]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-mq.c
block: split out request-only flags into a new namespace
[mirror_ubuntu-artful-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
25 #include <linux/prefetch.h>
26
27 #include <trace/events/block.h>
28
29 #include <linux/blk-mq.h>
30 #include "blk.h"
31 #include "blk-mq.h"
32 #include "blk-mq-tag.h"
33
34 static DEFINE_MUTEX(all_q_mutex);
35 static LIST_HEAD(all_q_list);
36
37 /*
38 * Check if any of the ctx's have pending work in this hardware queue
39 */
40 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
41 {
42 return sbitmap_any_bit_set(&hctx->ctx_map);
43 }
44
45 /*
46 * Mark this ctx as having pending work in this hardware queue
47 */
48 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
49 struct blk_mq_ctx *ctx)
50 {
51 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
52 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
53 }
54
55 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
56 struct blk_mq_ctx *ctx)
57 {
58 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
59 }
60
61 void blk_mq_freeze_queue_start(struct request_queue *q)
62 {
63 int freeze_depth;
64
65 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
66 if (freeze_depth == 1) {
67 percpu_ref_kill(&q->q_usage_counter);
68 blk_mq_run_hw_queues(q, false);
69 }
70 }
71 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
72
73 static void blk_mq_freeze_queue_wait(struct request_queue *q)
74 {
75 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
76 }
77
78 /*
79 * Guarantee no request is in use, so we can change any data structure of
80 * the queue afterward.
81 */
82 void blk_freeze_queue(struct request_queue *q)
83 {
84 /*
85 * In the !blk_mq case we are only calling this to kill the
86 * q_usage_counter, otherwise this increases the freeze depth
87 * and waits for it to return to zero. For this reason there is
88 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
89 * exported to drivers as the only user for unfreeze is blk_mq.
90 */
91 blk_mq_freeze_queue_start(q);
92 blk_mq_freeze_queue_wait(q);
93 }
94
95 void blk_mq_freeze_queue(struct request_queue *q)
96 {
97 /*
98 * ...just an alias to keep freeze and unfreeze actions balanced
99 * in the blk_mq_* namespace
100 */
101 blk_freeze_queue(q);
102 }
103 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
104
105 void blk_mq_unfreeze_queue(struct request_queue *q)
106 {
107 int freeze_depth;
108
109 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
110 WARN_ON_ONCE(freeze_depth < 0);
111 if (!freeze_depth) {
112 percpu_ref_reinit(&q->q_usage_counter);
113 wake_up_all(&q->mq_freeze_wq);
114 }
115 }
116 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
117
118 void blk_mq_wake_waiters(struct request_queue *q)
119 {
120 struct blk_mq_hw_ctx *hctx;
121 unsigned int i;
122
123 queue_for_each_hw_ctx(q, hctx, i)
124 if (blk_mq_hw_queue_mapped(hctx))
125 blk_mq_tag_wakeup_all(hctx->tags, true);
126
127 /*
128 * If we are called because the queue has now been marked as
129 * dying, we need to ensure that processes currently waiting on
130 * the queue are notified as well.
131 */
132 wake_up_all(&q->mq_freeze_wq);
133 }
134
135 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
136 {
137 return blk_mq_has_free_tags(hctx->tags);
138 }
139 EXPORT_SYMBOL(blk_mq_can_queue);
140
141 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
142 struct request *rq, int op,
143 unsigned int op_flags)
144 {
145 INIT_LIST_HEAD(&rq->queuelist);
146 /* csd/requeue_work/fifo_time is initialized before use */
147 rq->q = q;
148 rq->mq_ctx = ctx;
149 req_set_op_attrs(rq, op, op_flags);
150 if (blk_queue_io_stat(q))
151 rq->rq_flags |= RQF_IO_STAT;
152 /* do not touch atomic flags, it needs atomic ops against the timer */
153 rq->cpu = -1;
154 INIT_HLIST_NODE(&rq->hash);
155 RB_CLEAR_NODE(&rq->rb_node);
156 rq->rq_disk = NULL;
157 rq->part = NULL;
158 rq->start_time = jiffies;
159 #ifdef CONFIG_BLK_CGROUP
160 rq->rl = NULL;
161 set_start_time_ns(rq);
162 rq->io_start_time_ns = 0;
163 #endif
164 rq->nr_phys_segments = 0;
165 #if defined(CONFIG_BLK_DEV_INTEGRITY)
166 rq->nr_integrity_segments = 0;
167 #endif
168 rq->special = NULL;
169 /* tag was already set */
170 rq->errors = 0;
171
172 rq->cmd = rq->__cmd;
173
174 rq->extra_len = 0;
175 rq->sense_len = 0;
176 rq->resid_len = 0;
177 rq->sense = NULL;
178
179 INIT_LIST_HEAD(&rq->timeout_list);
180 rq->timeout = 0;
181
182 rq->end_io = NULL;
183 rq->end_io_data = NULL;
184 rq->next_rq = NULL;
185
186 ctx->rq_dispatched[rw_is_sync(op, op_flags)]++;
187 }
188
189 static struct request *
190 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int op, int op_flags)
191 {
192 struct request *rq;
193 unsigned int tag;
194
195 tag = blk_mq_get_tag(data);
196 if (tag != BLK_MQ_TAG_FAIL) {
197 rq = data->hctx->tags->rqs[tag];
198
199 if (blk_mq_tag_busy(data->hctx)) {
200 rq->rq_flags = RQF_MQ_INFLIGHT;
201 atomic_inc(&data->hctx->nr_active);
202 }
203
204 rq->tag = tag;
205 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op, op_flags);
206 return rq;
207 }
208
209 return NULL;
210 }
211
212 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
213 unsigned int flags)
214 {
215 struct blk_mq_ctx *ctx;
216 struct blk_mq_hw_ctx *hctx;
217 struct request *rq;
218 struct blk_mq_alloc_data alloc_data;
219 int ret;
220
221 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
222 if (ret)
223 return ERR_PTR(ret);
224
225 ctx = blk_mq_get_ctx(q);
226 hctx = blk_mq_map_queue(q, ctx->cpu);
227 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
228 rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
229 blk_mq_put_ctx(ctx);
230
231 if (!rq) {
232 blk_queue_exit(q);
233 return ERR_PTR(-EWOULDBLOCK);
234 }
235
236 rq->__data_len = 0;
237 rq->__sector = (sector_t) -1;
238 rq->bio = rq->biotail = NULL;
239 return rq;
240 }
241 EXPORT_SYMBOL(blk_mq_alloc_request);
242
243 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
244 unsigned int flags, unsigned int hctx_idx)
245 {
246 struct blk_mq_hw_ctx *hctx;
247 struct blk_mq_ctx *ctx;
248 struct request *rq;
249 struct blk_mq_alloc_data alloc_data;
250 int ret;
251
252 /*
253 * If the tag allocator sleeps we could get an allocation for a
254 * different hardware context. No need to complicate the low level
255 * allocator for this for the rare use case of a command tied to
256 * a specific queue.
257 */
258 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
259 return ERR_PTR(-EINVAL);
260
261 if (hctx_idx >= q->nr_hw_queues)
262 return ERR_PTR(-EIO);
263
264 ret = blk_queue_enter(q, true);
265 if (ret)
266 return ERR_PTR(ret);
267
268 /*
269 * Check if the hardware context is actually mapped to anything.
270 * If not tell the caller that it should skip this queue.
271 */
272 hctx = q->queue_hw_ctx[hctx_idx];
273 if (!blk_mq_hw_queue_mapped(hctx)) {
274 ret = -EXDEV;
275 goto out_queue_exit;
276 }
277 ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));
278
279 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
280 rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
281 if (!rq) {
282 ret = -EWOULDBLOCK;
283 goto out_queue_exit;
284 }
285
286 return rq;
287
288 out_queue_exit:
289 blk_queue_exit(q);
290 return ERR_PTR(ret);
291 }
292 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
293
294 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
295 struct blk_mq_ctx *ctx, struct request *rq)
296 {
297 const int tag = rq->tag;
298 struct request_queue *q = rq->q;
299
300 if (rq->rq_flags & RQF_MQ_INFLIGHT)
301 atomic_dec(&hctx->nr_active);
302 rq->rq_flags = 0;
303
304 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
305 blk_mq_put_tag(hctx, ctx, tag);
306 blk_queue_exit(q);
307 }
308
309 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
310 {
311 struct blk_mq_ctx *ctx = rq->mq_ctx;
312
313 ctx->rq_completed[rq_is_sync(rq)]++;
314 __blk_mq_free_request(hctx, ctx, rq);
315
316 }
317 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
318
319 void blk_mq_free_request(struct request *rq)
320 {
321 blk_mq_free_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
322 }
323 EXPORT_SYMBOL_GPL(blk_mq_free_request);
324
325 inline void __blk_mq_end_request(struct request *rq, int error)
326 {
327 blk_account_io_done(rq);
328
329 if (rq->end_io) {
330 rq->end_io(rq, error);
331 } else {
332 if (unlikely(blk_bidi_rq(rq)))
333 blk_mq_free_request(rq->next_rq);
334 blk_mq_free_request(rq);
335 }
336 }
337 EXPORT_SYMBOL(__blk_mq_end_request);
338
339 void blk_mq_end_request(struct request *rq, int error)
340 {
341 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
342 BUG();
343 __blk_mq_end_request(rq, error);
344 }
345 EXPORT_SYMBOL(blk_mq_end_request);
346
347 static void __blk_mq_complete_request_remote(void *data)
348 {
349 struct request *rq = data;
350
351 rq->q->softirq_done_fn(rq);
352 }
353
354 static void blk_mq_ipi_complete_request(struct request *rq)
355 {
356 struct blk_mq_ctx *ctx = rq->mq_ctx;
357 bool shared = false;
358 int cpu;
359
360 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
361 rq->q->softirq_done_fn(rq);
362 return;
363 }
364
365 cpu = get_cpu();
366 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
367 shared = cpus_share_cache(cpu, ctx->cpu);
368
369 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
370 rq->csd.func = __blk_mq_complete_request_remote;
371 rq->csd.info = rq;
372 rq->csd.flags = 0;
373 smp_call_function_single_async(ctx->cpu, &rq->csd);
374 } else {
375 rq->q->softirq_done_fn(rq);
376 }
377 put_cpu();
378 }
379
380 static void __blk_mq_complete_request(struct request *rq)
381 {
382 struct request_queue *q = rq->q;
383
384 if (!q->softirq_done_fn)
385 blk_mq_end_request(rq, rq->errors);
386 else
387 blk_mq_ipi_complete_request(rq);
388 }
389
390 /**
391 * blk_mq_complete_request - end I/O on a request
392 * @rq: the request being processed
393 *
394 * Description:
395 * Ends all I/O on a request. It does not handle partial completions.
396 * The actual completion happens out-of-order, through a IPI handler.
397 **/
398 void blk_mq_complete_request(struct request *rq, int error)
399 {
400 struct request_queue *q = rq->q;
401
402 if (unlikely(blk_should_fake_timeout(q)))
403 return;
404 if (!blk_mark_rq_complete(rq)) {
405 rq->errors = error;
406 __blk_mq_complete_request(rq);
407 }
408 }
409 EXPORT_SYMBOL(blk_mq_complete_request);
410
411 int blk_mq_request_started(struct request *rq)
412 {
413 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
414 }
415 EXPORT_SYMBOL_GPL(blk_mq_request_started);
416
417 void blk_mq_start_request(struct request *rq)
418 {
419 struct request_queue *q = rq->q;
420
421 trace_block_rq_issue(q, rq);
422
423 rq->resid_len = blk_rq_bytes(rq);
424 if (unlikely(blk_bidi_rq(rq)))
425 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
426
427 blk_add_timer(rq);
428
429 /*
430 * Ensure that ->deadline is visible before set the started
431 * flag and clear the completed flag.
432 */
433 smp_mb__before_atomic();
434
435 /*
436 * Mark us as started and clear complete. Complete might have been
437 * set if requeue raced with timeout, which then marked it as
438 * complete. So be sure to clear complete again when we start
439 * the request, otherwise we'll ignore the completion event.
440 */
441 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
442 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
443 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
444 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
445
446 if (q->dma_drain_size && blk_rq_bytes(rq)) {
447 /*
448 * Make sure space for the drain appears. We know we can do
449 * this because max_hw_segments has been adjusted to be one
450 * fewer than the device can handle.
451 */
452 rq->nr_phys_segments++;
453 }
454 }
455 EXPORT_SYMBOL(blk_mq_start_request);
456
457 static void __blk_mq_requeue_request(struct request *rq)
458 {
459 struct request_queue *q = rq->q;
460
461 trace_block_rq_requeue(q, rq);
462
463 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
464 if (q->dma_drain_size && blk_rq_bytes(rq))
465 rq->nr_phys_segments--;
466 }
467 }
468
469 void blk_mq_requeue_request(struct request *rq)
470 {
471 __blk_mq_requeue_request(rq);
472
473 BUG_ON(blk_queued_rq(rq));
474 blk_mq_add_to_requeue_list(rq, true);
475 }
476 EXPORT_SYMBOL(blk_mq_requeue_request);
477
478 static void blk_mq_requeue_work(struct work_struct *work)
479 {
480 struct request_queue *q =
481 container_of(work, struct request_queue, requeue_work.work);
482 LIST_HEAD(rq_list);
483 struct request *rq, *next;
484 unsigned long flags;
485
486 spin_lock_irqsave(&q->requeue_lock, flags);
487 list_splice_init(&q->requeue_list, &rq_list);
488 spin_unlock_irqrestore(&q->requeue_lock, flags);
489
490 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
491 if (!(rq->rq_flags & RQF_SOFTBARRIER))
492 continue;
493
494 rq->rq_flags &= ~RQF_SOFTBARRIER;
495 list_del_init(&rq->queuelist);
496 blk_mq_insert_request(rq, true, false, false);
497 }
498
499 while (!list_empty(&rq_list)) {
500 rq = list_entry(rq_list.next, struct request, queuelist);
501 list_del_init(&rq->queuelist);
502 blk_mq_insert_request(rq, false, false, false);
503 }
504
505 /*
506 * Use the start variant of queue running here, so that running
507 * the requeue work will kick stopped queues.
508 */
509 blk_mq_start_hw_queues(q);
510 }
511
512 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
513 {
514 struct request_queue *q = rq->q;
515 unsigned long flags;
516
517 /*
518 * We abuse this flag that is otherwise used by the I/O scheduler to
519 * request head insertation from the workqueue.
520 */
521 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
522
523 spin_lock_irqsave(&q->requeue_lock, flags);
524 if (at_head) {
525 rq->rq_flags |= RQF_SOFTBARRIER;
526 list_add(&rq->queuelist, &q->requeue_list);
527 } else {
528 list_add_tail(&rq->queuelist, &q->requeue_list);
529 }
530 spin_unlock_irqrestore(&q->requeue_lock, flags);
531 }
532 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
533
534 void blk_mq_cancel_requeue_work(struct request_queue *q)
535 {
536 cancel_delayed_work_sync(&q->requeue_work);
537 }
538 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
539
540 void blk_mq_kick_requeue_list(struct request_queue *q)
541 {
542 kblockd_schedule_delayed_work(&q->requeue_work, 0);
543 }
544 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
545
546 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
547 unsigned long msecs)
548 {
549 kblockd_schedule_delayed_work(&q->requeue_work,
550 msecs_to_jiffies(msecs));
551 }
552 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
553
554 void blk_mq_abort_requeue_list(struct request_queue *q)
555 {
556 unsigned long flags;
557 LIST_HEAD(rq_list);
558
559 spin_lock_irqsave(&q->requeue_lock, flags);
560 list_splice_init(&q->requeue_list, &rq_list);
561 spin_unlock_irqrestore(&q->requeue_lock, flags);
562
563 while (!list_empty(&rq_list)) {
564 struct request *rq;
565
566 rq = list_first_entry(&rq_list, struct request, queuelist);
567 list_del_init(&rq->queuelist);
568 rq->errors = -EIO;
569 blk_mq_end_request(rq, rq->errors);
570 }
571 }
572 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
573
574 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
575 {
576 if (tag < tags->nr_tags) {
577 prefetch(tags->rqs[tag]);
578 return tags->rqs[tag];
579 }
580
581 return NULL;
582 }
583 EXPORT_SYMBOL(blk_mq_tag_to_rq);
584
585 struct blk_mq_timeout_data {
586 unsigned long next;
587 unsigned int next_set;
588 };
589
590 void blk_mq_rq_timed_out(struct request *req, bool reserved)
591 {
592 struct blk_mq_ops *ops = req->q->mq_ops;
593 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
594
595 /*
596 * We know that complete is set at this point. If STARTED isn't set
597 * anymore, then the request isn't active and the "timeout" should
598 * just be ignored. This can happen due to the bitflag ordering.
599 * Timeout first checks if STARTED is set, and if it is, assumes
600 * the request is active. But if we race with completion, then
601 * we both flags will get cleared. So check here again, and ignore
602 * a timeout event with a request that isn't active.
603 */
604 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
605 return;
606
607 if (ops->timeout)
608 ret = ops->timeout(req, reserved);
609
610 switch (ret) {
611 case BLK_EH_HANDLED:
612 __blk_mq_complete_request(req);
613 break;
614 case BLK_EH_RESET_TIMER:
615 blk_add_timer(req);
616 blk_clear_rq_complete(req);
617 break;
618 case BLK_EH_NOT_HANDLED:
619 break;
620 default:
621 printk(KERN_ERR "block: bad eh return: %d\n", ret);
622 break;
623 }
624 }
625
626 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
627 struct request *rq, void *priv, bool reserved)
628 {
629 struct blk_mq_timeout_data *data = priv;
630
631 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
632 /*
633 * If a request wasn't started before the queue was
634 * marked dying, kill it here or it'll go unnoticed.
635 */
636 if (unlikely(blk_queue_dying(rq->q))) {
637 rq->errors = -EIO;
638 blk_mq_end_request(rq, rq->errors);
639 }
640 return;
641 }
642
643 if (time_after_eq(jiffies, rq->deadline)) {
644 if (!blk_mark_rq_complete(rq))
645 blk_mq_rq_timed_out(rq, reserved);
646 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
647 data->next = rq->deadline;
648 data->next_set = 1;
649 }
650 }
651
652 static void blk_mq_timeout_work(struct work_struct *work)
653 {
654 struct request_queue *q =
655 container_of(work, struct request_queue, timeout_work);
656 struct blk_mq_timeout_data data = {
657 .next = 0,
658 .next_set = 0,
659 };
660 int i;
661
662 /* A deadlock might occur if a request is stuck requiring a
663 * timeout at the same time a queue freeze is waiting
664 * completion, since the timeout code would not be able to
665 * acquire the queue reference here.
666 *
667 * That's why we don't use blk_queue_enter here; instead, we use
668 * percpu_ref_tryget directly, because we need to be able to
669 * obtain a reference even in the short window between the queue
670 * starting to freeze, by dropping the first reference in
671 * blk_mq_freeze_queue_start, and the moment the last request is
672 * consumed, marked by the instant q_usage_counter reaches
673 * zero.
674 */
675 if (!percpu_ref_tryget(&q->q_usage_counter))
676 return;
677
678 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
679
680 if (data.next_set) {
681 data.next = blk_rq_timeout(round_jiffies_up(data.next));
682 mod_timer(&q->timeout, data.next);
683 } else {
684 struct blk_mq_hw_ctx *hctx;
685
686 queue_for_each_hw_ctx(q, hctx, i) {
687 /* the hctx may be unmapped, so check it here */
688 if (blk_mq_hw_queue_mapped(hctx))
689 blk_mq_tag_idle(hctx);
690 }
691 }
692 blk_queue_exit(q);
693 }
694
695 /*
696 * Reverse check our software queue for entries that we could potentially
697 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
698 * too much time checking for merges.
699 */
700 static bool blk_mq_attempt_merge(struct request_queue *q,
701 struct blk_mq_ctx *ctx, struct bio *bio)
702 {
703 struct request *rq;
704 int checked = 8;
705
706 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
707 int el_ret;
708
709 if (!checked--)
710 break;
711
712 if (!blk_rq_merge_ok(rq, bio))
713 continue;
714
715 el_ret = blk_try_merge(rq, bio);
716 if (el_ret == ELEVATOR_BACK_MERGE) {
717 if (bio_attempt_back_merge(q, rq, bio)) {
718 ctx->rq_merged++;
719 return true;
720 }
721 break;
722 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
723 if (bio_attempt_front_merge(q, rq, bio)) {
724 ctx->rq_merged++;
725 return true;
726 }
727 break;
728 }
729 }
730
731 return false;
732 }
733
734 struct flush_busy_ctx_data {
735 struct blk_mq_hw_ctx *hctx;
736 struct list_head *list;
737 };
738
739 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
740 {
741 struct flush_busy_ctx_data *flush_data = data;
742 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
743 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
744
745 sbitmap_clear_bit(sb, bitnr);
746 spin_lock(&ctx->lock);
747 list_splice_tail_init(&ctx->rq_list, flush_data->list);
748 spin_unlock(&ctx->lock);
749 return true;
750 }
751
752 /*
753 * Process software queues that have been marked busy, splicing them
754 * to the for-dispatch
755 */
756 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
757 {
758 struct flush_busy_ctx_data data = {
759 .hctx = hctx,
760 .list = list,
761 };
762
763 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
764 }
765
766 static inline unsigned int queued_to_index(unsigned int queued)
767 {
768 if (!queued)
769 return 0;
770
771 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
772 }
773
774 /*
775 * Run this hardware queue, pulling any software queues mapped to it in.
776 * Note that this function currently has various problems around ordering
777 * of IO. In particular, we'd like FIFO behaviour on handling existing
778 * items on the hctx->dispatch list. Ignore that for now.
779 */
780 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
781 {
782 struct request_queue *q = hctx->queue;
783 struct request *rq;
784 LIST_HEAD(rq_list);
785 LIST_HEAD(driver_list);
786 struct list_head *dptr;
787 int queued;
788
789 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
790 return;
791
792 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
793 cpu_online(hctx->next_cpu));
794
795 hctx->run++;
796
797 /*
798 * Touch any software queue that has pending entries.
799 */
800 flush_busy_ctxs(hctx, &rq_list);
801
802 /*
803 * If we have previous entries on our dispatch list, grab them
804 * and stuff them at the front for more fair dispatch.
805 */
806 if (!list_empty_careful(&hctx->dispatch)) {
807 spin_lock(&hctx->lock);
808 if (!list_empty(&hctx->dispatch))
809 list_splice_init(&hctx->dispatch, &rq_list);
810 spin_unlock(&hctx->lock);
811 }
812
813 /*
814 * Start off with dptr being NULL, so we start the first request
815 * immediately, even if we have more pending.
816 */
817 dptr = NULL;
818
819 /*
820 * Now process all the entries, sending them to the driver.
821 */
822 queued = 0;
823 while (!list_empty(&rq_list)) {
824 struct blk_mq_queue_data bd;
825 int ret;
826
827 rq = list_first_entry(&rq_list, struct request, queuelist);
828 list_del_init(&rq->queuelist);
829
830 bd.rq = rq;
831 bd.list = dptr;
832 bd.last = list_empty(&rq_list);
833
834 ret = q->mq_ops->queue_rq(hctx, &bd);
835 switch (ret) {
836 case BLK_MQ_RQ_QUEUE_OK:
837 queued++;
838 break;
839 case BLK_MQ_RQ_QUEUE_BUSY:
840 list_add(&rq->queuelist, &rq_list);
841 __blk_mq_requeue_request(rq);
842 break;
843 default:
844 pr_err("blk-mq: bad return on queue: %d\n", ret);
845 case BLK_MQ_RQ_QUEUE_ERROR:
846 rq->errors = -EIO;
847 blk_mq_end_request(rq, rq->errors);
848 break;
849 }
850
851 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
852 break;
853
854 /*
855 * We've done the first request. If we have more than 1
856 * left in the list, set dptr to defer issue.
857 */
858 if (!dptr && rq_list.next != rq_list.prev)
859 dptr = &driver_list;
860 }
861
862 hctx->dispatched[queued_to_index(queued)]++;
863
864 /*
865 * Any items that need requeuing? Stuff them into hctx->dispatch,
866 * that is where we will continue on next queue run.
867 */
868 if (!list_empty(&rq_list)) {
869 spin_lock(&hctx->lock);
870 list_splice(&rq_list, &hctx->dispatch);
871 spin_unlock(&hctx->lock);
872 /*
873 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
874 * it's possible the queue is stopped and restarted again
875 * before this. Queue restart will dispatch requests. And since
876 * requests in rq_list aren't added into hctx->dispatch yet,
877 * the requests in rq_list might get lost.
878 *
879 * blk_mq_run_hw_queue() already checks the STOPPED bit
880 **/
881 blk_mq_run_hw_queue(hctx, true);
882 }
883 }
884
885 /*
886 * It'd be great if the workqueue API had a way to pass
887 * in a mask and had some smarts for more clever placement.
888 * For now we just round-robin here, switching for every
889 * BLK_MQ_CPU_WORK_BATCH queued items.
890 */
891 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
892 {
893 if (hctx->queue->nr_hw_queues == 1)
894 return WORK_CPU_UNBOUND;
895
896 if (--hctx->next_cpu_batch <= 0) {
897 int cpu = hctx->next_cpu, next_cpu;
898
899 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
900 if (next_cpu >= nr_cpu_ids)
901 next_cpu = cpumask_first(hctx->cpumask);
902
903 hctx->next_cpu = next_cpu;
904 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
905
906 return cpu;
907 }
908
909 return hctx->next_cpu;
910 }
911
912 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
913 {
914 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
915 !blk_mq_hw_queue_mapped(hctx)))
916 return;
917
918 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
919 int cpu = get_cpu();
920 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
921 __blk_mq_run_hw_queue(hctx);
922 put_cpu();
923 return;
924 }
925
926 put_cpu();
927 }
928
929 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
930 }
931
932 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
933 {
934 struct blk_mq_hw_ctx *hctx;
935 int i;
936
937 queue_for_each_hw_ctx(q, hctx, i) {
938 if ((!blk_mq_hctx_has_pending(hctx) &&
939 list_empty_careful(&hctx->dispatch)) ||
940 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
941 continue;
942
943 blk_mq_run_hw_queue(hctx, async);
944 }
945 }
946 EXPORT_SYMBOL(blk_mq_run_hw_queues);
947
948 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
949 {
950 cancel_work(&hctx->run_work);
951 cancel_delayed_work(&hctx->delay_work);
952 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
953 }
954 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
955
956 void blk_mq_stop_hw_queues(struct request_queue *q)
957 {
958 struct blk_mq_hw_ctx *hctx;
959 int i;
960
961 queue_for_each_hw_ctx(q, hctx, i)
962 blk_mq_stop_hw_queue(hctx);
963 }
964 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
965
966 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
967 {
968 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
969
970 blk_mq_run_hw_queue(hctx, false);
971 }
972 EXPORT_SYMBOL(blk_mq_start_hw_queue);
973
974 void blk_mq_start_hw_queues(struct request_queue *q)
975 {
976 struct blk_mq_hw_ctx *hctx;
977 int i;
978
979 queue_for_each_hw_ctx(q, hctx, i)
980 blk_mq_start_hw_queue(hctx);
981 }
982 EXPORT_SYMBOL(blk_mq_start_hw_queues);
983
984 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
985 {
986 struct blk_mq_hw_ctx *hctx;
987 int i;
988
989 queue_for_each_hw_ctx(q, hctx, i) {
990 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
991 continue;
992
993 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
994 blk_mq_run_hw_queue(hctx, async);
995 }
996 }
997 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
998
999 static void blk_mq_run_work_fn(struct work_struct *work)
1000 {
1001 struct blk_mq_hw_ctx *hctx;
1002
1003 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1004
1005 __blk_mq_run_hw_queue(hctx);
1006 }
1007
1008 static void blk_mq_delay_work_fn(struct work_struct *work)
1009 {
1010 struct blk_mq_hw_ctx *hctx;
1011
1012 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1013
1014 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1015 __blk_mq_run_hw_queue(hctx);
1016 }
1017
1018 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1019 {
1020 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1021 return;
1022
1023 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1024 &hctx->delay_work, msecs_to_jiffies(msecs));
1025 }
1026 EXPORT_SYMBOL(blk_mq_delay_queue);
1027
1028 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1029 struct request *rq,
1030 bool at_head)
1031 {
1032 struct blk_mq_ctx *ctx = rq->mq_ctx;
1033
1034 trace_block_rq_insert(hctx->queue, rq);
1035
1036 if (at_head)
1037 list_add(&rq->queuelist, &ctx->rq_list);
1038 else
1039 list_add_tail(&rq->queuelist, &ctx->rq_list);
1040 }
1041
1042 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
1043 struct request *rq, bool at_head)
1044 {
1045 struct blk_mq_ctx *ctx = rq->mq_ctx;
1046
1047 __blk_mq_insert_req_list(hctx, rq, at_head);
1048 blk_mq_hctx_mark_pending(hctx, ctx);
1049 }
1050
1051 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1052 bool async)
1053 {
1054 struct blk_mq_ctx *ctx = rq->mq_ctx;
1055 struct request_queue *q = rq->q;
1056 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1057
1058 spin_lock(&ctx->lock);
1059 __blk_mq_insert_request(hctx, rq, at_head);
1060 spin_unlock(&ctx->lock);
1061
1062 if (run_queue)
1063 blk_mq_run_hw_queue(hctx, async);
1064 }
1065
1066 static void blk_mq_insert_requests(struct request_queue *q,
1067 struct blk_mq_ctx *ctx,
1068 struct list_head *list,
1069 int depth,
1070 bool from_schedule)
1071
1072 {
1073 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1074
1075 trace_block_unplug(q, depth, !from_schedule);
1076
1077 /*
1078 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1079 * offline now
1080 */
1081 spin_lock(&ctx->lock);
1082 while (!list_empty(list)) {
1083 struct request *rq;
1084
1085 rq = list_first_entry(list, struct request, queuelist);
1086 BUG_ON(rq->mq_ctx != ctx);
1087 list_del_init(&rq->queuelist);
1088 __blk_mq_insert_req_list(hctx, rq, false);
1089 }
1090 blk_mq_hctx_mark_pending(hctx, ctx);
1091 spin_unlock(&ctx->lock);
1092
1093 blk_mq_run_hw_queue(hctx, from_schedule);
1094 }
1095
1096 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1097 {
1098 struct request *rqa = container_of(a, struct request, queuelist);
1099 struct request *rqb = container_of(b, struct request, queuelist);
1100
1101 return !(rqa->mq_ctx < rqb->mq_ctx ||
1102 (rqa->mq_ctx == rqb->mq_ctx &&
1103 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1104 }
1105
1106 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1107 {
1108 struct blk_mq_ctx *this_ctx;
1109 struct request_queue *this_q;
1110 struct request *rq;
1111 LIST_HEAD(list);
1112 LIST_HEAD(ctx_list);
1113 unsigned int depth;
1114
1115 list_splice_init(&plug->mq_list, &list);
1116
1117 list_sort(NULL, &list, plug_ctx_cmp);
1118
1119 this_q = NULL;
1120 this_ctx = NULL;
1121 depth = 0;
1122
1123 while (!list_empty(&list)) {
1124 rq = list_entry_rq(list.next);
1125 list_del_init(&rq->queuelist);
1126 BUG_ON(!rq->q);
1127 if (rq->mq_ctx != this_ctx) {
1128 if (this_ctx) {
1129 blk_mq_insert_requests(this_q, this_ctx,
1130 &ctx_list, depth,
1131 from_schedule);
1132 }
1133
1134 this_ctx = rq->mq_ctx;
1135 this_q = rq->q;
1136 depth = 0;
1137 }
1138
1139 depth++;
1140 list_add_tail(&rq->queuelist, &ctx_list);
1141 }
1142
1143 /*
1144 * If 'this_ctx' is set, we know we have entries to complete
1145 * on 'ctx_list'. Do those.
1146 */
1147 if (this_ctx) {
1148 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1149 from_schedule);
1150 }
1151 }
1152
1153 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1154 {
1155 init_request_from_bio(rq, bio);
1156
1157 blk_account_io_start(rq, 1);
1158 }
1159
1160 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1161 {
1162 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1163 !blk_queue_nomerges(hctx->queue);
1164 }
1165
1166 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1167 struct blk_mq_ctx *ctx,
1168 struct request *rq, struct bio *bio)
1169 {
1170 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1171 blk_mq_bio_to_request(rq, bio);
1172 spin_lock(&ctx->lock);
1173 insert_rq:
1174 __blk_mq_insert_request(hctx, rq, false);
1175 spin_unlock(&ctx->lock);
1176 return false;
1177 } else {
1178 struct request_queue *q = hctx->queue;
1179
1180 spin_lock(&ctx->lock);
1181 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1182 blk_mq_bio_to_request(rq, bio);
1183 goto insert_rq;
1184 }
1185
1186 spin_unlock(&ctx->lock);
1187 __blk_mq_free_request(hctx, ctx, rq);
1188 return true;
1189 }
1190 }
1191
1192 static struct request *blk_mq_map_request(struct request_queue *q,
1193 struct bio *bio,
1194 struct blk_mq_alloc_data *data)
1195 {
1196 struct blk_mq_hw_ctx *hctx;
1197 struct blk_mq_ctx *ctx;
1198 struct request *rq;
1199 int op = bio_data_dir(bio);
1200 int op_flags = 0;
1201
1202 blk_queue_enter_live(q);
1203 ctx = blk_mq_get_ctx(q);
1204 hctx = blk_mq_map_queue(q, ctx->cpu);
1205
1206 if (rw_is_sync(bio_op(bio), bio->bi_opf))
1207 op_flags |= REQ_SYNC;
1208
1209 trace_block_getrq(q, bio, op);
1210 blk_mq_set_alloc_data(data, q, 0, ctx, hctx);
1211 rq = __blk_mq_alloc_request(data, op, op_flags);
1212
1213 data->hctx->queued++;
1214 return rq;
1215 }
1216
1217 static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie)
1218 {
1219 int ret;
1220 struct request_queue *q = rq->q;
1221 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
1222 struct blk_mq_queue_data bd = {
1223 .rq = rq,
1224 .list = NULL,
1225 .last = 1
1226 };
1227 blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1228
1229 /*
1230 * For OK queue, we are done. For error, kill it. Any other
1231 * error (busy), just add it to our list as we previously
1232 * would have done
1233 */
1234 ret = q->mq_ops->queue_rq(hctx, &bd);
1235 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1236 *cookie = new_cookie;
1237 return 0;
1238 }
1239
1240 __blk_mq_requeue_request(rq);
1241
1242 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1243 *cookie = BLK_QC_T_NONE;
1244 rq->errors = -EIO;
1245 blk_mq_end_request(rq, rq->errors);
1246 return 0;
1247 }
1248
1249 return -1;
1250 }
1251
1252 /*
1253 * Multiple hardware queue variant. This will not use per-process plugs,
1254 * but will attempt to bypass the hctx queueing if we can go straight to
1255 * hardware for SYNC IO.
1256 */
1257 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1258 {
1259 const int is_sync = rw_is_sync(bio_op(bio), bio->bi_opf);
1260 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1261 struct blk_mq_alloc_data data;
1262 struct request *rq;
1263 unsigned int request_count = 0;
1264 struct blk_plug *plug;
1265 struct request *same_queue_rq = NULL;
1266 blk_qc_t cookie;
1267
1268 blk_queue_bounce(q, &bio);
1269
1270 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1271 bio_io_error(bio);
1272 return BLK_QC_T_NONE;
1273 }
1274
1275 blk_queue_split(q, &bio, q->bio_split);
1276
1277 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1278 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1279 return BLK_QC_T_NONE;
1280
1281 rq = blk_mq_map_request(q, bio, &data);
1282 if (unlikely(!rq))
1283 return BLK_QC_T_NONE;
1284
1285 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1286
1287 if (unlikely(is_flush_fua)) {
1288 blk_mq_bio_to_request(rq, bio);
1289 blk_insert_flush(rq);
1290 goto run_queue;
1291 }
1292
1293 plug = current->plug;
1294 /*
1295 * If the driver supports defer issued based on 'last', then
1296 * queue it up like normal since we can potentially save some
1297 * CPU this way.
1298 */
1299 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1300 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1301 struct request *old_rq = NULL;
1302
1303 blk_mq_bio_to_request(rq, bio);
1304
1305 /*
1306 * We do limited pluging. If the bio can be merged, do that.
1307 * Otherwise the existing request in the plug list will be
1308 * issued. So the plug list will have one request at most
1309 */
1310 if (plug) {
1311 /*
1312 * The plug list might get flushed before this. If that
1313 * happens, same_queue_rq is invalid and plug list is
1314 * empty
1315 */
1316 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1317 old_rq = same_queue_rq;
1318 list_del_init(&old_rq->queuelist);
1319 }
1320 list_add_tail(&rq->queuelist, &plug->mq_list);
1321 } else /* is_sync */
1322 old_rq = rq;
1323 blk_mq_put_ctx(data.ctx);
1324 if (!old_rq)
1325 goto done;
1326 if (!blk_mq_direct_issue_request(old_rq, &cookie))
1327 goto done;
1328 blk_mq_insert_request(old_rq, false, true, true);
1329 goto done;
1330 }
1331
1332 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1333 /*
1334 * For a SYNC request, send it to the hardware immediately. For
1335 * an ASYNC request, just ensure that we run it later on. The
1336 * latter allows for merging opportunities and more efficient
1337 * dispatching.
1338 */
1339 run_queue:
1340 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1341 }
1342 blk_mq_put_ctx(data.ctx);
1343 done:
1344 return cookie;
1345 }
1346
1347 /*
1348 * Single hardware queue variant. This will attempt to use any per-process
1349 * plug for merging and IO deferral.
1350 */
1351 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1352 {
1353 const int is_sync = rw_is_sync(bio_op(bio), bio->bi_opf);
1354 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1355 struct blk_plug *plug;
1356 unsigned int request_count = 0;
1357 struct blk_mq_alloc_data data;
1358 struct request *rq;
1359 blk_qc_t cookie;
1360
1361 blk_queue_bounce(q, &bio);
1362
1363 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1364 bio_io_error(bio);
1365 return BLK_QC_T_NONE;
1366 }
1367
1368 blk_queue_split(q, &bio, q->bio_split);
1369
1370 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1371 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1372 return BLK_QC_T_NONE;
1373 } else
1374 request_count = blk_plug_queued_count(q);
1375
1376 rq = blk_mq_map_request(q, bio, &data);
1377 if (unlikely(!rq))
1378 return BLK_QC_T_NONE;
1379
1380 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1381
1382 if (unlikely(is_flush_fua)) {
1383 blk_mq_bio_to_request(rq, bio);
1384 blk_insert_flush(rq);
1385 goto run_queue;
1386 }
1387
1388 /*
1389 * A task plug currently exists. Since this is completely lockless,
1390 * utilize that to temporarily store requests until the task is
1391 * either done or scheduled away.
1392 */
1393 plug = current->plug;
1394 if (plug) {
1395 blk_mq_bio_to_request(rq, bio);
1396 if (!request_count)
1397 trace_block_plug(q);
1398
1399 blk_mq_put_ctx(data.ctx);
1400
1401 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1402 blk_flush_plug_list(plug, false);
1403 trace_block_plug(q);
1404 }
1405
1406 list_add_tail(&rq->queuelist, &plug->mq_list);
1407 return cookie;
1408 }
1409
1410 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1411 /*
1412 * For a SYNC request, send it to the hardware immediately. For
1413 * an ASYNC request, just ensure that we run it later on. The
1414 * latter allows for merging opportunities and more efficient
1415 * dispatching.
1416 */
1417 run_queue:
1418 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1419 }
1420
1421 blk_mq_put_ctx(data.ctx);
1422 return cookie;
1423 }
1424
1425 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1426 struct blk_mq_tags *tags, unsigned int hctx_idx)
1427 {
1428 struct page *page;
1429
1430 if (tags->rqs && set->ops->exit_request) {
1431 int i;
1432
1433 for (i = 0; i < tags->nr_tags; i++) {
1434 if (!tags->rqs[i])
1435 continue;
1436 set->ops->exit_request(set->driver_data, tags->rqs[i],
1437 hctx_idx, i);
1438 tags->rqs[i] = NULL;
1439 }
1440 }
1441
1442 while (!list_empty(&tags->page_list)) {
1443 page = list_first_entry(&tags->page_list, struct page, lru);
1444 list_del_init(&page->lru);
1445 /*
1446 * Remove kmemleak object previously allocated in
1447 * blk_mq_init_rq_map().
1448 */
1449 kmemleak_free(page_address(page));
1450 __free_pages(page, page->private);
1451 }
1452
1453 kfree(tags->rqs);
1454
1455 blk_mq_free_tags(tags);
1456 }
1457
1458 static size_t order_to_size(unsigned int order)
1459 {
1460 return (size_t)PAGE_SIZE << order;
1461 }
1462
1463 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1464 unsigned int hctx_idx)
1465 {
1466 struct blk_mq_tags *tags;
1467 unsigned int i, j, entries_per_page, max_order = 4;
1468 size_t rq_size, left;
1469
1470 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1471 set->numa_node,
1472 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1473 if (!tags)
1474 return NULL;
1475
1476 INIT_LIST_HEAD(&tags->page_list);
1477
1478 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1479 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1480 set->numa_node);
1481 if (!tags->rqs) {
1482 blk_mq_free_tags(tags);
1483 return NULL;
1484 }
1485
1486 /*
1487 * rq_size is the size of the request plus driver payload, rounded
1488 * to the cacheline size
1489 */
1490 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1491 cache_line_size());
1492 left = rq_size * set->queue_depth;
1493
1494 for (i = 0; i < set->queue_depth; ) {
1495 int this_order = max_order;
1496 struct page *page;
1497 int to_do;
1498 void *p;
1499
1500 while (this_order && left < order_to_size(this_order - 1))
1501 this_order--;
1502
1503 do {
1504 page = alloc_pages_node(set->numa_node,
1505 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1506 this_order);
1507 if (page)
1508 break;
1509 if (!this_order--)
1510 break;
1511 if (order_to_size(this_order) < rq_size)
1512 break;
1513 } while (1);
1514
1515 if (!page)
1516 goto fail;
1517
1518 page->private = this_order;
1519 list_add_tail(&page->lru, &tags->page_list);
1520
1521 p = page_address(page);
1522 /*
1523 * Allow kmemleak to scan these pages as they contain pointers
1524 * to additional allocations like via ops->init_request().
1525 */
1526 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1527 entries_per_page = order_to_size(this_order) / rq_size;
1528 to_do = min(entries_per_page, set->queue_depth - i);
1529 left -= to_do * rq_size;
1530 for (j = 0; j < to_do; j++) {
1531 tags->rqs[i] = p;
1532 if (set->ops->init_request) {
1533 if (set->ops->init_request(set->driver_data,
1534 tags->rqs[i], hctx_idx, i,
1535 set->numa_node)) {
1536 tags->rqs[i] = NULL;
1537 goto fail;
1538 }
1539 }
1540
1541 p += rq_size;
1542 i++;
1543 }
1544 }
1545 return tags;
1546
1547 fail:
1548 blk_mq_free_rq_map(set, tags, hctx_idx);
1549 return NULL;
1550 }
1551
1552 /*
1553 * 'cpu' is going away. splice any existing rq_list entries from this
1554 * software queue to the hw queue dispatch list, and ensure that it
1555 * gets run.
1556 */
1557 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1558 {
1559 struct blk_mq_hw_ctx *hctx;
1560 struct blk_mq_ctx *ctx;
1561 LIST_HEAD(tmp);
1562
1563 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1564 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1565
1566 spin_lock(&ctx->lock);
1567 if (!list_empty(&ctx->rq_list)) {
1568 list_splice_init(&ctx->rq_list, &tmp);
1569 blk_mq_hctx_clear_pending(hctx, ctx);
1570 }
1571 spin_unlock(&ctx->lock);
1572
1573 if (list_empty(&tmp))
1574 return 0;
1575
1576 spin_lock(&hctx->lock);
1577 list_splice_tail_init(&tmp, &hctx->dispatch);
1578 spin_unlock(&hctx->lock);
1579
1580 blk_mq_run_hw_queue(hctx, true);
1581 return 0;
1582 }
1583
1584 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1585 {
1586 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1587 &hctx->cpuhp_dead);
1588 }
1589
1590 /* hctx->ctxs will be freed in queue's release handler */
1591 static void blk_mq_exit_hctx(struct request_queue *q,
1592 struct blk_mq_tag_set *set,
1593 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1594 {
1595 unsigned flush_start_tag = set->queue_depth;
1596
1597 blk_mq_tag_idle(hctx);
1598
1599 if (set->ops->exit_request)
1600 set->ops->exit_request(set->driver_data,
1601 hctx->fq->flush_rq, hctx_idx,
1602 flush_start_tag + hctx_idx);
1603
1604 if (set->ops->exit_hctx)
1605 set->ops->exit_hctx(hctx, hctx_idx);
1606
1607 blk_mq_remove_cpuhp(hctx);
1608 blk_free_flush_queue(hctx->fq);
1609 sbitmap_free(&hctx->ctx_map);
1610 }
1611
1612 static void blk_mq_exit_hw_queues(struct request_queue *q,
1613 struct blk_mq_tag_set *set, int nr_queue)
1614 {
1615 struct blk_mq_hw_ctx *hctx;
1616 unsigned int i;
1617
1618 queue_for_each_hw_ctx(q, hctx, i) {
1619 if (i == nr_queue)
1620 break;
1621 blk_mq_exit_hctx(q, set, hctx, i);
1622 }
1623 }
1624
1625 static void blk_mq_free_hw_queues(struct request_queue *q,
1626 struct blk_mq_tag_set *set)
1627 {
1628 struct blk_mq_hw_ctx *hctx;
1629 unsigned int i;
1630
1631 queue_for_each_hw_ctx(q, hctx, i)
1632 free_cpumask_var(hctx->cpumask);
1633 }
1634
1635 static int blk_mq_init_hctx(struct request_queue *q,
1636 struct blk_mq_tag_set *set,
1637 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1638 {
1639 int node;
1640 unsigned flush_start_tag = set->queue_depth;
1641
1642 node = hctx->numa_node;
1643 if (node == NUMA_NO_NODE)
1644 node = hctx->numa_node = set->numa_node;
1645
1646 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1647 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1648 spin_lock_init(&hctx->lock);
1649 INIT_LIST_HEAD(&hctx->dispatch);
1650 hctx->queue = q;
1651 hctx->queue_num = hctx_idx;
1652 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1653
1654 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1655
1656 hctx->tags = set->tags[hctx_idx];
1657
1658 /*
1659 * Allocate space for all possible cpus to avoid allocation at
1660 * runtime
1661 */
1662 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1663 GFP_KERNEL, node);
1664 if (!hctx->ctxs)
1665 goto unregister_cpu_notifier;
1666
1667 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1668 node))
1669 goto free_ctxs;
1670
1671 hctx->nr_ctx = 0;
1672
1673 if (set->ops->init_hctx &&
1674 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1675 goto free_bitmap;
1676
1677 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1678 if (!hctx->fq)
1679 goto exit_hctx;
1680
1681 if (set->ops->init_request &&
1682 set->ops->init_request(set->driver_data,
1683 hctx->fq->flush_rq, hctx_idx,
1684 flush_start_tag + hctx_idx, node))
1685 goto free_fq;
1686
1687 return 0;
1688
1689 free_fq:
1690 kfree(hctx->fq);
1691 exit_hctx:
1692 if (set->ops->exit_hctx)
1693 set->ops->exit_hctx(hctx, hctx_idx);
1694 free_bitmap:
1695 sbitmap_free(&hctx->ctx_map);
1696 free_ctxs:
1697 kfree(hctx->ctxs);
1698 unregister_cpu_notifier:
1699 blk_mq_remove_cpuhp(hctx);
1700 return -1;
1701 }
1702
1703 static void blk_mq_init_cpu_queues(struct request_queue *q,
1704 unsigned int nr_hw_queues)
1705 {
1706 unsigned int i;
1707
1708 for_each_possible_cpu(i) {
1709 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1710 struct blk_mq_hw_ctx *hctx;
1711
1712 memset(__ctx, 0, sizeof(*__ctx));
1713 __ctx->cpu = i;
1714 spin_lock_init(&__ctx->lock);
1715 INIT_LIST_HEAD(&__ctx->rq_list);
1716 __ctx->queue = q;
1717
1718 /* If the cpu isn't online, the cpu is mapped to first hctx */
1719 if (!cpu_online(i))
1720 continue;
1721
1722 hctx = blk_mq_map_queue(q, i);
1723
1724 /*
1725 * Set local node, IFF we have more than one hw queue. If
1726 * not, we remain on the home node of the device
1727 */
1728 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1729 hctx->numa_node = local_memory_node(cpu_to_node(i));
1730 }
1731 }
1732
1733 static void blk_mq_map_swqueue(struct request_queue *q,
1734 const struct cpumask *online_mask)
1735 {
1736 unsigned int i;
1737 struct blk_mq_hw_ctx *hctx;
1738 struct blk_mq_ctx *ctx;
1739 struct blk_mq_tag_set *set = q->tag_set;
1740
1741 /*
1742 * Avoid others reading imcomplete hctx->cpumask through sysfs
1743 */
1744 mutex_lock(&q->sysfs_lock);
1745
1746 queue_for_each_hw_ctx(q, hctx, i) {
1747 cpumask_clear(hctx->cpumask);
1748 hctx->nr_ctx = 0;
1749 }
1750
1751 /*
1752 * Map software to hardware queues
1753 */
1754 for_each_possible_cpu(i) {
1755 /* If the cpu isn't online, the cpu is mapped to first hctx */
1756 if (!cpumask_test_cpu(i, online_mask))
1757 continue;
1758
1759 ctx = per_cpu_ptr(q->queue_ctx, i);
1760 hctx = blk_mq_map_queue(q, i);
1761
1762 cpumask_set_cpu(i, hctx->cpumask);
1763 ctx->index_hw = hctx->nr_ctx;
1764 hctx->ctxs[hctx->nr_ctx++] = ctx;
1765 }
1766
1767 mutex_unlock(&q->sysfs_lock);
1768
1769 queue_for_each_hw_ctx(q, hctx, i) {
1770 /*
1771 * If no software queues are mapped to this hardware queue,
1772 * disable it and free the request entries.
1773 */
1774 if (!hctx->nr_ctx) {
1775 if (set->tags[i]) {
1776 blk_mq_free_rq_map(set, set->tags[i], i);
1777 set->tags[i] = NULL;
1778 }
1779 hctx->tags = NULL;
1780 continue;
1781 }
1782
1783 /* unmapped hw queue can be remapped after CPU topo changed */
1784 if (!set->tags[i])
1785 set->tags[i] = blk_mq_init_rq_map(set, i);
1786 hctx->tags = set->tags[i];
1787 WARN_ON(!hctx->tags);
1788
1789 /*
1790 * Set the map size to the number of mapped software queues.
1791 * This is more accurate and more efficient than looping
1792 * over all possibly mapped software queues.
1793 */
1794 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
1795
1796 /*
1797 * Initialize batch roundrobin counts
1798 */
1799 hctx->next_cpu = cpumask_first(hctx->cpumask);
1800 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1801 }
1802 }
1803
1804 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1805 {
1806 struct blk_mq_hw_ctx *hctx;
1807 int i;
1808
1809 queue_for_each_hw_ctx(q, hctx, i) {
1810 if (shared)
1811 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1812 else
1813 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1814 }
1815 }
1816
1817 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
1818 {
1819 struct request_queue *q;
1820
1821 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1822 blk_mq_freeze_queue(q);
1823 queue_set_hctx_shared(q, shared);
1824 blk_mq_unfreeze_queue(q);
1825 }
1826 }
1827
1828 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1829 {
1830 struct blk_mq_tag_set *set = q->tag_set;
1831
1832 mutex_lock(&set->tag_list_lock);
1833 list_del_init(&q->tag_set_list);
1834 if (list_is_singular(&set->tag_list)) {
1835 /* just transitioned to unshared */
1836 set->flags &= ~BLK_MQ_F_TAG_SHARED;
1837 /* update existing queue */
1838 blk_mq_update_tag_set_depth(set, false);
1839 }
1840 mutex_unlock(&set->tag_list_lock);
1841 }
1842
1843 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1844 struct request_queue *q)
1845 {
1846 q->tag_set = set;
1847
1848 mutex_lock(&set->tag_list_lock);
1849
1850 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
1851 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
1852 set->flags |= BLK_MQ_F_TAG_SHARED;
1853 /* update existing queue */
1854 blk_mq_update_tag_set_depth(set, true);
1855 }
1856 if (set->flags & BLK_MQ_F_TAG_SHARED)
1857 queue_set_hctx_shared(q, true);
1858 list_add_tail(&q->tag_set_list, &set->tag_list);
1859
1860 mutex_unlock(&set->tag_list_lock);
1861 }
1862
1863 /*
1864 * It is the actual release handler for mq, but we do it from
1865 * request queue's release handler for avoiding use-after-free
1866 * and headache because q->mq_kobj shouldn't have been introduced,
1867 * but we can't group ctx/kctx kobj without it.
1868 */
1869 void blk_mq_release(struct request_queue *q)
1870 {
1871 struct blk_mq_hw_ctx *hctx;
1872 unsigned int i;
1873
1874 /* hctx kobj stays in hctx */
1875 queue_for_each_hw_ctx(q, hctx, i) {
1876 if (!hctx)
1877 continue;
1878 kfree(hctx->ctxs);
1879 kfree(hctx);
1880 }
1881
1882 q->mq_map = NULL;
1883
1884 kfree(q->queue_hw_ctx);
1885
1886 /* ctx kobj stays in queue_ctx */
1887 free_percpu(q->queue_ctx);
1888 }
1889
1890 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1891 {
1892 struct request_queue *uninit_q, *q;
1893
1894 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1895 if (!uninit_q)
1896 return ERR_PTR(-ENOMEM);
1897
1898 q = blk_mq_init_allocated_queue(set, uninit_q);
1899 if (IS_ERR(q))
1900 blk_cleanup_queue(uninit_q);
1901
1902 return q;
1903 }
1904 EXPORT_SYMBOL(blk_mq_init_queue);
1905
1906 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
1907 struct request_queue *q)
1908 {
1909 int i, j;
1910 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
1911
1912 blk_mq_sysfs_unregister(q);
1913 for (i = 0; i < set->nr_hw_queues; i++) {
1914 int node;
1915
1916 if (hctxs[i])
1917 continue;
1918
1919 node = blk_mq_hw_queue_to_node(q->mq_map, i);
1920 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1921 GFP_KERNEL, node);
1922 if (!hctxs[i])
1923 break;
1924
1925 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1926 node)) {
1927 kfree(hctxs[i]);
1928 hctxs[i] = NULL;
1929 break;
1930 }
1931
1932 atomic_set(&hctxs[i]->nr_active, 0);
1933 hctxs[i]->numa_node = node;
1934 hctxs[i]->queue_num = i;
1935
1936 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
1937 free_cpumask_var(hctxs[i]->cpumask);
1938 kfree(hctxs[i]);
1939 hctxs[i] = NULL;
1940 break;
1941 }
1942 blk_mq_hctx_kobj_init(hctxs[i]);
1943 }
1944 for (j = i; j < q->nr_hw_queues; j++) {
1945 struct blk_mq_hw_ctx *hctx = hctxs[j];
1946
1947 if (hctx) {
1948 if (hctx->tags) {
1949 blk_mq_free_rq_map(set, hctx->tags, j);
1950 set->tags[j] = NULL;
1951 }
1952 blk_mq_exit_hctx(q, set, hctx, j);
1953 free_cpumask_var(hctx->cpumask);
1954 kobject_put(&hctx->kobj);
1955 kfree(hctx->ctxs);
1956 kfree(hctx);
1957 hctxs[j] = NULL;
1958
1959 }
1960 }
1961 q->nr_hw_queues = i;
1962 blk_mq_sysfs_register(q);
1963 }
1964
1965 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
1966 struct request_queue *q)
1967 {
1968 /* mark the queue as mq asap */
1969 q->mq_ops = set->ops;
1970
1971 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
1972 if (!q->queue_ctx)
1973 goto err_exit;
1974
1975 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
1976 GFP_KERNEL, set->numa_node);
1977 if (!q->queue_hw_ctx)
1978 goto err_percpu;
1979
1980 q->mq_map = set->mq_map;
1981
1982 blk_mq_realloc_hw_ctxs(set, q);
1983 if (!q->nr_hw_queues)
1984 goto err_hctxs;
1985
1986 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
1987 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
1988
1989 q->nr_queues = nr_cpu_ids;
1990
1991 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1992
1993 if (!(set->flags & BLK_MQ_F_SG_MERGE))
1994 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1995
1996 q->sg_reserved_size = INT_MAX;
1997
1998 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
1999 INIT_LIST_HEAD(&q->requeue_list);
2000 spin_lock_init(&q->requeue_lock);
2001
2002 if (q->nr_hw_queues > 1)
2003 blk_queue_make_request(q, blk_mq_make_request);
2004 else
2005 blk_queue_make_request(q, blk_sq_make_request);
2006
2007 /*
2008 * Do this after blk_queue_make_request() overrides it...
2009 */
2010 q->nr_requests = set->queue_depth;
2011
2012 if (set->ops->complete)
2013 blk_queue_softirq_done(q, set->ops->complete);
2014
2015 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2016
2017 get_online_cpus();
2018 mutex_lock(&all_q_mutex);
2019
2020 list_add_tail(&q->all_q_node, &all_q_list);
2021 blk_mq_add_queue_tag_set(set, q);
2022 blk_mq_map_swqueue(q, cpu_online_mask);
2023
2024 mutex_unlock(&all_q_mutex);
2025 put_online_cpus();
2026
2027 return q;
2028
2029 err_hctxs:
2030 kfree(q->queue_hw_ctx);
2031 err_percpu:
2032 free_percpu(q->queue_ctx);
2033 err_exit:
2034 q->mq_ops = NULL;
2035 return ERR_PTR(-ENOMEM);
2036 }
2037 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2038
2039 void blk_mq_free_queue(struct request_queue *q)
2040 {
2041 struct blk_mq_tag_set *set = q->tag_set;
2042
2043 mutex_lock(&all_q_mutex);
2044 list_del_init(&q->all_q_node);
2045 mutex_unlock(&all_q_mutex);
2046
2047 blk_mq_del_queue_tag_set(q);
2048
2049 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2050 blk_mq_free_hw_queues(q, set);
2051 }
2052
2053 /* Basically redo blk_mq_init_queue with queue frozen */
2054 static void blk_mq_queue_reinit(struct request_queue *q,
2055 const struct cpumask *online_mask)
2056 {
2057 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2058
2059 blk_mq_sysfs_unregister(q);
2060
2061 /*
2062 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2063 * we should change hctx numa_node according to new topology (this
2064 * involves free and re-allocate memory, worthy doing?)
2065 */
2066
2067 blk_mq_map_swqueue(q, online_mask);
2068
2069 blk_mq_sysfs_register(q);
2070 }
2071
2072 /*
2073 * New online cpumask which is going to be set in this hotplug event.
2074 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2075 * one-by-one and dynamically allocating this could result in a failure.
2076 */
2077 static struct cpumask cpuhp_online_new;
2078
2079 static void blk_mq_queue_reinit_work(void)
2080 {
2081 struct request_queue *q;
2082
2083 mutex_lock(&all_q_mutex);
2084 /*
2085 * We need to freeze and reinit all existing queues. Freezing
2086 * involves synchronous wait for an RCU grace period and doing it
2087 * one by one may take a long time. Start freezing all queues in
2088 * one swoop and then wait for the completions so that freezing can
2089 * take place in parallel.
2090 */
2091 list_for_each_entry(q, &all_q_list, all_q_node)
2092 blk_mq_freeze_queue_start(q);
2093 list_for_each_entry(q, &all_q_list, all_q_node) {
2094 blk_mq_freeze_queue_wait(q);
2095
2096 /*
2097 * timeout handler can't touch hw queue during the
2098 * reinitialization
2099 */
2100 del_timer_sync(&q->timeout);
2101 }
2102
2103 list_for_each_entry(q, &all_q_list, all_q_node)
2104 blk_mq_queue_reinit(q, &cpuhp_online_new);
2105
2106 list_for_each_entry(q, &all_q_list, all_q_node)
2107 blk_mq_unfreeze_queue(q);
2108
2109 mutex_unlock(&all_q_mutex);
2110 }
2111
2112 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2113 {
2114 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2115 blk_mq_queue_reinit_work();
2116 return 0;
2117 }
2118
2119 /*
2120 * Before hotadded cpu starts handling requests, new mappings must be
2121 * established. Otherwise, these requests in hw queue might never be
2122 * dispatched.
2123 *
2124 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2125 * for CPU0, and ctx1 for CPU1).
2126 *
2127 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2128 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2129 *
2130 * And then while running hw queue, flush_busy_ctxs() finds bit0 is set in
2131 * pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2132 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list
2133 * is ignored.
2134 */
2135 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2136 {
2137 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2138 cpumask_set_cpu(cpu, &cpuhp_online_new);
2139 blk_mq_queue_reinit_work();
2140 return 0;
2141 }
2142
2143 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2144 {
2145 int i;
2146
2147 for (i = 0; i < set->nr_hw_queues; i++) {
2148 set->tags[i] = blk_mq_init_rq_map(set, i);
2149 if (!set->tags[i])
2150 goto out_unwind;
2151 }
2152
2153 return 0;
2154
2155 out_unwind:
2156 while (--i >= 0)
2157 blk_mq_free_rq_map(set, set->tags[i], i);
2158
2159 return -ENOMEM;
2160 }
2161
2162 /*
2163 * Allocate the request maps associated with this tag_set. Note that this
2164 * may reduce the depth asked for, if memory is tight. set->queue_depth
2165 * will be updated to reflect the allocated depth.
2166 */
2167 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2168 {
2169 unsigned int depth;
2170 int err;
2171
2172 depth = set->queue_depth;
2173 do {
2174 err = __blk_mq_alloc_rq_maps(set);
2175 if (!err)
2176 break;
2177
2178 set->queue_depth >>= 1;
2179 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2180 err = -ENOMEM;
2181 break;
2182 }
2183 } while (set->queue_depth);
2184
2185 if (!set->queue_depth || err) {
2186 pr_err("blk-mq: failed to allocate request map\n");
2187 return -ENOMEM;
2188 }
2189
2190 if (depth != set->queue_depth)
2191 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2192 depth, set->queue_depth);
2193
2194 return 0;
2195 }
2196
2197 /*
2198 * Alloc a tag set to be associated with one or more request queues.
2199 * May fail with EINVAL for various error conditions. May adjust the
2200 * requested depth down, if if it too large. In that case, the set
2201 * value will be stored in set->queue_depth.
2202 */
2203 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2204 {
2205 int ret;
2206
2207 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2208
2209 if (!set->nr_hw_queues)
2210 return -EINVAL;
2211 if (!set->queue_depth)
2212 return -EINVAL;
2213 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2214 return -EINVAL;
2215
2216 if (!set->ops->queue_rq)
2217 return -EINVAL;
2218
2219 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2220 pr_info("blk-mq: reduced tag depth to %u\n",
2221 BLK_MQ_MAX_DEPTH);
2222 set->queue_depth = BLK_MQ_MAX_DEPTH;
2223 }
2224
2225 /*
2226 * If a crashdump is active, then we are potentially in a very
2227 * memory constrained environment. Limit us to 1 queue and
2228 * 64 tags to prevent using too much memory.
2229 */
2230 if (is_kdump_kernel()) {
2231 set->nr_hw_queues = 1;
2232 set->queue_depth = min(64U, set->queue_depth);
2233 }
2234 /*
2235 * There is no use for more h/w queues than cpus.
2236 */
2237 if (set->nr_hw_queues > nr_cpu_ids)
2238 set->nr_hw_queues = nr_cpu_ids;
2239
2240 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2241 GFP_KERNEL, set->numa_node);
2242 if (!set->tags)
2243 return -ENOMEM;
2244
2245 ret = -ENOMEM;
2246 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2247 GFP_KERNEL, set->numa_node);
2248 if (!set->mq_map)
2249 goto out_free_tags;
2250
2251 if (set->ops->map_queues)
2252 ret = set->ops->map_queues(set);
2253 else
2254 ret = blk_mq_map_queues(set);
2255 if (ret)
2256 goto out_free_mq_map;
2257
2258 ret = blk_mq_alloc_rq_maps(set);
2259 if (ret)
2260 goto out_free_mq_map;
2261
2262 mutex_init(&set->tag_list_lock);
2263 INIT_LIST_HEAD(&set->tag_list);
2264
2265 return 0;
2266
2267 out_free_mq_map:
2268 kfree(set->mq_map);
2269 set->mq_map = NULL;
2270 out_free_tags:
2271 kfree(set->tags);
2272 set->tags = NULL;
2273 return ret;
2274 }
2275 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2276
2277 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2278 {
2279 int i;
2280
2281 for (i = 0; i < nr_cpu_ids; i++) {
2282 if (set->tags[i])
2283 blk_mq_free_rq_map(set, set->tags[i], i);
2284 }
2285
2286 kfree(set->mq_map);
2287 set->mq_map = NULL;
2288
2289 kfree(set->tags);
2290 set->tags = NULL;
2291 }
2292 EXPORT_SYMBOL(blk_mq_free_tag_set);
2293
2294 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2295 {
2296 struct blk_mq_tag_set *set = q->tag_set;
2297 struct blk_mq_hw_ctx *hctx;
2298 int i, ret;
2299
2300 if (!set || nr > set->queue_depth)
2301 return -EINVAL;
2302
2303 ret = 0;
2304 queue_for_each_hw_ctx(q, hctx, i) {
2305 if (!hctx->tags)
2306 continue;
2307 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2308 if (ret)
2309 break;
2310 }
2311
2312 if (!ret)
2313 q->nr_requests = nr;
2314
2315 return ret;
2316 }
2317
2318 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2319 {
2320 struct request_queue *q;
2321
2322 if (nr_hw_queues > nr_cpu_ids)
2323 nr_hw_queues = nr_cpu_ids;
2324 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2325 return;
2326
2327 list_for_each_entry(q, &set->tag_list, tag_set_list)
2328 blk_mq_freeze_queue(q);
2329
2330 set->nr_hw_queues = nr_hw_queues;
2331 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2332 blk_mq_realloc_hw_ctxs(set, q);
2333
2334 if (q->nr_hw_queues > 1)
2335 blk_queue_make_request(q, blk_mq_make_request);
2336 else
2337 blk_queue_make_request(q, blk_sq_make_request);
2338
2339 blk_mq_queue_reinit(q, cpu_online_mask);
2340 }
2341
2342 list_for_each_entry(q, &set->tag_list, tag_set_list)
2343 blk_mq_unfreeze_queue(q);
2344 }
2345 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2346
2347 void blk_mq_disable_hotplug(void)
2348 {
2349 mutex_lock(&all_q_mutex);
2350 }
2351
2352 void blk_mq_enable_hotplug(void)
2353 {
2354 mutex_unlock(&all_q_mutex);
2355 }
2356
2357 static int __init blk_mq_init(void)
2358 {
2359 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2360 blk_mq_hctx_notify_dead);
2361
2362 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2363 blk_mq_queue_reinit_prepare,
2364 blk_mq_queue_reinit_dead);
2365 return 0;
2366 }
2367 subsys_initcall(blk_mq_init);