]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-mq.c
blk-mq-sched: allow setting of default IO scheduler
[mirror_ubuntu-artful-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
25 #include <linux/prefetch.h>
26
27 #include <trace/events/block.h>
28
29 #include <linux/blk-mq.h>
30 #include "blk.h"
31 #include "blk-mq.h"
32 #include "blk-mq-tag.h"
33 #include "blk-stat.h"
34 #include "blk-wbt.h"
35 #include "blk-mq-sched.h"
36
37 static DEFINE_MUTEX(all_q_mutex);
38 static LIST_HEAD(all_q_list);
39
40 /*
41 * Check if any of the ctx's have pending work in this hardware queue
42 */
43 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
44 {
45 return sbitmap_any_bit_set(&hctx->ctx_map) ||
46 !list_empty_careful(&hctx->dispatch) ||
47 blk_mq_sched_has_work(hctx);
48 }
49
50 /*
51 * Mark this ctx as having pending work in this hardware queue
52 */
53 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
54 struct blk_mq_ctx *ctx)
55 {
56 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
57 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
58 }
59
60 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
61 struct blk_mq_ctx *ctx)
62 {
63 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
64 }
65
66 void blk_mq_freeze_queue_start(struct request_queue *q)
67 {
68 int freeze_depth;
69
70 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
71 if (freeze_depth == 1) {
72 percpu_ref_kill(&q->q_usage_counter);
73 blk_mq_run_hw_queues(q, false);
74 }
75 }
76 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
77
78 static void blk_mq_freeze_queue_wait(struct request_queue *q)
79 {
80 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
81 }
82
83 /*
84 * Guarantee no request is in use, so we can change any data structure of
85 * the queue afterward.
86 */
87 void blk_freeze_queue(struct request_queue *q)
88 {
89 /*
90 * In the !blk_mq case we are only calling this to kill the
91 * q_usage_counter, otherwise this increases the freeze depth
92 * and waits for it to return to zero. For this reason there is
93 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
94 * exported to drivers as the only user for unfreeze is blk_mq.
95 */
96 blk_mq_freeze_queue_start(q);
97 blk_mq_freeze_queue_wait(q);
98 }
99
100 void blk_mq_freeze_queue(struct request_queue *q)
101 {
102 /*
103 * ...just an alias to keep freeze and unfreeze actions balanced
104 * in the blk_mq_* namespace
105 */
106 blk_freeze_queue(q);
107 }
108 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
109
110 void blk_mq_unfreeze_queue(struct request_queue *q)
111 {
112 int freeze_depth;
113
114 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
115 WARN_ON_ONCE(freeze_depth < 0);
116 if (!freeze_depth) {
117 percpu_ref_reinit(&q->q_usage_counter);
118 wake_up_all(&q->mq_freeze_wq);
119 }
120 }
121 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
122
123 /**
124 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
125 * @q: request queue.
126 *
127 * Note: this function does not prevent that the struct request end_io()
128 * callback function is invoked. Additionally, it is not prevented that
129 * new queue_rq() calls occur unless the queue has been stopped first.
130 */
131 void blk_mq_quiesce_queue(struct request_queue *q)
132 {
133 struct blk_mq_hw_ctx *hctx;
134 unsigned int i;
135 bool rcu = false;
136
137 blk_mq_stop_hw_queues(q);
138
139 queue_for_each_hw_ctx(q, hctx, i) {
140 if (hctx->flags & BLK_MQ_F_BLOCKING)
141 synchronize_srcu(&hctx->queue_rq_srcu);
142 else
143 rcu = true;
144 }
145 if (rcu)
146 synchronize_rcu();
147 }
148 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
149
150 void blk_mq_wake_waiters(struct request_queue *q)
151 {
152 struct blk_mq_hw_ctx *hctx;
153 unsigned int i;
154
155 queue_for_each_hw_ctx(q, hctx, i)
156 if (blk_mq_hw_queue_mapped(hctx))
157 blk_mq_tag_wakeup_all(hctx->tags, true);
158
159 /*
160 * If we are called because the queue has now been marked as
161 * dying, we need to ensure that processes currently waiting on
162 * the queue are notified as well.
163 */
164 wake_up_all(&q->mq_freeze_wq);
165 }
166
167 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
168 {
169 return blk_mq_has_free_tags(hctx->tags);
170 }
171 EXPORT_SYMBOL(blk_mq_can_queue);
172
173 void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
174 struct request *rq, unsigned int op)
175 {
176 INIT_LIST_HEAD(&rq->queuelist);
177 /* csd/requeue_work/fifo_time is initialized before use */
178 rq->q = q;
179 rq->mq_ctx = ctx;
180 rq->cmd_flags = op;
181 if (blk_queue_io_stat(q))
182 rq->rq_flags |= RQF_IO_STAT;
183 /* do not touch atomic flags, it needs atomic ops against the timer */
184 rq->cpu = -1;
185 INIT_HLIST_NODE(&rq->hash);
186 RB_CLEAR_NODE(&rq->rb_node);
187 rq->rq_disk = NULL;
188 rq->part = NULL;
189 rq->start_time = jiffies;
190 #ifdef CONFIG_BLK_CGROUP
191 rq->rl = NULL;
192 set_start_time_ns(rq);
193 rq->io_start_time_ns = 0;
194 #endif
195 rq->nr_phys_segments = 0;
196 #if defined(CONFIG_BLK_DEV_INTEGRITY)
197 rq->nr_integrity_segments = 0;
198 #endif
199 rq->special = NULL;
200 /* tag was already set */
201 rq->errors = 0;
202
203 rq->cmd = rq->__cmd;
204
205 rq->extra_len = 0;
206 rq->sense_len = 0;
207 rq->resid_len = 0;
208 rq->sense = NULL;
209
210 INIT_LIST_HEAD(&rq->timeout_list);
211 rq->timeout = 0;
212
213 rq->end_io = NULL;
214 rq->end_io_data = NULL;
215 rq->next_rq = NULL;
216
217 ctx->rq_dispatched[op_is_sync(op)]++;
218 }
219 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
220
221 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
222 unsigned int op)
223 {
224 struct request *rq;
225 unsigned int tag;
226
227 tag = blk_mq_get_tag(data);
228 if (tag != BLK_MQ_TAG_FAIL) {
229 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
230
231 rq = tags->static_rqs[tag];
232
233 if (blk_mq_tag_busy(data->hctx)) {
234 rq->rq_flags = RQF_MQ_INFLIGHT;
235 atomic_inc(&data->hctx->nr_active);
236 }
237
238 if (data->flags & BLK_MQ_REQ_INTERNAL) {
239 rq->tag = -1;
240 rq->internal_tag = tag;
241 } else {
242 rq->tag = tag;
243 rq->internal_tag = -1;
244 }
245
246 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
247 return rq;
248 }
249
250 return NULL;
251 }
252 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
253
254 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
255 unsigned int flags)
256 {
257 struct blk_mq_alloc_data alloc_data;
258 struct request *rq;
259 int ret;
260
261 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
262 if (ret)
263 return ERR_PTR(ret);
264
265 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
266
267 blk_mq_put_ctx(alloc_data.ctx);
268 blk_queue_exit(q);
269
270 if (!rq)
271 return ERR_PTR(-EWOULDBLOCK);
272
273 rq->__data_len = 0;
274 rq->__sector = (sector_t) -1;
275 rq->bio = rq->biotail = NULL;
276 return rq;
277 }
278 EXPORT_SYMBOL(blk_mq_alloc_request);
279
280 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
281 unsigned int flags, unsigned int hctx_idx)
282 {
283 struct blk_mq_hw_ctx *hctx;
284 struct blk_mq_ctx *ctx;
285 struct request *rq;
286 struct blk_mq_alloc_data alloc_data;
287 int ret;
288
289 /*
290 * If the tag allocator sleeps we could get an allocation for a
291 * different hardware context. No need to complicate the low level
292 * allocator for this for the rare use case of a command tied to
293 * a specific queue.
294 */
295 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
296 return ERR_PTR(-EINVAL);
297
298 if (hctx_idx >= q->nr_hw_queues)
299 return ERR_PTR(-EIO);
300
301 ret = blk_queue_enter(q, true);
302 if (ret)
303 return ERR_PTR(ret);
304
305 /*
306 * Check if the hardware context is actually mapped to anything.
307 * If not tell the caller that it should skip this queue.
308 */
309 hctx = q->queue_hw_ctx[hctx_idx];
310 if (!blk_mq_hw_queue_mapped(hctx)) {
311 ret = -EXDEV;
312 goto out_queue_exit;
313 }
314 ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));
315
316 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
317 rq = __blk_mq_alloc_request(&alloc_data, rw);
318 if (!rq) {
319 ret = -EWOULDBLOCK;
320 goto out_queue_exit;
321 }
322
323 return rq;
324
325 out_queue_exit:
326 blk_queue_exit(q);
327 return ERR_PTR(ret);
328 }
329 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
330
331 void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
332 struct request *rq)
333 {
334 const int sched_tag = rq->internal_tag;
335 struct request_queue *q = rq->q;
336
337 if (rq->rq_flags & RQF_MQ_INFLIGHT)
338 atomic_dec(&hctx->nr_active);
339
340 wbt_done(q->rq_wb, &rq->issue_stat);
341 rq->rq_flags = 0;
342
343 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
344 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
345 if (rq->tag != -1)
346 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
347 if (sched_tag != -1)
348 blk_mq_sched_completed_request(hctx, rq);
349 blk_queue_exit(q);
350 }
351
352 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
353 struct request *rq)
354 {
355 struct blk_mq_ctx *ctx = rq->mq_ctx;
356
357 ctx->rq_completed[rq_is_sync(rq)]++;
358 __blk_mq_finish_request(hctx, ctx, rq);
359 }
360
361 void blk_mq_finish_request(struct request *rq)
362 {
363 blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
364 }
365
366 void blk_mq_free_request(struct request *rq)
367 {
368 blk_mq_sched_put_request(rq);
369 }
370 EXPORT_SYMBOL_GPL(blk_mq_free_request);
371
372 inline void __blk_mq_end_request(struct request *rq, int error)
373 {
374 blk_account_io_done(rq);
375
376 if (rq->end_io) {
377 wbt_done(rq->q->rq_wb, &rq->issue_stat);
378 rq->end_io(rq, error);
379 } else {
380 if (unlikely(blk_bidi_rq(rq)))
381 blk_mq_free_request(rq->next_rq);
382 blk_mq_free_request(rq);
383 }
384 }
385 EXPORT_SYMBOL(__blk_mq_end_request);
386
387 void blk_mq_end_request(struct request *rq, int error)
388 {
389 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
390 BUG();
391 __blk_mq_end_request(rq, error);
392 }
393 EXPORT_SYMBOL(blk_mq_end_request);
394
395 static void __blk_mq_complete_request_remote(void *data)
396 {
397 struct request *rq = data;
398
399 rq->q->softirq_done_fn(rq);
400 }
401
402 static void blk_mq_ipi_complete_request(struct request *rq)
403 {
404 struct blk_mq_ctx *ctx = rq->mq_ctx;
405 bool shared = false;
406 int cpu;
407
408 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
409 rq->q->softirq_done_fn(rq);
410 return;
411 }
412
413 cpu = get_cpu();
414 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
415 shared = cpus_share_cache(cpu, ctx->cpu);
416
417 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
418 rq->csd.func = __blk_mq_complete_request_remote;
419 rq->csd.info = rq;
420 rq->csd.flags = 0;
421 smp_call_function_single_async(ctx->cpu, &rq->csd);
422 } else {
423 rq->q->softirq_done_fn(rq);
424 }
425 put_cpu();
426 }
427
428 static void blk_mq_stat_add(struct request *rq)
429 {
430 if (rq->rq_flags & RQF_STATS) {
431 /*
432 * We could rq->mq_ctx here, but there's less of a risk
433 * of races if we have the completion event add the stats
434 * to the local software queue.
435 */
436 struct blk_mq_ctx *ctx;
437
438 ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
439 blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
440 }
441 }
442
443 static void __blk_mq_complete_request(struct request *rq)
444 {
445 struct request_queue *q = rq->q;
446
447 blk_mq_stat_add(rq);
448
449 if (!q->softirq_done_fn)
450 blk_mq_end_request(rq, rq->errors);
451 else
452 blk_mq_ipi_complete_request(rq);
453 }
454
455 /**
456 * blk_mq_complete_request - end I/O on a request
457 * @rq: the request being processed
458 *
459 * Description:
460 * Ends all I/O on a request. It does not handle partial completions.
461 * The actual completion happens out-of-order, through a IPI handler.
462 **/
463 void blk_mq_complete_request(struct request *rq, int error)
464 {
465 struct request_queue *q = rq->q;
466
467 if (unlikely(blk_should_fake_timeout(q)))
468 return;
469 if (!blk_mark_rq_complete(rq)) {
470 rq->errors = error;
471 __blk_mq_complete_request(rq);
472 }
473 }
474 EXPORT_SYMBOL(blk_mq_complete_request);
475
476 int blk_mq_request_started(struct request *rq)
477 {
478 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
479 }
480 EXPORT_SYMBOL_GPL(blk_mq_request_started);
481
482 void blk_mq_start_request(struct request *rq)
483 {
484 struct request_queue *q = rq->q;
485
486 blk_mq_sched_started_request(rq);
487
488 trace_block_rq_issue(q, rq);
489
490 rq->resid_len = blk_rq_bytes(rq);
491 if (unlikely(blk_bidi_rq(rq)))
492 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
493
494 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
495 blk_stat_set_issue_time(&rq->issue_stat);
496 rq->rq_flags |= RQF_STATS;
497 wbt_issue(q->rq_wb, &rq->issue_stat);
498 }
499
500 blk_add_timer(rq);
501
502 /*
503 * Ensure that ->deadline is visible before set the started
504 * flag and clear the completed flag.
505 */
506 smp_mb__before_atomic();
507
508 /*
509 * Mark us as started and clear complete. Complete might have been
510 * set if requeue raced with timeout, which then marked it as
511 * complete. So be sure to clear complete again when we start
512 * the request, otherwise we'll ignore the completion event.
513 */
514 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
515 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
516 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
517 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
518
519 if (q->dma_drain_size && blk_rq_bytes(rq)) {
520 /*
521 * Make sure space for the drain appears. We know we can do
522 * this because max_hw_segments has been adjusted to be one
523 * fewer than the device can handle.
524 */
525 rq->nr_phys_segments++;
526 }
527 }
528 EXPORT_SYMBOL(blk_mq_start_request);
529
530 static void __blk_mq_requeue_request(struct request *rq)
531 {
532 struct request_queue *q = rq->q;
533
534 trace_block_rq_requeue(q, rq);
535 wbt_requeue(q->rq_wb, &rq->issue_stat);
536 blk_mq_sched_requeue_request(rq);
537
538 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
539 if (q->dma_drain_size && blk_rq_bytes(rq))
540 rq->nr_phys_segments--;
541 }
542 }
543
544 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
545 {
546 __blk_mq_requeue_request(rq);
547
548 BUG_ON(blk_queued_rq(rq));
549 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
550 }
551 EXPORT_SYMBOL(blk_mq_requeue_request);
552
553 static void blk_mq_requeue_work(struct work_struct *work)
554 {
555 struct request_queue *q =
556 container_of(work, struct request_queue, requeue_work.work);
557 LIST_HEAD(rq_list);
558 struct request *rq, *next;
559 unsigned long flags;
560
561 spin_lock_irqsave(&q->requeue_lock, flags);
562 list_splice_init(&q->requeue_list, &rq_list);
563 spin_unlock_irqrestore(&q->requeue_lock, flags);
564
565 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
566 if (!(rq->rq_flags & RQF_SOFTBARRIER))
567 continue;
568
569 rq->rq_flags &= ~RQF_SOFTBARRIER;
570 list_del_init(&rq->queuelist);
571 blk_mq_sched_insert_request(rq, true, false, false);
572 }
573
574 while (!list_empty(&rq_list)) {
575 rq = list_entry(rq_list.next, struct request, queuelist);
576 list_del_init(&rq->queuelist);
577 blk_mq_sched_insert_request(rq, false, false, false);
578 }
579
580 blk_mq_run_hw_queues(q, false);
581 }
582
583 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
584 bool kick_requeue_list)
585 {
586 struct request_queue *q = rq->q;
587 unsigned long flags;
588
589 /*
590 * We abuse this flag that is otherwise used by the I/O scheduler to
591 * request head insertation from the workqueue.
592 */
593 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
594
595 spin_lock_irqsave(&q->requeue_lock, flags);
596 if (at_head) {
597 rq->rq_flags |= RQF_SOFTBARRIER;
598 list_add(&rq->queuelist, &q->requeue_list);
599 } else {
600 list_add_tail(&rq->queuelist, &q->requeue_list);
601 }
602 spin_unlock_irqrestore(&q->requeue_lock, flags);
603
604 if (kick_requeue_list)
605 blk_mq_kick_requeue_list(q);
606 }
607 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
608
609 void blk_mq_kick_requeue_list(struct request_queue *q)
610 {
611 kblockd_schedule_delayed_work(&q->requeue_work, 0);
612 }
613 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
614
615 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
616 unsigned long msecs)
617 {
618 kblockd_schedule_delayed_work(&q->requeue_work,
619 msecs_to_jiffies(msecs));
620 }
621 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
622
623 void blk_mq_abort_requeue_list(struct request_queue *q)
624 {
625 unsigned long flags;
626 LIST_HEAD(rq_list);
627
628 spin_lock_irqsave(&q->requeue_lock, flags);
629 list_splice_init(&q->requeue_list, &rq_list);
630 spin_unlock_irqrestore(&q->requeue_lock, flags);
631
632 while (!list_empty(&rq_list)) {
633 struct request *rq;
634
635 rq = list_first_entry(&rq_list, struct request, queuelist);
636 list_del_init(&rq->queuelist);
637 rq->errors = -EIO;
638 blk_mq_end_request(rq, rq->errors);
639 }
640 }
641 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
642
643 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
644 {
645 if (tag < tags->nr_tags) {
646 prefetch(tags->rqs[tag]);
647 return tags->rqs[tag];
648 }
649
650 return NULL;
651 }
652 EXPORT_SYMBOL(blk_mq_tag_to_rq);
653
654 struct blk_mq_timeout_data {
655 unsigned long next;
656 unsigned int next_set;
657 };
658
659 void blk_mq_rq_timed_out(struct request *req, bool reserved)
660 {
661 const struct blk_mq_ops *ops = req->q->mq_ops;
662 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
663
664 /*
665 * We know that complete is set at this point. If STARTED isn't set
666 * anymore, then the request isn't active and the "timeout" should
667 * just be ignored. This can happen due to the bitflag ordering.
668 * Timeout first checks if STARTED is set, and if it is, assumes
669 * the request is active. But if we race with completion, then
670 * we both flags will get cleared. So check here again, and ignore
671 * a timeout event with a request that isn't active.
672 */
673 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
674 return;
675
676 if (ops->timeout)
677 ret = ops->timeout(req, reserved);
678
679 switch (ret) {
680 case BLK_EH_HANDLED:
681 __blk_mq_complete_request(req);
682 break;
683 case BLK_EH_RESET_TIMER:
684 blk_add_timer(req);
685 blk_clear_rq_complete(req);
686 break;
687 case BLK_EH_NOT_HANDLED:
688 break;
689 default:
690 printk(KERN_ERR "block: bad eh return: %d\n", ret);
691 break;
692 }
693 }
694
695 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
696 struct request *rq, void *priv, bool reserved)
697 {
698 struct blk_mq_timeout_data *data = priv;
699
700 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
701 /*
702 * If a request wasn't started before the queue was
703 * marked dying, kill it here or it'll go unnoticed.
704 */
705 if (unlikely(blk_queue_dying(rq->q))) {
706 rq->errors = -EIO;
707 blk_mq_end_request(rq, rq->errors);
708 }
709 return;
710 }
711
712 if (time_after_eq(jiffies, rq->deadline)) {
713 if (!blk_mark_rq_complete(rq))
714 blk_mq_rq_timed_out(rq, reserved);
715 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
716 data->next = rq->deadline;
717 data->next_set = 1;
718 }
719 }
720
721 static void blk_mq_timeout_work(struct work_struct *work)
722 {
723 struct request_queue *q =
724 container_of(work, struct request_queue, timeout_work);
725 struct blk_mq_timeout_data data = {
726 .next = 0,
727 .next_set = 0,
728 };
729 int i;
730
731 /* A deadlock might occur if a request is stuck requiring a
732 * timeout at the same time a queue freeze is waiting
733 * completion, since the timeout code would not be able to
734 * acquire the queue reference here.
735 *
736 * That's why we don't use blk_queue_enter here; instead, we use
737 * percpu_ref_tryget directly, because we need to be able to
738 * obtain a reference even in the short window between the queue
739 * starting to freeze, by dropping the first reference in
740 * blk_mq_freeze_queue_start, and the moment the last request is
741 * consumed, marked by the instant q_usage_counter reaches
742 * zero.
743 */
744 if (!percpu_ref_tryget(&q->q_usage_counter))
745 return;
746
747 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
748
749 if (data.next_set) {
750 data.next = blk_rq_timeout(round_jiffies_up(data.next));
751 mod_timer(&q->timeout, data.next);
752 } else {
753 struct blk_mq_hw_ctx *hctx;
754
755 queue_for_each_hw_ctx(q, hctx, i) {
756 /* the hctx may be unmapped, so check it here */
757 if (blk_mq_hw_queue_mapped(hctx))
758 blk_mq_tag_idle(hctx);
759 }
760 }
761 blk_queue_exit(q);
762 }
763
764 /*
765 * Reverse check our software queue for entries that we could potentially
766 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
767 * too much time checking for merges.
768 */
769 static bool blk_mq_attempt_merge(struct request_queue *q,
770 struct blk_mq_ctx *ctx, struct bio *bio)
771 {
772 struct request *rq;
773 int checked = 8;
774
775 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
776 int el_ret;
777
778 if (!checked--)
779 break;
780
781 if (!blk_rq_merge_ok(rq, bio))
782 continue;
783
784 el_ret = blk_try_merge(rq, bio);
785 if (el_ret == ELEVATOR_NO_MERGE)
786 continue;
787
788 if (!blk_mq_sched_allow_merge(q, rq, bio))
789 break;
790
791 if (el_ret == ELEVATOR_BACK_MERGE) {
792 if (bio_attempt_back_merge(q, rq, bio)) {
793 ctx->rq_merged++;
794 return true;
795 }
796 break;
797 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
798 if (bio_attempt_front_merge(q, rq, bio)) {
799 ctx->rq_merged++;
800 return true;
801 }
802 break;
803 }
804 }
805
806 return false;
807 }
808
809 struct flush_busy_ctx_data {
810 struct blk_mq_hw_ctx *hctx;
811 struct list_head *list;
812 };
813
814 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
815 {
816 struct flush_busy_ctx_data *flush_data = data;
817 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
818 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
819
820 sbitmap_clear_bit(sb, bitnr);
821 spin_lock(&ctx->lock);
822 list_splice_tail_init(&ctx->rq_list, flush_data->list);
823 spin_unlock(&ctx->lock);
824 return true;
825 }
826
827 /*
828 * Process software queues that have been marked busy, splicing them
829 * to the for-dispatch
830 */
831 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
832 {
833 struct flush_busy_ctx_data data = {
834 .hctx = hctx,
835 .list = list,
836 };
837
838 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
839 }
840 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
841
842 static inline unsigned int queued_to_index(unsigned int queued)
843 {
844 if (!queued)
845 return 0;
846
847 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
848 }
849
850 static bool blk_mq_get_driver_tag(struct request *rq,
851 struct blk_mq_hw_ctx **hctx, bool wait)
852 {
853 struct blk_mq_alloc_data data = {
854 .q = rq->q,
855 .ctx = rq->mq_ctx,
856 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
857 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
858 };
859
860 if (blk_mq_hctx_stopped(data.hctx))
861 return false;
862
863 if (rq->tag != -1) {
864 done:
865 if (hctx)
866 *hctx = data.hctx;
867 return true;
868 }
869
870 rq->tag = blk_mq_get_tag(&data);
871 if (rq->tag >= 0) {
872 data.hctx->tags->rqs[rq->tag] = rq;
873 goto done;
874 }
875
876 return false;
877 }
878
879 /*
880 * If we fail getting a driver tag because all the driver tags are already
881 * assigned and on the dispatch list, BUT the first entry does not have a
882 * tag, then we could deadlock. For that case, move entries with assigned
883 * driver tags to the front, leaving the set of tagged requests in the
884 * same order, and the untagged set in the same order.
885 */
886 static bool reorder_tags_to_front(struct list_head *list)
887 {
888 struct request *rq, *tmp, *first = NULL;
889
890 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
891 if (rq == first)
892 break;
893 if (rq->tag != -1) {
894 list_move(&rq->queuelist, list);
895 if (!first)
896 first = rq;
897 }
898 }
899
900 return first != NULL;
901 }
902
903 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
904 {
905 struct request_queue *q = hctx->queue;
906 struct request *rq;
907 LIST_HEAD(driver_list);
908 struct list_head *dptr;
909 int queued, ret = BLK_MQ_RQ_QUEUE_OK;
910
911 /*
912 * Start off with dptr being NULL, so we start the first request
913 * immediately, even if we have more pending.
914 */
915 dptr = NULL;
916
917 /*
918 * Now process all the entries, sending them to the driver.
919 */
920 queued = 0;
921 while (!list_empty(list)) {
922 struct blk_mq_queue_data bd;
923
924 rq = list_first_entry(list, struct request, queuelist);
925 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
926 if (!queued && reorder_tags_to_front(list))
927 continue;
928 blk_mq_sched_mark_restart(hctx);
929 break;
930 }
931 list_del_init(&rq->queuelist);
932
933 bd.rq = rq;
934 bd.list = dptr;
935 bd.last = list_empty(list);
936
937 ret = q->mq_ops->queue_rq(hctx, &bd);
938 switch (ret) {
939 case BLK_MQ_RQ_QUEUE_OK:
940 queued++;
941 break;
942 case BLK_MQ_RQ_QUEUE_BUSY:
943 list_add(&rq->queuelist, list);
944 __blk_mq_requeue_request(rq);
945 break;
946 default:
947 pr_err("blk-mq: bad return on queue: %d\n", ret);
948 case BLK_MQ_RQ_QUEUE_ERROR:
949 rq->errors = -EIO;
950 blk_mq_end_request(rq, rq->errors);
951 break;
952 }
953
954 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
955 break;
956
957 /*
958 * We've done the first request. If we have more than 1
959 * left in the list, set dptr to defer issue.
960 */
961 if (!dptr && list->next != list->prev)
962 dptr = &driver_list;
963 }
964
965 hctx->dispatched[queued_to_index(queued)]++;
966
967 /*
968 * Any items that need requeuing? Stuff them into hctx->dispatch,
969 * that is where we will continue on next queue run.
970 */
971 if (!list_empty(list)) {
972 spin_lock(&hctx->lock);
973 list_splice(list, &hctx->dispatch);
974 spin_unlock(&hctx->lock);
975
976 /*
977 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
978 * it's possible the queue is stopped and restarted again
979 * before this. Queue restart will dispatch requests. And since
980 * requests in rq_list aren't added into hctx->dispatch yet,
981 * the requests in rq_list might get lost.
982 *
983 * blk_mq_run_hw_queue() already checks the STOPPED bit
984 *
985 * If RESTART is set, then let completion restart the queue
986 * instead of potentially looping here.
987 */
988 if (!blk_mq_sched_needs_restart(hctx))
989 blk_mq_run_hw_queue(hctx, true);
990 }
991
992 return ret != BLK_MQ_RQ_QUEUE_BUSY;
993 }
994
995 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
996 {
997 int srcu_idx;
998
999 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1000 cpu_online(hctx->next_cpu));
1001
1002 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1003 rcu_read_lock();
1004 blk_mq_sched_dispatch_requests(hctx);
1005 rcu_read_unlock();
1006 } else {
1007 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1008 blk_mq_sched_dispatch_requests(hctx);
1009 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1010 }
1011 }
1012
1013 /*
1014 * It'd be great if the workqueue API had a way to pass
1015 * in a mask and had some smarts for more clever placement.
1016 * For now we just round-robin here, switching for every
1017 * BLK_MQ_CPU_WORK_BATCH queued items.
1018 */
1019 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1020 {
1021 if (hctx->queue->nr_hw_queues == 1)
1022 return WORK_CPU_UNBOUND;
1023
1024 if (--hctx->next_cpu_batch <= 0) {
1025 int next_cpu;
1026
1027 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1028 if (next_cpu >= nr_cpu_ids)
1029 next_cpu = cpumask_first(hctx->cpumask);
1030
1031 hctx->next_cpu = next_cpu;
1032 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1033 }
1034
1035 return hctx->next_cpu;
1036 }
1037
1038 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1039 {
1040 if (unlikely(blk_mq_hctx_stopped(hctx) ||
1041 !blk_mq_hw_queue_mapped(hctx)))
1042 return;
1043
1044 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1045 int cpu = get_cpu();
1046 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1047 __blk_mq_run_hw_queue(hctx);
1048 put_cpu();
1049 return;
1050 }
1051
1052 put_cpu();
1053 }
1054
1055 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
1056 }
1057
1058 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1059 {
1060 struct blk_mq_hw_ctx *hctx;
1061 int i;
1062
1063 queue_for_each_hw_ctx(q, hctx, i) {
1064 if (!blk_mq_hctx_has_pending(hctx) ||
1065 blk_mq_hctx_stopped(hctx))
1066 continue;
1067
1068 blk_mq_run_hw_queue(hctx, async);
1069 }
1070 }
1071 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1072
1073 /**
1074 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1075 * @q: request queue.
1076 *
1077 * The caller is responsible for serializing this function against
1078 * blk_mq_{start,stop}_hw_queue().
1079 */
1080 bool blk_mq_queue_stopped(struct request_queue *q)
1081 {
1082 struct blk_mq_hw_ctx *hctx;
1083 int i;
1084
1085 queue_for_each_hw_ctx(q, hctx, i)
1086 if (blk_mq_hctx_stopped(hctx))
1087 return true;
1088
1089 return false;
1090 }
1091 EXPORT_SYMBOL(blk_mq_queue_stopped);
1092
1093 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1094 {
1095 cancel_work(&hctx->run_work);
1096 cancel_delayed_work(&hctx->delay_work);
1097 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1098 }
1099 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1100
1101 void blk_mq_stop_hw_queues(struct request_queue *q)
1102 {
1103 struct blk_mq_hw_ctx *hctx;
1104 int i;
1105
1106 queue_for_each_hw_ctx(q, hctx, i)
1107 blk_mq_stop_hw_queue(hctx);
1108 }
1109 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1110
1111 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1112 {
1113 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1114
1115 blk_mq_run_hw_queue(hctx, false);
1116 }
1117 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1118
1119 void blk_mq_start_hw_queues(struct request_queue *q)
1120 {
1121 struct blk_mq_hw_ctx *hctx;
1122 int i;
1123
1124 queue_for_each_hw_ctx(q, hctx, i)
1125 blk_mq_start_hw_queue(hctx);
1126 }
1127 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1128
1129 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1130 {
1131 if (!blk_mq_hctx_stopped(hctx))
1132 return;
1133
1134 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1135 blk_mq_run_hw_queue(hctx, async);
1136 }
1137 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1138
1139 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1140 {
1141 struct blk_mq_hw_ctx *hctx;
1142 int i;
1143
1144 queue_for_each_hw_ctx(q, hctx, i)
1145 blk_mq_start_stopped_hw_queue(hctx, async);
1146 }
1147 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1148
1149 static void blk_mq_run_work_fn(struct work_struct *work)
1150 {
1151 struct blk_mq_hw_ctx *hctx;
1152
1153 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1154
1155 __blk_mq_run_hw_queue(hctx);
1156 }
1157
1158 static void blk_mq_delay_work_fn(struct work_struct *work)
1159 {
1160 struct blk_mq_hw_ctx *hctx;
1161
1162 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1163
1164 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1165 __blk_mq_run_hw_queue(hctx);
1166 }
1167
1168 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1169 {
1170 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1171 return;
1172
1173 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1174 &hctx->delay_work, msecs_to_jiffies(msecs));
1175 }
1176 EXPORT_SYMBOL(blk_mq_delay_queue);
1177
1178 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1179 struct request *rq,
1180 bool at_head)
1181 {
1182 struct blk_mq_ctx *ctx = rq->mq_ctx;
1183
1184 trace_block_rq_insert(hctx->queue, rq);
1185
1186 if (at_head)
1187 list_add(&rq->queuelist, &ctx->rq_list);
1188 else
1189 list_add_tail(&rq->queuelist, &ctx->rq_list);
1190 }
1191
1192 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1193 bool at_head)
1194 {
1195 struct blk_mq_ctx *ctx = rq->mq_ctx;
1196
1197 __blk_mq_insert_req_list(hctx, rq, at_head);
1198 blk_mq_hctx_mark_pending(hctx, ctx);
1199 }
1200
1201 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1202 struct list_head *list)
1203
1204 {
1205 /*
1206 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1207 * offline now
1208 */
1209 spin_lock(&ctx->lock);
1210 while (!list_empty(list)) {
1211 struct request *rq;
1212
1213 rq = list_first_entry(list, struct request, queuelist);
1214 BUG_ON(rq->mq_ctx != ctx);
1215 list_del_init(&rq->queuelist);
1216 __blk_mq_insert_req_list(hctx, rq, false);
1217 }
1218 blk_mq_hctx_mark_pending(hctx, ctx);
1219 spin_unlock(&ctx->lock);
1220 }
1221
1222 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1223 {
1224 struct request *rqa = container_of(a, struct request, queuelist);
1225 struct request *rqb = container_of(b, struct request, queuelist);
1226
1227 return !(rqa->mq_ctx < rqb->mq_ctx ||
1228 (rqa->mq_ctx == rqb->mq_ctx &&
1229 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1230 }
1231
1232 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1233 {
1234 struct blk_mq_ctx *this_ctx;
1235 struct request_queue *this_q;
1236 struct request *rq;
1237 LIST_HEAD(list);
1238 LIST_HEAD(ctx_list);
1239 unsigned int depth;
1240
1241 list_splice_init(&plug->mq_list, &list);
1242
1243 list_sort(NULL, &list, plug_ctx_cmp);
1244
1245 this_q = NULL;
1246 this_ctx = NULL;
1247 depth = 0;
1248
1249 while (!list_empty(&list)) {
1250 rq = list_entry_rq(list.next);
1251 list_del_init(&rq->queuelist);
1252 BUG_ON(!rq->q);
1253 if (rq->mq_ctx != this_ctx) {
1254 if (this_ctx) {
1255 trace_block_unplug(this_q, depth, from_schedule);
1256 blk_mq_sched_insert_requests(this_q, this_ctx,
1257 &ctx_list,
1258 from_schedule);
1259 }
1260
1261 this_ctx = rq->mq_ctx;
1262 this_q = rq->q;
1263 depth = 0;
1264 }
1265
1266 depth++;
1267 list_add_tail(&rq->queuelist, &ctx_list);
1268 }
1269
1270 /*
1271 * If 'this_ctx' is set, we know we have entries to complete
1272 * on 'ctx_list'. Do those.
1273 */
1274 if (this_ctx) {
1275 trace_block_unplug(this_q, depth, from_schedule);
1276 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1277 from_schedule);
1278 }
1279 }
1280
1281 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1282 {
1283 init_request_from_bio(rq, bio);
1284
1285 blk_account_io_start(rq, true);
1286 }
1287
1288 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1289 {
1290 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1291 !blk_queue_nomerges(hctx->queue);
1292 }
1293
1294 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1295 struct blk_mq_ctx *ctx,
1296 struct request *rq, struct bio *bio)
1297 {
1298 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1299 blk_mq_bio_to_request(rq, bio);
1300 spin_lock(&ctx->lock);
1301 insert_rq:
1302 __blk_mq_insert_request(hctx, rq, false);
1303 spin_unlock(&ctx->lock);
1304 return false;
1305 } else {
1306 struct request_queue *q = hctx->queue;
1307
1308 spin_lock(&ctx->lock);
1309 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1310 blk_mq_bio_to_request(rq, bio);
1311 goto insert_rq;
1312 }
1313
1314 spin_unlock(&ctx->lock);
1315 __blk_mq_finish_request(hctx, ctx, rq);
1316 return true;
1317 }
1318 }
1319
1320 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1321 {
1322 if (rq->tag != -1)
1323 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1324
1325 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1326 }
1327
1328 static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie)
1329 {
1330 struct request_queue *q = rq->q;
1331 struct blk_mq_queue_data bd = {
1332 .rq = rq,
1333 .list = NULL,
1334 .last = 1
1335 };
1336 struct blk_mq_hw_ctx *hctx;
1337 blk_qc_t new_cookie;
1338 int ret;
1339
1340 if (q->elevator)
1341 goto insert;
1342
1343 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1344 goto insert;
1345
1346 new_cookie = request_to_qc_t(hctx, rq);
1347
1348 /*
1349 * For OK queue, we are done. For error, kill it. Any other
1350 * error (busy), just add it to our list as we previously
1351 * would have done
1352 */
1353 ret = q->mq_ops->queue_rq(hctx, &bd);
1354 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1355 *cookie = new_cookie;
1356 return;
1357 }
1358
1359 __blk_mq_requeue_request(rq);
1360
1361 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1362 *cookie = BLK_QC_T_NONE;
1363 rq->errors = -EIO;
1364 blk_mq_end_request(rq, rq->errors);
1365 return;
1366 }
1367
1368 insert:
1369 blk_mq_sched_insert_request(rq, false, true, true);
1370 }
1371
1372 /*
1373 * Multiple hardware queue variant. This will not use per-process plugs,
1374 * but will attempt to bypass the hctx queueing if we can go straight to
1375 * hardware for SYNC IO.
1376 */
1377 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1378 {
1379 const int is_sync = op_is_sync(bio->bi_opf);
1380 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1381 struct blk_mq_alloc_data data;
1382 struct request *rq;
1383 unsigned int request_count = 0, srcu_idx;
1384 struct blk_plug *plug;
1385 struct request *same_queue_rq = NULL;
1386 blk_qc_t cookie;
1387 unsigned int wb_acct;
1388
1389 blk_queue_bounce(q, &bio);
1390
1391 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1392 bio_io_error(bio);
1393 return BLK_QC_T_NONE;
1394 }
1395
1396 blk_queue_split(q, &bio, q->bio_split);
1397
1398 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1399 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1400 return BLK_QC_T_NONE;
1401
1402 if (blk_mq_sched_bio_merge(q, bio))
1403 return BLK_QC_T_NONE;
1404
1405 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1406
1407 trace_block_getrq(q, bio, bio->bi_opf);
1408
1409 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1410 if (unlikely(!rq)) {
1411 __wbt_done(q->rq_wb, wb_acct);
1412 return BLK_QC_T_NONE;
1413 }
1414
1415 wbt_track(&rq->issue_stat, wb_acct);
1416
1417 cookie = request_to_qc_t(data.hctx, rq);
1418
1419 if (unlikely(is_flush_fua)) {
1420 blk_mq_bio_to_request(rq, bio);
1421 blk_mq_get_driver_tag(rq, NULL, true);
1422 blk_insert_flush(rq);
1423 goto run_queue;
1424 }
1425
1426 plug = current->plug;
1427 /*
1428 * If the driver supports defer issued based on 'last', then
1429 * queue it up like normal since we can potentially save some
1430 * CPU this way.
1431 */
1432 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1433 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1434 struct request *old_rq = NULL;
1435
1436 blk_mq_bio_to_request(rq, bio);
1437
1438 /*
1439 * We do limited plugging. If the bio can be merged, do that.
1440 * Otherwise the existing request in the plug list will be
1441 * issued. So the plug list will have one request at most
1442 */
1443 if (plug) {
1444 /*
1445 * The plug list might get flushed before this. If that
1446 * happens, same_queue_rq is invalid and plug list is
1447 * empty
1448 */
1449 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1450 old_rq = same_queue_rq;
1451 list_del_init(&old_rq->queuelist);
1452 }
1453 list_add_tail(&rq->queuelist, &plug->mq_list);
1454 } else /* is_sync */
1455 old_rq = rq;
1456 blk_mq_put_ctx(data.ctx);
1457 if (!old_rq)
1458 goto done;
1459
1460 if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
1461 rcu_read_lock();
1462 blk_mq_try_issue_directly(old_rq, &cookie);
1463 rcu_read_unlock();
1464 } else {
1465 srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
1466 blk_mq_try_issue_directly(old_rq, &cookie);
1467 srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
1468 }
1469 goto done;
1470 }
1471
1472 if (q->elevator) {
1473 blk_mq_put_ctx(data.ctx);
1474 blk_mq_bio_to_request(rq, bio);
1475 blk_mq_sched_insert_request(rq, false, true, true);
1476 goto done;
1477 }
1478 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1479 /*
1480 * For a SYNC request, send it to the hardware immediately. For
1481 * an ASYNC request, just ensure that we run it later on. The
1482 * latter allows for merging opportunities and more efficient
1483 * dispatching.
1484 */
1485 run_queue:
1486 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1487 }
1488 blk_mq_put_ctx(data.ctx);
1489 done:
1490 return cookie;
1491 }
1492
1493 /*
1494 * Single hardware queue variant. This will attempt to use any per-process
1495 * plug for merging and IO deferral.
1496 */
1497 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1498 {
1499 const int is_sync = op_is_sync(bio->bi_opf);
1500 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1501 struct blk_plug *plug;
1502 unsigned int request_count = 0;
1503 struct blk_mq_alloc_data data;
1504 struct request *rq;
1505 blk_qc_t cookie;
1506 unsigned int wb_acct;
1507
1508 blk_queue_bounce(q, &bio);
1509
1510 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1511 bio_io_error(bio);
1512 return BLK_QC_T_NONE;
1513 }
1514
1515 blk_queue_split(q, &bio, q->bio_split);
1516
1517 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1518 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1519 return BLK_QC_T_NONE;
1520 } else
1521 request_count = blk_plug_queued_count(q);
1522
1523 if (blk_mq_sched_bio_merge(q, bio))
1524 return BLK_QC_T_NONE;
1525
1526 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1527
1528 trace_block_getrq(q, bio, bio->bi_opf);
1529
1530 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1531 if (unlikely(!rq)) {
1532 __wbt_done(q->rq_wb, wb_acct);
1533 return BLK_QC_T_NONE;
1534 }
1535
1536 wbt_track(&rq->issue_stat, wb_acct);
1537
1538 cookie = request_to_qc_t(data.hctx, rq);
1539
1540 if (unlikely(is_flush_fua)) {
1541 blk_mq_bio_to_request(rq, bio);
1542 blk_mq_get_driver_tag(rq, NULL, true);
1543 blk_insert_flush(rq);
1544 goto run_queue;
1545 }
1546
1547 /*
1548 * A task plug currently exists. Since this is completely lockless,
1549 * utilize that to temporarily store requests until the task is
1550 * either done or scheduled away.
1551 */
1552 plug = current->plug;
1553 if (plug) {
1554 struct request *last = NULL;
1555
1556 blk_mq_bio_to_request(rq, bio);
1557
1558 /*
1559 * @request_count may become stale because of schedule
1560 * out, so check the list again.
1561 */
1562 if (list_empty(&plug->mq_list))
1563 request_count = 0;
1564 if (!request_count)
1565 trace_block_plug(q);
1566 else
1567 last = list_entry_rq(plug->mq_list.prev);
1568
1569 blk_mq_put_ctx(data.ctx);
1570
1571 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1572 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1573 blk_flush_plug_list(plug, false);
1574 trace_block_plug(q);
1575 }
1576
1577 list_add_tail(&rq->queuelist, &plug->mq_list);
1578 return cookie;
1579 }
1580
1581 if (q->elevator) {
1582 blk_mq_put_ctx(data.ctx);
1583 blk_mq_bio_to_request(rq, bio);
1584 blk_mq_sched_insert_request(rq, false, true, true);
1585 goto done;
1586 }
1587 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1588 /*
1589 * For a SYNC request, send it to the hardware immediately. For
1590 * an ASYNC request, just ensure that we run it later on. The
1591 * latter allows for merging opportunities and more efficient
1592 * dispatching.
1593 */
1594 run_queue:
1595 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1596 }
1597
1598 blk_mq_put_ctx(data.ctx);
1599 done:
1600 return cookie;
1601 }
1602
1603 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1604 unsigned int hctx_idx)
1605 {
1606 struct page *page;
1607
1608 if (tags->rqs && set->ops->exit_request) {
1609 int i;
1610
1611 for (i = 0; i < tags->nr_tags; i++) {
1612 struct request *rq = tags->static_rqs[i];
1613
1614 if (!rq)
1615 continue;
1616 set->ops->exit_request(set->driver_data, rq,
1617 hctx_idx, i);
1618 tags->static_rqs[i] = NULL;
1619 }
1620 }
1621
1622 while (!list_empty(&tags->page_list)) {
1623 page = list_first_entry(&tags->page_list, struct page, lru);
1624 list_del_init(&page->lru);
1625 /*
1626 * Remove kmemleak object previously allocated in
1627 * blk_mq_init_rq_map().
1628 */
1629 kmemleak_free(page_address(page));
1630 __free_pages(page, page->private);
1631 }
1632 }
1633
1634 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1635 {
1636 kfree(tags->rqs);
1637 tags->rqs = NULL;
1638 kfree(tags->static_rqs);
1639 tags->static_rqs = NULL;
1640
1641 blk_mq_free_tags(tags);
1642 }
1643
1644 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1645 unsigned int hctx_idx,
1646 unsigned int nr_tags,
1647 unsigned int reserved_tags)
1648 {
1649 struct blk_mq_tags *tags;
1650
1651 tags = blk_mq_init_tags(nr_tags, reserved_tags,
1652 set->numa_node,
1653 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1654 if (!tags)
1655 return NULL;
1656
1657 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1658 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1659 set->numa_node);
1660 if (!tags->rqs) {
1661 blk_mq_free_tags(tags);
1662 return NULL;
1663 }
1664
1665 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1666 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1667 set->numa_node);
1668 if (!tags->static_rqs) {
1669 kfree(tags->rqs);
1670 blk_mq_free_tags(tags);
1671 return NULL;
1672 }
1673
1674 return tags;
1675 }
1676
1677 static size_t order_to_size(unsigned int order)
1678 {
1679 return (size_t)PAGE_SIZE << order;
1680 }
1681
1682 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1683 unsigned int hctx_idx, unsigned int depth)
1684 {
1685 unsigned int i, j, entries_per_page, max_order = 4;
1686 size_t rq_size, left;
1687
1688 INIT_LIST_HEAD(&tags->page_list);
1689
1690 /*
1691 * rq_size is the size of the request plus driver payload, rounded
1692 * to the cacheline size
1693 */
1694 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1695 cache_line_size());
1696 left = rq_size * depth;
1697
1698 for (i = 0; i < depth; ) {
1699 int this_order = max_order;
1700 struct page *page;
1701 int to_do;
1702 void *p;
1703
1704 while (this_order && left < order_to_size(this_order - 1))
1705 this_order--;
1706
1707 do {
1708 page = alloc_pages_node(set->numa_node,
1709 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1710 this_order);
1711 if (page)
1712 break;
1713 if (!this_order--)
1714 break;
1715 if (order_to_size(this_order) < rq_size)
1716 break;
1717 } while (1);
1718
1719 if (!page)
1720 goto fail;
1721
1722 page->private = this_order;
1723 list_add_tail(&page->lru, &tags->page_list);
1724
1725 p = page_address(page);
1726 /*
1727 * Allow kmemleak to scan these pages as they contain pointers
1728 * to additional allocations like via ops->init_request().
1729 */
1730 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1731 entries_per_page = order_to_size(this_order) / rq_size;
1732 to_do = min(entries_per_page, depth - i);
1733 left -= to_do * rq_size;
1734 for (j = 0; j < to_do; j++) {
1735 struct request *rq = p;
1736
1737 tags->static_rqs[i] = rq;
1738 if (set->ops->init_request) {
1739 if (set->ops->init_request(set->driver_data,
1740 rq, hctx_idx, i,
1741 set->numa_node)) {
1742 tags->static_rqs[i] = NULL;
1743 goto fail;
1744 }
1745 }
1746
1747 p += rq_size;
1748 i++;
1749 }
1750 }
1751 return 0;
1752
1753 fail:
1754 blk_mq_free_rqs(set, tags, hctx_idx);
1755 return -ENOMEM;
1756 }
1757
1758 /*
1759 * 'cpu' is going away. splice any existing rq_list entries from this
1760 * software queue to the hw queue dispatch list, and ensure that it
1761 * gets run.
1762 */
1763 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1764 {
1765 struct blk_mq_hw_ctx *hctx;
1766 struct blk_mq_ctx *ctx;
1767 LIST_HEAD(tmp);
1768
1769 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1770 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1771
1772 spin_lock(&ctx->lock);
1773 if (!list_empty(&ctx->rq_list)) {
1774 list_splice_init(&ctx->rq_list, &tmp);
1775 blk_mq_hctx_clear_pending(hctx, ctx);
1776 }
1777 spin_unlock(&ctx->lock);
1778
1779 if (list_empty(&tmp))
1780 return 0;
1781
1782 spin_lock(&hctx->lock);
1783 list_splice_tail_init(&tmp, &hctx->dispatch);
1784 spin_unlock(&hctx->lock);
1785
1786 blk_mq_run_hw_queue(hctx, true);
1787 return 0;
1788 }
1789
1790 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1791 {
1792 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1793 &hctx->cpuhp_dead);
1794 }
1795
1796 /* hctx->ctxs will be freed in queue's release handler */
1797 static void blk_mq_exit_hctx(struct request_queue *q,
1798 struct blk_mq_tag_set *set,
1799 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1800 {
1801 unsigned flush_start_tag = set->queue_depth;
1802
1803 blk_mq_tag_idle(hctx);
1804
1805 if (set->ops->exit_request)
1806 set->ops->exit_request(set->driver_data,
1807 hctx->fq->flush_rq, hctx_idx,
1808 flush_start_tag + hctx_idx);
1809
1810 if (set->ops->exit_hctx)
1811 set->ops->exit_hctx(hctx, hctx_idx);
1812
1813 if (hctx->flags & BLK_MQ_F_BLOCKING)
1814 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1815
1816 blk_mq_remove_cpuhp(hctx);
1817 blk_free_flush_queue(hctx->fq);
1818 sbitmap_free(&hctx->ctx_map);
1819 }
1820
1821 static void blk_mq_exit_hw_queues(struct request_queue *q,
1822 struct blk_mq_tag_set *set, int nr_queue)
1823 {
1824 struct blk_mq_hw_ctx *hctx;
1825 unsigned int i;
1826
1827 queue_for_each_hw_ctx(q, hctx, i) {
1828 if (i == nr_queue)
1829 break;
1830 blk_mq_exit_hctx(q, set, hctx, i);
1831 }
1832 }
1833
1834 static void blk_mq_free_hw_queues(struct request_queue *q,
1835 struct blk_mq_tag_set *set)
1836 {
1837 struct blk_mq_hw_ctx *hctx;
1838 unsigned int i;
1839
1840 queue_for_each_hw_ctx(q, hctx, i)
1841 free_cpumask_var(hctx->cpumask);
1842 }
1843
1844 static int blk_mq_init_hctx(struct request_queue *q,
1845 struct blk_mq_tag_set *set,
1846 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1847 {
1848 int node;
1849 unsigned flush_start_tag = set->queue_depth;
1850
1851 node = hctx->numa_node;
1852 if (node == NUMA_NO_NODE)
1853 node = hctx->numa_node = set->numa_node;
1854
1855 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1856 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1857 spin_lock_init(&hctx->lock);
1858 INIT_LIST_HEAD(&hctx->dispatch);
1859 hctx->queue = q;
1860 hctx->queue_num = hctx_idx;
1861 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1862
1863 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1864
1865 hctx->tags = set->tags[hctx_idx];
1866
1867 /*
1868 * Allocate space for all possible cpus to avoid allocation at
1869 * runtime
1870 */
1871 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1872 GFP_KERNEL, node);
1873 if (!hctx->ctxs)
1874 goto unregister_cpu_notifier;
1875
1876 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1877 node))
1878 goto free_ctxs;
1879
1880 hctx->nr_ctx = 0;
1881
1882 if (set->ops->init_hctx &&
1883 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1884 goto free_bitmap;
1885
1886 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1887 if (!hctx->fq)
1888 goto exit_hctx;
1889
1890 if (set->ops->init_request &&
1891 set->ops->init_request(set->driver_data,
1892 hctx->fq->flush_rq, hctx_idx,
1893 flush_start_tag + hctx_idx, node))
1894 goto free_fq;
1895
1896 if (hctx->flags & BLK_MQ_F_BLOCKING)
1897 init_srcu_struct(&hctx->queue_rq_srcu);
1898
1899 return 0;
1900
1901 free_fq:
1902 kfree(hctx->fq);
1903 exit_hctx:
1904 if (set->ops->exit_hctx)
1905 set->ops->exit_hctx(hctx, hctx_idx);
1906 free_bitmap:
1907 sbitmap_free(&hctx->ctx_map);
1908 free_ctxs:
1909 kfree(hctx->ctxs);
1910 unregister_cpu_notifier:
1911 blk_mq_remove_cpuhp(hctx);
1912 return -1;
1913 }
1914
1915 static void blk_mq_init_cpu_queues(struct request_queue *q,
1916 unsigned int nr_hw_queues)
1917 {
1918 unsigned int i;
1919
1920 for_each_possible_cpu(i) {
1921 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1922 struct blk_mq_hw_ctx *hctx;
1923
1924 memset(__ctx, 0, sizeof(*__ctx));
1925 __ctx->cpu = i;
1926 spin_lock_init(&__ctx->lock);
1927 INIT_LIST_HEAD(&__ctx->rq_list);
1928 __ctx->queue = q;
1929 blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
1930 blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
1931
1932 /* If the cpu isn't online, the cpu is mapped to first hctx */
1933 if (!cpu_online(i))
1934 continue;
1935
1936 hctx = blk_mq_map_queue(q, i);
1937
1938 /*
1939 * Set local node, IFF we have more than one hw queue. If
1940 * not, we remain on the home node of the device
1941 */
1942 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1943 hctx->numa_node = local_memory_node(cpu_to_node(i));
1944 }
1945 }
1946
1947 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1948 {
1949 int ret = 0;
1950
1951 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1952 set->queue_depth, set->reserved_tags);
1953 if (!set->tags[hctx_idx])
1954 return false;
1955
1956 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
1957 set->queue_depth);
1958 if (!ret)
1959 return true;
1960
1961 blk_mq_free_rq_map(set->tags[hctx_idx]);
1962 set->tags[hctx_idx] = NULL;
1963 return false;
1964 }
1965
1966 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
1967 unsigned int hctx_idx)
1968 {
1969 if (set->tags[hctx_idx]) {
1970 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
1971 blk_mq_free_rq_map(set->tags[hctx_idx]);
1972 set->tags[hctx_idx] = NULL;
1973 }
1974 }
1975
1976 static void blk_mq_map_swqueue(struct request_queue *q,
1977 const struct cpumask *online_mask)
1978 {
1979 unsigned int i, hctx_idx;
1980 struct blk_mq_hw_ctx *hctx;
1981 struct blk_mq_ctx *ctx;
1982 struct blk_mq_tag_set *set = q->tag_set;
1983
1984 /*
1985 * Avoid others reading imcomplete hctx->cpumask through sysfs
1986 */
1987 mutex_lock(&q->sysfs_lock);
1988
1989 queue_for_each_hw_ctx(q, hctx, i) {
1990 cpumask_clear(hctx->cpumask);
1991 hctx->nr_ctx = 0;
1992 }
1993
1994 /*
1995 * Map software to hardware queues
1996 */
1997 for_each_possible_cpu(i) {
1998 /* If the cpu isn't online, the cpu is mapped to first hctx */
1999 if (!cpumask_test_cpu(i, online_mask))
2000 continue;
2001
2002 hctx_idx = q->mq_map[i];
2003 /* unmapped hw queue can be remapped after CPU topo changed */
2004 if (!set->tags[hctx_idx] &&
2005 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2006 /*
2007 * If tags initialization fail for some hctx,
2008 * that hctx won't be brought online. In this
2009 * case, remap the current ctx to hctx[0] which
2010 * is guaranteed to always have tags allocated
2011 */
2012 q->mq_map[i] = 0;
2013 }
2014
2015 ctx = per_cpu_ptr(q->queue_ctx, i);
2016 hctx = blk_mq_map_queue(q, i);
2017
2018 cpumask_set_cpu(i, hctx->cpumask);
2019 ctx->index_hw = hctx->nr_ctx;
2020 hctx->ctxs[hctx->nr_ctx++] = ctx;
2021 }
2022
2023 mutex_unlock(&q->sysfs_lock);
2024
2025 queue_for_each_hw_ctx(q, hctx, i) {
2026 /*
2027 * If no software queues are mapped to this hardware queue,
2028 * disable it and free the request entries.
2029 */
2030 if (!hctx->nr_ctx) {
2031 /* Never unmap queue 0. We need it as a
2032 * fallback in case of a new remap fails
2033 * allocation
2034 */
2035 if (i && set->tags[i])
2036 blk_mq_free_map_and_requests(set, i);
2037
2038 hctx->tags = NULL;
2039 continue;
2040 }
2041
2042 hctx->tags = set->tags[i];
2043 WARN_ON(!hctx->tags);
2044
2045 /*
2046 * Set the map size to the number of mapped software queues.
2047 * This is more accurate and more efficient than looping
2048 * over all possibly mapped software queues.
2049 */
2050 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2051
2052 /*
2053 * Initialize batch roundrobin counts
2054 */
2055 hctx->next_cpu = cpumask_first(hctx->cpumask);
2056 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2057 }
2058 }
2059
2060 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2061 {
2062 struct blk_mq_hw_ctx *hctx;
2063 int i;
2064
2065 queue_for_each_hw_ctx(q, hctx, i) {
2066 if (shared)
2067 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2068 else
2069 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2070 }
2071 }
2072
2073 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2074 {
2075 struct request_queue *q;
2076
2077 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2078 blk_mq_freeze_queue(q);
2079 queue_set_hctx_shared(q, shared);
2080 blk_mq_unfreeze_queue(q);
2081 }
2082 }
2083
2084 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2085 {
2086 struct blk_mq_tag_set *set = q->tag_set;
2087
2088 mutex_lock(&set->tag_list_lock);
2089 list_del_init(&q->tag_set_list);
2090 if (list_is_singular(&set->tag_list)) {
2091 /* just transitioned to unshared */
2092 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2093 /* update existing queue */
2094 blk_mq_update_tag_set_depth(set, false);
2095 }
2096 mutex_unlock(&set->tag_list_lock);
2097 }
2098
2099 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2100 struct request_queue *q)
2101 {
2102 q->tag_set = set;
2103
2104 mutex_lock(&set->tag_list_lock);
2105
2106 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2107 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2108 set->flags |= BLK_MQ_F_TAG_SHARED;
2109 /* update existing queue */
2110 blk_mq_update_tag_set_depth(set, true);
2111 }
2112 if (set->flags & BLK_MQ_F_TAG_SHARED)
2113 queue_set_hctx_shared(q, true);
2114 list_add_tail(&q->tag_set_list, &set->tag_list);
2115
2116 mutex_unlock(&set->tag_list_lock);
2117 }
2118
2119 /*
2120 * It is the actual release handler for mq, but we do it from
2121 * request queue's release handler for avoiding use-after-free
2122 * and headache because q->mq_kobj shouldn't have been introduced,
2123 * but we can't group ctx/kctx kobj without it.
2124 */
2125 void blk_mq_release(struct request_queue *q)
2126 {
2127 struct blk_mq_hw_ctx *hctx;
2128 unsigned int i;
2129
2130 blk_mq_sched_teardown(q);
2131
2132 /* hctx kobj stays in hctx */
2133 queue_for_each_hw_ctx(q, hctx, i) {
2134 if (!hctx)
2135 continue;
2136 kfree(hctx->ctxs);
2137 kfree(hctx);
2138 }
2139
2140 q->mq_map = NULL;
2141
2142 kfree(q->queue_hw_ctx);
2143
2144 /* ctx kobj stays in queue_ctx */
2145 free_percpu(q->queue_ctx);
2146 }
2147
2148 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2149 {
2150 struct request_queue *uninit_q, *q;
2151
2152 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2153 if (!uninit_q)
2154 return ERR_PTR(-ENOMEM);
2155
2156 q = blk_mq_init_allocated_queue(set, uninit_q);
2157 if (IS_ERR(q))
2158 blk_cleanup_queue(uninit_q);
2159
2160 return q;
2161 }
2162 EXPORT_SYMBOL(blk_mq_init_queue);
2163
2164 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2165 struct request_queue *q)
2166 {
2167 int i, j;
2168 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2169
2170 blk_mq_sysfs_unregister(q);
2171 for (i = 0; i < set->nr_hw_queues; i++) {
2172 int node;
2173
2174 if (hctxs[i])
2175 continue;
2176
2177 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2178 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2179 GFP_KERNEL, node);
2180 if (!hctxs[i])
2181 break;
2182
2183 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2184 node)) {
2185 kfree(hctxs[i]);
2186 hctxs[i] = NULL;
2187 break;
2188 }
2189
2190 atomic_set(&hctxs[i]->nr_active, 0);
2191 hctxs[i]->numa_node = node;
2192 hctxs[i]->queue_num = i;
2193
2194 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2195 free_cpumask_var(hctxs[i]->cpumask);
2196 kfree(hctxs[i]);
2197 hctxs[i] = NULL;
2198 break;
2199 }
2200 blk_mq_hctx_kobj_init(hctxs[i]);
2201 }
2202 for (j = i; j < q->nr_hw_queues; j++) {
2203 struct blk_mq_hw_ctx *hctx = hctxs[j];
2204
2205 if (hctx) {
2206 if (hctx->tags)
2207 blk_mq_free_map_and_requests(set, j);
2208 blk_mq_exit_hctx(q, set, hctx, j);
2209 free_cpumask_var(hctx->cpumask);
2210 kobject_put(&hctx->kobj);
2211 kfree(hctx->ctxs);
2212 kfree(hctx);
2213 hctxs[j] = NULL;
2214
2215 }
2216 }
2217 q->nr_hw_queues = i;
2218 blk_mq_sysfs_register(q);
2219 }
2220
2221 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2222 struct request_queue *q)
2223 {
2224 /* mark the queue as mq asap */
2225 q->mq_ops = set->ops;
2226
2227 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2228 if (!q->queue_ctx)
2229 goto err_exit;
2230
2231 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2232 GFP_KERNEL, set->numa_node);
2233 if (!q->queue_hw_ctx)
2234 goto err_percpu;
2235
2236 q->mq_map = set->mq_map;
2237
2238 blk_mq_realloc_hw_ctxs(set, q);
2239 if (!q->nr_hw_queues)
2240 goto err_hctxs;
2241
2242 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2243 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2244
2245 q->nr_queues = nr_cpu_ids;
2246
2247 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2248
2249 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2250 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2251
2252 q->sg_reserved_size = INT_MAX;
2253
2254 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2255 INIT_LIST_HEAD(&q->requeue_list);
2256 spin_lock_init(&q->requeue_lock);
2257
2258 if (q->nr_hw_queues > 1)
2259 blk_queue_make_request(q, blk_mq_make_request);
2260 else
2261 blk_queue_make_request(q, blk_sq_make_request);
2262
2263 /*
2264 * Do this after blk_queue_make_request() overrides it...
2265 */
2266 q->nr_requests = set->queue_depth;
2267
2268 /*
2269 * Default to classic polling
2270 */
2271 q->poll_nsec = -1;
2272
2273 if (set->ops->complete)
2274 blk_queue_softirq_done(q, set->ops->complete);
2275
2276 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2277
2278 get_online_cpus();
2279 mutex_lock(&all_q_mutex);
2280
2281 list_add_tail(&q->all_q_node, &all_q_list);
2282 blk_mq_add_queue_tag_set(set, q);
2283 blk_mq_map_swqueue(q, cpu_online_mask);
2284
2285 mutex_unlock(&all_q_mutex);
2286 put_online_cpus();
2287
2288 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2289 int ret;
2290
2291 ret = blk_mq_sched_init(q);
2292 if (ret)
2293 return ERR_PTR(ret);
2294 }
2295
2296 return q;
2297
2298 err_hctxs:
2299 kfree(q->queue_hw_ctx);
2300 err_percpu:
2301 free_percpu(q->queue_ctx);
2302 err_exit:
2303 q->mq_ops = NULL;
2304 return ERR_PTR(-ENOMEM);
2305 }
2306 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2307
2308 void blk_mq_free_queue(struct request_queue *q)
2309 {
2310 struct blk_mq_tag_set *set = q->tag_set;
2311
2312 mutex_lock(&all_q_mutex);
2313 list_del_init(&q->all_q_node);
2314 mutex_unlock(&all_q_mutex);
2315
2316 wbt_exit(q);
2317
2318 blk_mq_del_queue_tag_set(q);
2319
2320 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2321 blk_mq_free_hw_queues(q, set);
2322 }
2323
2324 /* Basically redo blk_mq_init_queue with queue frozen */
2325 static void blk_mq_queue_reinit(struct request_queue *q,
2326 const struct cpumask *online_mask)
2327 {
2328 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2329
2330 blk_mq_sysfs_unregister(q);
2331
2332 /*
2333 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2334 * we should change hctx numa_node according to new topology (this
2335 * involves free and re-allocate memory, worthy doing?)
2336 */
2337
2338 blk_mq_map_swqueue(q, online_mask);
2339
2340 blk_mq_sysfs_register(q);
2341 }
2342
2343 /*
2344 * New online cpumask which is going to be set in this hotplug event.
2345 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2346 * one-by-one and dynamically allocating this could result in a failure.
2347 */
2348 static struct cpumask cpuhp_online_new;
2349
2350 static void blk_mq_queue_reinit_work(void)
2351 {
2352 struct request_queue *q;
2353
2354 mutex_lock(&all_q_mutex);
2355 /*
2356 * We need to freeze and reinit all existing queues. Freezing
2357 * involves synchronous wait for an RCU grace period and doing it
2358 * one by one may take a long time. Start freezing all queues in
2359 * one swoop and then wait for the completions so that freezing can
2360 * take place in parallel.
2361 */
2362 list_for_each_entry(q, &all_q_list, all_q_node)
2363 blk_mq_freeze_queue_start(q);
2364 list_for_each_entry(q, &all_q_list, all_q_node)
2365 blk_mq_freeze_queue_wait(q);
2366
2367 list_for_each_entry(q, &all_q_list, all_q_node)
2368 blk_mq_queue_reinit(q, &cpuhp_online_new);
2369
2370 list_for_each_entry(q, &all_q_list, all_q_node)
2371 blk_mq_unfreeze_queue(q);
2372
2373 mutex_unlock(&all_q_mutex);
2374 }
2375
2376 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2377 {
2378 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2379 blk_mq_queue_reinit_work();
2380 return 0;
2381 }
2382
2383 /*
2384 * Before hotadded cpu starts handling requests, new mappings must be
2385 * established. Otherwise, these requests in hw queue might never be
2386 * dispatched.
2387 *
2388 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2389 * for CPU0, and ctx1 for CPU1).
2390 *
2391 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2392 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2393 *
2394 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2395 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2396 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2397 * ignored.
2398 */
2399 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2400 {
2401 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2402 cpumask_set_cpu(cpu, &cpuhp_online_new);
2403 blk_mq_queue_reinit_work();
2404 return 0;
2405 }
2406
2407 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2408 {
2409 int i;
2410
2411 for (i = 0; i < set->nr_hw_queues; i++)
2412 if (!__blk_mq_alloc_rq_map(set, i))
2413 goto out_unwind;
2414
2415 return 0;
2416
2417 out_unwind:
2418 while (--i >= 0)
2419 blk_mq_free_rq_map(set->tags[i]);
2420
2421 return -ENOMEM;
2422 }
2423
2424 /*
2425 * Allocate the request maps associated with this tag_set. Note that this
2426 * may reduce the depth asked for, if memory is tight. set->queue_depth
2427 * will be updated to reflect the allocated depth.
2428 */
2429 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2430 {
2431 unsigned int depth;
2432 int err;
2433
2434 depth = set->queue_depth;
2435 do {
2436 err = __blk_mq_alloc_rq_maps(set);
2437 if (!err)
2438 break;
2439
2440 set->queue_depth >>= 1;
2441 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2442 err = -ENOMEM;
2443 break;
2444 }
2445 } while (set->queue_depth);
2446
2447 if (!set->queue_depth || err) {
2448 pr_err("blk-mq: failed to allocate request map\n");
2449 return -ENOMEM;
2450 }
2451
2452 if (depth != set->queue_depth)
2453 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2454 depth, set->queue_depth);
2455
2456 return 0;
2457 }
2458
2459 /*
2460 * Alloc a tag set to be associated with one or more request queues.
2461 * May fail with EINVAL for various error conditions. May adjust the
2462 * requested depth down, if if it too large. In that case, the set
2463 * value will be stored in set->queue_depth.
2464 */
2465 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2466 {
2467 int ret;
2468
2469 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2470
2471 if (!set->nr_hw_queues)
2472 return -EINVAL;
2473 if (!set->queue_depth)
2474 return -EINVAL;
2475 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2476 return -EINVAL;
2477
2478 if (!set->ops->queue_rq)
2479 return -EINVAL;
2480
2481 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2482 pr_info("blk-mq: reduced tag depth to %u\n",
2483 BLK_MQ_MAX_DEPTH);
2484 set->queue_depth = BLK_MQ_MAX_DEPTH;
2485 }
2486
2487 /*
2488 * If a crashdump is active, then we are potentially in a very
2489 * memory constrained environment. Limit us to 1 queue and
2490 * 64 tags to prevent using too much memory.
2491 */
2492 if (is_kdump_kernel()) {
2493 set->nr_hw_queues = 1;
2494 set->queue_depth = min(64U, set->queue_depth);
2495 }
2496 /*
2497 * There is no use for more h/w queues than cpus.
2498 */
2499 if (set->nr_hw_queues > nr_cpu_ids)
2500 set->nr_hw_queues = nr_cpu_ids;
2501
2502 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2503 GFP_KERNEL, set->numa_node);
2504 if (!set->tags)
2505 return -ENOMEM;
2506
2507 ret = -ENOMEM;
2508 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2509 GFP_KERNEL, set->numa_node);
2510 if (!set->mq_map)
2511 goto out_free_tags;
2512
2513 if (set->ops->map_queues)
2514 ret = set->ops->map_queues(set);
2515 else
2516 ret = blk_mq_map_queues(set);
2517 if (ret)
2518 goto out_free_mq_map;
2519
2520 ret = blk_mq_alloc_rq_maps(set);
2521 if (ret)
2522 goto out_free_mq_map;
2523
2524 mutex_init(&set->tag_list_lock);
2525 INIT_LIST_HEAD(&set->tag_list);
2526
2527 return 0;
2528
2529 out_free_mq_map:
2530 kfree(set->mq_map);
2531 set->mq_map = NULL;
2532 out_free_tags:
2533 kfree(set->tags);
2534 set->tags = NULL;
2535 return ret;
2536 }
2537 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2538
2539 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2540 {
2541 int i;
2542
2543 for (i = 0; i < nr_cpu_ids; i++)
2544 blk_mq_free_map_and_requests(set, i);
2545
2546 kfree(set->mq_map);
2547 set->mq_map = NULL;
2548
2549 kfree(set->tags);
2550 set->tags = NULL;
2551 }
2552 EXPORT_SYMBOL(blk_mq_free_tag_set);
2553
2554 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2555 {
2556 struct blk_mq_tag_set *set = q->tag_set;
2557 struct blk_mq_hw_ctx *hctx;
2558 int i, ret;
2559
2560 if (!set)
2561 return -EINVAL;
2562
2563 ret = 0;
2564 queue_for_each_hw_ctx(q, hctx, i) {
2565 if (!hctx->tags)
2566 continue;
2567 /*
2568 * If we're using an MQ scheduler, just update the scheduler
2569 * queue depth. This is similar to what the old code would do.
2570 */
2571 if (!hctx->sched_tags)
2572 ret = blk_mq_tag_update_depth(hctx->tags,
2573 min(nr, set->queue_depth));
2574 else
2575 ret = blk_mq_tag_update_depth(hctx->sched_tags, nr);
2576 if (ret)
2577 break;
2578 }
2579
2580 if (!ret)
2581 q->nr_requests = nr;
2582
2583 return ret;
2584 }
2585
2586 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2587 {
2588 struct request_queue *q;
2589
2590 if (nr_hw_queues > nr_cpu_ids)
2591 nr_hw_queues = nr_cpu_ids;
2592 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2593 return;
2594
2595 list_for_each_entry(q, &set->tag_list, tag_set_list)
2596 blk_mq_freeze_queue(q);
2597
2598 set->nr_hw_queues = nr_hw_queues;
2599 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2600 blk_mq_realloc_hw_ctxs(set, q);
2601
2602 if (q->nr_hw_queues > 1)
2603 blk_queue_make_request(q, blk_mq_make_request);
2604 else
2605 blk_queue_make_request(q, blk_sq_make_request);
2606
2607 blk_mq_queue_reinit(q, cpu_online_mask);
2608 }
2609
2610 list_for_each_entry(q, &set->tag_list, tag_set_list)
2611 blk_mq_unfreeze_queue(q);
2612 }
2613 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2614
2615 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2616 struct blk_mq_hw_ctx *hctx,
2617 struct request *rq)
2618 {
2619 struct blk_rq_stat stat[2];
2620 unsigned long ret = 0;
2621
2622 /*
2623 * If stats collection isn't on, don't sleep but turn it on for
2624 * future users
2625 */
2626 if (!blk_stat_enable(q))
2627 return 0;
2628
2629 /*
2630 * We don't have to do this once per IO, should optimize this
2631 * to just use the current window of stats until it changes
2632 */
2633 memset(&stat, 0, sizeof(stat));
2634 blk_hctx_stat_get(hctx, stat);
2635
2636 /*
2637 * As an optimistic guess, use half of the mean service time
2638 * for this type of request. We can (and should) make this smarter.
2639 * For instance, if the completion latencies are tight, we can
2640 * get closer than just half the mean. This is especially
2641 * important on devices where the completion latencies are longer
2642 * than ~10 usec.
2643 */
2644 if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
2645 ret = (stat[BLK_STAT_READ].mean + 1) / 2;
2646 else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
2647 ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;
2648
2649 return ret;
2650 }
2651
2652 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2653 struct blk_mq_hw_ctx *hctx,
2654 struct request *rq)
2655 {
2656 struct hrtimer_sleeper hs;
2657 enum hrtimer_mode mode;
2658 unsigned int nsecs;
2659 ktime_t kt;
2660
2661 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2662 return false;
2663
2664 /*
2665 * poll_nsec can be:
2666 *
2667 * -1: don't ever hybrid sleep
2668 * 0: use half of prev avg
2669 * >0: use this specific value
2670 */
2671 if (q->poll_nsec == -1)
2672 return false;
2673 else if (q->poll_nsec > 0)
2674 nsecs = q->poll_nsec;
2675 else
2676 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2677
2678 if (!nsecs)
2679 return false;
2680
2681 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2682
2683 /*
2684 * This will be replaced with the stats tracking code, using
2685 * 'avg_completion_time / 2' as the pre-sleep target.
2686 */
2687 kt = nsecs;
2688
2689 mode = HRTIMER_MODE_REL;
2690 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2691 hrtimer_set_expires(&hs.timer, kt);
2692
2693 hrtimer_init_sleeper(&hs, current);
2694 do {
2695 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2696 break;
2697 set_current_state(TASK_UNINTERRUPTIBLE);
2698 hrtimer_start_expires(&hs.timer, mode);
2699 if (hs.task)
2700 io_schedule();
2701 hrtimer_cancel(&hs.timer);
2702 mode = HRTIMER_MODE_ABS;
2703 } while (hs.task && !signal_pending(current));
2704
2705 __set_current_state(TASK_RUNNING);
2706 destroy_hrtimer_on_stack(&hs.timer);
2707 return true;
2708 }
2709
2710 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2711 {
2712 struct request_queue *q = hctx->queue;
2713 long state;
2714
2715 /*
2716 * If we sleep, have the caller restart the poll loop to reset
2717 * the state. Like for the other success return cases, the
2718 * caller is responsible for checking if the IO completed. If
2719 * the IO isn't complete, we'll get called again and will go
2720 * straight to the busy poll loop.
2721 */
2722 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2723 return true;
2724
2725 hctx->poll_considered++;
2726
2727 state = current->state;
2728 while (!need_resched()) {
2729 int ret;
2730
2731 hctx->poll_invoked++;
2732
2733 ret = q->mq_ops->poll(hctx, rq->tag);
2734 if (ret > 0) {
2735 hctx->poll_success++;
2736 set_current_state(TASK_RUNNING);
2737 return true;
2738 }
2739
2740 if (signal_pending_state(state, current))
2741 set_current_state(TASK_RUNNING);
2742
2743 if (current->state == TASK_RUNNING)
2744 return true;
2745 if (ret < 0)
2746 break;
2747 cpu_relax();
2748 }
2749
2750 return false;
2751 }
2752
2753 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2754 {
2755 struct blk_mq_hw_ctx *hctx;
2756 struct blk_plug *plug;
2757 struct request *rq;
2758
2759 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2760 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2761 return false;
2762
2763 plug = current->plug;
2764 if (plug)
2765 blk_flush_plug_list(plug, false);
2766
2767 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2768 if (!blk_qc_t_is_internal(cookie))
2769 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2770 else
2771 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2772
2773 return __blk_mq_poll(hctx, rq);
2774 }
2775 EXPORT_SYMBOL_GPL(blk_mq_poll);
2776
2777 void blk_mq_disable_hotplug(void)
2778 {
2779 mutex_lock(&all_q_mutex);
2780 }
2781
2782 void blk_mq_enable_hotplug(void)
2783 {
2784 mutex_unlock(&all_q_mutex);
2785 }
2786
2787 static int __init blk_mq_init(void)
2788 {
2789 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2790 blk_mq_hctx_notify_dead);
2791
2792 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2793 blk_mq_queue_reinit_prepare,
2794 blk_mq_queue_reinit_dead);
2795 return 0;
2796 }
2797 subsys_initcall(blk_mq_init);