]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-mq.c
blk-mq: initialize request on allocation
[mirror_ubuntu-artful-kernel.git] / block / blk-mq.c
1 #include <linux/kernel.h>
2 #include <linux/module.h>
3 #include <linux/backing-dev.h>
4 #include <linux/bio.h>
5 #include <linux/blkdev.h>
6 #include <linux/mm.h>
7 #include <linux/init.h>
8 #include <linux/slab.h>
9 #include <linux/workqueue.h>
10 #include <linux/smp.h>
11 #include <linux/llist.h>
12 #include <linux/list_sort.h>
13 #include <linux/cpu.h>
14 #include <linux/cache.h>
15 #include <linux/sched/sysctl.h>
16 #include <linux/delay.h>
17
18 #include <trace/events/block.h>
19
20 #include <linux/blk-mq.h>
21 #include "blk.h"
22 #include "blk-mq.h"
23 #include "blk-mq-tag.h"
24
25 static DEFINE_MUTEX(all_q_mutex);
26 static LIST_HEAD(all_q_list);
27
28 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
29
30 static struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
31 unsigned int cpu)
32 {
33 return per_cpu_ptr(q->queue_ctx, cpu);
34 }
35
36 /*
37 * This assumes per-cpu software queueing queues. They could be per-node
38 * as well, for instance. For now this is hardcoded as-is. Note that we don't
39 * care about preemption, since we know the ctx's are persistent. This does
40 * mean that we can't rely on ctx always matching the currently running CPU.
41 */
42 static struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
43 {
44 return __blk_mq_get_ctx(q, get_cpu());
45 }
46
47 static void blk_mq_put_ctx(struct blk_mq_ctx *ctx)
48 {
49 put_cpu();
50 }
51
52 /*
53 * Check if any of the ctx's have pending work in this hardware queue
54 */
55 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
56 {
57 unsigned int i;
58
59 for (i = 0; i < hctx->nr_ctx_map; i++)
60 if (hctx->ctx_map[i])
61 return true;
62
63 return false;
64 }
65
66 /*
67 * Mark this ctx as having pending work in this hardware queue
68 */
69 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
70 struct blk_mq_ctx *ctx)
71 {
72 if (!test_bit(ctx->index_hw, hctx->ctx_map))
73 set_bit(ctx->index_hw, hctx->ctx_map);
74 }
75
76 static struct request *__blk_mq_alloc_request(struct blk_mq_hw_ctx *hctx,
77 gfp_t gfp, bool reserved)
78 {
79 struct request *rq;
80 unsigned int tag;
81
82 tag = blk_mq_get_tag(hctx->tags, gfp, reserved);
83 if (tag != BLK_MQ_TAG_FAIL) {
84 rq = hctx->rqs[tag];
85 blk_rq_init(hctx->queue, rq);
86 rq->tag = tag;
87
88 return rq;
89 }
90
91 return NULL;
92 }
93
94 static int blk_mq_queue_enter(struct request_queue *q)
95 {
96 int ret;
97
98 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
99 smp_wmb();
100 /* we have problems to freeze the queue if it's initializing */
101 if (!blk_queue_bypass(q) || !blk_queue_init_done(q))
102 return 0;
103
104 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
105
106 spin_lock_irq(q->queue_lock);
107 ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq,
108 !blk_queue_bypass(q) || blk_queue_dying(q),
109 *q->queue_lock);
110 /* inc usage with lock hold to avoid freeze_queue runs here */
111 if (!ret && !blk_queue_dying(q))
112 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
113 else if (blk_queue_dying(q))
114 ret = -ENODEV;
115 spin_unlock_irq(q->queue_lock);
116
117 return ret;
118 }
119
120 static void blk_mq_queue_exit(struct request_queue *q)
121 {
122 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
123 }
124
125 static void __blk_mq_drain_queue(struct request_queue *q)
126 {
127 while (true) {
128 s64 count;
129
130 spin_lock_irq(q->queue_lock);
131 count = percpu_counter_sum(&q->mq_usage_counter);
132 spin_unlock_irq(q->queue_lock);
133
134 if (count == 0)
135 break;
136 blk_mq_run_queues(q, false);
137 msleep(10);
138 }
139 }
140
141 /*
142 * Guarantee no request is in use, so we can change any data structure of
143 * the queue afterward.
144 */
145 static void blk_mq_freeze_queue(struct request_queue *q)
146 {
147 bool drain;
148
149 spin_lock_irq(q->queue_lock);
150 drain = !q->bypass_depth++;
151 queue_flag_set(QUEUE_FLAG_BYPASS, q);
152 spin_unlock_irq(q->queue_lock);
153
154 if (drain)
155 __blk_mq_drain_queue(q);
156 }
157
158 void blk_mq_drain_queue(struct request_queue *q)
159 {
160 __blk_mq_drain_queue(q);
161 }
162
163 static void blk_mq_unfreeze_queue(struct request_queue *q)
164 {
165 bool wake = false;
166
167 spin_lock_irq(q->queue_lock);
168 if (!--q->bypass_depth) {
169 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
170 wake = true;
171 }
172 WARN_ON_ONCE(q->bypass_depth < 0);
173 spin_unlock_irq(q->queue_lock);
174 if (wake)
175 wake_up_all(&q->mq_freeze_wq);
176 }
177
178 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
179 {
180 return blk_mq_has_free_tags(hctx->tags);
181 }
182 EXPORT_SYMBOL(blk_mq_can_queue);
183
184 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
185 struct request *rq, unsigned int rw_flags)
186 {
187 if (blk_queue_io_stat(q))
188 rw_flags |= REQ_IO_STAT;
189
190 rq->mq_ctx = ctx;
191 rq->cmd_flags = rw_flags;
192 rq->start_time = jiffies;
193 set_start_time_ns(rq);
194 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
195 }
196
197 static struct request *blk_mq_alloc_request_pinned(struct request_queue *q,
198 int rw, gfp_t gfp,
199 bool reserved)
200 {
201 struct request *rq;
202
203 do {
204 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
205 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, ctx->cpu);
206
207 rq = __blk_mq_alloc_request(hctx, gfp & ~__GFP_WAIT, reserved);
208 if (rq) {
209 blk_mq_rq_ctx_init(q, ctx, rq, rw);
210 break;
211 }
212
213 if (gfp & __GFP_WAIT) {
214 __blk_mq_run_hw_queue(hctx);
215 blk_mq_put_ctx(ctx);
216 } else {
217 blk_mq_put_ctx(ctx);
218 break;
219 }
220
221 blk_mq_wait_for_tags(hctx->tags);
222 } while (1);
223
224 return rq;
225 }
226
227 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp)
228 {
229 struct request *rq;
230
231 if (blk_mq_queue_enter(q))
232 return NULL;
233
234 rq = blk_mq_alloc_request_pinned(q, rw, gfp, false);
235 if (rq)
236 blk_mq_put_ctx(rq->mq_ctx);
237 return rq;
238 }
239
240 struct request *blk_mq_alloc_reserved_request(struct request_queue *q, int rw,
241 gfp_t gfp)
242 {
243 struct request *rq;
244
245 if (blk_mq_queue_enter(q))
246 return NULL;
247
248 rq = blk_mq_alloc_request_pinned(q, rw, gfp, true);
249 if (rq)
250 blk_mq_put_ctx(rq->mq_ctx);
251 return rq;
252 }
253 EXPORT_SYMBOL(blk_mq_alloc_reserved_request);
254
255 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
256 struct blk_mq_ctx *ctx, struct request *rq)
257 {
258 const int tag = rq->tag;
259 struct request_queue *q = rq->q;
260
261 blk_mq_put_tag(hctx->tags, tag);
262 blk_mq_queue_exit(q);
263 }
264
265 void blk_mq_free_request(struct request *rq)
266 {
267 struct blk_mq_ctx *ctx = rq->mq_ctx;
268 struct blk_mq_hw_ctx *hctx;
269 struct request_queue *q = rq->q;
270
271 ctx->rq_completed[rq_is_sync(rq)]++;
272
273 hctx = q->mq_ops->map_queue(q, ctx->cpu);
274 __blk_mq_free_request(hctx, ctx, rq);
275 }
276
277 /*
278 * Clone all relevant state from a request that has been put on hold in
279 * the flush state machine into the preallocated flush request that hangs
280 * off the request queue.
281 *
282 * For a driver the flush request should be invisible, that's why we are
283 * impersonating the original request here.
284 */
285 void blk_mq_clone_flush_request(struct request *flush_rq,
286 struct request *orig_rq)
287 {
288 struct blk_mq_hw_ctx *hctx =
289 orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu);
290
291 flush_rq->mq_ctx = orig_rq->mq_ctx;
292 flush_rq->tag = orig_rq->tag;
293 memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq),
294 hctx->cmd_size);
295 }
296
297 bool blk_mq_end_io_partial(struct request *rq, int error, unsigned int nr_bytes)
298 {
299 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
300 return true;
301
302 blk_account_io_done(rq);
303
304 if (rq->end_io)
305 rq->end_io(rq, error);
306 else
307 blk_mq_free_request(rq);
308 return false;
309 }
310 EXPORT_SYMBOL(blk_mq_end_io_partial);
311
312 static void __blk_mq_complete_request_remote(void *data)
313 {
314 struct request *rq = data;
315
316 rq->q->softirq_done_fn(rq);
317 }
318
319 void __blk_mq_complete_request(struct request *rq)
320 {
321 struct blk_mq_ctx *ctx = rq->mq_ctx;
322 int cpu;
323
324 if (!ctx->ipi_redirect) {
325 rq->q->softirq_done_fn(rq);
326 return;
327 }
328
329 cpu = get_cpu();
330 if (cpu != ctx->cpu && cpu_online(ctx->cpu)) {
331 rq->csd.func = __blk_mq_complete_request_remote;
332 rq->csd.info = rq;
333 rq->csd.flags = 0;
334 smp_call_function_single_async(ctx->cpu, &rq->csd);
335 } else {
336 rq->q->softirq_done_fn(rq);
337 }
338 put_cpu();
339 }
340
341 /**
342 * blk_mq_complete_request - end I/O on a request
343 * @rq: the request being processed
344 *
345 * Description:
346 * Ends all I/O on a request. It does not handle partial completions.
347 * The actual completion happens out-of-order, through a IPI handler.
348 **/
349 void blk_mq_complete_request(struct request *rq)
350 {
351 if (unlikely(blk_should_fake_timeout(rq->q)))
352 return;
353 if (!blk_mark_rq_complete(rq))
354 __blk_mq_complete_request(rq);
355 }
356 EXPORT_SYMBOL(blk_mq_complete_request);
357
358 static void blk_mq_start_request(struct request *rq, bool last)
359 {
360 struct request_queue *q = rq->q;
361
362 trace_block_rq_issue(q, rq);
363
364 rq->resid_len = blk_rq_bytes(rq);
365
366 /*
367 * Just mark start time and set the started bit. Due to memory
368 * ordering, we know we'll see the correct deadline as long as
369 * REQ_ATOMIC_STARTED is seen.
370 */
371 rq->deadline = jiffies + q->rq_timeout;
372 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
373
374 if (q->dma_drain_size && blk_rq_bytes(rq)) {
375 /*
376 * Make sure space for the drain appears. We know we can do
377 * this because max_hw_segments has been adjusted to be one
378 * fewer than the device can handle.
379 */
380 rq->nr_phys_segments++;
381 }
382
383 /*
384 * Flag the last request in the series so that drivers know when IO
385 * should be kicked off, if they don't do it on a per-request basis.
386 *
387 * Note: the flag isn't the only condition drivers should do kick off.
388 * If drive is busy, the last request might not have the bit set.
389 */
390 if (last)
391 rq->cmd_flags |= REQ_END;
392 }
393
394 static void blk_mq_requeue_request(struct request *rq)
395 {
396 struct request_queue *q = rq->q;
397
398 trace_block_rq_requeue(q, rq);
399 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
400
401 rq->cmd_flags &= ~REQ_END;
402
403 if (q->dma_drain_size && blk_rq_bytes(rq))
404 rq->nr_phys_segments--;
405 }
406
407 struct blk_mq_timeout_data {
408 struct blk_mq_hw_ctx *hctx;
409 unsigned long *next;
410 unsigned int *next_set;
411 };
412
413 static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
414 {
415 struct blk_mq_timeout_data *data = __data;
416 struct blk_mq_hw_ctx *hctx = data->hctx;
417 unsigned int tag;
418
419 /* It may not be in flight yet (this is where
420 * the REQ_ATOMIC_STARTED flag comes in). The requests are
421 * statically allocated, so we know it's always safe to access the
422 * memory associated with a bit offset into ->rqs[].
423 */
424 tag = 0;
425 do {
426 struct request *rq;
427
428 tag = find_next_zero_bit(free_tags, hctx->queue_depth, tag);
429 if (tag >= hctx->queue_depth)
430 break;
431
432 rq = hctx->rqs[tag++];
433
434 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
435 continue;
436
437 blk_rq_check_expired(rq, data->next, data->next_set);
438 } while (1);
439 }
440
441 static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
442 unsigned long *next,
443 unsigned int *next_set)
444 {
445 struct blk_mq_timeout_data data = {
446 .hctx = hctx,
447 .next = next,
448 .next_set = next_set,
449 };
450
451 /*
452 * Ask the tagging code to iterate busy requests, so we can
453 * check them for timeout.
454 */
455 blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
456 }
457
458 static void blk_mq_rq_timer(unsigned long data)
459 {
460 struct request_queue *q = (struct request_queue *) data;
461 struct blk_mq_hw_ctx *hctx;
462 unsigned long next = 0;
463 int i, next_set = 0;
464
465 queue_for_each_hw_ctx(q, hctx, i)
466 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
467
468 if (next_set)
469 mod_timer(&q->timeout, round_jiffies_up(next));
470 }
471
472 /*
473 * Reverse check our software queue for entries that we could potentially
474 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
475 * too much time checking for merges.
476 */
477 static bool blk_mq_attempt_merge(struct request_queue *q,
478 struct blk_mq_ctx *ctx, struct bio *bio)
479 {
480 struct request *rq;
481 int checked = 8;
482
483 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
484 int el_ret;
485
486 if (!checked--)
487 break;
488
489 if (!blk_rq_merge_ok(rq, bio))
490 continue;
491
492 el_ret = blk_try_merge(rq, bio);
493 if (el_ret == ELEVATOR_BACK_MERGE) {
494 if (bio_attempt_back_merge(q, rq, bio)) {
495 ctx->rq_merged++;
496 return true;
497 }
498 break;
499 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
500 if (bio_attempt_front_merge(q, rq, bio)) {
501 ctx->rq_merged++;
502 return true;
503 }
504 break;
505 }
506 }
507
508 return false;
509 }
510
511 void blk_mq_add_timer(struct request *rq)
512 {
513 __blk_add_timer(rq, NULL);
514 }
515
516 /*
517 * Run this hardware queue, pulling any software queues mapped to it in.
518 * Note that this function currently has various problems around ordering
519 * of IO. In particular, we'd like FIFO behaviour on handling existing
520 * items on the hctx->dispatch list. Ignore that for now.
521 */
522 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
523 {
524 struct request_queue *q = hctx->queue;
525 struct blk_mq_ctx *ctx;
526 struct request *rq;
527 LIST_HEAD(rq_list);
528 int bit, queued;
529
530 WARN_ON(!preempt_count());
531
532 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
533 return;
534
535 hctx->run++;
536
537 /*
538 * Touch any software queue that has pending entries.
539 */
540 for_each_set_bit(bit, hctx->ctx_map, hctx->nr_ctx) {
541 clear_bit(bit, hctx->ctx_map);
542 ctx = hctx->ctxs[bit];
543 BUG_ON(bit != ctx->index_hw);
544
545 spin_lock(&ctx->lock);
546 list_splice_tail_init(&ctx->rq_list, &rq_list);
547 spin_unlock(&ctx->lock);
548 }
549
550 /*
551 * If we have previous entries on our dispatch list, grab them
552 * and stuff them at the front for more fair dispatch.
553 */
554 if (!list_empty_careful(&hctx->dispatch)) {
555 spin_lock(&hctx->lock);
556 if (!list_empty(&hctx->dispatch))
557 list_splice_init(&hctx->dispatch, &rq_list);
558 spin_unlock(&hctx->lock);
559 }
560
561 /*
562 * Delete and return all entries from our dispatch list
563 */
564 queued = 0;
565
566 /*
567 * Now process all the entries, sending them to the driver.
568 */
569 while (!list_empty(&rq_list)) {
570 int ret;
571
572 rq = list_first_entry(&rq_list, struct request, queuelist);
573 list_del_init(&rq->queuelist);
574
575 blk_mq_start_request(rq, list_empty(&rq_list));
576
577 ret = q->mq_ops->queue_rq(hctx, rq);
578 switch (ret) {
579 case BLK_MQ_RQ_QUEUE_OK:
580 queued++;
581 continue;
582 case BLK_MQ_RQ_QUEUE_BUSY:
583 /*
584 * FIXME: we should have a mechanism to stop the queue
585 * like blk_stop_queue, otherwise we will waste cpu
586 * time
587 */
588 list_add(&rq->queuelist, &rq_list);
589 blk_mq_requeue_request(rq);
590 break;
591 default:
592 pr_err("blk-mq: bad return on queue: %d\n", ret);
593 case BLK_MQ_RQ_QUEUE_ERROR:
594 rq->errors = -EIO;
595 blk_mq_end_io(rq, rq->errors);
596 break;
597 }
598
599 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
600 break;
601 }
602
603 if (!queued)
604 hctx->dispatched[0]++;
605 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
606 hctx->dispatched[ilog2(queued) + 1]++;
607
608 /*
609 * Any items that need requeuing? Stuff them into hctx->dispatch,
610 * that is where we will continue on next queue run.
611 */
612 if (!list_empty(&rq_list)) {
613 spin_lock(&hctx->lock);
614 list_splice(&rq_list, &hctx->dispatch);
615 spin_unlock(&hctx->lock);
616 }
617 }
618
619 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
620 {
621 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
622 return;
623
624 if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
625 __blk_mq_run_hw_queue(hctx);
626 else if (hctx->queue->nr_hw_queues == 1)
627 kblockd_schedule_delayed_work(&hctx->delayed_work, 0);
628 else {
629 unsigned int cpu;
630
631 /*
632 * It'd be great if the workqueue API had a way to pass
633 * in a mask and had some smarts for more clever placement
634 * than the first CPU. Or we could round-robin here. For now,
635 * just queue on the first CPU.
636 */
637 cpu = cpumask_first(hctx->cpumask);
638 kblockd_schedule_delayed_work_on(cpu, &hctx->delayed_work, 0);
639 }
640 }
641
642 void blk_mq_run_queues(struct request_queue *q, bool async)
643 {
644 struct blk_mq_hw_ctx *hctx;
645 int i;
646
647 queue_for_each_hw_ctx(q, hctx, i) {
648 if ((!blk_mq_hctx_has_pending(hctx) &&
649 list_empty_careful(&hctx->dispatch)) ||
650 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
651 continue;
652
653 preempt_disable();
654 blk_mq_run_hw_queue(hctx, async);
655 preempt_enable();
656 }
657 }
658 EXPORT_SYMBOL(blk_mq_run_queues);
659
660 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
661 {
662 cancel_delayed_work(&hctx->delayed_work);
663 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
664 }
665 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
666
667 void blk_mq_stop_hw_queues(struct request_queue *q)
668 {
669 struct blk_mq_hw_ctx *hctx;
670 int i;
671
672 queue_for_each_hw_ctx(q, hctx, i)
673 blk_mq_stop_hw_queue(hctx);
674 }
675 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
676
677 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
678 {
679 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
680
681 preempt_disable();
682 __blk_mq_run_hw_queue(hctx);
683 preempt_enable();
684 }
685 EXPORT_SYMBOL(blk_mq_start_hw_queue);
686
687 void blk_mq_start_stopped_hw_queues(struct request_queue *q)
688 {
689 struct blk_mq_hw_ctx *hctx;
690 int i;
691
692 queue_for_each_hw_ctx(q, hctx, i) {
693 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
694 continue;
695
696 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
697 preempt_disable();
698 blk_mq_run_hw_queue(hctx, true);
699 preempt_enable();
700 }
701 }
702 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
703
704 static void blk_mq_work_fn(struct work_struct *work)
705 {
706 struct blk_mq_hw_ctx *hctx;
707
708 hctx = container_of(work, struct blk_mq_hw_ctx, delayed_work.work);
709
710 preempt_disable();
711 __blk_mq_run_hw_queue(hctx);
712 preempt_enable();
713 }
714
715 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
716 struct request *rq, bool at_head)
717 {
718 struct blk_mq_ctx *ctx = rq->mq_ctx;
719
720 trace_block_rq_insert(hctx->queue, rq);
721
722 if (at_head)
723 list_add(&rq->queuelist, &ctx->rq_list);
724 else
725 list_add_tail(&rq->queuelist, &ctx->rq_list);
726 blk_mq_hctx_mark_pending(hctx, ctx);
727
728 /*
729 * We do this early, to ensure we are on the right CPU.
730 */
731 blk_mq_add_timer(rq);
732 }
733
734 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
735 bool async)
736 {
737 struct request_queue *q = rq->q;
738 struct blk_mq_hw_ctx *hctx;
739 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
740
741 current_ctx = blk_mq_get_ctx(q);
742 if (!cpu_online(ctx->cpu))
743 rq->mq_ctx = ctx = current_ctx;
744
745 hctx = q->mq_ops->map_queue(q, ctx->cpu);
746
747 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA) &&
748 !(rq->cmd_flags & (REQ_FLUSH_SEQ))) {
749 blk_insert_flush(rq);
750 } else {
751 spin_lock(&ctx->lock);
752 __blk_mq_insert_request(hctx, rq, at_head);
753 spin_unlock(&ctx->lock);
754 }
755
756 if (run_queue)
757 blk_mq_run_hw_queue(hctx, async);
758
759 blk_mq_put_ctx(current_ctx);
760 }
761
762 static void blk_mq_insert_requests(struct request_queue *q,
763 struct blk_mq_ctx *ctx,
764 struct list_head *list,
765 int depth,
766 bool from_schedule)
767
768 {
769 struct blk_mq_hw_ctx *hctx;
770 struct blk_mq_ctx *current_ctx;
771
772 trace_block_unplug(q, depth, !from_schedule);
773
774 current_ctx = blk_mq_get_ctx(q);
775
776 if (!cpu_online(ctx->cpu))
777 ctx = current_ctx;
778 hctx = q->mq_ops->map_queue(q, ctx->cpu);
779
780 /*
781 * preemption doesn't flush plug list, so it's possible ctx->cpu is
782 * offline now
783 */
784 spin_lock(&ctx->lock);
785 while (!list_empty(list)) {
786 struct request *rq;
787
788 rq = list_first_entry(list, struct request, queuelist);
789 list_del_init(&rq->queuelist);
790 rq->mq_ctx = ctx;
791 __blk_mq_insert_request(hctx, rq, false);
792 }
793 spin_unlock(&ctx->lock);
794
795 blk_mq_run_hw_queue(hctx, from_schedule);
796 blk_mq_put_ctx(current_ctx);
797 }
798
799 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
800 {
801 struct request *rqa = container_of(a, struct request, queuelist);
802 struct request *rqb = container_of(b, struct request, queuelist);
803
804 return !(rqa->mq_ctx < rqb->mq_ctx ||
805 (rqa->mq_ctx == rqb->mq_ctx &&
806 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
807 }
808
809 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
810 {
811 struct blk_mq_ctx *this_ctx;
812 struct request_queue *this_q;
813 struct request *rq;
814 LIST_HEAD(list);
815 LIST_HEAD(ctx_list);
816 unsigned int depth;
817
818 list_splice_init(&plug->mq_list, &list);
819
820 list_sort(NULL, &list, plug_ctx_cmp);
821
822 this_q = NULL;
823 this_ctx = NULL;
824 depth = 0;
825
826 while (!list_empty(&list)) {
827 rq = list_entry_rq(list.next);
828 list_del_init(&rq->queuelist);
829 BUG_ON(!rq->q);
830 if (rq->mq_ctx != this_ctx) {
831 if (this_ctx) {
832 blk_mq_insert_requests(this_q, this_ctx,
833 &ctx_list, depth,
834 from_schedule);
835 }
836
837 this_ctx = rq->mq_ctx;
838 this_q = rq->q;
839 depth = 0;
840 }
841
842 depth++;
843 list_add_tail(&rq->queuelist, &ctx_list);
844 }
845
846 /*
847 * If 'this_ctx' is set, we know we have entries to complete
848 * on 'ctx_list'. Do those.
849 */
850 if (this_ctx) {
851 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
852 from_schedule);
853 }
854 }
855
856 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
857 {
858 init_request_from_bio(rq, bio);
859 blk_account_io_start(rq, 1);
860 }
861
862 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
863 {
864 struct blk_mq_hw_ctx *hctx;
865 struct blk_mq_ctx *ctx;
866 const int is_sync = rw_is_sync(bio->bi_rw);
867 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
868 int rw = bio_data_dir(bio);
869 struct request *rq;
870 unsigned int use_plug, request_count = 0;
871
872 /*
873 * If we have multiple hardware queues, just go directly to
874 * one of those for sync IO.
875 */
876 use_plug = !is_flush_fua && ((q->nr_hw_queues == 1) || !is_sync);
877
878 blk_queue_bounce(q, &bio);
879
880 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
881 bio_endio(bio, -EIO);
882 return;
883 }
884
885 if (use_plug && blk_attempt_plug_merge(q, bio, &request_count))
886 return;
887
888 if (blk_mq_queue_enter(q)) {
889 bio_endio(bio, -EIO);
890 return;
891 }
892
893 ctx = blk_mq_get_ctx(q);
894 hctx = q->mq_ops->map_queue(q, ctx->cpu);
895
896 if (is_sync)
897 rw |= REQ_SYNC;
898 trace_block_getrq(q, bio, rw);
899 rq = __blk_mq_alloc_request(hctx, GFP_ATOMIC, false);
900 if (likely(rq))
901 blk_mq_rq_ctx_init(q, ctx, rq, rw);
902 else {
903 blk_mq_put_ctx(ctx);
904 trace_block_sleeprq(q, bio, rw);
905 rq = blk_mq_alloc_request_pinned(q, rw, __GFP_WAIT|GFP_ATOMIC,
906 false);
907 ctx = rq->mq_ctx;
908 hctx = q->mq_ops->map_queue(q, ctx->cpu);
909 }
910
911 hctx->queued++;
912
913 if (unlikely(is_flush_fua)) {
914 blk_mq_bio_to_request(rq, bio);
915 blk_insert_flush(rq);
916 goto run_queue;
917 }
918
919 /*
920 * A task plug currently exists. Since this is completely lockless,
921 * utilize that to temporarily store requests until the task is
922 * either done or scheduled away.
923 */
924 if (use_plug) {
925 struct blk_plug *plug = current->plug;
926
927 if (plug) {
928 blk_mq_bio_to_request(rq, bio);
929 if (list_empty(&plug->mq_list))
930 trace_block_plug(q);
931 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
932 blk_flush_plug_list(plug, false);
933 trace_block_plug(q);
934 }
935 list_add_tail(&rq->queuelist, &plug->mq_list);
936 blk_mq_put_ctx(ctx);
937 return;
938 }
939 }
940
941 spin_lock(&ctx->lock);
942
943 if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
944 blk_mq_attempt_merge(q, ctx, bio))
945 __blk_mq_free_request(hctx, ctx, rq);
946 else {
947 blk_mq_bio_to_request(rq, bio);
948 __blk_mq_insert_request(hctx, rq, false);
949 }
950
951 spin_unlock(&ctx->lock);
952
953 /*
954 * For a SYNC request, send it to the hardware immediately. For an
955 * ASYNC request, just ensure that we run it later on. The latter
956 * allows for merging opportunities and more efficient dispatching.
957 */
958 run_queue:
959 blk_mq_run_hw_queue(hctx, !is_sync || is_flush_fua);
960 blk_mq_put_ctx(ctx);
961 }
962
963 /*
964 * Default mapping to a software queue, since we use one per CPU.
965 */
966 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
967 {
968 return q->queue_hw_ctx[q->mq_map[cpu]];
969 }
970 EXPORT_SYMBOL(blk_mq_map_queue);
971
972 struct blk_mq_hw_ctx *blk_mq_alloc_single_hw_queue(struct blk_mq_reg *reg,
973 unsigned int hctx_index)
974 {
975 return kmalloc_node(sizeof(struct blk_mq_hw_ctx),
976 GFP_KERNEL | __GFP_ZERO, reg->numa_node);
977 }
978 EXPORT_SYMBOL(blk_mq_alloc_single_hw_queue);
979
980 void blk_mq_free_single_hw_queue(struct blk_mq_hw_ctx *hctx,
981 unsigned int hctx_index)
982 {
983 kfree(hctx);
984 }
985 EXPORT_SYMBOL(blk_mq_free_single_hw_queue);
986
987 static void blk_mq_hctx_notify(void *data, unsigned long action,
988 unsigned int cpu)
989 {
990 struct blk_mq_hw_ctx *hctx = data;
991 struct request_queue *q = hctx->queue;
992 struct blk_mq_ctx *ctx;
993 LIST_HEAD(tmp);
994
995 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
996 return;
997
998 /*
999 * Move ctx entries to new CPU, if this one is going away.
1000 */
1001 ctx = __blk_mq_get_ctx(q, cpu);
1002
1003 spin_lock(&ctx->lock);
1004 if (!list_empty(&ctx->rq_list)) {
1005 list_splice_init(&ctx->rq_list, &tmp);
1006 clear_bit(ctx->index_hw, hctx->ctx_map);
1007 }
1008 spin_unlock(&ctx->lock);
1009
1010 if (list_empty(&tmp))
1011 return;
1012
1013 ctx = blk_mq_get_ctx(q);
1014 spin_lock(&ctx->lock);
1015
1016 while (!list_empty(&tmp)) {
1017 struct request *rq;
1018
1019 rq = list_first_entry(&tmp, struct request, queuelist);
1020 rq->mq_ctx = ctx;
1021 list_move_tail(&rq->queuelist, &ctx->rq_list);
1022 }
1023
1024 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1025 blk_mq_hctx_mark_pending(hctx, ctx);
1026
1027 spin_unlock(&ctx->lock);
1028
1029 blk_mq_run_hw_queue(hctx, true);
1030 blk_mq_put_ctx(ctx);
1031 }
1032
1033 static void blk_mq_free_rq_map(struct blk_mq_hw_ctx *hctx, void *driver_data)
1034 {
1035 struct page *page;
1036
1037 if (hctx->rqs && hctx->queue->mq_ops->exit_request) {
1038 int i;
1039
1040 for (i = 0; i < hctx->queue_depth; i++) {
1041 if (!hctx->rqs[i])
1042 continue;
1043 hctx->queue->mq_ops->exit_request(driver_data, hctx,
1044 hctx->rqs[i], i);
1045 }
1046 }
1047
1048 while (!list_empty(&hctx->page_list)) {
1049 page = list_first_entry(&hctx->page_list, struct page, lru);
1050 list_del_init(&page->lru);
1051 __free_pages(page, page->private);
1052 }
1053
1054 kfree(hctx->rqs);
1055
1056 if (hctx->tags)
1057 blk_mq_free_tags(hctx->tags);
1058 }
1059
1060 static size_t order_to_size(unsigned int order)
1061 {
1062 size_t ret = PAGE_SIZE;
1063
1064 while (order--)
1065 ret *= 2;
1066
1067 return ret;
1068 }
1069
1070 static int blk_mq_init_rq_map(struct blk_mq_hw_ctx *hctx,
1071 struct blk_mq_reg *reg, void *driver_data, int node)
1072 {
1073 unsigned int reserved_tags = reg->reserved_tags;
1074 unsigned int i, j, entries_per_page, max_order = 4;
1075 size_t rq_size, left;
1076 int error;
1077
1078 INIT_LIST_HEAD(&hctx->page_list);
1079
1080 hctx->rqs = kmalloc_node(hctx->queue_depth * sizeof(struct request *),
1081 GFP_KERNEL, node);
1082 if (!hctx->rqs)
1083 return -ENOMEM;
1084
1085 /*
1086 * rq_size is the size of the request plus driver payload, rounded
1087 * to the cacheline size
1088 */
1089 rq_size = round_up(sizeof(struct request) + hctx->cmd_size,
1090 cache_line_size());
1091 left = rq_size * hctx->queue_depth;
1092
1093 for (i = 0; i < hctx->queue_depth;) {
1094 int this_order = max_order;
1095 struct page *page;
1096 int to_do;
1097 void *p;
1098
1099 while (left < order_to_size(this_order - 1) && this_order)
1100 this_order--;
1101
1102 do {
1103 page = alloc_pages_node(node, GFP_KERNEL, this_order);
1104 if (page)
1105 break;
1106 if (!this_order--)
1107 break;
1108 if (order_to_size(this_order) < rq_size)
1109 break;
1110 } while (1);
1111
1112 if (!page)
1113 break;
1114
1115 page->private = this_order;
1116 list_add_tail(&page->lru, &hctx->page_list);
1117
1118 p = page_address(page);
1119 entries_per_page = order_to_size(this_order) / rq_size;
1120 to_do = min(entries_per_page, hctx->queue_depth - i);
1121 left -= to_do * rq_size;
1122 for (j = 0; j < to_do; j++) {
1123 hctx->rqs[i] = p;
1124 if (reg->ops->init_request) {
1125 error = reg->ops->init_request(driver_data,
1126 hctx, hctx->rqs[i], i);
1127 if (error)
1128 goto err_rq_map;
1129 }
1130
1131 p += rq_size;
1132 i++;
1133 }
1134 }
1135
1136 if (i < (reserved_tags + BLK_MQ_TAG_MIN)) {
1137 error = -ENOMEM;
1138 goto err_rq_map;
1139 }
1140 if (i != hctx->queue_depth) {
1141 hctx->queue_depth = i;
1142 pr_warn("%s: queue depth set to %u because of low memory\n",
1143 __func__, i);
1144 }
1145
1146 hctx->tags = blk_mq_init_tags(hctx->queue_depth, reserved_tags, node);
1147 if (!hctx->tags) {
1148 error = -ENOMEM;
1149 goto err_rq_map;
1150 }
1151
1152 return 0;
1153 err_rq_map:
1154 blk_mq_free_rq_map(hctx, driver_data);
1155 return error;
1156 }
1157
1158 static int blk_mq_init_hw_queues(struct request_queue *q,
1159 struct blk_mq_reg *reg, void *driver_data)
1160 {
1161 struct blk_mq_hw_ctx *hctx;
1162 unsigned int i, j;
1163
1164 /*
1165 * Initialize hardware queues
1166 */
1167 queue_for_each_hw_ctx(q, hctx, i) {
1168 unsigned int num_maps;
1169 int node;
1170
1171 node = hctx->numa_node;
1172 if (node == NUMA_NO_NODE)
1173 node = hctx->numa_node = reg->numa_node;
1174
1175 INIT_DELAYED_WORK(&hctx->delayed_work, blk_mq_work_fn);
1176 spin_lock_init(&hctx->lock);
1177 INIT_LIST_HEAD(&hctx->dispatch);
1178 hctx->queue = q;
1179 hctx->queue_num = i;
1180 hctx->flags = reg->flags;
1181 hctx->queue_depth = reg->queue_depth;
1182 hctx->cmd_size = reg->cmd_size;
1183
1184 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1185 blk_mq_hctx_notify, hctx);
1186 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1187
1188 if (blk_mq_init_rq_map(hctx, reg, driver_data, node))
1189 break;
1190
1191 /*
1192 * Allocate space for all possible cpus to avoid allocation in
1193 * runtime
1194 */
1195 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1196 GFP_KERNEL, node);
1197 if (!hctx->ctxs)
1198 break;
1199
1200 num_maps = ALIGN(nr_cpu_ids, BITS_PER_LONG) / BITS_PER_LONG;
1201 hctx->ctx_map = kzalloc_node(num_maps * sizeof(unsigned long),
1202 GFP_KERNEL, node);
1203 if (!hctx->ctx_map)
1204 break;
1205
1206 hctx->nr_ctx_map = num_maps;
1207 hctx->nr_ctx = 0;
1208
1209 if (reg->ops->init_hctx &&
1210 reg->ops->init_hctx(hctx, driver_data, i))
1211 break;
1212 }
1213
1214 if (i == q->nr_hw_queues)
1215 return 0;
1216
1217 /*
1218 * Init failed
1219 */
1220 queue_for_each_hw_ctx(q, hctx, j) {
1221 if (i == j)
1222 break;
1223
1224 if (reg->ops->exit_hctx)
1225 reg->ops->exit_hctx(hctx, j);
1226
1227 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1228 blk_mq_free_rq_map(hctx, driver_data);
1229 kfree(hctx->ctxs);
1230 }
1231
1232 return 1;
1233 }
1234
1235 static void blk_mq_init_cpu_queues(struct request_queue *q,
1236 unsigned int nr_hw_queues)
1237 {
1238 unsigned int i;
1239
1240 for_each_possible_cpu(i) {
1241 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1242 struct blk_mq_hw_ctx *hctx;
1243
1244 memset(__ctx, 0, sizeof(*__ctx));
1245 __ctx->cpu = i;
1246 spin_lock_init(&__ctx->lock);
1247 INIT_LIST_HEAD(&__ctx->rq_list);
1248 __ctx->queue = q;
1249
1250 /* If the cpu isn't online, the cpu is mapped to first hctx */
1251 if (!cpu_online(i))
1252 continue;
1253
1254 hctx = q->mq_ops->map_queue(q, i);
1255 cpumask_set_cpu(i, hctx->cpumask);
1256 hctx->nr_ctx++;
1257
1258 /*
1259 * Set local node, IFF we have more than one hw queue. If
1260 * not, we remain on the home node of the device
1261 */
1262 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1263 hctx->numa_node = cpu_to_node(i);
1264 }
1265 }
1266
1267 static void blk_mq_map_swqueue(struct request_queue *q)
1268 {
1269 unsigned int i;
1270 struct blk_mq_hw_ctx *hctx;
1271 struct blk_mq_ctx *ctx;
1272
1273 queue_for_each_hw_ctx(q, hctx, i) {
1274 cpumask_clear(hctx->cpumask);
1275 hctx->nr_ctx = 0;
1276 }
1277
1278 /*
1279 * Map software to hardware queues
1280 */
1281 queue_for_each_ctx(q, ctx, i) {
1282 /* If the cpu isn't online, the cpu is mapped to first hctx */
1283 if (!cpu_online(i))
1284 continue;
1285
1286 hctx = q->mq_ops->map_queue(q, i);
1287 cpumask_set_cpu(i, hctx->cpumask);
1288 ctx->index_hw = hctx->nr_ctx;
1289 hctx->ctxs[hctx->nr_ctx++] = ctx;
1290 }
1291 }
1292
1293 struct request_queue *blk_mq_init_queue(struct blk_mq_reg *reg,
1294 void *driver_data)
1295 {
1296 struct blk_mq_hw_ctx **hctxs;
1297 struct blk_mq_ctx *ctx;
1298 struct request_queue *q;
1299 int i;
1300
1301 if (!reg->nr_hw_queues ||
1302 !reg->ops->queue_rq || !reg->ops->map_queue ||
1303 !reg->ops->alloc_hctx || !reg->ops->free_hctx)
1304 return ERR_PTR(-EINVAL);
1305
1306 if (!reg->queue_depth)
1307 reg->queue_depth = BLK_MQ_MAX_DEPTH;
1308 else if (reg->queue_depth > BLK_MQ_MAX_DEPTH) {
1309 pr_err("blk-mq: queuedepth too large (%u)\n", reg->queue_depth);
1310 reg->queue_depth = BLK_MQ_MAX_DEPTH;
1311 }
1312
1313 if (reg->queue_depth < (reg->reserved_tags + BLK_MQ_TAG_MIN))
1314 return ERR_PTR(-EINVAL);
1315
1316 ctx = alloc_percpu(struct blk_mq_ctx);
1317 if (!ctx)
1318 return ERR_PTR(-ENOMEM);
1319
1320 hctxs = kmalloc_node(reg->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1321 reg->numa_node);
1322
1323 if (!hctxs)
1324 goto err_percpu;
1325
1326 for (i = 0; i < reg->nr_hw_queues; i++) {
1327 hctxs[i] = reg->ops->alloc_hctx(reg, i);
1328 if (!hctxs[i])
1329 goto err_hctxs;
1330
1331 if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
1332 goto err_hctxs;
1333
1334 hctxs[i]->numa_node = NUMA_NO_NODE;
1335 hctxs[i]->queue_num = i;
1336 }
1337
1338 q = blk_alloc_queue_node(GFP_KERNEL, reg->numa_node);
1339 if (!q)
1340 goto err_hctxs;
1341
1342 q->mq_map = blk_mq_make_queue_map(reg);
1343 if (!q->mq_map)
1344 goto err_map;
1345
1346 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1347 blk_queue_rq_timeout(q, 30000);
1348
1349 q->nr_queues = nr_cpu_ids;
1350 q->nr_hw_queues = reg->nr_hw_queues;
1351
1352 q->queue_ctx = ctx;
1353 q->queue_hw_ctx = hctxs;
1354
1355 q->mq_ops = reg->ops;
1356 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1357
1358 q->sg_reserved_size = INT_MAX;
1359
1360 blk_queue_make_request(q, blk_mq_make_request);
1361 blk_queue_rq_timed_out(q, reg->ops->timeout);
1362 if (reg->timeout)
1363 blk_queue_rq_timeout(q, reg->timeout);
1364
1365 if (reg->ops->complete)
1366 blk_queue_softirq_done(q, reg->ops->complete);
1367
1368 blk_mq_init_flush(q);
1369 blk_mq_init_cpu_queues(q, reg->nr_hw_queues);
1370
1371 q->flush_rq = kzalloc(round_up(sizeof(struct request) + reg->cmd_size,
1372 cache_line_size()), GFP_KERNEL);
1373 if (!q->flush_rq)
1374 goto err_hw;
1375
1376 if (blk_mq_init_hw_queues(q, reg, driver_data))
1377 goto err_flush_rq;
1378
1379 blk_mq_map_swqueue(q);
1380
1381 mutex_lock(&all_q_mutex);
1382 list_add_tail(&q->all_q_node, &all_q_list);
1383 mutex_unlock(&all_q_mutex);
1384
1385 return q;
1386
1387 err_flush_rq:
1388 kfree(q->flush_rq);
1389 err_hw:
1390 kfree(q->mq_map);
1391 err_map:
1392 blk_cleanup_queue(q);
1393 err_hctxs:
1394 for (i = 0; i < reg->nr_hw_queues; i++) {
1395 if (!hctxs[i])
1396 break;
1397 free_cpumask_var(hctxs[i]->cpumask);
1398 reg->ops->free_hctx(hctxs[i], i);
1399 }
1400 kfree(hctxs);
1401 err_percpu:
1402 free_percpu(ctx);
1403 return ERR_PTR(-ENOMEM);
1404 }
1405 EXPORT_SYMBOL(blk_mq_init_queue);
1406
1407 void blk_mq_free_queue(struct request_queue *q)
1408 {
1409 struct blk_mq_hw_ctx *hctx;
1410 int i;
1411
1412 queue_for_each_hw_ctx(q, hctx, i) {
1413 kfree(hctx->ctx_map);
1414 kfree(hctx->ctxs);
1415 blk_mq_free_rq_map(hctx, q->queuedata);
1416 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1417 if (q->mq_ops->exit_hctx)
1418 q->mq_ops->exit_hctx(hctx, i);
1419 free_cpumask_var(hctx->cpumask);
1420 q->mq_ops->free_hctx(hctx, i);
1421 }
1422
1423 free_percpu(q->queue_ctx);
1424 kfree(q->queue_hw_ctx);
1425 kfree(q->mq_map);
1426
1427 q->queue_ctx = NULL;
1428 q->queue_hw_ctx = NULL;
1429 q->mq_map = NULL;
1430
1431 mutex_lock(&all_q_mutex);
1432 list_del_init(&q->all_q_node);
1433 mutex_unlock(&all_q_mutex);
1434 }
1435
1436 /* Basically redo blk_mq_init_queue with queue frozen */
1437 static void blk_mq_queue_reinit(struct request_queue *q)
1438 {
1439 blk_mq_freeze_queue(q);
1440
1441 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1442
1443 /*
1444 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1445 * we should change hctx numa_node according to new topology (this
1446 * involves free and re-allocate memory, worthy doing?)
1447 */
1448
1449 blk_mq_map_swqueue(q);
1450
1451 blk_mq_unfreeze_queue(q);
1452 }
1453
1454 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1455 unsigned long action, void *hcpu)
1456 {
1457 struct request_queue *q;
1458
1459 /*
1460 * Before new mapping is established, hotadded cpu might already start
1461 * handling requests. This doesn't break anything as we map offline
1462 * CPUs to first hardware queue. We will re-init queue below to get
1463 * optimal settings.
1464 */
1465 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1466 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1467 return NOTIFY_OK;
1468
1469 mutex_lock(&all_q_mutex);
1470 list_for_each_entry(q, &all_q_list, all_q_node)
1471 blk_mq_queue_reinit(q);
1472 mutex_unlock(&all_q_mutex);
1473 return NOTIFY_OK;
1474 }
1475
1476 void blk_mq_disable_hotplug(void)
1477 {
1478 mutex_lock(&all_q_mutex);
1479 }
1480
1481 void blk_mq_enable_hotplug(void)
1482 {
1483 mutex_unlock(&all_q_mutex);
1484 }
1485
1486 static int __init blk_mq_init(void)
1487 {
1488 blk_mq_cpu_init();
1489
1490 /* Must be called after percpu_counter_hotcpu_callback() */
1491 hotcpu_notifier(blk_mq_queue_reinit_notify, -10);
1492
1493 return 0;
1494 }
1495 subsys_initcall(blk_mq_init);