]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-mq.c
block: better op and flags encoding
[mirror_ubuntu-artful-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
25 #include <linux/prefetch.h>
26
27 #include <trace/events/block.h>
28
29 #include <linux/blk-mq.h>
30 #include "blk.h"
31 #include "blk-mq.h"
32 #include "blk-mq-tag.h"
33
34 static DEFINE_MUTEX(all_q_mutex);
35 static LIST_HEAD(all_q_list);
36
37 /*
38 * Check if any of the ctx's have pending work in this hardware queue
39 */
40 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
41 {
42 return sbitmap_any_bit_set(&hctx->ctx_map);
43 }
44
45 /*
46 * Mark this ctx as having pending work in this hardware queue
47 */
48 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
49 struct blk_mq_ctx *ctx)
50 {
51 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
52 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
53 }
54
55 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
56 struct blk_mq_ctx *ctx)
57 {
58 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
59 }
60
61 void blk_mq_freeze_queue_start(struct request_queue *q)
62 {
63 int freeze_depth;
64
65 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
66 if (freeze_depth == 1) {
67 percpu_ref_kill(&q->q_usage_counter);
68 blk_mq_run_hw_queues(q, false);
69 }
70 }
71 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
72
73 static void blk_mq_freeze_queue_wait(struct request_queue *q)
74 {
75 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
76 }
77
78 /*
79 * Guarantee no request is in use, so we can change any data structure of
80 * the queue afterward.
81 */
82 void blk_freeze_queue(struct request_queue *q)
83 {
84 /*
85 * In the !blk_mq case we are only calling this to kill the
86 * q_usage_counter, otherwise this increases the freeze depth
87 * and waits for it to return to zero. For this reason there is
88 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
89 * exported to drivers as the only user for unfreeze is blk_mq.
90 */
91 blk_mq_freeze_queue_start(q);
92 blk_mq_freeze_queue_wait(q);
93 }
94
95 void blk_mq_freeze_queue(struct request_queue *q)
96 {
97 /*
98 * ...just an alias to keep freeze and unfreeze actions balanced
99 * in the blk_mq_* namespace
100 */
101 blk_freeze_queue(q);
102 }
103 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
104
105 void blk_mq_unfreeze_queue(struct request_queue *q)
106 {
107 int freeze_depth;
108
109 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
110 WARN_ON_ONCE(freeze_depth < 0);
111 if (!freeze_depth) {
112 percpu_ref_reinit(&q->q_usage_counter);
113 wake_up_all(&q->mq_freeze_wq);
114 }
115 }
116 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
117
118 void blk_mq_wake_waiters(struct request_queue *q)
119 {
120 struct blk_mq_hw_ctx *hctx;
121 unsigned int i;
122
123 queue_for_each_hw_ctx(q, hctx, i)
124 if (blk_mq_hw_queue_mapped(hctx))
125 blk_mq_tag_wakeup_all(hctx->tags, true);
126
127 /*
128 * If we are called because the queue has now been marked as
129 * dying, we need to ensure that processes currently waiting on
130 * the queue are notified as well.
131 */
132 wake_up_all(&q->mq_freeze_wq);
133 }
134
135 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
136 {
137 return blk_mq_has_free_tags(hctx->tags);
138 }
139 EXPORT_SYMBOL(blk_mq_can_queue);
140
141 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
142 struct request *rq, unsigned int op)
143 {
144 INIT_LIST_HEAD(&rq->queuelist);
145 /* csd/requeue_work/fifo_time is initialized before use */
146 rq->q = q;
147 rq->mq_ctx = ctx;
148 rq->cmd_flags = op;
149 if (blk_queue_io_stat(q))
150 rq->rq_flags |= RQF_IO_STAT;
151 /* do not touch atomic flags, it needs atomic ops against the timer */
152 rq->cpu = -1;
153 INIT_HLIST_NODE(&rq->hash);
154 RB_CLEAR_NODE(&rq->rb_node);
155 rq->rq_disk = NULL;
156 rq->part = NULL;
157 rq->start_time = jiffies;
158 #ifdef CONFIG_BLK_CGROUP
159 rq->rl = NULL;
160 set_start_time_ns(rq);
161 rq->io_start_time_ns = 0;
162 #endif
163 rq->nr_phys_segments = 0;
164 #if defined(CONFIG_BLK_DEV_INTEGRITY)
165 rq->nr_integrity_segments = 0;
166 #endif
167 rq->special = NULL;
168 /* tag was already set */
169 rq->errors = 0;
170
171 rq->cmd = rq->__cmd;
172
173 rq->extra_len = 0;
174 rq->sense_len = 0;
175 rq->resid_len = 0;
176 rq->sense = NULL;
177
178 INIT_LIST_HEAD(&rq->timeout_list);
179 rq->timeout = 0;
180
181 rq->end_io = NULL;
182 rq->end_io_data = NULL;
183 rq->next_rq = NULL;
184
185 ctx->rq_dispatched[op_is_sync(op)]++;
186 }
187
188 static struct request *
189 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, unsigned int op)
190 {
191 struct request *rq;
192 unsigned int tag;
193
194 tag = blk_mq_get_tag(data);
195 if (tag != BLK_MQ_TAG_FAIL) {
196 rq = data->hctx->tags->rqs[tag];
197
198 if (blk_mq_tag_busy(data->hctx)) {
199 rq->rq_flags = RQF_MQ_INFLIGHT;
200 atomic_inc(&data->hctx->nr_active);
201 }
202
203 rq->tag = tag;
204 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
205 return rq;
206 }
207
208 return NULL;
209 }
210
211 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
212 unsigned int flags)
213 {
214 struct blk_mq_ctx *ctx;
215 struct blk_mq_hw_ctx *hctx;
216 struct request *rq;
217 struct blk_mq_alloc_data alloc_data;
218 int ret;
219
220 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
221 if (ret)
222 return ERR_PTR(ret);
223
224 ctx = blk_mq_get_ctx(q);
225 hctx = blk_mq_map_queue(q, ctx->cpu);
226 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
227 rq = __blk_mq_alloc_request(&alloc_data, rw);
228 blk_mq_put_ctx(ctx);
229
230 if (!rq) {
231 blk_queue_exit(q);
232 return ERR_PTR(-EWOULDBLOCK);
233 }
234
235 rq->__data_len = 0;
236 rq->__sector = (sector_t) -1;
237 rq->bio = rq->biotail = NULL;
238 return rq;
239 }
240 EXPORT_SYMBOL(blk_mq_alloc_request);
241
242 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
243 unsigned int flags, unsigned int hctx_idx)
244 {
245 struct blk_mq_hw_ctx *hctx;
246 struct blk_mq_ctx *ctx;
247 struct request *rq;
248 struct blk_mq_alloc_data alloc_data;
249 int ret;
250
251 /*
252 * If the tag allocator sleeps we could get an allocation for a
253 * different hardware context. No need to complicate the low level
254 * allocator for this for the rare use case of a command tied to
255 * a specific queue.
256 */
257 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
258 return ERR_PTR(-EINVAL);
259
260 if (hctx_idx >= q->nr_hw_queues)
261 return ERR_PTR(-EIO);
262
263 ret = blk_queue_enter(q, true);
264 if (ret)
265 return ERR_PTR(ret);
266
267 /*
268 * Check if the hardware context is actually mapped to anything.
269 * If not tell the caller that it should skip this queue.
270 */
271 hctx = q->queue_hw_ctx[hctx_idx];
272 if (!blk_mq_hw_queue_mapped(hctx)) {
273 ret = -EXDEV;
274 goto out_queue_exit;
275 }
276 ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));
277
278 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
279 rq = __blk_mq_alloc_request(&alloc_data, rw);
280 if (!rq) {
281 ret = -EWOULDBLOCK;
282 goto out_queue_exit;
283 }
284
285 return rq;
286
287 out_queue_exit:
288 blk_queue_exit(q);
289 return ERR_PTR(ret);
290 }
291 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
292
293 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
294 struct blk_mq_ctx *ctx, struct request *rq)
295 {
296 const int tag = rq->tag;
297 struct request_queue *q = rq->q;
298
299 if (rq->rq_flags & RQF_MQ_INFLIGHT)
300 atomic_dec(&hctx->nr_active);
301 rq->rq_flags = 0;
302
303 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
304 blk_mq_put_tag(hctx, ctx, tag);
305 blk_queue_exit(q);
306 }
307
308 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
309 {
310 struct blk_mq_ctx *ctx = rq->mq_ctx;
311
312 ctx->rq_completed[rq_is_sync(rq)]++;
313 __blk_mq_free_request(hctx, ctx, rq);
314
315 }
316 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
317
318 void blk_mq_free_request(struct request *rq)
319 {
320 blk_mq_free_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
321 }
322 EXPORT_SYMBOL_GPL(blk_mq_free_request);
323
324 inline void __blk_mq_end_request(struct request *rq, int error)
325 {
326 blk_account_io_done(rq);
327
328 if (rq->end_io) {
329 rq->end_io(rq, error);
330 } else {
331 if (unlikely(blk_bidi_rq(rq)))
332 blk_mq_free_request(rq->next_rq);
333 blk_mq_free_request(rq);
334 }
335 }
336 EXPORT_SYMBOL(__blk_mq_end_request);
337
338 void blk_mq_end_request(struct request *rq, int error)
339 {
340 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
341 BUG();
342 __blk_mq_end_request(rq, error);
343 }
344 EXPORT_SYMBOL(blk_mq_end_request);
345
346 static void __blk_mq_complete_request_remote(void *data)
347 {
348 struct request *rq = data;
349
350 rq->q->softirq_done_fn(rq);
351 }
352
353 static void blk_mq_ipi_complete_request(struct request *rq)
354 {
355 struct blk_mq_ctx *ctx = rq->mq_ctx;
356 bool shared = false;
357 int cpu;
358
359 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
360 rq->q->softirq_done_fn(rq);
361 return;
362 }
363
364 cpu = get_cpu();
365 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
366 shared = cpus_share_cache(cpu, ctx->cpu);
367
368 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
369 rq->csd.func = __blk_mq_complete_request_remote;
370 rq->csd.info = rq;
371 rq->csd.flags = 0;
372 smp_call_function_single_async(ctx->cpu, &rq->csd);
373 } else {
374 rq->q->softirq_done_fn(rq);
375 }
376 put_cpu();
377 }
378
379 static void __blk_mq_complete_request(struct request *rq)
380 {
381 struct request_queue *q = rq->q;
382
383 if (!q->softirq_done_fn)
384 blk_mq_end_request(rq, rq->errors);
385 else
386 blk_mq_ipi_complete_request(rq);
387 }
388
389 /**
390 * blk_mq_complete_request - end I/O on a request
391 * @rq: the request being processed
392 *
393 * Description:
394 * Ends all I/O on a request. It does not handle partial completions.
395 * The actual completion happens out-of-order, through a IPI handler.
396 **/
397 void blk_mq_complete_request(struct request *rq, int error)
398 {
399 struct request_queue *q = rq->q;
400
401 if (unlikely(blk_should_fake_timeout(q)))
402 return;
403 if (!blk_mark_rq_complete(rq)) {
404 rq->errors = error;
405 __blk_mq_complete_request(rq);
406 }
407 }
408 EXPORT_SYMBOL(blk_mq_complete_request);
409
410 int blk_mq_request_started(struct request *rq)
411 {
412 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
413 }
414 EXPORT_SYMBOL_GPL(blk_mq_request_started);
415
416 void blk_mq_start_request(struct request *rq)
417 {
418 struct request_queue *q = rq->q;
419
420 trace_block_rq_issue(q, rq);
421
422 rq->resid_len = blk_rq_bytes(rq);
423 if (unlikely(blk_bidi_rq(rq)))
424 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
425
426 blk_add_timer(rq);
427
428 /*
429 * Ensure that ->deadline is visible before set the started
430 * flag and clear the completed flag.
431 */
432 smp_mb__before_atomic();
433
434 /*
435 * Mark us as started and clear complete. Complete might have been
436 * set if requeue raced with timeout, which then marked it as
437 * complete. So be sure to clear complete again when we start
438 * the request, otherwise we'll ignore the completion event.
439 */
440 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
441 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
442 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
443 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
444
445 if (q->dma_drain_size && blk_rq_bytes(rq)) {
446 /*
447 * Make sure space for the drain appears. We know we can do
448 * this because max_hw_segments has been adjusted to be one
449 * fewer than the device can handle.
450 */
451 rq->nr_phys_segments++;
452 }
453 }
454 EXPORT_SYMBOL(blk_mq_start_request);
455
456 static void __blk_mq_requeue_request(struct request *rq)
457 {
458 struct request_queue *q = rq->q;
459
460 trace_block_rq_requeue(q, rq);
461
462 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
463 if (q->dma_drain_size && blk_rq_bytes(rq))
464 rq->nr_phys_segments--;
465 }
466 }
467
468 void blk_mq_requeue_request(struct request *rq)
469 {
470 __blk_mq_requeue_request(rq);
471
472 BUG_ON(blk_queued_rq(rq));
473 blk_mq_add_to_requeue_list(rq, true);
474 }
475 EXPORT_SYMBOL(blk_mq_requeue_request);
476
477 static void blk_mq_requeue_work(struct work_struct *work)
478 {
479 struct request_queue *q =
480 container_of(work, struct request_queue, requeue_work.work);
481 LIST_HEAD(rq_list);
482 struct request *rq, *next;
483 unsigned long flags;
484
485 spin_lock_irqsave(&q->requeue_lock, flags);
486 list_splice_init(&q->requeue_list, &rq_list);
487 spin_unlock_irqrestore(&q->requeue_lock, flags);
488
489 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
490 if (!(rq->rq_flags & RQF_SOFTBARRIER))
491 continue;
492
493 rq->rq_flags &= ~RQF_SOFTBARRIER;
494 list_del_init(&rq->queuelist);
495 blk_mq_insert_request(rq, true, false, false);
496 }
497
498 while (!list_empty(&rq_list)) {
499 rq = list_entry(rq_list.next, struct request, queuelist);
500 list_del_init(&rq->queuelist);
501 blk_mq_insert_request(rq, false, false, false);
502 }
503
504 /*
505 * Use the start variant of queue running here, so that running
506 * the requeue work will kick stopped queues.
507 */
508 blk_mq_start_hw_queues(q);
509 }
510
511 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
512 {
513 struct request_queue *q = rq->q;
514 unsigned long flags;
515
516 /*
517 * We abuse this flag that is otherwise used by the I/O scheduler to
518 * request head insertation from the workqueue.
519 */
520 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
521
522 spin_lock_irqsave(&q->requeue_lock, flags);
523 if (at_head) {
524 rq->rq_flags |= RQF_SOFTBARRIER;
525 list_add(&rq->queuelist, &q->requeue_list);
526 } else {
527 list_add_tail(&rq->queuelist, &q->requeue_list);
528 }
529 spin_unlock_irqrestore(&q->requeue_lock, flags);
530 }
531 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
532
533 void blk_mq_cancel_requeue_work(struct request_queue *q)
534 {
535 cancel_delayed_work_sync(&q->requeue_work);
536 }
537 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
538
539 void blk_mq_kick_requeue_list(struct request_queue *q)
540 {
541 kblockd_schedule_delayed_work(&q->requeue_work, 0);
542 }
543 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
544
545 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
546 unsigned long msecs)
547 {
548 kblockd_schedule_delayed_work(&q->requeue_work,
549 msecs_to_jiffies(msecs));
550 }
551 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
552
553 void blk_mq_abort_requeue_list(struct request_queue *q)
554 {
555 unsigned long flags;
556 LIST_HEAD(rq_list);
557
558 spin_lock_irqsave(&q->requeue_lock, flags);
559 list_splice_init(&q->requeue_list, &rq_list);
560 spin_unlock_irqrestore(&q->requeue_lock, flags);
561
562 while (!list_empty(&rq_list)) {
563 struct request *rq;
564
565 rq = list_first_entry(&rq_list, struct request, queuelist);
566 list_del_init(&rq->queuelist);
567 rq->errors = -EIO;
568 blk_mq_end_request(rq, rq->errors);
569 }
570 }
571 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
572
573 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
574 {
575 if (tag < tags->nr_tags) {
576 prefetch(tags->rqs[tag]);
577 return tags->rqs[tag];
578 }
579
580 return NULL;
581 }
582 EXPORT_SYMBOL(blk_mq_tag_to_rq);
583
584 struct blk_mq_timeout_data {
585 unsigned long next;
586 unsigned int next_set;
587 };
588
589 void blk_mq_rq_timed_out(struct request *req, bool reserved)
590 {
591 struct blk_mq_ops *ops = req->q->mq_ops;
592 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
593
594 /*
595 * We know that complete is set at this point. If STARTED isn't set
596 * anymore, then the request isn't active and the "timeout" should
597 * just be ignored. This can happen due to the bitflag ordering.
598 * Timeout first checks if STARTED is set, and if it is, assumes
599 * the request is active. But if we race with completion, then
600 * we both flags will get cleared. So check here again, and ignore
601 * a timeout event with a request that isn't active.
602 */
603 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
604 return;
605
606 if (ops->timeout)
607 ret = ops->timeout(req, reserved);
608
609 switch (ret) {
610 case BLK_EH_HANDLED:
611 __blk_mq_complete_request(req);
612 break;
613 case BLK_EH_RESET_TIMER:
614 blk_add_timer(req);
615 blk_clear_rq_complete(req);
616 break;
617 case BLK_EH_NOT_HANDLED:
618 break;
619 default:
620 printk(KERN_ERR "block: bad eh return: %d\n", ret);
621 break;
622 }
623 }
624
625 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
626 struct request *rq, void *priv, bool reserved)
627 {
628 struct blk_mq_timeout_data *data = priv;
629
630 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
631 /*
632 * If a request wasn't started before the queue was
633 * marked dying, kill it here or it'll go unnoticed.
634 */
635 if (unlikely(blk_queue_dying(rq->q))) {
636 rq->errors = -EIO;
637 blk_mq_end_request(rq, rq->errors);
638 }
639 return;
640 }
641
642 if (time_after_eq(jiffies, rq->deadline)) {
643 if (!blk_mark_rq_complete(rq))
644 blk_mq_rq_timed_out(rq, reserved);
645 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
646 data->next = rq->deadline;
647 data->next_set = 1;
648 }
649 }
650
651 static void blk_mq_timeout_work(struct work_struct *work)
652 {
653 struct request_queue *q =
654 container_of(work, struct request_queue, timeout_work);
655 struct blk_mq_timeout_data data = {
656 .next = 0,
657 .next_set = 0,
658 };
659 int i;
660
661 /* A deadlock might occur if a request is stuck requiring a
662 * timeout at the same time a queue freeze is waiting
663 * completion, since the timeout code would not be able to
664 * acquire the queue reference here.
665 *
666 * That's why we don't use blk_queue_enter here; instead, we use
667 * percpu_ref_tryget directly, because we need to be able to
668 * obtain a reference even in the short window between the queue
669 * starting to freeze, by dropping the first reference in
670 * blk_mq_freeze_queue_start, and the moment the last request is
671 * consumed, marked by the instant q_usage_counter reaches
672 * zero.
673 */
674 if (!percpu_ref_tryget(&q->q_usage_counter))
675 return;
676
677 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
678
679 if (data.next_set) {
680 data.next = blk_rq_timeout(round_jiffies_up(data.next));
681 mod_timer(&q->timeout, data.next);
682 } else {
683 struct blk_mq_hw_ctx *hctx;
684
685 queue_for_each_hw_ctx(q, hctx, i) {
686 /* the hctx may be unmapped, so check it here */
687 if (blk_mq_hw_queue_mapped(hctx))
688 blk_mq_tag_idle(hctx);
689 }
690 }
691 blk_queue_exit(q);
692 }
693
694 /*
695 * Reverse check our software queue for entries that we could potentially
696 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
697 * too much time checking for merges.
698 */
699 static bool blk_mq_attempt_merge(struct request_queue *q,
700 struct blk_mq_ctx *ctx, struct bio *bio)
701 {
702 struct request *rq;
703 int checked = 8;
704
705 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
706 int el_ret;
707
708 if (!checked--)
709 break;
710
711 if (!blk_rq_merge_ok(rq, bio))
712 continue;
713
714 el_ret = blk_try_merge(rq, bio);
715 if (el_ret == ELEVATOR_BACK_MERGE) {
716 if (bio_attempt_back_merge(q, rq, bio)) {
717 ctx->rq_merged++;
718 return true;
719 }
720 break;
721 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
722 if (bio_attempt_front_merge(q, rq, bio)) {
723 ctx->rq_merged++;
724 return true;
725 }
726 break;
727 }
728 }
729
730 return false;
731 }
732
733 struct flush_busy_ctx_data {
734 struct blk_mq_hw_ctx *hctx;
735 struct list_head *list;
736 };
737
738 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
739 {
740 struct flush_busy_ctx_data *flush_data = data;
741 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
742 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
743
744 sbitmap_clear_bit(sb, bitnr);
745 spin_lock(&ctx->lock);
746 list_splice_tail_init(&ctx->rq_list, flush_data->list);
747 spin_unlock(&ctx->lock);
748 return true;
749 }
750
751 /*
752 * Process software queues that have been marked busy, splicing them
753 * to the for-dispatch
754 */
755 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
756 {
757 struct flush_busy_ctx_data data = {
758 .hctx = hctx,
759 .list = list,
760 };
761
762 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
763 }
764
765 static inline unsigned int queued_to_index(unsigned int queued)
766 {
767 if (!queued)
768 return 0;
769
770 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
771 }
772
773 /*
774 * Run this hardware queue, pulling any software queues mapped to it in.
775 * Note that this function currently has various problems around ordering
776 * of IO. In particular, we'd like FIFO behaviour on handling existing
777 * items on the hctx->dispatch list. Ignore that for now.
778 */
779 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
780 {
781 struct request_queue *q = hctx->queue;
782 struct request *rq;
783 LIST_HEAD(rq_list);
784 LIST_HEAD(driver_list);
785 struct list_head *dptr;
786 int queued;
787
788 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
789 return;
790
791 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
792 cpu_online(hctx->next_cpu));
793
794 hctx->run++;
795
796 /*
797 * Touch any software queue that has pending entries.
798 */
799 flush_busy_ctxs(hctx, &rq_list);
800
801 /*
802 * If we have previous entries on our dispatch list, grab them
803 * and stuff them at the front for more fair dispatch.
804 */
805 if (!list_empty_careful(&hctx->dispatch)) {
806 spin_lock(&hctx->lock);
807 if (!list_empty(&hctx->dispatch))
808 list_splice_init(&hctx->dispatch, &rq_list);
809 spin_unlock(&hctx->lock);
810 }
811
812 /*
813 * Start off with dptr being NULL, so we start the first request
814 * immediately, even if we have more pending.
815 */
816 dptr = NULL;
817
818 /*
819 * Now process all the entries, sending them to the driver.
820 */
821 queued = 0;
822 while (!list_empty(&rq_list)) {
823 struct blk_mq_queue_data bd;
824 int ret;
825
826 rq = list_first_entry(&rq_list, struct request, queuelist);
827 list_del_init(&rq->queuelist);
828
829 bd.rq = rq;
830 bd.list = dptr;
831 bd.last = list_empty(&rq_list);
832
833 ret = q->mq_ops->queue_rq(hctx, &bd);
834 switch (ret) {
835 case BLK_MQ_RQ_QUEUE_OK:
836 queued++;
837 break;
838 case BLK_MQ_RQ_QUEUE_BUSY:
839 list_add(&rq->queuelist, &rq_list);
840 __blk_mq_requeue_request(rq);
841 break;
842 default:
843 pr_err("blk-mq: bad return on queue: %d\n", ret);
844 case BLK_MQ_RQ_QUEUE_ERROR:
845 rq->errors = -EIO;
846 blk_mq_end_request(rq, rq->errors);
847 break;
848 }
849
850 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
851 break;
852
853 /*
854 * We've done the first request. If we have more than 1
855 * left in the list, set dptr to defer issue.
856 */
857 if (!dptr && rq_list.next != rq_list.prev)
858 dptr = &driver_list;
859 }
860
861 hctx->dispatched[queued_to_index(queued)]++;
862
863 /*
864 * Any items that need requeuing? Stuff them into hctx->dispatch,
865 * that is where we will continue on next queue run.
866 */
867 if (!list_empty(&rq_list)) {
868 spin_lock(&hctx->lock);
869 list_splice(&rq_list, &hctx->dispatch);
870 spin_unlock(&hctx->lock);
871 /*
872 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
873 * it's possible the queue is stopped and restarted again
874 * before this. Queue restart will dispatch requests. And since
875 * requests in rq_list aren't added into hctx->dispatch yet,
876 * the requests in rq_list might get lost.
877 *
878 * blk_mq_run_hw_queue() already checks the STOPPED bit
879 **/
880 blk_mq_run_hw_queue(hctx, true);
881 }
882 }
883
884 /*
885 * It'd be great if the workqueue API had a way to pass
886 * in a mask and had some smarts for more clever placement.
887 * For now we just round-robin here, switching for every
888 * BLK_MQ_CPU_WORK_BATCH queued items.
889 */
890 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
891 {
892 if (hctx->queue->nr_hw_queues == 1)
893 return WORK_CPU_UNBOUND;
894
895 if (--hctx->next_cpu_batch <= 0) {
896 int cpu = hctx->next_cpu, next_cpu;
897
898 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
899 if (next_cpu >= nr_cpu_ids)
900 next_cpu = cpumask_first(hctx->cpumask);
901
902 hctx->next_cpu = next_cpu;
903 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
904
905 return cpu;
906 }
907
908 return hctx->next_cpu;
909 }
910
911 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
912 {
913 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
914 !blk_mq_hw_queue_mapped(hctx)))
915 return;
916
917 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
918 int cpu = get_cpu();
919 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
920 __blk_mq_run_hw_queue(hctx);
921 put_cpu();
922 return;
923 }
924
925 put_cpu();
926 }
927
928 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
929 }
930
931 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
932 {
933 struct blk_mq_hw_ctx *hctx;
934 int i;
935
936 queue_for_each_hw_ctx(q, hctx, i) {
937 if ((!blk_mq_hctx_has_pending(hctx) &&
938 list_empty_careful(&hctx->dispatch)) ||
939 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
940 continue;
941
942 blk_mq_run_hw_queue(hctx, async);
943 }
944 }
945 EXPORT_SYMBOL(blk_mq_run_hw_queues);
946
947 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
948 {
949 cancel_work(&hctx->run_work);
950 cancel_delayed_work(&hctx->delay_work);
951 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
952 }
953 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
954
955 void blk_mq_stop_hw_queues(struct request_queue *q)
956 {
957 struct blk_mq_hw_ctx *hctx;
958 int i;
959
960 queue_for_each_hw_ctx(q, hctx, i)
961 blk_mq_stop_hw_queue(hctx);
962 }
963 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
964
965 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
966 {
967 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
968
969 blk_mq_run_hw_queue(hctx, false);
970 }
971 EXPORT_SYMBOL(blk_mq_start_hw_queue);
972
973 void blk_mq_start_hw_queues(struct request_queue *q)
974 {
975 struct blk_mq_hw_ctx *hctx;
976 int i;
977
978 queue_for_each_hw_ctx(q, hctx, i)
979 blk_mq_start_hw_queue(hctx);
980 }
981 EXPORT_SYMBOL(blk_mq_start_hw_queues);
982
983 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
984 {
985 struct blk_mq_hw_ctx *hctx;
986 int i;
987
988 queue_for_each_hw_ctx(q, hctx, i) {
989 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
990 continue;
991
992 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
993 blk_mq_run_hw_queue(hctx, async);
994 }
995 }
996 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
997
998 static void blk_mq_run_work_fn(struct work_struct *work)
999 {
1000 struct blk_mq_hw_ctx *hctx;
1001
1002 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1003
1004 __blk_mq_run_hw_queue(hctx);
1005 }
1006
1007 static void blk_mq_delay_work_fn(struct work_struct *work)
1008 {
1009 struct blk_mq_hw_ctx *hctx;
1010
1011 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1012
1013 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1014 __blk_mq_run_hw_queue(hctx);
1015 }
1016
1017 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1018 {
1019 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1020 return;
1021
1022 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1023 &hctx->delay_work, msecs_to_jiffies(msecs));
1024 }
1025 EXPORT_SYMBOL(blk_mq_delay_queue);
1026
1027 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1028 struct request *rq,
1029 bool at_head)
1030 {
1031 struct blk_mq_ctx *ctx = rq->mq_ctx;
1032
1033 trace_block_rq_insert(hctx->queue, rq);
1034
1035 if (at_head)
1036 list_add(&rq->queuelist, &ctx->rq_list);
1037 else
1038 list_add_tail(&rq->queuelist, &ctx->rq_list);
1039 }
1040
1041 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
1042 struct request *rq, bool at_head)
1043 {
1044 struct blk_mq_ctx *ctx = rq->mq_ctx;
1045
1046 __blk_mq_insert_req_list(hctx, rq, at_head);
1047 blk_mq_hctx_mark_pending(hctx, ctx);
1048 }
1049
1050 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1051 bool async)
1052 {
1053 struct blk_mq_ctx *ctx = rq->mq_ctx;
1054 struct request_queue *q = rq->q;
1055 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1056
1057 spin_lock(&ctx->lock);
1058 __blk_mq_insert_request(hctx, rq, at_head);
1059 spin_unlock(&ctx->lock);
1060
1061 if (run_queue)
1062 blk_mq_run_hw_queue(hctx, async);
1063 }
1064
1065 static void blk_mq_insert_requests(struct request_queue *q,
1066 struct blk_mq_ctx *ctx,
1067 struct list_head *list,
1068 int depth,
1069 bool from_schedule)
1070
1071 {
1072 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1073
1074 trace_block_unplug(q, depth, !from_schedule);
1075
1076 /*
1077 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1078 * offline now
1079 */
1080 spin_lock(&ctx->lock);
1081 while (!list_empty(list)) {
1082 struct request *rq;
1083
1084 rq = list_first_entry(list, struct request, queuelist);
1085 BUG_ON(rq->mq_ctx != ctx);
1086 list_del_init(&rq->queuelist);
1087 __blk_mq_insert_req_list(hctx, rq, false);
1088 }
1089 blk_mq_hctx_mark_pending(hctx, ctx);
1090 spin_unlock(&ctx->lock);
1091
1092 blk_mq_run_hw_queue(hctx, from_schedule);
1093 }
1094
1095 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1096 {
1097 struct request *rqa = container_of(a, struct request, queuelist);
1098 struct request *rqb = container_of(b, struct request, queuelist);
1099
1100 return !(rqa->mq_ctx < rqb->mq_ctx ||
1101 (rqa->mq_ctx == rqb->mq_ctx &&
1102 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1103 }
1104
1105 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1106 {
1107 struct blk_mq_ctx *this_ctx;
1108 struct request_queue *this_q;
1109 struct request *rq;
1110 LIST_HEAD(list);
1111 LIST_HEAD(ctx_list);
1112 unsigned int depth;
1113
1114 list_splice_init(&plug->mq_list, &list);
1115
1116 list_sort(NULL, &list, plug_ctx_cmp);
1117
1118 this_q = NULL;
1119 this_ctx = NULL;
1120 depth = 0;
1121
1122 while (!list_empty(&list)) {
1123 rq = list_entry_rq(list.next);
1124 list_del_init(&rq->queuelist);
1125 BUG_ON(!rq->q);
1126 if (rq->mq_ctx != this_ctx) {
1127 if (this_ctx) {
1128 blk_mq_insert_requests(this_q, this_ctx,
1129 &ctx_list, depth,
1130 from_schedule);
1131 }
1132
1133 this_ctx = rq->mq_ctx;
1134 this_q = rq->q;
1135 depth = 0;
1136 }
1137
1138 depth++;
1139 list_add_tail(&rq->queuelist, &ctx_list);
1140 }
1141
1142 /*
1143 * If 'this_ctx' is set, we know we have entries to complete
1144 * on 'ctx_list'. Do those.
1145 */
1146 if (this_ctx) {
1147 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1148 from_schedule);
1149 }
1150 }
1151
1152 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1153 {
1154 init_request_from_bio(rq, bio);
1155
1156 blk_account_io_start(rq, 1);
1157 }
1158
1159 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1160 {
1161 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1162 !blk_queue_nomerges(hctx->queue);
1163 }
1164
1165 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1166 struct blk_mq_ctx *ctx,
1167 struct request *rq, struct bio *bio)
1168 {
1169 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1170 blk_mq_bio_to_request(rq, bio);
1171 spin_lock(&ctx->lock);
1172 insert_rq:
1173 __blk_mq_insert_request(hctx, rq, false);
1174 spin_unlock(&ctx->lock);
1175 return false;
1176 } else {
1177 struct request_queue *q = hctx->queue;
1178
1179 spin_lock(&ctx->lock);
1180 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1181 blk_mq_bio_to_request(rq, bio);
1182 goto insert_rq;
1183 }
1184
1185 spin_unlock(&ctx->lock);
1186 __blk_mq_free_request(hctx, ctx, rq);
1187 return true;
1188 }
1189 }
1190
1191 static struct request *blk_mq_map_request(struct request_queue *q,
1192 struct bio *bio,
1193 struct blk_mq_alloc_data *data)
1194 {
1195 struct blk_mq_hw_ctx *hctx;
1196 struct blk_mq_ctx *ctx;
1197 struct request *rq;
1198
1199 blk_queue_enter_live(q);
1200 ctx = blk_mq_get_ctx(q);
1201 hctx = blk_mq_map_queue(q, ctx->cpu);
1202
1203 trace_block_getrq(q, bio, bio->bi_opf);
1204 blk_mq_set_alloc_data(data, q, 0, ctx, hctx);
1205 rq = __blk_mq_alloc_request(data, bio->bi_opf);
1206
1207 data->hctx->queued++;
1208 return rq;
1209 }
1210
1211 static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie)
1212 {
1213 int ret;
1214 struct request_queue *q = rq->q;
1215 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
1216 struct blk_mq_queue_data bd = {
1217 .rq = rq,
1218 .list = NULL,
1219 .last = 1
1220 };
1221 blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1222
1223 /*
1224 * For OK queue, we are done. For error, kill it. Any other
1225 * error (busy), just add it to our list as we previously
1226 * would have done
1227 */
1228 ret = q->mq_ops->queue_rq(hctx, &bd);
1229 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1230 *cookie = new_cookie;
1231 return 0;
1232 }
1233
1234 __blk_mq_requeue_request(rq);
1235
1236 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1237 *cookie = BLK_QC_T_NONE;
1238 rq->errors = -EIO;
1239 blk_mq_end_request(rq, rq->errors);
1240 return 0;
1241 }
1242
1243 return -1;
1244 }
1245
1246 /*
1247 * Multiple hardware queue variant. This will not use per-process plugs,
1248 * but will attempt to bypass the hctx queueing if we can go straight to
1249 * hardware for SYNC IO.
1250 */
1251 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1252 {
1253 const int is_sync = op_is_sync(bio->bi_opf);
1254 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1255 struct blk_mq_alloc_data data;
1256 struct request *rq;
1257 unsigned int request_count = 0;
1258 struct blk_plug *plug;
1259 struct request *same_queue_rq = NULL;
1260 blk_qc_t cookie;
1261
1262 blk_queue_bounce(q, &bio);
1263
1264 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1265 bio_io_error(bio);
1266 return BLK_QC_T_NONE;
1267 }
1268
1269 blk_queue_split(q, &bio, q->bio_split);
1270
1271 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1272 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1273 return BLK_QC_T_NONE;
1274
1275 rq = blk_mq_map_request(q, bio, &data);
1276 if (unlikely(!rq))
1277 return BLK_QC_T_NONE;
1278
1279 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1280
1281 if (unlikely(is_flush_fua)) {
1282 blk_mq_bio_to_request(rq, bio);
1283 blk_insert_flush(rq);
1284 goto run_queue;
1285 }
1286
1287 plug = current->plug;
1288 /*
1289 * If the driver supports defer issued based on 'last', then
1290 * queue it up like normal since we can potentially save some
1291 * CPU this way.
1292 */
1293 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1294 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1295 struct request *old_rq = NULL;
1296
1297 blk_mq_bio_to_request(rq, bio);
1298
1299 /*
1300 * We do limited pluging. If the bio can be merged, do that.
1301 * Otherwise the existing request in the plug list will be
1302 * issued. So the plug list will have one request at most
1303 */
1304 if (plug) {
1305 /*
1306 * The plug list might get flushed before this. If that
1307 * happens, same_queue_rq is invalid and plug list is
1308 * empty
1309 */
1310 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1311 old_rq = same_queue_rq;
1312 list_del_init(&old_rq->queuelist);
1313 }
1314 list_add_tail(&rq->queuelist, &plug->mq_list);
1315 } else /* is_sync */
1316 old_rq = rq;
1317 blk_mq_put_ctx(data.ctx);
1318 if (!old_rq)
1319 goto done;
1320 if (!blk_mq_direct_issue_request(old_rq, &cookie))
1321 goto done;
1322 blk_mq_insert_request(old_rq, false, true, true);
1323 goto done;
1324 }
1325
1326 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1327 /*
1328 * For a SYNC request, send it to the hardware immediately. For
1329 * an ASYNC request, just ensure that we run it later on. The
1330 * latter allows for merging opportunities and more efficient
1331 * dispatching.
1332 */
1333 run_queue:
1334 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1335 }
1336 blk_mq_put_ctx(data.ctx);
1337 done:
1338 return cookie;
1339 }
1340
1341 /*
1342 * Single hardware queue variant. This will attempt to use any per-process
1343 * plug for merging and IO deferral.
1344 */
1345 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1346 {
1347 const int is_sync = op_is_sync(bio->bi_opf);
1348 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1349 struct blk_plug *plug;
1350 unsigned int request_count = 0;
1351 struct blk_mq_alloc_data data;
1352 struct request *rq;
1353 blk_qc_t cookie;
1354
1355 blk_queue_bounce(q, &bio);
1356
1357 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1358 bio_io_error(bio);
1359 return BLK_QC_T_NONE;
1360 }
1361
1362 blk_queue_split(q, &bio, q->bio_split);
1363
1364 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1365 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1366 return BLK_QC_T_NONE;
1367 } else
1368 request_count = blk_plug_queued_count(q);
1369
1370 rq = blk_mq_map_request(q, bio, &data);
1371 if (unlikely(!rq))
1372 return BLK_QC_T_NONE;
1373
1374 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1375
1376 if (unlikely(is_flush_fua)) {
1377 blk_mq_bio_to_request(rq, bio);
1378 blk_insert_flush(rq);
1379 goto run_queue;
1380 }
1381
1382 /*
1383 * A task plug currently exists. Since this is completely lockless,
1384 * utilize that to temporarily store requests until the task is
1385 * either done or scheduled away.
1386 */
1387 plug = current->plug;
1388 if (plug) {
1389 blk_mq_bio_to_request(rq, bio);
1390 if (!request_count)
1391 trace_block_plug(q);
1392
1393 blk_mq_put_ctx(data.ctx);
1394
1395 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1396 blk_flush_plug_list(plug, false);
1397 trace_block_plug(q);
1398 }
1399
1400 list_add_tail(&rq->queuelist, &plug->mq_list);
1401 return cookie;
1402 }
1403
1404 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1405 /*
1406 * For a SYNC request, send it to the hardware immediately. For
1407 * an ASYNC request, just ensure that we run it later on. The
1408 * latter allows for merging opportunities and more efficient
1409 * dispatching.
1410 */
1411 run_queue:
1412 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1413 }
1414
1415 blk_mq_put_ctx(data.ctx);
1416 return cookie;
1417 }
1418
1419 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1420 struct blk_mq_tags *tags, unsigned int hctx_idx)
1421 {
1422 struct page *page;
1423
1424 if (tags->rqs && set->ops->exit_request) {
1425 int i;
1426
1427 for (i = 0; i < tags->nr_tags; i++) {
1428 if (!tags->rqs[i])
1429 continue;
1430 set->ops->exit_request(set->driver_data, tags->rqs[i],
1431 hctx_idx, i);
1432 tags->rqs[i] = NULL;
1433 }
1434 }
1435
1436 while (!list_empty(&tags->page_list)) {
1437 page = list_first_entry(&tags->page_list, struct page, lru);
1438 list_del_init(&page->lru);
1439 /*
1440 * Remove kmemleak object previously allocated in
1441 * blk_mq_init_rq_map().
1442 */
1443 kmemleak_free(page_address(page));
1444 __free_pages(page, page->private);
1445 }
1446
1447 kfree(tags->rqs);
1448
1449 blk_mq_free_tags(tags);
1450 }
1451
1452 static size_t order_to_size(unsigned int order)
1453 {
1454 return (size_t)PAGE_SIZE << order;
1455 }
1456
1457 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1458 unsigned int hctx_idx)
1459 {
1460 struct blk_mq_tags *tags;
1461 unsigned int i, j, entries_per_page, max_order = 4;
1462 size_t rq_size, left;
1463
1464 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1465 set->numa_node,
1466 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1467 if (!tags)
1468 return NULL;
1469
1470 INIT_LIST_HEAD(&tags->page_list);
1471
1472 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1473 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1474 set->numa_node);
1475 if (!tags->rqs) {
1476 blk_mq_free_tags(tags);
1477 return NULL;
1478 }
1479
1480 /*
1481 * rq_size is the size of the request plus driver payload, rounded
1482 * to the cacheline size
1483 */
1484 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1485 cache_line_size());
1486 left = rq_size * set->queue_depth;
1487
1488 for (i = 0; i < set->queue_depth; ) {
1489 int this_order = max_order;
1490 struct page *page;
1491 int to_do;
1492 void *p;
1493
1494 while (this_order && left < order_to_size(this_order - 1))
1495 this_order--;
1496
1497 do {
1498 page = alloc_pages_node(set->numa_node,
1499 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1500 this_order);
1501 if (page)
1502 break;
1503 if (!this_order--)
1504 break;
1505 if (order_to_size(this_order) < rq_size)
1506 break;
1507 } while (1);
1508
1509 if (!page)
1510 goto fail;
1511
1512 page->private = this_order;
1513 list_add_tail(&page->lru, &tags->page_list);
1514
1515 p = page_address(page);
1516 /*
1517 * Allow kmemleak to scan these pages as they contain pointers
1518 * to additional allocations like via ops->init_request().
1519 */
1520 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1521 entries_per_page = order_to_size(this_order) / rq_size;
1522 to_do = min(entries_per_page, set->queue_depth - i);
1523 left -= to_do * rq_size;
1524 for (j = 0; j < to_do; j++) {
1525 tags->rqs[i] = p;
1526 if (set->ops->init_request) {
1527 if (set->ops->init_request(set->driver_data,
1528 tags->rqs[i], hctx_idx, i,
1529 set->numa_node)) {
1530 tags->rqs[i] = NULL;
1531 goto fail;
1532 }
1533 }
1534
1535 p += rq_size;
1536 i++;
1537 }
1538 }
1539 return tags;
1540
1541 fail:
1542 blk_mq_free_rq_map(set, tags, hctx_idx);
1543 return NULL;
1544 }
1545
1546 /*
1547 * 'cpu' is going away. splice any existing rq_list entries from this
1548 * software queue to the hw queue dispatch list, and ensure that it
1549 * gets run.
1550 */
1551 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1552 {
1553 struct blk_mq_hw_ctx *hctx;
1554 struct blk_mq_ctx *ctx;
1555 LIST_HEAD(tmp);
1556
1557 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1558 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1559
1560 spin_lock(&ctx->lock);
1561 if (!list_empty(&ctx->rq_list)) {
1562 list_splice_init(&ctx->rq_list, &tmp);
1563 blk_mq_hctx_clear_pending(hctx, ctx);
1564 }
1565 spin_unlock(&ctx->lock);
1566
1567 if (list_empty(&tmp))
1568 return 0;
1569
1570 spin_lock(&hctx->lock);
1571 list_splice_tail_init(&tmp, &hctx->dispatch);
1572 spin_unlock(&hctx->lock);
1573
1574 blk_mq_run_hw_queue(hctx, true);
1575 return 0;
1576 }
1577
1578 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1579 {
1580 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1581 &hctx->cpuhp_dead);
1582 }
1583
1584 /* hctx->ctxs will be freed in queue's release handler */
1585 static void blk_mq_exit_hctx(struct request_queue *q,
1586 struct blk_mq_tag_set *set,
1587 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1588 {
1589 unsigned flush_start_tag = set->queue_depth;
1590
1591 blk_mq_tag_idle(hctx);
1592
1593 if (set->ops->exit_request)
1594 set->ops->exit_request(set->driver_data,
1595 hctx->fq->flush_rq, hctx_idx,
1596 flush_start_tag + hctx_idx);
1597
1598 if (set->ops->exit_hctx)
1599 set->ops->exit_hctx(hctx, hctx_idx);
1600
1601 blk_mq_remove_cpuhp(hctx);
1602 blk_free_flush_queue(hctx->fq);
1603 sbitmap_free(&hctx->ctx_map);
1604 }
1605
1606 static void blk_mq_exit_hw_queues(struct request_queue *q,
1607 struct blk_mq_tag_set *set, int nr_queue)
1608 {
1609 struct blk_mq_hw_ctx *hctx;
1610 unsigned int i;
1611
1612 queue_for_each_hw_ctx(q, hctx, i) {
1613 if (i == nr_queue)
1614 break;
1615 blk_mq_exit_hctx(q, set, hctx, i);
1616 }
1617 }
1618
1619 static void blk_mq_free_hw_queues(struct request_queue *q,
1620 struct blk_mq_tag_set *set)
1621 {
1622 struct blk_mq_hw_ctx *hctx;
1623 unsigned int i;
1624
1625 queue_for_each_hw_ctx(q, hctx, i)
1626 free_cpumask_var(hctx->cpumask);
1627 }
1628
1629 static int blk_mq_init_hctx(struct request_queue *q,
1630 struct blk_mq_tag_set *set,
1631 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1632 {
1633 int node;
1634 unsigned flush_start_tag = set->queue_depth;
1635
1636 node = hctx->numa_node;
1637 if (node == NUMA_NO_NODE)
1638 node = hctx->numa_node = set->numa_node;
1639
1640 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1641 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1642 spin_lock_init(&hctx->lock);
1643 INIT_LIST_HEAD(&hctx->dispatch);
1644 hctx->queue = q;
1645 hctx->queue_num = hctx_idx;
1646 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1647
1648 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1649
1650 hctx->tags = set->tags[hctx_idx];
1651
1652 /*
1653 * Allocate space for all possible cpus to avoid allocation at
1654 * runtime
1655 */
1656 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1657 GFP_KERNEL, node);
1658 if (!hctx->ctxs)
1659 goto unregister_cpu_notifier;
1660
1661 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1662 node))
1663 goto free_ctxs;
1664
1665 hctx->nr_ctx = 0;
1666
1667 if (set->ops->init_hctx &&
1668 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1669 goto free_bitmap;
1670
1671 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1672 if (!hctx->fq)
1673 goto exit_hctx;
1674
1675 if (set->ops->init_request &&
1676 set->ops->init_request(set->driver_data,
1677 hctx->fq->flush_rq, hctx_idx,
1678 flush_start_tag + hctx_idx, node))
1679 goto free_fq;
1680
1681 return 0;
1682
1683 free_fq:
1684 kfree(hctx->fq);
1685 exit_hctx:
1686 if (set->ops->exit_hctx)
1687 set->ops->exit_hctx(hctx, hctx_idx);
1688 free_bitmap:
1689 sbitmap_free(&hctx->ctx_map);
1690 free_ctxs:
1691 kfree(hctx->ctxs);
1692 unregister_cpu_notifier:
1693 blk_mq_remove_cpuhp(hctx);
1694 return -1;
1695 }
1696
1697 static void blk_mq_init_cpu_queues(struct request_queue *q,
1698 unsigned int nr_hw_queues)
1699 {
1700 unsigned int i;
1701
1702 for_each_possible_cpu(i) {
1703 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1704 struct blk_mq_hw_ctx *hctx;
1705
1706 memset(__ctx, 0, sizeof(*__ctx));
1707 __ctx->cpu = i;
1708 spin_lock_init(&__ctx->lock);
1709 INIT_LIST_HEAD(&__ctx->rq_list);
1710 __ctx->queue = q;
1711
1712 /* If the cpu isn't online, the cpu is mapped to first hctx */
1713 if (!cpu_online(i))
1714 continue;
1715
1716 hctx = blk_mq_map_queue(q, i);
1717
1718 /*
1719 * Set local node, IFF we have more than one hw queue. If
1720 * not, we remain on the home node of the device
1721 */
1722 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1723 hctx->numa_node = local_memory_node(cpu_to_node(i));
1724 }
1725 }
1726
1727 static void blk_mq_map_swqueue(struct request_queue *q,
1728 const struct cpumask *online_mask)
1729 {
1730 unsigned int i;
1731 struct blk_mq_hw_ctx *hctx;
1732 struct blk_mq_ctx *ctx;
1733 struct blk_mq_tag_set *set = q->tag_set;
1734
1735 /*
1736 * Avoid others reading imcomplete hctx->cpumask through sysfs
1737 */
1738 mutex_lock(&q->sysfs_lock);
1739
1740 queue_for_each_hw_ctx(q, hctx, i) {
1741 cpumask_clear(hctx->cpumask);
1742 hctx->nr_ctx = 0;
1743 }
1744
1745 /*
1746 * Map software to hardware queues
1747 */
1748 for_each_possible_cpu(i) {
1749 /* If the cpu isn't online, the cpu is mapped to first hctx */
1750 if (!cpumask_test_cpu(i, online_mask))
1751 continue;
1752
1753 ctx = per_cpu_ptr(q->queue_ctx, i);
1754 hctx = blk_mq_map_queue(q, i);
1755
1756 cpumask_set_cpu(i, hctx->cpumask);
1757 ctx->index_hw = hctx->nr_ctx;
1758 hctx->ctxs[hctx->nr_ctx++] = ctx;
1759 }
1760
1761 mutex_unlock(&q->sysfs_lock);
1762
1763 queue_for_each_hw_ctx(q, hctx, i) {
1764 /*
1765 * If no software queues are mapped to this hardware queue,
1766 * disable it and free the request entries.
1767 */
1768 if (!hctx->nr_ctx) {
1769 if (set->tags[i]) {
1770 blk_mq_free_rq_map(set, set->tags[i], i);
1771 set->tags[i] = NULL;
1772 }
1773 hctx->tags = NULL;
1774 continue;
1775 }
1776
1777 /* unmapped hw queue can be remapped after CPU topo changed */
1778 if (!set->tags[i])
1779 set->tags[i] = blk_mq_init_rq_map(set, i);
1780 hctx->tags = set->tags[i];
1781 WARN_ON(!hctx->tags);
1782
1783 /*
1784 * Set the map size to the number of mapped software queues.
1785 * This is more accurate and more efficient than looping
1786 * over all possibly mapped software queues.
1787 */
1788 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
1789
1790 /*
1791 * Initialize batch roundrobin counts
1792 */
1793 hctx->next_cpu = cpumask_first(hctx->cpumask);
1794 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1795 }
1796 }
1797
1798 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1799 {
1800 struct blk_mq_hw_ctx *hctx;
1801 int i;
1802
1803 queue_for_each_hw_ctx(q, hctx, i) {
1804 if (shared)
1805 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1806 else
1807 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1808 }
1809 }
1810
1811 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
1812 {
1813 struct request_queue *q;
1814
1815 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1816 blk_mq_freeze_queue(q);
1817 queue_set_hctx_shared(q, shared);
1818 blk_mq_unfreeze_queue(q);
1819 }
1820 }
1821
1822 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1823 {
1824 struct blk_mq_tag_set *set = q->tag_set;
1825
1826 mutex_lock(&set->tag_list_lock);
1827 list_del_init(&q->tag_set_list);
1828 if (list_is_singular(&set->tag_list)) {
1829 /* just transitioned to unshared */
1830 set->flags &= ~BLK_MQ_F_TAG_SHARED;
1831 /* update existing queue */
1832 blk_mq_update_tag_set_depth(set, false);
1833 }
1834 mutex_unlock(&set->tag_list_lock);
1835 }
1836
1837 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1838 struct request_queue *q)
1839 {
1840 q->tag_set = set;
1841
1842 mutex_lock(&set->tag_list_lock);
1843
1844 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
1845 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
1846 set->flags |= BLK_MQ_F_TAG_SHARED;
1847 /* update existing queue */
1848 blk_mq_update_tag_set_depth(set, true);
1849 }
1850 if (set->flags & BLK_MQ_F_TAG_SHARED)
1851 queue_set_hctx_shared(q, true);
1852 list_add_tail(&q->tag_set_list, &set->tag_list);
1853
1854 mutex_unlock(&set->tag_list_lock);
1855 }
1856
1857 /*
1858 * It is the actual release handler for mq, but we do it from
1859 * request queue's release handler for avoiding use-after-free
1860 * and headache because q->mq_kobj shouldn't have been introduced,
1861 * but we can't group ctx/kctx kobj without it.
1862 */
1863 void blk_mq_release(struct request_queue *q)
1864 {
1865 struct blk_mq_hw_ctx *hctx;
1866 unsigned int i;
1867
1868 /* hctx kobj stays in hctx */
1869 queue_for_each_hw_ctx(q, hctx, i) {
1870 if (!hctx)
1871 continue;
1872 kfree(hctx->ctxs);
1873 kfree(hctx);
1874 }
1875
1876 q->mq_map = NULL;
1877
1878 kfree(q->queue_hw_ctx);
1879
1880 /* ctx kobj stays in queue_ctx */
1881 free_percpu(q->queue_ctx);
1882 }
1883
1884 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1885 {
1886 struct request_queue *uninit_q, *q;
1887
1888 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1889 if (!uninit_q)
1890 return ERR_PTR(-ENOMEM);
1891
1892 q = blk_mq_init_allocated_queue(set, uninit_q);
1893 if (IS_ERR(q))
1894 blk_cleanup_queue(uninit_q);
1895
1896 return q;
1897 }
1898 EXPORT_SYMBOL(blk_mq_init_queue);
1899
1900 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
1901 struct request_queue *q)
1902 {
1903 int i, j;
1904 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
1905
1906 blk_mq_sysfs_unregister(q);
1907 for (i = 0; i < set->nr_hw_queues; i++) {
1908 int node;
1909
1910 if (hctxs[i])
1911 continue;
1912
1913 node = blk_mq_hw_queue_to_node(q->mq_map, i);
1914 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1915 GFP_KERNEL, node);
1916 if (!hctxs[i])
1917 break;
1918
1919 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1920 node)) {
1921 kfree(hctxs[i]);
1922 hctxs[i] = NULL;
1923 break;
1924 }
1925
1926 atomic_set(&hctxs[i]->nr_active, 0);
1927 hctxs[i]->numa_node = node;
1928 hctxs[i]->queue_num = i;
1929
1930 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
1931 free_cpumask_var(hctxs[i]->cpumask);
1932 kfree(hctxs[i]);
1933 hctxs[i] = NULL;
1934 break;
1935 }
1936 blk_mq_hctx_kobj_init(hctxs[i]);
1937 }
1938 for (j = i; j < q->nr_hw_queues; j++) {
1939 struct blk_mq_hw_ctx *hctx = hctxs[j];
1940
1941 if (hctx) {
1942 if (hctx->tags) {
1943 blk_mq_free_rq_map(set, hctx->tags, j);
1944 set->tags[j] = NULL;
1945 }
1946 blk_mq_exit_hctx(q, set, hctx, j);
1947 free_cpumask_var(hctx->cpumask);
1948 kobject_put(&hctx->kobj);
1949 kfree(hctx->ctxs);
1950 kfree(hctx);
1951 hctxs[j] = NULL;
1952
1953 }
1954 }
1955 q->nr_hw_queues = i;
1956 blk_mq_sysfs_register(q);
1957 }
1958
1959 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
1960 struct request_queue *q)
1961 {
1962 /* mark the queue as mq asap */
1963 q->mq_ops = set->ops;
1964
1965 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
1966 if (!q->queue_ctx)
1967 goto err_exit;
1968
1969 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
1970 GFP_KERNEL, set->numa_node);
1971 if (!q->queue_hw_ctx)
1972 goto err_percpu;
1973
1974 q->mq_map = set->mq_map;
1975
1976 blk_mq_realloc_hw_ctxs(set, q);
1977 if (!q->nr_hw_queues)
1978 goto err_hctxs;
1979
1980 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
1981 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
1982
1983 q->nr_queues = nr_cpu_ids;
1984
1985 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1986
1987 if (!(set->flags & BLK_MQ_F_SG_MERGE))
1988 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1989
1990 q->sg_reserved_size = INT_MAX;
1991
1992 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
1993 INIT_LIST_HEAD(&q->requeue_list);
1994 spin_lock_init(&q->requeue_lock);
1995
1996 if (q->nr_hw_queues > 1)
1997 blk_queue_make_request(q, blk_mq_make_request);
1998 else
1999 blk_queue_make_request(q, blk_sq_make_request);
2000
2001 /*
2002 * Do this after blk_queue_make_request() overrides it...
2003 */
2004 q->nr_requests = set->queue_depth;
2005
2006 if (set->ops->complete)
2007 blk_queue_softirq_done(q, set->ops->complete);
2008
2009 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2010
2011 get_online_cpus();
2012 mutex_lock(&all_q_mutex);
2013
2014 list_add_tail(&q->all_q_node, &all_q_list);
2015 blk_mq_add_queue_tag_set(set, q);
2016 blk_mq_map_swqueue(q, cpu_online_mask);
2017
2018 mutex_unlock(&all_q_mutex);
2019 put_online_cpus();
2020
2021 return q;
2022
2023 err_hctxs:
2024 kfree(q->queue_hw_ctx);
2025 err_percpu:
2026 free_percpu(q->queue_ctx);
2027 err_exit:
2028 q->mq_ops = NULL;
2029 return ERR_PTR(-ENOMEM);
2030 }
2031 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2032
2033 void blk_mq_free_queue(struct request_queue *q)
2034 {
2035 struct blk_mq_tag_set *set = q->tag_set;
2036
2037 mutex_lock(&all_q_mutex);
2038 list_del_init(&q->all_q_node);
2039 mutex_unlock(&all_q_mutex);
2040
2041 blk_mq_del_queue_tag_set(q);
2042
2043 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2044 blk_mq_free_hw_queues(q, set);
2045 }
2046
2047 /* Basically redo blk_mq_init_queue with queue frozen */
2048 static void blk_mq_queue_reinit(struct request_queue *q,
2049 const struct cpumask *online_mask)
2050 {
2051 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2052
2053 blk_mq_sysfs_unregister(q);
2054
2055 /*
2056 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2057 * we should change hctx numa_node according to new topology (this
2058 * involves free and re-allocate memory, worthy doing?)
2059 */
2060
2061 blk_mq_map_swqueue(q, online_mask);
2062
2063 blk_mq_sysfs_register(q);
2064 }
2065
2066 /*
2067 * New online cpumask which is going to be set in this hotplug event.
2068 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2069 * one-by-one and dynamically allocating this could result in a failure.
2070 */
2071 static struct cpumask cpuhp_online_new;
2072
2073 static void blk_mq_queue_reinit_work(void)
2074 {
2075 struct request_queue *q;
2076
2077 mutex_lock(&all_q_mutex);
2078 /*
2079 * We need to freeze and reinit all existing queues. Freezing
2080 * involves synchronous wait for an RCU grace period and doing it
2081 * one by one may take a long time. Start freezing all queues in
2082 * one swoop and then wait for the completions so that freezing can
2083 * take place in parallel.
2084 */
2085 list_for_each_entry(q, &all_q_list, all_q_node)
2086 blk_mq_freeze_queue_start(q);
2087 list_for_each_entry(q, &all_q_list, all_q_node) {
2088 blk_mq_freeze_queue_wait(q);
2089
2090 /*
2091 * timeout handler can't touch hw queue during the
2092 * reinitialization
2093 */
2094 del_timer_sync(&q->timeout);
2095 }
2096
2097 list_for_each_entry(q, &all_q_list, all_q_node)
2098 blk_mq_queue_reinit(q, &cpuhp_online_new);
2099
2100 list_for_each_entry(q, &all_q_list, all_q_node)
2101 blk_mq_unfreeze_queue(q);
2102
2103 mutex_unlock(&all_q_mutex);
2104 }
2105
2106 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2107 {
2108 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2109 blk_mq_queue_reinit_work();
2110 return 0;
2111 }
2112
2113 /*
2114 * Before hotadded cpu starts handling requests, new mappings must be
2115 * established. Otherwise, these requests in hw queue might never be
2116 * dispatched.
2117 *
2118 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2119 * for CPU0, and ctx1 for CPU1).
2120 *
2121 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2122 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2123 *
2124 * And then while running hw queue, flush_busy_ctxs() finds bit0 is set in
2125 * pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2126 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list
2127 * is ignored.
2128 */
2129 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2130 {
2131 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2132 cpumask_set_cpu(cpu, &cpuhp_online_new);
2133 blk_mq_queue_reinit_work();
2134 return 0;
2135 }
2136
2137 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2138 {
2139 int i;
2140
2141 for (i = 0; i < set->nr_hw_queues; i++) {
2142 set->tags[i] = blk_mq_init_rq_map(set, i);
2143 if (!set->tags[i])
2144 goto out_unwind;
2145 }
2146
2147 return 0;
2148
2149 out_unwind:
2150 while (--i >= 0)
2151 blk_mq_free_rq_map(set, set->tags[i], i);
2152
2153 return -ENOMEM;
2154 }
2155
2156 /*
2157 * Allocate the request maps associated with this tag_set. Note that this
2158 * may reduce the depth asked for, if memory is tight. set->queue_depth
2159 * will be updated to reflect the allocated depth.
2160 */
2161 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2162 {
2163 unsigned int depth;
2164 int err;
2165
2166 depth = set->queue_depth;
2167 do {
2168 err = __blk_mq_alloc_rq_maps(set);
2169 if (!err)
2170 break;
2171
2172 set->queue_depth >>= 1;
2173 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2174 err = -ENOMEM;
2175 break;
2176 }
2177 } while (set->queue_depth);
2178
2179 if (!set->queue_depth || err) {
2180 pr_err("blk-mq: failed to allocate request map\n");
2181 return -ENOMEM;
2182 }
2183
2184 if (depth != set->queue_depth)
2185 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2186 depth, set->queue_depth);
2187
2188 return 0;
2189 }
2190
2191 /*
2192 * Alloc a tag set to be associated with one or more request queues.
2193 * May fail with EINVAL for various error conditions. May adjust the
2194 * requested depth down, if if it too large. In that case, the set
2195 * value will be stored in set->queue_depth.
2196 */
2197 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2198 {
2199 int ret;
2200
2201 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2202
2203 if (!set->nr_hw_queues)
2204 return -EINVAL;
2205 if (!set->queue_depth)
2206 return -EINVAL;
2207 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2208 return -EINVAL;
2209
2210 if (!set->ops->queue_rq)
2211 return -EINVAL;
2212
2213 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2214 pr_info("blk-mq: reduced tag depth to %u\n",
2215 BLK_MQ_MAX_DEPTH);
2216 set->queue_depth = BLK_MQ_MAX_DEPTH;
2217 }
2218
2219 /*
2220 * If a crashdump is active, then we are potentially in a very
2221 * memory constrained environment. Limit us to 1 queue and
2222 * 64 tags to prevent using too much memory.
2223 */
2224 if (is_kdump_kernel()) {
2225 set->nr_hw_queues = 1;
2226 set->queue_depth = min(64U, set->queue_depth);
2227 }
2228 /*
2229 * There is no use for more h/w queues than cpus.
2230 */
2231 if (set->nr_hw_queues > nr_cpu_ids)
2232 set->nr_hw_queues = nr_cpu_ids;
2233
2234 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2235 GFP_KERNEL, set->numa_node);
2236 if (!set->tags)
2237 return -ENOMEM;
2238
2239 ret = -ENOMEM;
2240 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2241 GFP_KERNEL, set->numa_node);
2242 if (!set->mq_map)
2243 goto out_free_tags;
2244
2245 if (set->ops->map_queues)
2246 ret = set->ops->map_queues(set);
2247 else
2248 ret = blk_mq_map_queues(set);
2249 if (ret)
2250 goto out_free_mq_map;
2251
2252 ret = blk_mq_alloc_rq_maps(set);
2253 if (ret)
2254 goto out_free_mq_map;
2255
2256 mutex_init(&set->tag_list_lock);
2257 INIT_LIST_HEAD(&set->tag_list);
2258
2259 return 0;
2260
2261 out_free_mq_map:
2262 kfree(set->mq_map);
2263 set->mq_map = NULL;
2264 out_free_tags:
2265 kfree(set->tags);
2266 set->tags = NULL;
2267 return ret;
2268 }
2269 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2270
2271 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2272 {
2273 int i;
2274
2275 for (i = 0; i < nr_cpu_ids; i++) {
2276 if (set->tags[i])
2277 blk_mq_free_rq_map(set, set->tags[i], i);
2278 }
2279
2280 kfree(set->mq_map);
2281 set->mq_map = NULL;
2282
2283 kfree(set->tags);
2284 set->tags = NULL;
2285 }
2286 EXPORT_SYMBOL(blk_mq_free_tag_set);
2287
2288 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2289 {
2290 struct blk_mq_tag_set *set = q->tag_set;
2291 struct blk_mq_hw_ctx *hctx;
2292 int i, ret;
2293
2294 if (!set || nr > set->queue_depth)
2295 return -EINVAL;
2296
2297 ret = 0;
2298 queue_for_each_hw_ctx(q, hctx, i) {
2299 if (!hctx->tags)
2300 continue;
2301 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2302 if (ret)
2303 break;
2304 }
2305
2306 if (!ret)
2307 q->nr_requests = nr;
2308
2309 return ret;
2310 }
2311
2312 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2313 {
2314 struct request_queue *q;
2315
2316 if (nr_hw_queues > nr_cpu_ids)
2317 nr_hw_queues = nr_cpu_ids;
2318 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2319 return;
2320
2321 list_for_each_entry(q, &set->tag_list, tag_set_list)
2322 blk_mq_freeze_queue(q);
2323
2324 set->nr_hw_queues = nr_hw_queues;
2325 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2326 blk_mq_realloc_hw_ctxs(set, q);
2327
2328 if (q->nr_hw_queues > 1)
2329 blk_queue_make_request(q, blk_mq_make_request);
2330 else
2331 blk_queue_make_request(q, blk_sq_make_request);
2332
2333 blk_mq_queue_reinit(q, cpu_online_mask);
2334 }
2335
2336 list_for_each_entry(q, &set->tag_list, tag_set_list)
2337 blk_mq_unfreeze_queue(q);
2338 }
2339 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2340
2341 void blk_mq_disable_hotplug(void)
2342 {
2343 mutex_lock(&all_q_mutex);
2344 }
2345
2346 void blk_mq_enable_hotplug(void)
2347 {
2348 mutex_unlock(&all_q_mutex);
2349 }
2350
2351 static int __init blk_mq_init(void)
2352 {
2353 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2354 blk_mq_hctx_notify_dead);
2355
2356 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2357 blk_mq_queue_reinit_prepare,
2358 blk_mq_queue_reinit_dead);
2359 return 0;
2360 }
2361 subsys_initcall(blk_mq_init);