_node = set->numa_node;
1596
1597 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1598 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1599 spin_lock_init(&hctx->lock);
1600 INIT_LIST_HEAD(&hctx->dispatch);
1601 hctx->queue = q;
1602 hctx->queue_num = hctx_idx;
1603 hctx->flags = set->flags;
1604 hctx->cmd_size = set->cmd_size;
1605
1606 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1607 blk_mq_hctx_notify, hctx);
1608 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1609
1610 hctx->tags = set->tags[hctx_idx];
1611
1612 /*
1613 * Allocate space for all possible cpus to avoid allocation at
1614 * runtime
1615 */
1616 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1617 GFP_KERNEL, node);
1618 if (!hctx->ctxs)
1619 goto unregister_cpu_notifier;
1620
1621 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1622 goto free_ctxs;
1623
1624 hctx->nr_ctx = 0;
1625
1626 if (set->ops->init_hctx &&
1627 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1628 goto free_bitmap;
1629
1630 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1631 if (!hctx->fq)
1632 goto exit_hctx;
1633
1634 if (set->ops->init_request &&
1635 set->ops->init_request(set->driver_data,
1636 hctx->fq->flush_rq, hctx_idx,
1637 flush_start_tag + hctx_idx, node))
1638 goto free_fq;
1639
1640 return 0;
1641
1642 free_fq:
1643 kfree(hctx->fq);
1644 exit_hctx:
1645 if (set->ops->exit_hctx)
1646 set->ops->exit_hctx(hctx, hctx_idx);
1647 free_bitmap:
1648 blk_mq_free_bitmap(&hctx->ctx_map);
1649 free_ctxs:
1650 kfree(hctx->ctxs);
1651 unregister_cpu_notifier:
1652 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1653
1654 return -1;
1655 }
1656
1657 static int blk_mq_init_hw_queues(struct request_queue *q,
1658 struct blk_mq_tag_set *set)
1659 {
1660 struct blk_mq_hw_ctx *hctx;
1661 unsigned int i;
1662
1663 /*
1664 * Initialize hardware queues
1665 */
1666 queue_for_each_hw_ctx(q, hctx, i) {
1667 if (blk_mq_init_hctx(q, set, hctx, i))
1668 break;
1669 }
1670
1671 if (i == q->nr_hw_queues)
1672 return 0;
1673
1674 /*
1675 * Init failed
1676 */
1677 blk_mq_exit_hw_queues(q, set, i);
1678
1679 return 1;
1680 }
1681
1682 static void blk_mq_init_cpu_queues(struct request_queue *q,
1683 unsigned int nr_hw_queues)
1684 {
1685 unsigned int i;
1686
1687 for_each_possible_cpu(i) {
1688 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1689 struct blk_mq_hw_ctx *hctx;
1690
1691 memset(__ctx, 0, sizeof(*__ctx));
1692 __ctx->cpu = i;
1693 spin_lock_init(&__ctx->lock);
1694 INIT_LIST_HEAD(&__ctx->rq_list);
1695 __ctx->queue = q;
1696
1697 /* If the cpu isn't online, the cpu is mapped to first hctx */
1698 if (!cpu_online(i))
1699 continue;
1700
1701 hctx = q->mq_ops->map_queue(q, i);
1702 cpumask_set_cpu(i, hctx->cpumask);
1703 hctx->nr_ctx++;
1704
1705 /*
1706 * Set local node, IFF we have more than one hw queue. If
1707 * not, we remain on the home node of the device
1708 */
1709 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1710 hctx->numa_node = cpu_to_node(i);
1711 }
1712 }
1713
1714 static void blk_mq_map_swqueue(struct request_queue *q)
1715 {
1716 unsigned int i;
1717 struct blk_mq_hw_ctx *hctx;
1718 struct blk_mq_ctx *ctx;
1719
1720 queue_for_each_hw_ctx(q, hctx, i) {
1721 cpumask_clear(hctx->cpumask);
1722 hctx->nr_ctx = 0;
1723 }
1724
1725 /*
1726 * Map software to hardware queues
1727 */
1728 queue_for_each_ctx(q, ctx, i) {
1729 /* If the cpu isn't online, the cpu is mapped to first hctx */
1730 if (!cpu_online(i))
1731 continue;
1732
1733 hctx = q->mq_ops->map_queue(q, i);
1734 cpumask_set_cpu(i, hctx->cpumask);
1735 ctx->index_hw = hctx->nr_ctx;
1736 hctx->ctxs[hctx->nr_ctx++] = ctx;
1737 }
1738
1739 queue_for_each_hw_ctx(q, hctx, i) {
1740 /*
1741 * If no software queues are mapped to this hardware queue,
1742 * disable it and free the request entries.
1743 */
1744 if (!hctx->nr_ctx) {
1745 struct blk_mq_tag_set *set = q->tag_set;
1746
1747 if (set->tags[i]) {
1748 blk_mq_free_rq_map(set, set->tags[i], i);
1749 set->tags[i] = NULL;
1750 hctx->tags = NULL;
1751 }
1752 continue;
1753 }
1754
1755 /*
1756 * Initialize batch roundrobin counts
1757 */
1758 hctx->next_cpu = cpumask_first(hctx->cpumask);
1759 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1760 }
1761 }
1762
1763 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1764 {
1765 struct blk_mq_hw_ctx *hctx;
1766 struct request_queue *q;
1767 bool shared;
1768 int i;
1769
1770 if (set->tag_list.next == set->tag_list.prev)
1771 shared = false;
1772 else
1773 shared = true;
1774
1775 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1776 blk_mq_freeze_queue(q);
1777
1778 queue_for_each_hw_ctx(q, hctx, i) {
1779 if (shared)
1780 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1781 else
1782 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1783 }
1784 blk_mq_unfreeze_queue(q);
1785 }
1786 }
1787
1788 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1789 {
1790 struct blk_mq_tag_set *set = q->tag_set;
1791
1792 mutex_lock(&set->tag_list_lock);
1793 list_del_init(&q->tag_set_list);
1794 blk_mq_update_tag_set_depth(set);
1795 mutex_unlock(&set->tag_list_lock);
1796 }
1797
1798 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1799 struct request_queue *q)
1800 {
1801 q->tag_set = set;
1802
1803 mutex_lock(&set->tag_list_lock);
1804 list_add_tail(&q->tag_set_list, &set->tag_list);
1805 blk_mq_update_tag_set_depth(set);
1806 mutex_unlock(&set->tag_list_lock);
1807 }
1808
1809 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1810 {
1811 struct blk_mq_hw_ctx **hctxs;
1812 struct blk_mq_ctx __percpu *ctx;
1813 struct request_queue *q;
1814 unsigned int *map;
1815 int i;
1816
1817 ctx = alloc_percpu(struct blk_mq_ctx);
1818 if (!ctx)
1819 return ERR_PTR(-ENOMEM);
1820
1821 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1822 set->numa_node);
1823
1824 if (!hctxs)
1825 goto err_percpu;
1826
1827 map = blk_mq_make_queue_map(set);
1828 if (!map)
1829 goto err_map;
1830
1831 for (i = 0; i < set->nr_hw_queues; i++) {
1832 int node = blk_mq_hw_queue_to_node(map, i);
1833
1834 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1835 GFP_KERNEL, node);
1836 if (!hctxs[i])
1837 goto err_hctxs;
1838
1839 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1840 node))
1841 goto err_hctxs;
1842
1843 atomic_set(&hctxs[i]->nr_active, 0);
1844 hctxs[i]->numa_node = node;
1845 hctxs[i]->queue_num = i;
1846 }
1847
1848 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1849 if (!q)
1850 goto err_hctxs;
1851
1852 /*
1853 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1854 * See blk_register_queue() for details.
1855 */
1856 if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release,
1857 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1858 goto err_map;
1859
1860 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1861 blk_queue_rq_timeout(q, 30000);
1862
1863 q->nr_queues = nr_cpu_ids;
1864 q->nr_hw_queues = set->nr_hw_queues;
1865 q->mq_map = map;
1866
1867 q->queue_ctx = ctx;
1868 q->queue_hw_ctx = hctxs;
1869
1870 q->mq_ops = set->ops;
1871 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1872
1873 if (!(set->flags & BLK_MQ_F_SG_MERGE))
1874 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1875
1876 q->sg_reserved_size = INT_MAX;
1877
1878 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1879 INIT_LIST_HEAD(&q->requeue_list);
1880 spin_lock_init(&q->requeue_lock);
1881
1882 if (q->nr_hw_queues > 1)
1883 blk_queue_make_request(q, blk_mq_make_request);
1884 else
1885 blk_queue_make_request(q, blk_sq_make_request);
1886
1887 if (set->timeout)
1888 blk_queue_rq_timeout(q, set->timeout);
1889
1890 /*
1891 * Do this after blk_queue_make_request() overrides it...
1892 */
1893 q->nr_requests = set->queue_depth;
1894
1895 if (set->ops->complete)
1896 blk_queue_softirq_done(q, set->ops->complete);
1897
1898 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1899
1900 if (blk_mq_init_hw_queues(q, set))
1901 goto err_hw;
1902
1903 mutex_lock(&all_q_mutex);
1904 list_add_tail(&q->all_q_node, &all_q_list);
1905 mutex_unlock(&all_q_mutex);
1906
1907 blk_mq_add_queue_tag_set(set, q);
1908
1909 blk_mq_map_swqueue(q);
1910
1911 return q;
1912
1913 err_hw:
1914 blk_cleanup_queue(q);
1915 err_hctxs:
1916 kfree(map);
1917 for (i = 0; i < set->nr_hw_queues; i++) {
1918 if (!hctxs[i])
1919 break;
1920 free_cpumask_var(hctxs[i]->cpumask);
1921 kfree(hctxs[i]);
1922 }
1923 err_map:
1924 kfree(hctxs);
1925 err_percpu:
1926 free_percpu(ctx);
1927 return ERR_PTR(-ENOMEM);
1928 }
1929 EXPORT_SYMBOL(blk_mq_init_queue);
1930
1931 void blk_mq_free_queue(struct request_queue *q)
1932 {
1933 struct blk_mq_tag_set *set = q->tag_set;
1934
1935 blk_mq_del_queue_tag_set(q);
1936
1937 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
1938 blk_mq_free_hw_queues(q, set);
1939
1940 percpu_ref_exit(&q->mq_usage_counter);
1941
1942 free_percpu(q->queue_ctx);
1943 kfree(q->queue_hw_ctx);
1944 kfree(q->mq_map);
1945
1946 q->queue_ctx = NULL;
1947 q->queue_hw_ctx = NULL;
1948 q->mq_map = NULL;
1949
1950 mutex_lock(&all_q_mutex);
1951 list_del_init(&q->all_q_node);
1952 mutex_unlock(&all_q_mutex);
1953 }
1954
1955 /* Basically redo blk_mq_init_queue with queue frozen */
1956 static void blk_mq_queue_reinit(struct request_queue *q)
1957 {
1958 WARN_ON_ONCE(!q->mq_freeze_depth);
1959
1960 blk_mq_sysfs_unregister(q);
1961
1962 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1963
1964 /*
1965 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1966 * we should change hctx numa_node according to new topology (this
1967 * involves free and re-allocate memory, worthy doing?)
1968 */
1969
1970 blk_mq_map_swqueue(q);
1971
1972 blk_mq_sysfs_register(q);
1973 }
1974
1975 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1976 unsigned long action, void *hcpu)
1977 {
1978 struct request_queue *q;
1979
1980 /*
1981 * Before new mappings are established, hotadded cpu might already
1982 * start handling requests. This doesn't break anything as we map
1983 * offline CPUs to first hardware queue. We will re-init the queue
1984 * below to get optimal settings.
1985 */
1986 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1987 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1988 return NOTIFY_OK;
1989
1990 mutex_lock(&all_q_mutex);
1991
1992 /*
1993 * We need to freeze and reinit all existing queues. Freezing
1994 * involves synchronous wait for an RCU grace period and doing it
1995 * one by one may take a long time. Start freezing all queues in
1996 * one swoop and then wait for the completions so that freezing can
1997 * take place in parallel.
1998 */
1999 list_for_each_entry(q, &all_q_list, all_q_node)
2000 blk_mq_freeze_queue_start(q);
2001 list_for_each_entry(q, &all_q_list, all_q_node)
2002 blk_mq_freeze_queue_wait(q);
2003
2004 list_for_each_entry(q, &all_q_list, all_q_node)
2005 blk_mq_queue_reinit(q);
2006
2007 list_for_each_entry(q, &all_q_list, all_q_node)
2008 blk_mq_unfreeze_queue(q);
2009
2010 mutex_unlock(&all_q_mutex);
2011 return NOTIFY_OK;
2012 }
2013
2014 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2015 {
2016 int i;
2017
2018 for (i = 0; i < set->nr_hw_queues; i++) {
2019 set->tags[i] = blk_mq_init_rq_map(set, i);
2020 if (!set->tags[i])
2021 goto out_unwind;
2022 }
2023
2024 return 0;
2025
2026 out_unwind:
2027 while (--i >= 0)
2028 blk_mq_free_rq_map(set, set->tags[i], i);
2029
2030 return -ENOMEM;
2031 }
2032
2033 /*
2034 * Allocate the request maps associated with this tag_set. Note that this
2035 * may reduce the depth asked for, if memory is tight. set->queue_depth
2036 * will be updated to reflect the allocated depth.
2037 */
2038 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2039 {
2040 unsigned int depth;
2041 int err;
2042
2043 depth = set->queue_depth;
2044 do {
2045 err = __blk_mq_alloc_rq_maps(set);
2046 if (!err)
2047 break;
2048
2049 set->queue_depth >>= 1;
2050 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2051 err = -ENOMEM;
2052 break;
2053 }
2054 } while (set->queue_depth);
2055
2056 if (!set->queue_depth || err) {
2057 pr_err("blk-mq: failed to allocate request map\n");
2058 return -ENOMEM;
2059 }
2060
2061 if (depth != set->queue_depth)
2062 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2063 depth, set->queue_depth);
2064
2065 return 0;
2066 }
2067
2068 /*
2069 * Alloc a tag set to be associated with one or more request queues.
2070 * May fail with EINVAL for various error conditions. May adjust the
2071 * requested depth down, if if it too large. In that case, the set
2072 * value will be stored in set->queue_depth.
2073 */
2074 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2075 {
2076 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2077
2078 if (!set->nr_hw_queues)
2079 return -EINVAL;
2080 if (!set->queue_depth)
2081 return -EINVAL;
2082 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2083 return -EINVAL;
2084
2085 if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
2086 return -EINVAL;
2087
2088 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2089 pr_info("blk-mq: reduced tag depth to %u\n",
2090 BLK_MQ_MAX_DEPTH);
2091 set->queue_depth = BLK_MQ_MAX_DEPTH;
2092 }
2093
2094 /*
2095 * If a crashdump is active, then we are potentially in a very
2096 * memory constrained environment. Limit us to 1 queue and
2097 * 64 tags to prevent using too much memory.
2098 */
2099 if (is_kdump_kernel()) {
2100 set->nr_hw_queues = 1;
2101 set->queue_depth = min(64U, set->queue_depth);
2102 }
2103
2104 set->tags = kmalloc_node(set->nr_hw_queues *
2105 sizeof(struct blk_mq_tags *),
2106 GFP_KERNEL, set->numa_node);
2107 if (!set->tags)
2108 return -ENOMEM;
2109
2110 if (blk_mq_alloc_rq_maps(set))
2111 goto enomem;
2112
2113 mutex_init(&set->tag_list_lock);
2114 INIT_LIST_HEAD(&set->tag_list);
2115
2116 return 0;
2117 enomem:
2118 kfree(set->tags);
2119 set->tags = NULL;
2120 return -ENOMEM;
2121 }
2122 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2123
2124 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2125 {
2126 int i;
2127
2128 for (i = 0; i < set->nr_hw_queues; i++) {
2129 if (set->tags[i])
2130 blk_mq_free_rq_map(set, set->tags[i], i);
2131 }
2132
2133 kfree(set->tags);
2134 set->tags = NULL;
2135 }
2136 EXPORT_SYMBOL(blk_mq_free_tag_set);
2137
2138 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2139 {
2140 struct blk_mq_tag_set *set = q->tag_set;
2141 struct blk_mq_hw_ctx *hctx;
2142 int i, ret;
2143
2144 if (!set || nr > set->queue_depth)
2145 return -EINVAL;
2146
2147 ret = 0;
2148 queue_for_each_hw_ctx(q, hctx, i) {
2149 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2150 if (ret)
2151 break;
2152 }
2153
2154 if (!ret)
2155 q->nr_requests = nr;
2156
2157 return ret;
2158 }
2159
2160 void blk_mq_disable_hotplug(void)
2161 {
2162 mutex_lock(&all_q_mutex);
2163 }
2164
2165 void blk_mq_enable_hotplug(void)
2166 {
2167 mutex_unlock(&all_q_mutex);
2168 }
2169
2170 static int __init blk_mq_init(void)
2171 {
2172 blk_mq_cpu_init();
2173
2174 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2175
2176 return 0;
2177 }
2178 subsys_initcall(blk_mq_init);