]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-mq.c
blk-mq: allow the hctx cpu hotplug notifier to return errors
[mirror_ubuntu-artful-kernel.git] / block / blk-mq.c
1 #include <linux/kernel.h>
2 #include <linux/module.h>
3 #include <linux/backing-dev.h>
4 #include <linux/bio.h>
5 #include <linux/blkdev.h>
6 #include <linux/mm.h>
7 #include <linux/init.h>
8 #include <linux/slab.h>
9 #include <linux/workqueue.h>
10 #include <linux/smp.h>
11 #include <linux/llist.h>
12 #include <linux/list_sort.h>
13 #include <linux/cpu.h>
14 #include <linux/cache.h>
15 #include <linux/sched/sysctl.h>
16 #include <linux/delay.h>
17
18 #include <trace/events/block.h>
19
20 #include <linux/blk-mq.h>
21 #include "blk.h"
22 #include "blk-mq.h"
23 #include "blk-mq-tag.h"
24
25 static DEFINE_MUTEX(all_q_mutex);
26 static LIST_HEAD(all_q_list);
27
28 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
29
30 static struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
31 unsigned int cpu)
32 {
33 return per_cpu_ptr(q->queue_ctx, cpu);
34 }
35
36 /*
37 * This assumes per-cpu software queueing queues. They could be per-node
38 * as well, for instance. For now this is hardcoded as-is. Note that we don't
39 * care about preemption, since we know the ctx's are persistent. This does
40 * mean that we can't rely on ctx always matching the currently running CPU.
41 */
42 static struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
43 {
44 return __blk_mq_get_ctx(q, get_cpu());
45 }
46
47 static void blk_mq_put_ctx(struct blk_mq_ctx *ctx)
48 {
49 put_cpu();
50 }
51
52 /*
53 * Check if any of the ctx's have pending work in this hardware queue
54 */
55 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
56 {
57 unsigned int i;
58
59 for (i = 0; i < hctx->ctx_map.map_size; i++)
60 if (hctx->ctx_map.map[i].word)
61 return true;
62
63 return false;
64 }
65
66 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
67 struct blk_mq_ctx *ctx)
68 {
69 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
70 }
71
72 #define CTX_TO_BIT(hctx, ctx) \
73 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
74
75 /*
76 * Mark this ctx as having pending work in this hardware queue
77 */
78 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
79 struct blk_mq_ctx *ctx)
80 {
81 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
82
83 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
84 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
85 }
86
87 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
88 struct blk_mq_ctx *ctx)
89 {
90 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
91
92 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
93 }
94
95 static struct request *__blk_mq_alloc_request(struct blk_mq_hw_ctx *hctx,
96 struct blk_mq_ctx *ctx,
97 gfp_t gfp, bool reserved)
98 {
99 struct request *rq;
100 unsigned int tag;
101
102 tag = blk_mq_get_tag(hctx, &ctx->last_tag, gfp, reserved);
103 if (tag != BLK_MQ_TAG_FAIL) {
104 rq = hctx->tags->rqs[tag];
105
106 rq->cmd_flags = 0;
107 if (blk_mq_tag_busy(hctx)) {
108 rq->cmd_flags = REQ_MQ_INFLIGHT;
109 atomic_inc(&hctx->nr_active);
110 }
111
112 rq->tag = tag;
113 return rq;
114 }
115
116 return NULL;
117 }
118
119 static int blk_mq_queue_enter(struct request_queue *q)
120 {
121 int ret;
122
123 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
124 smp_wmb();
125 /* we have problems to freeze the queue if it's initializing */
126 if (!blk_queue_bypass(q) || !blk_queue_init_done(q))
127 return 0;
128
129 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
130
131 spin_lock_irq(q->queue_lock);
132 ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq,
133 !blk_queue_bypass(q) || blk_queue_dying(q),
134 *q->queue_lock);
135 /* inc usage with lock hold to avoid freeze_queue runs here */
136 if (!ret && !blk_queue_dying(q))
137 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
138 else if (blk_queue_dying(q))
139 ret = -ENODEV;
140 spin_unlock_irq(q->queue_lock);
141
142 return ret;
143 }
144
145 static void blk_mq_queue_exit(struct request_queue *q)
146 {
147 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
148 }
149
150 static void __blk_mq_drain_queue(struct request_queue *q)
151 {
152 while (true) {
153 s64 count;
154
155 spin_lock_irq(q->queue_lock);
156 count = percpu_counter_sum(&q->mq_usage_counter);
157 spin_unlock_irq(q->queue_lock);
158
159 if (count == 0)
160 break;
161 blk_mq_run_queues(q, false);
162 msleep(10);
163 }
164 }
165
166 /*
167 * Guarantee no request is in use, so we can change any data structure of
168 * the queue afterward.
169 */
170 static void blk_mq_freeze_queue(struct request_queue *q)
171 {
172 bool drain;
173
174 spin_lock_irq(q->queue_lock);
175 drain = !q->bypass_depth++;
176 queue_flag_set(QUEUE_FLAG_BYPASS, q);
177 spin_unlock_irq(q->queue_lock);
178
179 if (drain)
180 __blk_mq_drain_queue(q);
181 }
182
183 void blk_mq_drain_queue(struct request_queue *q)
184 {
185 __blk_mq_drain_queue(q);
186 }
187
188 static void blk_mq_unfreeze_queue(struct request_queue *q)
189 {
190 bool wake = false;
191
192 spin_lock_irq(q->queue_lock);
193 if (!--q->bypass_depth) {
194 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
195 wake = true;
196 }
197 WARN_ON_ONCE(q->bypass_depth < 0);
198 spin_unlock_irq(q->queue_lock);
199 if (wake)
200 wake_up_all(&q->mq_freeze_wq);
201 }
202
203 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
204 {
205 return blk_mq_has_free_tags(hctx->tags);
206 }
207 EXPORT_SYMBOL(blk_mq_can_queue);
208
209 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
210 struct request *rq, unsigned int rw_flags)
211 {
212 if (blk_queue_io_stat(q))
213 rw_flags |= REQ_IO_STAT;
214
215 INIT_LIST_HEAD(&rq->queuelist);
216 /* csd/requeue_work/fifo_time is initialized before use */
217 rq->q = q;
218 rq->mq_ctx = ctx;
219 rq->cmd_flags |= rw_flags;
220 rq->cmd_type = 0;
221 /* do not touch atomic flags, it needs atomic ops against the timer */
222 rq->cpu = -1;
223 rq->__data_len = 0;
224 rq->__sector = (sector_t) -1;
225 rq->bio = NULL;
226 rq->biotail = NULL;
227 INIT_HLIST_NODE(&rq->hash);
228 RB_CLEAR_NODE(&rq->rb_node);
229 memset(&rq->flush, 0, max(sizeof(rq->flush), sizeof(rq->elv)));
230 rq->rq_disk = NULL;
231 rq->part = NULL;
232 rq->start_time = jiffies;
233 #ifdef CONFIG_BLK_CGROUP
234 rq->rl = NULL;
235 set_start_time_ns(rq);
236 rq->io_start_time_ns = 0;
237 #endif
238 rq->nr_phys_segments = 0;
239 #if defined(CONFIG_BLK_DEV_INTEGRITY)
240 rq->nr_integrity_segments = 0;
241 #endif
242 rq->ioprio = 0;
243 rq->special = NULL;
244 /* tag was already set */
245 rq->errors = 0;
246 memset(rq->__cmd, 0, sizeof(rq->__cmd));
247 rq->cmd = rq->__cmd;
248 rq->cmd_len = BLK_MAX_CDB;
249
250 rq->extra_len = 0;
251 rq->sense_len = 0;
252 rq->resid_len = 0;
253 rq->sense = NULL;
254
255 rq->deadline = 0;
256 INIT_LIST_HEAD(&rq->timeout_list);
257 rq->timeout = 0;
258 rq->retries = 0;
259 rq->end_io = NULL;
260 rq->end_io_data = NULL;
261 rq->next_rq = NULL;
262
263 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
264 }
265
266 static struct request *blk_mq_alloc_request_pinned(struct request_queue *q,
267 int rw, gfp_t gfp,
268 bool reserved)
269 {
270 struct request *rq;
271
272 do {
273 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
274 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, ctx->cpu);
275
276 rq = __blk_mq_alloc_request(hctx, ctx, gfp & ~__GFP_WAIT,
277 reserved);
278 if (rq) {
279 blk_mq_rq_ctx_init(q, ctx, rq, rw);
280 break;
281 }
282
283 if (gfp & __GFP_WAIT) {
284 __blk_mq_run_hw_queue(hctx);
285 blk_mq_put_ctx(ctx);
286 } else {
287 blk_mq_put_ctx(ctx);
288 break;
289 }
290
291 blk_mq_wait_for_tags(hctx, reserved);
292 } while (1);
293
294 return rq;
295 }
296
297 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp)
298 {
299 struct request *rq;
300
301 if (blk_mq_queue_enter(q))
302 return NULL;
303
304 rq = blk_mq_alloc_request_pinned(q, rw, gfp, false);
305 if (rq)
306 blk_mq_put_ctx(rq->mq_ctx);
307 return rq;
308 }
309 EXPORT_SYMBOL(blk_mq_alloc_request);
310
311 struct request *blk_mq_alloc_reserved_request(struct request_queue *q, int rw,
312 gfp_t gfp)
313 {
314 struct request *rq;
315
316 if (blk_mq_queue_enter(q))
317 return NULL;
318
319 rq = blk_mq_alloc_request_pinned(q, rw, gfp, true);
320 if (rq)
321 blk_mq_put_ctx(rq->mq_ctx);
322 return rq;
323 }
324 EXPORT_SYMBOL(blk_mq_alloc_reserved_request);
325
326 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
327 struct blk_mq_ctx *ctx, struct request *rq)
328 {
329 const int tag = rq->tag;
330 struct request_queue *q = rq->q;
331
332 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
333 atomic_dec(&hctx->nr_active);
334
335 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
336 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
337 blk_mq_queue_exit(q);
338 }
339
340 void blk_mq_free_request(struct request *rq)
341 {
342 struct blk_mq_ctx *ctx = rq->mq_ctx;
343 struct blk_mq_hw_ctx *hctx;
344 struct request_queue *q = rq->q;
345
346 ctx->rq_completed[rq_is_sync(rq)]++;
347
348 hctx = q->mq_ops->map_queue(q, ctx->cpu);
349 __blk_mq_free_request(hctx, ctx, rq);
350 }
351
352 /*
353 * Clone all relevant state from a request that has been put on hold in
354 * the flush state machine into the preallocated flush request that hangs
355 * off the request queue.
356 *
357 * For a driver the flush request should be invisible, that's why we are
358 * impersonating the original request here.
359 */
360 void blk_mq_clone_flush_request(struct request *flush_rq,
361 struct request *orig_rq)
362 {
363 struct blk_mq_hw_ctx *hctx =
364 orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu);
365
366 flush_rq->mq_ctx = orig_rq->mq_ctx;
367 flush_rq->tag = orig_rq->tag;
368 memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq),
369 hctx->cmd_size);
370 }
371
372 inline void __blk_mq_end_io(struct request *rq, int error)
373 {
374 blk_account_io_done(rq);
375
376 if (rq->end_io) {
377 rq->end_io(rq, error);
378 } else {
379 if (unlikely(blk_bidi_rq(rq)))
380 blk_mq_free_request(rq->next_rq);
381 blk_mq_free_request(rq);
382 }
383 }
384 EXPORT_SYMBOL(__blk_mq_end_io);
385
386 void blk_mq_end_io(struct request *rq, int error)
387 {
388 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
389 BUG();
390 __blk_mq_end_io(rq, error);
391 }
392 EXPORT_SYMBOL(blk_mq_end_io);
393
394 static void __blk_mq_complete_request_remote(void *data)
395 {
396 struct request *rq = data;
397
398 rq->q->softirq_done_fn(rq);
399 }
400
401 void __blk_mq_complete_request(struct request *rq)
402 {
403 struct blk_mq_ctx *ctx = rq->mq_ctx;
404 bool shared = false;
405 int cpu;
406
407 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
408 rq->q->softirq_done_fn(rq);
409 return;
410 }
411
412 cpu = get_cpu();
413 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
414 shared = cpus_share_cache(cpu, ctx->cpu);
415
416 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
417 rq->csd.func = __blk_mq_complete_request_remote;
418 rq->csd.info = rq;
419 rq->csd.flags = 0;
420 smp_call_function_single_async(ctx->cpu, &rq->csd);
421 } else {
422 rq->q->softirq_done_fn(rq);
423 }
424 put_cpu();
425 }
426
427 /**
428 * blk_mq_complete_request - end I/O on a request
429 * @rq: the request being processed
430 *
431 * Description:
432 * Ends all I/O on a request. It does not handle partial completions.
433 * The actual completion happens out-of-order, through a IPI handler.
434 **/
435 void blk_mq_complete_request(struct request *rq)
436 {
437 if (unlikely(blk_should_fake_timeout(rq->q)))
438 return;
439 if (!blk_mark_rq_complete(rq))
440 __blk_mq_complete_request(rq);
441 }
442 EXPORT_SYMBOL(blk_mq_complete_request);
443
444 static void blk_mq_start_request(struct request *rq, bool last)
445 {
446 struct request_queue *q = rq->q;
447
448 trace_block_rq_issue(q, rq);
449
450 rq->resid_len = blk_rq_bytes(rq);
451 if (unlikely(blk_bidi_rq(rq)))
452 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
453
454 /*
455 * Just mark start time and set the started bit. Due to memory
456 * ordering, we know we'll see the correct deadline as long as
457 * REQ_ATOMIC_STARTED is seen.
458 */
459 rq->deadline = jiffies + q->rq_timeout;
460
461 /*
462 * Mark us as started and clear complete. Complete might have been
463 * set if requeue raced with timeout, which then marked it as
464 * complete. So be sure to clear complete again when we start
465 * the request, otherwise we'll ignore the completion event.
466 */
467 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
468 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
469
470 if (q->dma_drain_size && blk_rq_bytes(rq)) {
471 /*
472 * Make sure space for the drain appears. We know we can do
473 * this because max_hw_segments has been adjusted to be one
474 * fewer than the device can handle.
475 */
476 rq->nr_phys_segments++;
477 }
478
479 /*
480 * Flag the last request in the series so that drivers know when IO
481 * should be kicked off, if they don't do it on a per-request basis.
482 *
483 * Note: the flag isn't the only condition drivers should do kick off.
484 * If drive is busy, the last request might not have the bit set.
485 */
486 if (last)
487 rq->cmd_flags |= REQ_END;
488 }
489
490 static void __blk_mq_requeue_request(struct request *rq)
491 {
492 struct request_queue *q = rq->q;
493
494 trace_block_rq_requeue(q, rq);
495 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
496
497 rq->cmd_flags &= ~REQ_END;
498
499 if (q->dma_drain_size && blk_rq_bytes(rq))
500 rq->nr_phys_segments--;
501 }
502
503 void blk_mq_requeue_request(struct request *rq)
504 {
505 __blk_mq_requeue_request(rq);
506 blk_clear_rq_complete(rq);
507
508 BUG_ON(blk_queued_rq(rq));
509 blk_mq_insert_request(rq, true, true, false);
510 }
511 EXPORT_SYMBOL(blk_mq_requeue_request);
512
513 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
514 {
515 return tags->rqs[tag];
516 }
517 EXPORT_SYMBOL(blk_mq_tag_to_rq);
518
519 struct blk_mq_timeout_data {
520 struct blk_mq_hw_ctx *hctx;
521 unsigned long *next;
522 unsigned int *next_set;
523 };
524
525 static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
526 {
527 struct blk_mq_timeout_data *data = __data;
528 struct blk_mq_hw_ctx *hctx = data->hctx;
529 unsigned int tag;
530
531 /* It may not be in flight yet (this is where
532 * the REQ_ATOMIC_STARTED flag comes in). The requests are
533 * statically allocated, so we know it's always safe to access the
534 * memory associated with a bit offset into ->rqs[].
535 */
536 tag = 0;
537 do {
538 struct request *rq;
539
540 tag = find_next_zero_bit(free_tags, hctx->tags->nr_tags, tag);
541 if (tag >= hctx->tags->nr_tags)
542 break;
543
544 rq = blk_mq_tag_to_rq(hctx->tags, tag++);
545 if (rq->q != hctx->queue)
546 continue;
547 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
548 continue;
549
550 blk_rq_check_expired(rq, data->next, data->next_set);
551 } while (1);
552 }
553
554 static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
555 unsigned long *next,
556 unsigned int *next_set)
557 {
558 struct blk_mq_timeout_data data = {
559 .hctx = hctx,
560 .next = next,
561 .next_set = next_set,
562 };
563
564 /*
565 * Ask the tagging code to iterate busy requests, so we can
566 * check them for timeout.
567 */
568 blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
569 }
570
571 static enum blk_eh_timer_return blk_mq_rq_timed_out(struct request *rq)
572 {
573 struct request_queue *q = rq->q;
574
575 /*
576 * We know that complete is set at this point. If STARTED isn't set
577 * anymore, then the request isn't active and the "timeout" should
578 * just be ignored. This can happen due to the bitflag ordering.
579 * Timeout first checks if STARTED is set, and if it is, assumes
580 * the request is active. But if we race with completion, then
581 * we both flags will get cleared. So check here again, and ignore
582 * a timeout event with a request that isn't active.
583 */
584 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
585 return BLK_EH_NOT_HANDLED;
586
587 if (!q->mq_ops->timeout)
588 return BLK_EH_RESET_TIMER;
589
590 return q->mq_ops->timeout(rq);
591 }
592
593 static void blk_mq_rq_timer(unsigned long data)
594 {
595 struct request_queue *q = (struct request_queue *) data;
596 struct blk_mq_hw_ctx *hctx;
597 unsigned long next = 0;
598 int i, next_set = 0;
599
600 queue_for_each_hw_ctx(q, hctx, i)
601 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
602
603 if (next_set) {
604 next = blk_rq_timeout(round_jiffies_up(next));
605 mod_timer(&q->timeout, next);
606 } else {
607 queue_for_each_hw_ctx(q, hctx, i)
608 blk_mq_tag_idle(hctx);
609 }
610 }
611
612 /*
613 * Reverse check our software queue for entries that we could potentially
614 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
615 * too much time checking for merges.
616 */
617 static bool blk_mq_attempt_merge(struct request_queue *q,
618 struct blk_mq_ctx *ctx, struct bio *bio)
619 {
620 struct request *rq;
621 int checked = 8;
622
623 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
624 int el_ret;
625
626 if (!checked--)
627 break;
628
629 if (!blk_rq_merge_ok(rq, bio))
630 continue;
631
632 el_ret = blk_try_merge(rq, bio);
633 if (el_ret == ELEVATOR_BACK_MERGE) {
634 if (bio_attempt_back_merge(q, rq, bio)) {
635 ctx->rq_merged++;
636 return true;
637 }
638 break;
639 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
640 if (bio_attempt_front_merge(q, rq, bio)) {
641 ctx->rq_merged++;
642 return true;
643 }
644 break;
645 }
646 }
647
648 return false;
649 }
650
651 /*
652 * Process software queues that have been marked busy, splicing them
653 * to the for-dispatch
654 */
655 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
656 {
657 struct blk_mq_ctx *ctx;
658 int i;
659
660 for (i = 0; i < hctx->ctx_map.map_size; i++) {
661 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
662 unsigned int off, bit;
663
664 if (!bm->word)
665 continue;
666
667 bit = 0;
668 off = i * hctx->ctx_map.bits_per_word;
669 do {
670 bit = find_next_bit(&bm->word, bm->depth, bit);
671 if (bit >= bm->depth)
672 break;
673
674 ctx = hctx->ctxs[bit + off];
675 clear_bit(bit, &bm->word);
676 spin_lock(&ctx->lock);
677 list_splice_tail_init(&ctx->rq_list, list);
678 spin_unlock(&ctx->lock);
679
680 bit++;
681 } while (1);
682 }
683 }
684
685 /*
686 * Run this hardware queue, pulling any software queues mapped to it in.
687 * Note that this function currently has various problems around ordering
688 * of IO. In particular, we'd like FIFO behaviour on handling existing
689 * items on the hctx->dispatch list. Ignore that for now.
690 */
691 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
692 {
693 struct request_queue *q = hctx->queue;
694 struct request *rq;
695 LIST_HEAD(rq_list);
696 int queued;
697
698 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
699
700 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
701 return;
702
703 hctx->run++;
704
705 /*
706 * Touch any software queue that has pending entries.
707 */
708 flush_busy_ctxs(hctx, &rq_list);
709
710 /*
711 * If we have previous entries on our dispatch list, grab them
712 * and stuff them at the front for more fair dispatch.
713 */
714 if (!list_empty_careful(&hctx->dispatch)) {
715 spin_lock(&hctx->lock);
716 if (!list_empty(&hctx->dispatch))
717 list_splice_init(&hctx->dispatch, &rq_list);
718 spin_unlock(&hctx->lock);
719 }
720
721 /*
722 * Now process all the entries, sending them to the driver.
723 */
724 queued = 0;
725 while (!list_empty(&rq_list)) {
726 int ret;
727
728 rq = list_first_entry(&rq_list, struct request, queuelist);
729 list_del_init(&rq->queuelist);
730
731 blk_mq_start_request(rq, list_empty(&rq_list));
732
733 ret = q->mq_ops->queue_rq(hctx, rq);
734 switch (ret) {
735 case BLK_MQ_RQ_QUEUE_OK:
736 queued++;
737 continue;
738 case BLK_MQ_RQ_QUEUE_BUSY:
739 list_add(&rq->queuelist, &rq_list);
740 __blk_mq_requeue_request(rq);
741 break;
742 default:
743 pr_err("blk-mq: bad return on queue: %d\n", ret);
744 case BLK_MQ_RQ_QUEUE_ERROR:
745 rq->errors = -EIO;
746 blk_mq_end_io(rq, rq->errors);
747 break;
748 }
749
750 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
751 break;
752 }
753
754 if (!queued)
755 hctx->dispatched[0]++;
756 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
757 hctx->dispatched[ilog2(queued) + 1]++;
758
759 /*
760 * Any items that need requeuing? Stuff them into hctx->dispatch,
761 * that is where we will continue on next queue run.
762 */
763 if (!list_empty(&rq_list)) {
764 spin_lock(&hctx->lock);
765 list_splice(&rq_list, &hctx->dispatch);
766 spin_unlock(&hctx->lock);
767 }
768 }
769
770 /*
771 * It'd be great if the workqueue API had a way to pass
772 * in a mask and had some smarts for more clever placement.
773 * For now we just round-robin here, switching for every
774 * BLK_MQ_CPU_WORK_BATCH queued items.
775 */
776 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
777 {
778 int cpu = hctx->next_cpu;
779
780 if (--hctx->next_cpu_batch <= 0) {
781 int next_cpu;
782
783 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
784 if (next_cpu >= nr_cpu_ids)
785 next_cpu = cpumask_first(hctx->cpumask);
786
787 hctx->next_cpu = next_cpu;
788 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
789 }
790
791 return cpu;
792 }
793
794 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
795 {
796 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
797 return;
798
799 if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
800 __blk_mq_run_hw_queue(hctx);
801 else if (hctx->queue->nr_hw_queues == 1)
802 kblockd_schedule_delayed_work(&hctx->run_work, 0);
803 else {
804 unsigned int cpu;
805
806 cpu = blk_mq_hctx_next_cpu(hctx);
807 kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
808 }
809 }
810
811 void blk_mq_run_queues(struct request_queue *q, bool async)
812 {
813 struct blk_mq_hw_ctx *hctx;
814 int i;
815
816 queue_for_each_hw_ctx(q, hctx, i) {
817 if ((!blk_mq_hctx_has_pending(hctx) &&
818 list_empty_careful(&hctx->dispatch)) ||
819 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
820 continue;
821
822 preempt_disable();
823 blk_mq_run_hw_queue(hctx, async);
824 preempt_enable();
825 }
826 }
827 EXPORT_SYMBOL(blk_mq_run_queues);
828
829 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
830 {
831 cancel_delayed_work(&hctx->run_work);
832 cancel_delayed_work(&hctx->delay_work);
833 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
834 }
835 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
836
837 void blk_mq_stop_hw_queues(struct request_queue *q)
838 {
839 struct blk_mq_hw_ctx *hctx;
840 int i;
841
842 queue_for_each_hw_ctx(q, hctx, i)
843 blk_mq_stop_hw_queue(hctx);
844 }
845 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
846
847 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
848 {
849 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
850
851 preempt_disable();
852 __blk_mq_run_hw_queue(hctx);
853 preempt_enable();
854 }
855 EXPORT_SYMBOL(blk_mq_start_hw_queue);
856
857 void blk_mq_start_hw_queues(struct request_queue *q)
858 {
859 struct blk_mq_hw_ctx *hctx;
860 int i;
861
862 queue_for_each_hw_ctx(q, hctx, i)
863 blk_mq_start_hw_queue(hctx);
864 }
865 EXPORT_SYMBOL(blk_mq_start_hw_queues);
866
867
868 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
869 {
870 struct blk_mq_hw_ctx *hctx;
871 int i;
872
873 queue_for_each_hw_ctx(q, hctx, i) {
874 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
875 continue;
876
877 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
878 preempt_disable();
879 blk_mq_run_hw_queue(hctx, async);
880 preempt_enable();
881 }
882 }
883 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
884
885 static void blk_mq_run_work_fn(struct work_struct *work)
886 {
887 struct blk_mq_hw_ctx *hctx;
888
889 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
890
891 __blk_mq_run_hw_queue(hctx);
892 }
893
894 static void blk_mq_delay_work_fn(struct work_struct *work)
895 {
896 struct blk_mq_hw_ctx *hctx;
897
898 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
899
900 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
901 __blk_mq_run_hw_queue(hctx);
902 }
903
904 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
905 {
906 unsigned long tmo = msecs_to_jiffies(msecs);
907
908 if (hctx->queue->nr_hw_queues == 1)
909 kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
910 else {
911 unsigned int cpu;
912
913 cpu = blk_mq_hctx_next_cpu(hctx);
914 kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
915 }
916 }
917 EXPORT_SYMBOL(blk_mq_delay_queue);
918
919 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
920 struct request *rq, bool at_head)
921 {
922 struct blk_mq_ctx *ctx = rq->mq_ctx;
923
924 trace_block_rq_insert(hctx->queue, rq);
925
926 if (at_head)
927 list_add(&rq->queuelist, &ctx->rq_list);
928 else
929 list_add_tail(&rq->queuelist, &ctx->rq_list);
930
931 blk_mq_hctx_mark_pending(hctx, ctx);
932
933 /*
934 * We do this early, to ensure we are on the right CPU.
935 */
936 blk_add_timer(rq);
937 }
938
939 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
940 bool async)
941 {
942 struct request_queue *q = rq->q;
943 struct blk_mq_hw_ctx *hctx;
944 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
945
946 current_ctx = blk_mq_get_ctx(q);
947 if (!cpu_online(ctx->cpu))
948 rq->mq_ctx = ctx = current_ctx;
949
950 hctx = q->mq_ops->map_queue(q, ctx->cpu);
951
952 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA) &&
953 !(rq->cmd_flags & (REQ_FLUSH_SEQ))) {
954 blk_insert_flush(rq);
955 } else {
956 spin_lock(&ctx->lock);
957 __blk_mq_insert_request(hctx, rq, at_head);
958 spin_unlock(&ctx->lock);
959 }
960
961 if (run_queue)
962 blk_mq_run_hw_queue(hctx, async);
963
964 blk_mq_put_ctx(current_ctx);
965 }
966
967 static void blk_mq_insert_requests(struct request_queue *q,
968 struct blk_mq_ctx *ctx,
969 struct list_head *list,
970 int depth,
971 bool from_schedule)
972
973 {
974 struct blk_mq_hw_ctx *hctx;
975 struct blk_mq_ctx *current_ctx;
976
977 trace_block_unplug(q, depth, !from_schedule);
978
979 current_ctx = blk_mq_get_ctx(q);
980
981 if (!cpu_online(ctx->cpu))
982 ctx = current_ctx;
983 hctx = q->mq_ops->map_queue(q, ctx->cpu);
984
985 /*
986 * preemption doesn't flush plug list, so it's possible ctx->cpu is
987 * offline now
988 */
989 spin_lock(&ctx->lock);
990 while (!list_empty(list)) {
991 struct request *rq;
992
993 rq = list_first_entry(list, struct request, queuelist);
994 list_del_init(&rq->queuelist);
995 rq->mq_ctx = ctx;
996 __blk_mq_insert_request(hctx, rq, false);
997 }
998 spin_unlock(&ctx->lock);
999
1000 blk_mq_run_hw_queue(hctx, from_schedule);
1001 blk_mq_put_ctx(current_ctx);
1002 }
1003
1004 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1005 {
1006 struct request *rqa = container_of(a, struct request, queuelist);
1007 struct request *rqb = container_of(b, struct request, queuelist);
1008
1009 return !(rqa->mq_ctx < rqb->mq_ctx ||
1010 (rqa->mq_ctx == rqb->mq_ctx &&
1011 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1012 }
1013
1014 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1015 {
1016 struct blk_mq_ctx *this_ctx;
1017 struct request_queue *this_q;
1018 struct request *rq;
1019 LIST_HEAD(list);
1020 LIST_HEAD(ctx_list);
1021 unsigned int depth;
1022
1023 list_splice_init(&plug->mq_list, &list);
1024
1025 list_sort(NULL, &list, plug_ctx_cmp);
1026
1027 this_q = NULL;
1028 this_ctx = NULL;
1029 depth = 0;
1030
1031 while (!list_empty(&list)) {
1032 rq = list_entry_rq(list.next);
1033 list_del_init(&rq->queuelist);
1034 BUG_ON(!rq->q);
1035 if (rq->mq_ctx != this_ctx) {
1036 if (this_ctx) {
1037 blk_mq_insert_requests(this_q, this_ctx,
1038 &ctx_list, depth,
1039 from_schedule);
1040 }
1041
1042 this_ctx = rq->mq_ctx;
1043 this_q = rq->q;
1044 depth = 0;
1045 }
1046
1047 depth++;
1048 list_add_tail(&rq->queuelist, &ctx_list);
1049 }
1050
1051 /*
1052 * If 'this_ctx' is set, we know we have entries to complete
1053 * on 'ctx_list'. Do those.
1054 */
1055 if (this_ctx) {
1056 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1057 from_schedule);
1058 }
1059 }
1060
1061 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1062 {
1063 init_request_from_bio(rq, bio);
1064 blk_account_io_start(rq, 1);
1065 }
1066
1067 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1068 {
1069 struct blk_mq_hw_ctx *hctx;
1070 struct blk_mq_ctx *ctx;
1071 const int is_sync = rw_is_sync(bio->bi_rw);
1072 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1073 int rw = bio_data_dir(bio);
1074 struct request *rq;
1075 unsigned int use_plug, request_count = 0;
1076
1077 /*
1078 * If we have multiple hardware queues, just go directly to
1079 * one of those for sync IO.
1080 */
1081 use_plug = !is_flush_fua && ((q->nr_hw_queues == 1) || !is_sync);
1082
1083 blk_queue_bounce(q, &bio);
1084
1085 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1086 bio_endio(bio, -EIO);
1087 return;
1088 }
1089
1090 if (use_plug && !blk_queue_nomerges(q) &&
1091 blk_attempt_plug_merge(q, bio, &request_count))
1092 return;
1093
1094 if (blk_mq_queue_enter(q)) {
1095 bio_endio(bio, -EIO);
1096 return;
1097 }
1098
1099 ctx = blk_mq_get_ctx(q);
1100 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1101
1102 if (is_sync)
1103 rw |= REQ_SYNC;
1104 trace_block_getrq(q, bio, rw);
1105 rq = __blk_mq_alloc_request(hctx, ctx, GFP_ATOMIC, false);
1106 if (likely(rq))
1107 blk_mq_rq_ctx_init(q, ctx, rq, rw);
1108 else {
1109 blk_mq_put_ctx(ctx);
1110 trace_block_sleeprq(q, bio, rw);
1111 rq = blk_mq_alloc_request_pinned(q, rw, __GFP_WAIT|GFP_ATOMIC,
1112 false);
1113 ctx = rq->mq_ctx;
1114 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1115 }
1116
1117 hctx->queued++;
1118
1119 if (unlikely(is_flush_fua)) {
1120 blk_mq_bio_to_request(rq, bio);
1121 blk_insert_flush(rq);
1122 goto run_queue;
1123 }
1124
1125 /*
1126 * A task plug currently exists. Since this is completely lockless,
1127 * utilize that to temporarily store requests until the task is
1128 * either done or scheduled away.
1129 */
1130 if (use_plug) {
1131 struct blk_plug *plug = current->plug;
1132
1133 if (plug) {
1134 blk_mq_bio_to_request(rq, bio);
1135 if (list_empty(&plug->mq_list))
1136 trace_block_plug(q);
1137 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1138 blk_flush_plug_list(plug, false);
1139 trace_block_plug(q);
1140 }
1141 list_add_tail(&rq->queuelist, &plug->mq_list);
1142 blk_mq_put_ctx(ctx);
1143 return;
1144 }
1145 }
1146
1147 if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE)) {
1148 blk_mq_bio_to_request(rq, bio);
1149 spin_lock(&ctx->lock);
1150 insert_rq:
1151 __blk_mq_insert_request(hctx, rq, false);
1152 spin_unlock(&ctx->lock);
1153 } else {
1154 spin_lock(&ctx->lock);
1155 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1156 blk_mq_bio_to_request(rq, bio);
1157 goto insert_rq;
1158 }
1159
1160 spin_unlock(&ctx->lock);
1161 __blk_mq_free_request(hctx, ctx, rq);
1162 }
1163
1164
1165 /*
1166 * For a SYNC request, send it to the hardware immediately. For an
1167 * ASYNC request, just ensure that we run it later on. The latter
1168 * allows for merging opportunities and more efficient dispatching.
1169 */
1170 run_queue:
1171 blk_mq_run_hw_queue(hctx, !is_sync || is_flush_fua);
1172 blk_mq_put_ctx(ctx);
1173 }
1174
1175 /*
1176 * Default mapping to a software queue, since we use one per CPU.
1177 */
1178 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1179 {
1180 return q->queue_hw_ctx[q->mq_map[cpu]];
1181 }
1182 EXPORT_SYMBOL(blk_mq_map_queue);
1183
1184 struct blk_mq_hw_ctx *blk_mq_alloc_single_hw_queue(struct blk_mq_tag_set *set,
1185 unsigned int hctx_index)
1186 {
1187 return kzalloc_node(sizeof(struct blk_mq_hw_ctx), GFP_KERNEL,
1188 set->numa_node);
1189 }
1190 EXPORT_SYMBOL(blk_mq_alloc_single_hw_queue);
1191
1192 void blk_mq_free_single_hw_queue(struct blk_mq_hw_ctx *hctx,
1193 unsigned int hctx_index)
1194 {
1195 kfree(hctx);
1196 }
1197 EXPORT_SYMBOL(blk_mq_free_single_hw_queue);
1198
1199 static int blk_mq_hctx_notify(void *data, unsigned long action,
1200 unsigned int cpu)
1201 {
1202 struct blk_mq_hw_ctx *hctx = data;
1203 struct request_queue *q = hctx->queue;
1204 struct blk_mq_ctx *ctx;
1205 LIST_HEAD(tmp);
1206
1207 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1208 return NOTIFY_OK;
1209
1210 /*
1211 * Move ctx entries to new CPU, if this one is going away.
1212 */
1213 ctx = __blk_mq_get_ctx(q, cpu);
1214
1215 spin_lock(&ctx->lock);
1216 if (!list_empty(&ctx->rq_list)) {
1217 list_splice_init(&ctx->rq_list, &tmp);
1218 blk_mq_hctx_clear_pending(hctx, ctx);
1219 }
1220 spin_unlock(&ctx->lock);
1221
1222 if (list_empty(&tmp))
1223 return NOTIFY_OK;
1224
1225 ctx = blk_mq_get_ctx(q);
1226 spin_lock(&ctx->lock);
1227
1228 while (!list_empty(&tmp)) {
1229 struct request *rq;
1230
1231 rq = list_first_entry(&tmp, struct request, queuelist);
1232 rq->mq_ctx = ctx;
1233 list_move_tail(&rq->queuelist, &ctx->rq_list);
1234 }
1235
1236 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1237 blk_mq_hctx_mark_pending(hctx, ctx);
1238
1239 spin_unlock(&ctx->lock);
1240
1241 blk_mq_run_hw_queue(hctx, true);
1242 blk_mq_put_ctx(ctx);
1243 return NOTIFY_OK;
1244 }
1245
1246 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1247 struct blk_mq_tags *tags, unsigned int hctx_idx)
1248 {
1249 struct page *page;
1250
1251 if (tags->rqs && set->ops->exit_request) {
1252 int i;
1253
1254 for (i = 0; i < tags->nr_tags; i++) {
1255 if (!tags->rqs[i])
1256 continue;
1257 set->ops->exit_request(set->driver_data, tags->rqs[i],
1258 hctx_idx, i);
1259 }
1260 }
1261
1262 while (!list_empty(&tags->page_list)) {
1263 page = list_first_entry(&tags->page_list, struct page, lru);
1264 list_del_init(&page->lru);
1265 __free_pages(page, page->private);
1266 }
1267
1268 kfree(tags->rqs);
1269
1270 blk_mq_free_tags(tags);
1271 }
1272
1273 static size_t order_to_size(unsigned int order)
1274 {
1275 return (size_t)PAGE_SIZE << order;
1276 }
1277
1278 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1279 unsigned int hctx_idx)
1280 {
1281 struct blk_mq_tags *tags;
1282 unsigned int i, j, entries_per_page, max_order = 4;
1283 size_t rq_size, left;
1284
1285 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1286 set->numa_node);
1287 if (!tags)
1288 return NULL;
1289
1290 INIT_LIST_HEAD(&tags->page_list);
1291
1292 tags->rqs = kmalloc_node(set->queue_depth * sizeof(struct request *),
1293 GFP_KERNEL, set->numa_node);
1294 if (!tags->rqs) {
1295 blk_mq_free_tags(tags);
1296 return NULL;
1297 }
1298
1299 /*
1300 * rq_size is the size of the request plus driver payload, rounded
1301 * to the cacheline size
1302 */
1303 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1304 cache_line_size());
1305 left = rq_size * set->queue_depth;
1306
1307 for (i = 0; i < set->queue_depth; ) {
1308 int this_order = max_order;
1309 struct page *page;
1310 int to_do;
1311 void *p;
1312
1313 while (left < order_to_size(this_order - 1) && this_order)
1314 this_order--;
1315
1316 do {
1317 page = alloc_pages_node(set->numa_node, GFP_KERNEL,
1318 this_order);
1319 if (page)
1320 break;
1321 if (!this_order--)
1322 break;
1323 if (order_to_size(this_order) < rq_size)
1324 break;
1325 } while (1);
1326
1327 if (!page)
1328 goto fail;
1329
1330 page->private = this_order;
1331 list_add_tail(&page->lru, &tags->page_list);
1332
1333 p = page_address(page);
1334 entries_per_page = order_to_size(this_order) / rq_size;
1335 to_do = min(entries_per_page, set->queue_depth - i);
1336 left -= to_do * rq_size;
1337 for (j = 0; j < to_do; j++) {
1338 tags->rqs[i] = p;
1339 if (set->ops->init_request) {
1340 if (set->ops->init_request(set->driver_data,
1341 tags->rqs[i], hctx_idx, i,
1342 set->numa_node))
1343 goto fail;
1344 }
1345
1346 p += rq_size;
1347 i++;
1348 }
1349 }
1350
1351 return tags;
1352
1353 fail:
1354 pr_warn("%s: failed to allocate requests\n", __func__);
1355 blk_mq_free_rq_map(set, tags, hctx_idx);
1356 return NULL;
1357 }
1358
1359 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1360 {
1361 kfree(bitmap->map);
1362 }
1363
1364 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1365 {
1366 unsigned int bpw = 8, total, num_maps, i;
1367
1368 bitmap->bits_per_word = bpw;
1369
1370 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1371 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1372 GFP_KERNEL, node);
1373 if (!bitmap->map)
1374 return -ENOMEM;
1375
1376 bitmap->map_size = num_maps;
1377
1378 total = nr_cpu_ids;
1379 for (i = 0; i < num_maps; i++) {
1380 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1381 total -= bitmap->map[i].depth;
1382 }
1383
1384 return 0;
1385 }
1386
1387 static int blk_mq_init_hw_queues(struct request_queue *q,
1388 struct blk_mq_tag_set *set)
1389 {
1390 struct blk_mq_hw_ctx *hctx;
1391 unsigned int i, j;
1392
1393 /*
1394 * Initialize hardware queues
1395 */
1396 queue_for_each_hw_ctx(q, hctx, i) {
1397 int node;
1398
1399 node = hctx->numa_node;
1400 if (node == NUMA_NO_NODE)
1401 node = hctx->numa_node = set->numa_node;
1402
1403 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1404 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1405 spin_lock_init(&hctx->lock);
1406 INIT_LIST_HEAD(&hctx->dispatch);
1407 hctx->queue = q;
1408 hctx->queue_num = i;
1409 hctx->flags = set->flags;
1410 hctx->cmd_size = set->cmd_size;
1411
1412 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1413 blk_mq_hctx_notify, hctx);
1414 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1415
1416 hctx->tags = set->tags[i];
1417
1418 /*
1419 * Allocate space for all possible cpus to avoid allocation in
1420 * runtime
1421 */
1422 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1423 GFP_KERNEL, node);
1424 if (!hctx->ctxs)
1425 break;
1426
1427 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1428 break;
1429
1430 hctx->nr_ctx = 0;
1431
1432 if (set->ops->init_hctx &&
1433 set->ops->init_hctx(hctx, set->driver_data, i))
1434 break;
1435 }
1436
1437 if (i == q->nr_hw_queues)
1438 return 0;
1439
1440 /*
1441 * Init failed
1442 */
1443 queue_for_each_hw_ctx(q, hctx, j) {
1444 if (i == j)
1445 break;
1446
1447 if (set->ops->exit_hctx)
1448 set->ops->exit_hctx(hctx, j);
1449
1450 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1451 kfree(hctx->ctxs);
1452 blk_mq_free_bitmap(&hctx->ctx_map);
1453 }
1454
1455 return 1;
1456 }
1457
1458 static void blk_mq_init_cpu_queues(struct request_queue *q,
1459 unsigned int nr_hw_queues)
1460 {
1461 unsigned int i;
1462
1463 for_each_possible_cpu(i) {
1464 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1465 struct blk_mq_hw_ctx *hctx;
1466
1467 memset(__ctx, 0, sizeof(*__ctx));
1468 __ctx->cpu = i;
1469 spin_lock_init(&__ctx->lock);
1470 INIT_LIST_HEAD(&__ctx->rq_list);
1471 __ctx->queue = q;
1472
1473 /* If the cpu isn't online, the cpu is mapped to first hctx */
1474 if (!cpu_online(i))
1475 continue;
1476
1477 hctx = q->mq_ops->map_queue(q, i);
1478 cpumask_set_cpu(i, hctx->cpumask);
1479 hctx->nr_ctx++;
1480
1481 /*
1482 * Set local node, IFF we have more than one hw queue. If
1483 * not, we remain on the home node of the device
1484 */
1485 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1486 hctx->numa_node = cpu_to_node(i);
1487 }
1488 }
1489
1490 static void blk_mq_map_swqueue(struct request_queue *q)
1491 {
1492 unsigned int i;
1493 struct blk_mq_hw_ctx *hctx;
1494 struct blk_mq_ctx *ctx;
1495
1496 queue_for_each_hw_ctx(q, hctx, i) {
1497 cpumask_clear(hctx->cpumask);
1498 hctx->nr_ctx = 0;
1499 }
1500
1501 /*
1502 * Map software to hardware queues
1503 */
1504 queue_for_each_ctx(q, ctx, i) {
1505 /* If the cpu isn't online, the cpu is mapped to first hctx */
1506 if (!cpu_online(i))
1507 continue;
1508
1509 hctx = q->mq_ops->map_queue(q, i);
1510 cpumask_set_cpu(i, hctx->cpumask);
1511 ctx->index_hw = hctx->nr_ctx;
1512 hctx->ctxs[hctx->nr_ctx++] = ctx;
1513 }
1514
1515 queue_for_each_hw_ctx(q, hctx, i) {
1516 hctx->next_cpu = cpumask_first(hctx->cpumask);
1517 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1518 }
1519 }
1520
1521 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1522 {
1523 struct blk_mq_hw_ctx *hctx;
1524 struct request_queue *q;
1525 bool shared;
1526 int i;
1527
1528 if (set->tag_list.next == set->tag_list.prev)
1529 shared = false;
1530 else
1531 shared = true;
1532
1533 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1534 blk_mq_freeze_queue(q);
1535
1536 queue_for_each_hw_ctx(q, hctx, i) {
1537 if (shared)
1538 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1539 else
1540 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1541 }
1542 blk_mq_unfreeze_queue(q);
1543 }
1544 }
1545
1546 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1547 {
1548 struct blk_mq_tag_set *set = q->tag_set;
1549
1550 blk_mq_freeze_queue(q);
1551
1552 mutex_lock(&set->tag_list_lock);
1553 list_del_init(&q->tag_set_list);
1554 blk_mq_update_tag_set_depth(set);
1555 mutex_unlock(&set->tag_list_lock);
1556
1557 blk_mq_unfreeze_queue(q);
1558 }
1559
1560 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1561 struct request_queue *q)
1562 {
1563 q->tag_set = set;
1564
1565 mutex_lock(&set->tag_list_lock);
1566 list_add_tail(&q->tag_set_list, &set->tag_list);
1567 blk_mq_update_tag_set_depth(set);
1568 mutex_unlock(&set->tag_list_lock);
1569 }
1570
1571 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1572 {
1573 struct blk_mq_hw_ctx **hctxs;
1574 struct blk_mq_ctx *ctx;
1575 struct request_queue *q;
1576 int i;
1577
1578 ctx = alloc_percpu(struct blk_mq_ctx);
1579 if (!ctx)
1580 return ERR_PTR(-ENOMEM);
1581
1582 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1583 set->numa_node);
1584
1585 if (!hctxs)
1586 goto err_percpu;
1587
1588 for (i = 0; i < set->nr_hw_queues; i++) {
1589 hctxs[i] = set->ops->alloc_hctx(set, i);
1590 if (!hctxs[i])
1591 goto err_hctxs;
1592
1593 if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
1594 goto err_hctxs;
1595
1596 atomic_set(&hctxs[i]->nr_active, 0);
1597 hctxs[i]->numa_node = NUMA_NO_NODE;
1598 hctxs[i]->queue_num = i;
1599 }
1600
1601 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1602 if (!q)
1603 goto err_hctxs;
1604
1605 q->mq_map = blk_mq_make_queue_map(set);
1606 if (!q->mq_map)
1607 goto err_map;
1608
1609 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1610 blk_queue_rq_timeout(q, 30000);
1611
1612 q->nr_queues = nr_cpu_ids;
1613 q->nr_hw_queues = set->nr_hw_queues;
1614
1615 q->queue_ctx = ctx;
1616 q->queue_hw_ctx = hctxs;
1617
1618 q->mq_ops = set->ops;
1619 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1620
1621 q->sg_reserved_size = INT_MAX;
1622
1623 blk_queue_make_request(q, blk_mq_make_request);
1624 blk_queue_rq_timed_out(q, blk_mq_rq_timed_out);
1625 if (set->timeout)
1626 blk_queue_rq_timeout(q, set->timeout);
1627
1628 /*
1629 * Do this after blk_queue_make_request() overrides it...
1630 */
1631 q->nr_requests = set->queue_depth;
1632
1633 if (set->ops->complete)
1634 blk_queue_softirq_done(q, set->ops->complete);
1635
1636 blk_mq_init_flush(q);
1637 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1638
1639 q->flush_rq = kzalloc(round_up(sizeof(struct request) +
1640 set->cmd_size, cache_line_size()),
1641 GFP_KERNEL);
1642 if (!q->flush_rq)
1643 goto err_hw;
1644
1645 if (blk_mq_init_hw_queues(q, set))
1646 goto err_flush_rq;
1647
1648 blk_mq_map_swqueue(q);
1649
1650 mutex_lock(&all_q_mutex);
1651 list_add_tail(&q->all_q_node, &all_q_list);
1652 mutex_unlock(&all_q_mutex);
1653
1654 blk_mq_add_queue_tag_set(set, q);
1655
1656 return q;
1657
1658 err_flush_rq:
1659 kfree(q->flush_rq);
1660 err_hw:
1661 kfree(q->mq_map);
1662 err_map:
1663 blk_cleanup_queue(q);
1664 err_hctxs:
1665 for (i = 0; i < set->nr_hw_queues; i++) {
1666 if (!hctxs[i])
1667 break;
1668 free_cpumask_var(hctxs[i]->cpumask);
1669 set->ops->free_hctx(hctxs[i], i);
1670 }
1671 kfree(hctxs);
1672 err_percpu:
1673 free_percpu(ctx);
1674 return ERR_PTR(-ENOMEM);
1675 }
1676 EXPORT_SYMBOL(blk_mq_init_queue);
1677
1678 void blk_mq_free_queue(struct request_queue *q)
1679 {
1680 struct blk_mq_hw_ctx *hctx;
1681 int i;
1682
1683 blk_mq_del_queue_tag_set(q);
1684
1685 queue_for_each_hw_ctx(q, hctx, i) {
1686 kfree(hctx->ctxs);
1687 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1688 if (q->mq_ops->exit_hctx)
1689 q->mq_ops->exit_hctx(hctx, i);
1690 free_cpumask_var(hctx->cpumask);
1691 q->mq_ops->free_hctx(hctx, i);
1692 }
1693
1694 free_percpu(q->queue_ctx);
1695 kfree(q->queue_hw_ctx);
1696 kfree(q->mq_map);
1697
1698 q->queue_ctx = NULL;
1699 q->queue_hw_ctx = NULL;
1700 q->mq_map = NULL;
1701
1702 mutex_lock(&all_q_mutex);
1703 list_del_init(&q->all_q_node);
1704 mutex_unlock(&all_q_mutex);
1705 }
1706
1707 /* Basically redo blk_mq_init_queue with queue frozen */
1708 static void blk_mq_queue_reinit(struct request_queue *q)
1709 {
1710 blk_mq_freeze_queue(q);
1711
1712 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1713
1714 /*
1715 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1716 * we should change hctx numa_node according to new topology (this
1717 * involves free and re-allocate memory, worthy doing?)
1718 */
1719
1720 blk_mq_map_swqueue(q);
1721
1722 blk_mq_unfreeze_queue(q);
1723 }
1724
1725 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1726 unsigned long action, void *hcpu)
1727 {
1728 struct request_queue *q;
1729
1730 /*
1731 * Before new mappings are established, hotadded cpu might already
1732 * start handling requests. This doesn't break anything as we map
1733 * offline CPUs to first hardware queue. We will re-init the queue
1734 * below to get optimal settings.
1735 */
1736 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1737 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1738 return NOTIFY_OK;
1739
1740 mutex_lock(&all_q_mutex);
1741 list_for_each_entry(q, &all_q_list, all_q_node)
1742 blk_mq_queue_reinit(q);
1743 mutex_unlock(&all_q_mutex);
1744 return NOTIFY_OK;
1745 }
1746
1747 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
1748 {
1749 int i;
1750
1751 if (!set->nr_hw_queues)
1752 return -EINVAL;
1753 if (!set->queue_depth || set->queue_depth > BLK_MQ_MAX_DEPTH)
1754 return -EINVAL;
1755 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
1756 return -EINVAL;
1757
1758 if (!set->nr_hw_queues ||
1759 !set->ops->queue_rq || !set->ops->map_queue ||
1760 !set->ops->alloc_hctx || !set->ops->free_hctx)
1761 return -EINVAL;
1762
1763
1764 set->tags = kmalloc_node(set->nr_hw_queues *
1765 sizeof(struct blk_mq_tags *),
1766 GFP_KERNEL, set->numa_node);
1767 if (!set->tags)
1768 goto out;
1769
1770 for (i = 0; i < set->nr_hw_queues; i++) {
1771 set->tags[i] = blk_mq_init_rq_map(set, i);
1772 if (!set->tags[i])
1773 goto out_unwind;
1774 }
1775
1776 mutex_init(&set->tag_list_lock);
1777 INIT_LIST_HEAD(&set->tag_list);
1778
1779 return 0;
1780
1781 out_unwind:
1782 while (--i >= 0)
1783 blk_mq_free_rq_map(set, set->tags[i], i);
1784 out:
1785 return -ENOMEM;
1786 }
1787 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
1788
1789 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
1790 {
1791 int i;
1792
1793 for (i = 0; i < set->nr_hw_queues; i++)
1794 blk_mq_free_rq_map(set, set->tags[i], i);
1795 kfree(set->tags);
1796 }
1797 EXPORT_SYMBOL(blk_mq_free_tag_set);
1798
1799 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
1800 {
1801 struct blk_mq_tag_set *set = q->tag_set;
1802 struct blk_mq_hw_ctx *hctx;
1803 int i, ret;
1804
1805 if (!set || nr > set->queue_depth)
1806 return -EINVAL;
1807
1808 ret = 0;
1809 queue_for_each_hw_ctx(q, hctx, i) {
1810 ret = blk_mq_tag_update_depth(hctx->tags, nr);
1811 if (ret)
1812 break;
1813 }
1814
1815 if (!ret)
1816 q->nr_requests = nr;
1817
1818 return ret;
1819 }
1820
1821 void blk_mq_disable_hotplug(void)
1822 {
1823 mutex_lock(&all_q_mutex);
1824 }
1825
1826 void blk_mq_enable_hotplug(void)
1827 {
1828 mutex_unlock(&all_q_mutex);
1829 }
1830
1831 static int __init blk_mq_init(void)
1832 {
1833 blk_mq_cpu_init();
1834
1835 /* Must be called after percpu_counter_hotcpu_callback() */
1836 hotcpu_notifier(blk_mq_queue_reinit_notify, -10);
1837
1838 return 0;
1839 }
1840 subsys_initcall(blk_mq_init);