]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-mq.c
Merge tag 'kvm-arm-fixes-for-v4.15-3-v2' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46 int ddir, bytes, bucket;
47
48 ddir = rq_data_dir(rq);
49 bytes = blk_rq_bytes(rq);
50
51 bucket = ddir + 2*(ilog2(bytes) - 9);
52
53 if (bucket < 0)
54 return -1;
55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58 return bucket;
59 }
60
61 /*
62 * Check if any of the ctx's have pending work in this hardware queue
63 */
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66 return !list_empty_careful(&hctx->dispatch) ||
67 sbitmap_any_bit_set(&hctx->ctx_map) ||
68 blk_mq_sched_has_work(hctx);
69 }
70
71 /*
72 * Mark this ctx as having pending work in this hardware queue
73 */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 struct blk_mq_ctx *ctx)
76 {
77 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 }
80
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 struct blk_mq_ctx *ctx)
83 {
84 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 }
86
87 struct mq_inflight {
88 struct hd_struct *part;
89 unsigned int *inflight;
90 };
91
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93 struct request *rq, void *priv,
94 bool reserved)
95 {
96 struct mq_inflight *mi = priv;
97
98 if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
99 !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
100 /*
101 * index[0] counts the specific partition that was asked
102 * for. index[1] counts the ones that are active on the
103 * whole device, so increment that if mi->part is indeed
104 * a partition, and not a whole device.
105 */
106 if (rq->part == mi->part)
107 mi->inflight[0]++;
108 if (mi->part->partno)
109 mi->inflight[1]++;
110 }
111 }
112
113 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
114 unsigned int inflight[2])
115 {
116 struct mq_inflight mi = { .part = part, .inflight = inflight, };
117
118 inflight[0] = inflight[1] = 0;
119 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120 }
121
122 void blk_freeze_queue_start(struct request_queue *q)
123 {
124 int freeze_depth;
125
126 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
127 if (freeze_depth == 1) {
128 percpu_ref_kill(&q->q_usage_counter);
129 if (q->mq_ops)
130 blk_mq_run_hw_queues(q, false);
131 }
132 }
133 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
134
135 void blk_mq_freeze_queue_wait(struct request_queue *q)
136 {
137 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
138 }
139 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
140
141 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
142 unsigned long timeout)
143 {
144 return wait_event_timeout(q->mq_freeze_wq,
145 percpu_ref_is_zero(&q->q_usage_counter),
146 timeout);
147 }
148 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
149
150 /*
151 * Guarantee no request is in use, so we can change any data structure of
152 * the queue afterward.
153 */
154 void blk_freeze_queue(struct request_queue *q)
155 {
156 /*
157 * In the !blk_mq case we are only calling this to kill the
158 * q_usage_counter, otherwise this increases the freeze depth
159 * and waits for it to return to zero. For this reason there is
160 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
161 * exported to drivers as the only user for unfreeze is blk_mq.
162 */
163 blk_freeze_queue_start(q);
164 if (!q->mq_ops)
165 blk_drain_queue(q);
166 blk_mq_freeze_queue_wait(q);
167 }
168
169 void blk_mq_freeze_queue(struct request_queue *q)
170 {
171 /*
172 * ...just an alias to keep freeze and unfreeze actions balanced
173 * in the blk_mq_* namespace
174 */
175 blk_freeze_queue(q);
176 }
177 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
178
179 void blk_mq_unfreeze_queue(struct request_queue *q)
180 {
181 int freeze_depth;
182
183 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
184 WARN_ON_ONCE(freeze_depth < 0);
185 if (!freeze_depth) {
186 percpu_ref_reinit(&q->q_usage_counter);
187 wake_up_all(&q->mq_freeze_wq);
188 }
189 }
190 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
191
192 /*
193 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
194 * mpt3sas driver such that this function can be removed.
195 */
196 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
197 {
198 unsigned long flags;
199
200 spin_lock_irqsave(q->queue_lock, flags);
201 queue_flag_set(QUEUE_FLAG_QUIESCED, q);
202 spin_unlock_irqrestore(q->queue_lock, flags);
203 }
204 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
205
206 /**
207 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
208 * @q: request queue.
209 *
210 * Note: this function does not prevent that the struct request end_io()
211 * callback function is invoked. Once this function is returned, we make
212 * sure no dispatch can happen until the queue is unquiesced via
213 * blk_mq_unquiesce_queue().
214 */
215 void blk_mq_quiesce_queue(struct request_queue *q)
216 {
217 struct blk_mq_hw_ctx *hctx;
218 unsigned int i;
219 bool rcu = false;
220
221 blk_mq_quiesce_queue_nowait(q);
222
223 queue_for_each_hw_ctx(q, hctx, i) {
224 if (hctx->flags & BLK_MQ_F_BLOCKING)
225 synchronize_srcu(hctx->queue_rq_srcu);
226 else
227 rcu = true;
228 }
229 if (rcu)
230 synchronize_rcu();
231 }
232 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
233
234 /*
235 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
236 * @q: request queue.
237 *
238 * This function recovers queue into the state before quiescing
239 * which is done by blk_mq_quiesce_queue.
240 */
241 void blk_mq_unquiesce_queue(struct request_queue *q)
242 {
243 unsigned long flags;
244
245 spin_lock_irqsave(q->queue_lock, flags);
246 queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
247 spin_unlock_irqrestore(q->queue_lock, flags);
248
249 /* dispatch requests which are inserted during quiescing */
250 blk_mq_run_hw_queues(q, true);
251 }
252 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
253
254 void blk_mq_wake_waiters(struct request_queue *q)
255 {
256 struct blk_mq_hw_ctx *hctx;
257 unsigned int i;
258
259 queue_for_each_hw_ctx(q, hctx, i)
260 if (blk_mq_hw_queue_mapped(hctx))
261 blk_mq_tag_wakeup_all(hctx->tags, true);
262 }
263
264 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
265 {
266 return blk_mq_has_free_tags(hctx->tags);
267 }
268 EXPORT_SYMBOL(blk_mq_can_queue);
269
270 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
271 unsigned int tag, unsigned int op)
272 {
273 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
274 struct request *rq = tags->static_rqs[tag];
275
276 rq->rq_flags = 0;
277
278 if (data->flags & BLK_MQ_REQ_INTERNAL) {
279 rq->tag = -1;
280 rq->internal_tag = tag;
281 } else {
282 if (blk_mq_tag_busy(data->hctx)) {
283 rq->rq_flags = RQF_MQ_INFLIGHT;
284 atomic_inc(&data->hctx->nr_active);
285 }
286 rq->tag = tag;
287 rq->internal_tag = -1;
288 data->hctx->tags->rqs[rq->tag] = rq;
289 }
290
291 INIT_LIST_HEAD(&rq->queuelist);
292 /* csd/requeue_work/fifo_time is initialized before use */
293 rq->q = data->q;
294 rq->mq_ctx = data->ctx;
295 rq->cmd_flags = op;
296 if (data->flags & BLK_MQ_REQ_PREEMPT)
297 rq->rq_flags |= RQF_PREEMPT;
298 if (blk_queue_io_stat(data->q))
299 rq->rq_flags |= RQF_IO_STAT;
300 /* do not touch atomic flags, it needs atomic ops against the timer */
301 rq->cpu = -1;
302 INIT_HLIST_NODE(&rq->hash);
303 RB_CLEAR_NODE(&rq->rb_node);
304 rq->rq_disk = NULL;
305 rq->part = NULL;
306 rq->start_time = jiffies;
307 #ifdef CONFIG_BLK_CGROUP
308 rq->rl = NULL;
309 set_start_time_ns(rq);
310 rq->io_start_time_ns = 0;
311 #endif
312 rq->nr_phys_segments = 0;
313 #if defined(CONFIG_BLK_DEV_INTEGRITY)
314 rq->nr_integrity_segments = 0;
315 #endif
316 rq->special = NULL;
317 /* tag was already set */
318 rq->extra_len = 0;
319
320 INIT_LIST_HEAD(&rq->timeout_list);
321 rq->timeout = 0;
322
323 rq->end_io = NULL;
324 rq->end_io_data = NULL;
325 rq->next_rq = NULL;
326
327 data->ctx->rq_dispatched[op_is_sync(op)]++;
328 return rq;
329 }
330
331 static struct request *blk_mq_get_request(struct request_queue *q,
332 struct bio *bio, unsigned int op,
333 struct blk_mq_alloc_data *data)
334 {
335 struct elevator_queue *e = q->elevator;
336 struct request *rq;
337 unsigned int tag;
338 bool put_ctx_on_error = false;
339
340 blk_queue_enter_live(q);
341 data->q = q;
342 if (likely(!data->ctx)) {
343 data->ctx = blk_mq_get_ctx(q);
344 put_ctx_on_error = true;
345 }
346 if (likely(!data->hctx))
347 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
348 if (op & REQ_NOWAIT)
349 data->flags |= BLK_MQ_REQ_NOWAIT;
350
351 if (e) {
352 data->flags |= BLK_MQ_REQ_INTERNAL;
353
354 /*
355 * Flush requests are special and go directly to the
356 * dispatch list.
357 */
358 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
359 e->type->ops.mq.limit_depth(op, data);
360 }
361
362 tag = blk_mq_get_tag(data);
363 if (tag == BLK_MQ_TAG_FAIL) {
364 if (put_ctx_on_error) {
365 blk_mq_put_ctx(data->ctx);
366 data->ctx = NULL;
367 }
368 blk_queue_exit(q);
369 return NULL;
370 }
371
372 rq = blk_mq_rq_ctx_init(data, tag, op);
373 if (!op_is_flush(op)) {
374 rq->elv.icq = NULL;
375 if (e && e->type->ops.mq.prepare_request) {
376 if (e->type->icq_cache && rq_ioc(bio))
377 blk_mq_sched_assign_ioc(rq, bio);
378
379 e->type->ops.mq.prepare_request(rq, bio);
380 rq->rq_flags |= RQF_ELVPRIV;
381 }
382 }
383 data->hctx->queued++;
384 return rq;
385 }
386
387 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
388 blk_mq_req_flags_t flags)
389 {
390 struct blk_mq_alloc_data alloc_data = { .flags = flags };
391 struct request *rq;
392 int ret;
393
394 ret = blk_queue_enter(q, flags);
395 if (ret)
396 return ERR_PTR(ret);
397
398 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
399 blk_queue_exit(q);
400
401 if (!rq)
402 return ERR_PTR(-EWOULDBLOCK);
403
404 blk_mq_put_ctx(alloc_data.ctx);
405
406 rq->__data_len = 0;
407 rq->__sector = (sector_t) -1;
408 rq->bio = rq->biotail = NULL;
409 return rq;
410 }
411 EXPORT_SYMBOL(blk_mq_alloc_request);
412
413 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
414 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
415 {
416 struct blk_mq_alloc_data alloc_data = { .flags = flags };
417 struct request *rq;
418 unsigned int cpu;
419 int ret;
420
421 /*
422 * If the tag allocator sleeps we could get an allocation for a
423 * different hardware context. No need to complicate the low level
424 * allocator for this for the rare use case of a command tied to
425 * a specific queue.
426 */
427 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
428 return ERR_PTR(-EINVAL);
429
430 if (hctx_idx >= q->nr_hw_queues)
431 return ERR_PTR(-EIO);
432
433 ret = blk_queue_enter(q, flags);
434 if (ret)
435 return ERR_PTR(ret);
436
437 /*
438 * Check if the hardware context is actually mapped to anything.
439 * If not tell the caller that it should skip this queue.
440 */
441 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
442 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
443 blk_queue_exit(q);
444 return ERR_PTR(-EXDEV);
445 }
446 cpu = cpumask_first(alloc_data.hctx->cpumask);
447 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
448
449 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
450 blk_queue_exit(q);
451
452 if (!rq)
453 return ERR_PTR(-EWOULDBLOCK);
454
455 return rq;
456 }
457 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
458
459 void blk_mq_free_request(struct request *rq)
460 {
461 struct request_queue *q = rq->q;
462 struct elevator_queue *e = q->elevator;
463 struct blk_mq_ctx *ctx = rq->mq_ctx;
464 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
465 const int sched_tag = rq->internal_tag;
466
467 if (rq->rq_flags & RQF_ELVPRIV) {
468 if (e && e->type->ops.mq.finish_request)
469 e->type->ops.mq.finish_request(rq);
470 if (rq->elv.icq) {
471 put_io_context(rq->elv.icq->ioc);
472 rq->elv.icq = NULL;
473 }
474 }
475
476 ctx->rq_completed[rq_is_sync(rq)]++;
477 if (rq->rq_flags & RQF_MQ_INFLIGHT)
478 atomic_dec(&hctx->nr_active);
479
480 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
481 laptop_io_completion(q->backing_dev_info);
482
483 wbt_done(q->rq_wb, &rq->issue_stat);
484
485 if (blk_rq_rl(rq))
486 blk_put_rl(blk_rq_rl(rq));
487
488 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
489 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
490 if (rq->tag != -1)
491 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
492 if (sched_tag != -1)
493 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
494 blk_mq_sched_restart(hctx);
495 blk_queue_exit(q);
496 }
497 EXPORT_SYMBOL_GPL(blk_mq_free_request);
498
499 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
500 {
501 blk_account_io_done(rq);
502
503 if (rq->end_io) {
504 wbt_done(rq->q->rq_wb, &rq->issue_stat);
505 rq->end_io(rq, error);
506 } else {
507 if (unlikely(blk_bidi_rq(rq)))
508 blk_mq_free_request(rq->next_rq);
509 blk_mq_free_request(rq);
510 }
511 }
512 EXPORT_SYMBOL(__blk_mq_end_request);
513
514 void blk_mq_end_request(struct request *rq, blk_status_t error)
515 {
516 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
517 BUG();
518 __blk_mq_end_request(rq, error);
519 }
520 EXPORT_SYMBOL(blk_mq_end_request);
521
522 static void __blk_mq_complete_request_remote(void *data)
523 {
524 struct request *rq = data;
525
526 rq->q->softirq_done_fn(rq);
527 }
528
529 static void __blk_mq_complete_request(struct request *rq)
530 {
531 struct blk_mq_ctx *ctx = rq->mq_ctx;
532 bool shared = false;
533 int cpu;
534
535 if (rq->internal_tag != -1)
536 blk_mq_sched_completed_request(rq);
537 if (rq->rq_flags & RQF_STATS) {
538 blk_mq_poll_stats_start(rq->q);
539 blk_stat_add(rq);
540 }
541
542 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
543 rq->q->softirq_done_fn(rq);
544 return;
545 }
546
547 cpu = get_cpu();
548 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
549 shared = cpus_share_cache(cpu, ctx->cpu);
550
551 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
552 rq->csd.func = __blk_mq_complete_request_remote;
553 rq->csd.info = rq;
554 rq->csd.flags = 0;
555 smp_call_function_single_async(ctx->cpu, &rq->csd);
556 } else {
557 rq->q->softirq_done_fn(rq);
558 }
559 put_cpu();
560 }
561
562 /**
563 * blk_mq_complete_request - end I/O on a request
564 * @rq: the request being processed
565 *
566 * Description:
567 * Ends all I/O on a request. It does not handle partial completions.
568 * The actual completion happens out-of-order, through a IPI handler.
569 **/
570 void blk_mq_complete_request(struct request *rq)
571 {
572 struct request_queue *q = rq->q;
573
574 if (unlikely(blk_should_fake_timeout(q)))
575 return;
576 if (!blk_mark_rq_complete(rq))
577 __blk_mq_complete_request(rq);
578 }
579 EXPORT_SYMBOL(blk_mq_complete_request);
580
581 int blk_mq_request_started(struct request *rq)
582 {
583 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
584 }
585 EXPORT_SYMBOL_GPL(blk_mq_request_started);
586
587 void blk_mq_start_request(struct request *rq)
588 {
589 struct request_queue *q = rq->q;
590
591 blk_mq_sched_started_request(rq);
592
593 trace_block_rq_issue(q, rq);
594
595 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
596 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
597 rq->rq_flags |= RQF_STATS;
598 wbt_issue(q->rq_wb, &rq->issue_stat);
599 }
600
601 blk_add_timer(rq);
602
603 WARN_ON_ONCE(test_bit(REQ_ATOM_STARTED, &rq->atomic_flags));
604
605 /*
606 * Mark us as started and clear complete. Complete might have been
607 * set if requeue raced with timeout, which then marked it as
608 * complete. So be sure to clear complete again when we start
609 * the request, otherwise we'll ignore the completion event.
610 *
611 * Ensure that ->deadline is visible before we set STARTED, such that
612 * blk_mq_check_expired() is guaranteed to observe our ->deadline when
613 * it observes STARTED.
614 */
615 smp_wmb();
616 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
617 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
618 /*
619 * Coherence order guarantees these consecutive stores to a
620 * single variable propagate in the specified order. Thus the
621 * clear_bit() is ordered _after_ the set bit. See
622 * blk_mq_check_expired().
623 *
624 * (the bits must be part of the same byte for this to be
625 * true).
626 */
627 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
628 }
629
630 if (q->dma_drain_size && blk_rq_bytes(rq)) {
631 /*
632 * Make sure space for the drain appears. We know we can do
633 * this because max_hw_segments has been adjusted to be one
634 * fewer than the device can handle.
635 */
636 rq->nr_phys_segments++;
637 }
638 }
639 EXPORT_SYMBOL(blk_mq_start_request);
640
641 /*
642 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
643 * flag isn't set yet, so there may be race with timeout handler,
644 * but given rq->deadline is just set in .queue_rq() under
645 * this situation, the race won't be possible in reality because
646 * rq->timeout should be set as big enough to cover the window
647 * between blk_mq_start_request() called from .queue_rq() and
648 * clearing REQ_ATOM_STARTED here.
649 */
650 static void __blk_mq_requeue_request(struct request *rq)
651 {
652 struct request_queue *q = rq->q;
653
654 blk_mq_put_driver_tag(rq);
655
656 trace_block_rq_requeue(q, rq);
657 wbt_requeue(q->rq_wb, &rq->issue_stat);
658 blk_mq_sched_requeue_request(rq);
659
660 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
661 if (q->dma_drain_size && blk_rq_bytes(rq))
662 rq->nr_phys_segments--;
663 }
664 }
665
666 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
667 {
668 __blk_mq_requeue_request(rq);
669
670 BUG_ON(blk_queued_rq(rq));
671 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
672 }
673 EXPORT_SYMBOL(blk_mq_requeue_request);
674
675 static void blk_mq_requeue_work(struct work_struct *work)
676 {
677 struct request_queue *q =
678 container_of(work, struct request_queue, requeue_work.work);
679 LIST_HEAD(rq_list);
680 struct request *rq, *next;
681
682 spin_lock_irq(&q->requeue_lock);
683 list_splice_init(&q->requeue_list, &rq_list);
684 spin_unlock_irq(&q->requeue_lock);
685
686 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
687 if (!(rq->rq_flags & RQF_SOFTBARRIER))
688 continue;
689
690 rq->rq_flags &= ~RQF_SOFTBARRIER;
691 list_del_init(&rq->queuelist);
692 blk_mq_sched_insert_request(rq, true, false, false, true);
693 }
694
695 while (!list_empty(&rq_list)) {
696 rq = list_entry(rq_list.next, struct request, queuelist);
697 list_del_init(&rq->queuelist);
698 blk_mq_sched_insert_request(rq, false, false, false, true);
699 }
700
701 blk_mq_run_hw_queues(q, false);
702 }
703
704 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
705 bool kick_requeue_list)
706 {
707 struct request_queue *q = rq->q;
708 unsigned long flags;
709
710 /*
711 * We abuse this flag that is otherwise used by the I/O scheduler to
712 * request head insertion from the workqueue.
713 */
714 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
715
716 spin_lock_irqsave(&q->requeue_lock, flags);
717 if (at_head) {
718 rq->rq_flags |= RQF_SOFTBARRIER;
719 list_add(&rq->queuelist, &q->requeue_list);
720 } else {
721 list_add_tail(&rq->queuelist, &q->requeue_list);
722 }
723 spin_unlock_irqrestore(&q->requeue_lock, flags);
724
725 if (kick_requeue_list)
726 blk_mq_kick_requeue_list(q);
727 }
728 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
729
730 void blk_mq_kick_requeue_list(struct request_queue *q)
731 {
732 kblockd_schedule_delayed_work(&q->requeue_work, 0);
733 }
734 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
735
736 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
737 unsigned long msecs)
738 {
739 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
740 msecs_to_jiffies(msecs));
741 }
742 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
743
744 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
745 {
746 if (tag < tags->nr_tags) {
747 prefetch(tags->rqs[tag]);
748 return tags->rqs[tag];
749 }
750
751 return NULL;
752 }
753 EXPORT_SYMBOL(blk_mq_tag_to_rq);
754
755 struct blk_mq_timeout_data {
756 unsigned long next;
757 unsigned int next_set;
758 };
759
760 void blk_mq_rq_timed_out(struct request *req, bool reserved)
761 {
762 const struct blk_mq_ops *ops = req->q->mq_ops;
763 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
764
765 /*
766 * We know that complete is set at this point. If STARTED isn't set
767 * anymore, then the request isn't active and the "timeout" should
768 * just be ignored. This can happen due to the bitflag ordering.
769 * Timeout first checks if STARTED is set, and if it is, assumes
770 * the request is active. But if we race with completion, then
771 * both flags will get cleared. So check here again, and ignore
772 * a timeout event with a request that isn't active.
773 */
774 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
775 return;
776
777 if (ops->timeout)
778 ret = ops->timeout(req, reserved);
779
780 switch (ret) {
781 case BLK_EH_HANDLED:
782 __blk_mq_complete_request(req);
783 break;
784 case BLK_EH_RESET_TIMER:
785 blk_add_timer(req);
786 blk_clear_rq_complete(req);
787 break;
788 case BLK_EH_NOT_HANDLED:
789 break;
790 default:
791 printk(KERN_ERR "block: bad eh return: %d\n", ret);
792 break;
793 }
794 }
795
796 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
797 struct request *rq, void *priv, bool reserved)
798 {
799 struct blk_mq_timeout_data *data = priv;
800 unsigned long deadline;
801
802 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
803 return;
804
805 /*
806 * Ensures that if we see STARTED we must also see our
807 * up-to-date deadline, see blk_mq_start_request().
808 */
809 smp_rmb();
810
811 deadline = READ_ONCE(rq->deadline);
812
813 /*
814 * The rq being checked may have been freed and reallocated
815 * out already here, we avoid this race by checking rq->deadline
816 * and REQ_ATOM_COMPLETE flag together:
817 *
818 * - if rq->deadline is observed as new value because of
819 * reusing, the rq won't be timed out because of timing.
820 * - if rq->deadline is observed as previous value,
821 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
822 * because we put a barrier between setting rq->deadline
823 * and clearing the flag in blk_mq_start_request(), so
824 * this rq won't be timed out too.
825 */
826 if (time_after_eq(jiffies, deadline)) {
827 if (!blk_mark_rq_complete(rq)) {
828 /*
829 * Again coherence order ensures that consecutive reads
830 * from the same variable must be in that order. This
831 * ensures that if we see COMPLETE clear, we must then
832 * see STARTED set and we'll ignore this timeout.
833 *
834 * (There's also the MB implied by the test_and_clear())
835 */
836 blk_mq_rq_timed_out(rq, reserved);
837 }
838 } else if (!data->next_set || time_after(data->next, deadline)) {
839 data->next = deadline;
840 data->next_set = 1;
841 }
842 }
843
844 static void blk_mq_timeout_work(struct work_struct *work)
845 {
846 struct request_queue *q =
847 container_of(work, struct request_queue, timeout_work);
848 struct blk_mq_timeout_data data = {
849 .next = 0,
850 .next_set = 0,
851 };
852 int i;
853
854 /* A deadlock might occur if a request is stuck requiring a
855 * timeout at the same time a queue freeze is waiting
856 * completion, since the timeout code would not be able to
857 * acquire the queue reference here.
858 *
859 * That's why we don't use blk_queue_enter here; instead, we use
860 * percpu_ref_tryget directly, because we need to be able to
861 * obtain a reference even in the short window between the queue
862 * starting to freeze, by dropping the first reference in
863 * blk_freeze_queue_start, and the moment the last request is
864 * consumed, marked by the instant q_usage_counter reaches
865 * zero.
866 */
867 if (!percpu_ref_tryget(&q->q_usage_counter))
868 return;
869
870 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
871
872 if (data.next_set) {
873 data.next = blk_rq_timeout(round_jiffies_up(data.next));
874 mod_timer(&q->timeout, data.next);
875 } else {
876 struct blk_mq_hw_ctx *hctx;
877
878 queue_for_each_hw_ctx(q, hctx, i) {
879 /* the hctx may be unmapped, so check it here */
880 if (blk_mq_hw_queue_mapped(hctx))
881 blk_mq_tag_idle(hctx);
882 }
883 }
884 blk_queue_exit(q);
885 }
886
887 struct flush_busy_ctx_data {
888 struct blk_mq_hw_ctx *hctx;
889 struct list_head *list;
890 };
891
892 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
893 {
894 struct flush_busy_ctx_data *flush_data = data;
895 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
896 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
897
898 sbitmap_clear_bit(sb, bitnr);
899 spin_lock(&ctx->lock);
900 list_splice_tail_init(&ctx->rq_list, flush_data->list);
901 spin_unlock(&ctx->lock);
902 return true;
903 }
904
905 /*
906 * Process software queues that have been marked busy, splicing them
907 * to the for-dispatch
908 */
909 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
910 {
911 struct flush_busy_ctx_data data = {
912 .hctx = hctx,
913 .list = list,
914 };
915
916 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
917 }
918 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
919
920 struct dispatch_rq_data {
921 struct blk_mq_hw_ctx *hctx;
922 struct request *rq;
923 };
924
925 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
926 void *data)
927 {
928 struct dispatch_rq_data *dispatch_data = data;
929 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
930 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
931
932 spin_lock(&ctx->lock);
933 if (unlikely(!list_empty(&ctx->rq_list))) {
934 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
935 list_del_init(&dispatch_data->rq->queuelist);
936 if (list_empty(&ctx->rq_list))
937 sbitmap_clear_bit(sb, bitnr);
938 }
939 spin_unlock(&ctx->lock);
940
941 return !dispatch_data->rq;
942 }
943
944 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
945 struct blk_mq_ctx *start)
946 {
947 unsigned off = start ? start->index_hw : 0;
948 struct dispatch_rq_data data = {
949 .hctx = hctx,
950 .rq = NULL,
951 };
952
953 __sbitmap_for_each_set(&hctx->ctx_map, off,
954 dispatch_rq_from_ctx, &data);
955
956 return data.rq;
957 }
958
959 static inline unsigned int queued_to_index(unsigned int queued)
960 {
961 if (!queued)
962 return 0;
963
964 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
965 }
966
967 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
968 bool wait)
969 {
970 struct blk_mq_alloc_data data = {
971 .q = rq->q,
972 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
973 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
974 };
975
976 might_sleep_if(wait);
977
978 if (rq->tag != -1)
979 goto done;
980
981 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
982 data.flags |= BLK_MQ_REQ_RESERVED;
983
984 rq->tag = blk_mq_get_tag(&data);
985 if (rq->tag >= 0) {
986 if (blk_mq_tag_busy(data.hctx)) {
987 rq->rq_flags |= RQF_MQ_INFLIGHT;
988 atomic_inc(&data.hctx->nr_active);
989 }
990 data.hctx->tags->rqs[rq->tag] = rq;
991 }
992
993 done:
994 if (hctx)
995 *hctx = data.hctx;
996 return rq->tag != -1;
997 }
998
999 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1000 int flags, void *key)
1001 {
1002 struct blk_mq_hw_ctx *hctx;
1003
1004 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1005
1006 list_del_init(&wait->entry);
1007 blk_mq_run_hw_queue(hctx, true);
1008 return 1;
1009 }
1010
1011 /*
1012 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1013 * the tag wakeups. For non-shared tags, we can simply mark us nedeing a
1014 * restart. For both caes, take care to check the condition again after
1015 * marking us as waiting.
1016 */
1017 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
1018 struct request *rq)
1019 {
1020 struct blk_mq_hw_ctx *this_hctx = *hctx;
1021 bool shared_tags = (this_hctx->flags & BLK_MQ_F_TAG_SHARED) != 0;
1022 struct sbq_wait_state *ws;
1023 wait_queue_entry_t *wait;
1024 bool ret;
1025
1026 if (!shared_tags) {
1027 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
1028 set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
1029 } else {
1030 wait = &this_hctx->dispatch_wait;
1031 if (!list_empty_careful(&wait->entry))
1032 return false;
1033
1034 spin_lock(&this_hctx->lock);
1035 if (!list_empty(&wait->entry)) {
1036 spin_unlock(&this_hctx->lock);
1037 return false;
1038 }
1039
1040 ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
1041 add_wait_queue(&ws->wait, wait);
1042 }
1043
1044 /*
1045 * It's possible that a tag was freed in the window between the
1046 * allocation failure and adding the hardware queue to the wait
1047 * queue.
1048 */
1049 ret = blk_mq_get_driver_tag(rq, hctx, false);
1050
1051 if (!shared_tags) {
1052 /*
1053 * Don't clear RESTART here, someone else could have set it.
1054 * At most this will cost an extra queue run.
1055 */
1056 return ret;
1057 } else {
1058 if (!ret) {
1059 spin_unlock(&this_hctx->lock);
1060 return false;
1061 }
1062
1063 /*
1064 * We got a tag, remove ourselves from the wait queue to ensure
1065 * someone else gets the wakeup.
1066 */
1067 spin_lock_irq(&ws->wait.lock);
1068 list_del_init(&wait->entry);
1069 spin_unlock_irq(&ws->wait.lock);
1070 spin_unlock(&this_hctx->lock);
1071 return true;
1072 }
1073 }
1074
1075 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1076 bool got_budget)
1077 {
1078 struct blk_mq_hw_ctx *hctx;
1079 struct request *rq, *nxt;
1080 bool no_tag = false;
1081 int errors, queued;
1082
1083 if (list_empty(list))
1084 return false;
1085
1086 WARN_ON(!list_is_singular(list) && got_budget);
1087
1088 /*
1089 * Now process all the entries, sending them to the driver.
1090 */
1091 errors = queued = 0;
1092 do {
1093 struct blk_mq_queue_data bd;
1094 blk_status_t ret;
1095
1096 rq = list_first_entry(list, struct request, queuelist);
1097 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1098 /*
1099 * The initial allocation attempt failed, so we need to
1100 * rerun the hardware queue when a tag is freed. The
1101 * waitqueue takes care of that. If the queue is run
1102 * before we add this entry back on the dispatch list,
1103 * we'll re-run it below.
1104 */
1105 if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1106 if (got_budget)
1107 blk_mq_put_dispatch_budget(hctx);
1108 /*
1109 * For non-shared tags, the RESTART check
1110 * will suffice.
1111 */
1112 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1113 no_tag = true;
1114 break;
1115 }
1116 }
1117
1118 if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) {
1119 blk_mq_put_driver_tag(rq);
1120 break;
1121 }
1122
1123 list_del_init(&rq->queuelist);
1124
1125 bd.rq = rq;
1126
1127 /*
1128 * Flag last if we have no more requests, or if we have more
1129 * but can't assign a driver tag to it.
1130 */
1131 if (list_empty(list))
1132 bd.last = true;
1133 else {
1134 nxt = list_first_entry(list, struct request, queuelist);
1135 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1136 }
1137
1138 ret = q->mq_ops->queue_rq(hctx, &bd);
1139 if (ret == BLK_STS_RESOURCE) {
1140 /*
1141 * If an I/O scheduler has been configured and we got a
1142 * driver tag for the next request already, free it
1143 * again.
1144 */
1145 if (!list_empty(list)) {
1146 nxt = list_first_entry(list, struct request, queuelist);
1147 blk_mq_put_driver_tag(nxt);
1148 }
1149 list_add(&rq->queuelist, list);
1150 __blk_mq_requeue_request(rq);
1151 break;
1152 }
1153
1154 if (unlikely(ret != BLK_STS_OK)) {
1155 errors++;
1156 blk_mq_end_request(rq, BLK_STS_IOERR);
1157 continue;
1158 }
1159
1160 queued++;
1161 } while (!list_empty(list));
1162
1163 hctx->dispatched[queued_to_index(queued)]++;
1164
1165 /*
1166 * Any items that need requeuing? Stuff them into hctx->dispatch,
1167 * that is where we will continue on next queue run.
1168 */
1169 if (!list_empty(list)) {
1170 spin_lock(&hctx->lock);
1171 list_splice_init(list, &hctx->dispatch);
1172 spin_unlock(&hctx->lock);
1173
1174 /*
1175 * If SCHED_RESTART was set by the caller of this function and
1176 * it is no longer set that means that it was cleared by another
1177 * thread and hence that a queue rerun is needed.
1178 *
1179 * If 'no_tag' is set, that means that we failed getting
1180 * a driver tag with an I/O scheduler attached. If our dispatch
1181 * waitqueue is no longer active, ensure that we run the queue
1182 * AFTER adding our entries back to the list.
1183 *
1184 * If no I/O scheduler has been configured it is possible that
1185 * the hardware queue got stopped and restarted before requests
1186 * were pushed back onto the dispatch list. Rerun the queue to
1187 * avoid starvation. Notes:
1188 * - blk_mq_run_hw_queue() checks whether or not a queue has
1189 * been stopped before rerunning a queue.
1190 * - Some but not all block drivers stop a queue before
1191 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1192 * and dm-rq.
1193 */
1194 if (!blk_mq_sched_needs_restart(hctx) ||
1195 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1196 blk_mq_run_hw_queue(hctx, true);
1197 }
1198
1199 return (queued + errors) != 0;
1200 }
1201
1202 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1203 {
1204 int srcu_idx;
1205
1206 /*
1207 * We should be running this queue from one of the CPUs that
1208 * are mapped to it.
1209 */
1210 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1211 cpu_online(hctx->next_cpu));
1212
1213 /*
1214 * We can't run the queue inline with ints disabled. Ensure that
1215 * we catch bad users of this early.
1216 */
1217 WARN_ON_ONCE(in_interrupt());
1218
1219 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1220 rcu_read_lock();
1221 blk_mq_sched_dispatch_requests(hctx);
1222 rcu_read_unlock();
1223 } else {
1224 might_sleep();
1225
1226 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1227 blk_mq_sched_dispatch_requests(hctx);
1228 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1229 }
1230 }
1231
1232 /*
1233 * It'd be great if the workqueue API had a way to pass
1234 * in a mask and had some smarts for more clever placement.
1235 * For now we just round-robin here, switching for every
1236 * BLK_MQ_CPU_WORK_BATCH queued items.
1237 */
1238 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1239 {
1240 if (hctx->queue->nr_hw_queues == 1)
1241 return WORK_CPU_UNBOUND;
1242
1243 if (--hctx->next_cpu_batch <= 0) {
1244 int next_cpu;
1245
1246 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1247 if (next_cpu >= nr_cpu_ids)
1248 next_cpu = cpumask_first(hctx->cpumask);
1249
1250 hctx->next_cpu = next_cpu;
1251 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1252 }
1253
1254 return hctx->next_cpu;
1255 }
1256
1257 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1258 unsigned long msecs)
1259 {
1260 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1261 return;
1262
1263 if (unlikely(blk_mq_hctx_stopped(hctx)))
1264 return;
1265
1266 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1267 int cpu = get_cpu();
1268 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1269 __blk_mq_run_hw_queue(hctx);
1270 put_cpu();
1271 return;
1272 }
1273
1274 put_cpu();
1275 }
1276
1277 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1278 &hctx->run_work,
1279 msecs_to_jiffies(msecs));
1280 }
1281
1282 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1283 {
1284 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1285 }
1286 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1287
1288 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1289 {
1290 if (blk_mq_hctx_has_pending(hctx)) {
1291 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1292 return true;
1293 }
1294
1295 return false;
1296 }
1297 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1298
1299 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1300 {
1301 struct blk_mq_hw_ctx *hctx;
1302 int i;
1303
1304 queue_for_each_hw_ctx(q, hctx, i) {
1305 if (blk_mq_hctx_stopped(hctx))
1306 continue;
1307
1308 blk_mq_run_hw_queue(hctx, async);
1309 }
1310 }
1311 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1312
1313 /**
1314 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1315 * @q: request queue.
1316 *
1317 * The caller is responsible for serializing this function against
1318 * blk_mq_{start,stop}_hw_queue().
1319 */
1320 bool blk_mq_queue_stopped(struct request_queue *q)
1321 {
1322 struct blk_mq_hw_ctx *hctx;
1323 int i;
1324
1325 queue_for_each_hw_ctx(q, hctx, i)
1326 if (blk_mq_hctx_stopped(hctx))
1327 return true;
1328
1329 return false;
1330 }
1331 EXPORT_SYMBOL(blk_mq_queue_stopped);
1332
1333 /*
1334 * This function is often used for pausing .queue_rq() by driver when
1335 * there isn't enough resource or some conditions aren't satisfied, and
1336 * BLK_STS_RESOURCE is usually returned.
1337 *
1338 * We do not guarantee that dispatch can be drained or blocked
1339 * after blk_mq_stop_hw_queue() returns. Please use
1340 * blk_mq_quiesce_queue() for that requirement.
1341 */
1342 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1343 {
1344 cancel_delayed_work(&hctx->run_work);
1345
1346 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1347 }
1348 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1349
1350 /*
1351 * This function is often used for pausing .queue_rq() by driver when
1352 * there isn't enough resource or some conditions aren't satisfied, and
1353 * BLK_STS_RESOURCE is usually returned.
1354 *
1355 * We do not guarantee that dispatch can be drained or blocked
1356 * after blk_mq_stop_hw_queues() returns. Please use
1357 * blk_mq_quiesce_queue() for that requirement.
1358 */
1359 void blk_mq_stop_hw_queues(struct request_queue *q)
1360 {
1361 struct blk_mq_hw_ctx *hctx;
1362 int i;
1363
1364 queue_for_each_hw_ctx(q, hctx, i)
1365 blk_mq_stop_hw_queue(hctx);
1366 }
1367 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1368
1369 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1370 {
1371 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1372
1373 blk_mq_run_hw_queue(hctx, false);
1374 }
1375 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1376
1377 void blk_mq_start_hw_queues(struct request_queue *q)
1378 {
1379 struct blk_mq_hw_ctx *hctx;
1380 int i;
1381
1382 queue_for_each_hw_ctx(q, hctx, i)
1383 blk_mq_start_hw_queue(hctx);
1384 }
1385 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1386
1387 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1388 {
1389 if (!blk_mq_hctx_stopped(hctx))
1390 return;
1391
1392 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1393 blk_mq_run_hw_queue(hctx, async);
1394 }
1395 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1396
1397 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1398 {
1399 struct blk_mq_hw_ctx *hctx;
1400 int i;
1401
1402 queue_for_each_hw_ctx(q, hctx, i)
1403 blk_mq_start_stopped_hw_queue(hctx, async);
1404 }
1405 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1406
1407 static void blk_mq_run_work_fn(struct work_struct *work)
1408 {
1409 struct blk_mq_hw_ctx *hctx;
1410
1411 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1412
1413 /*
1414 * If we are stopped, don't run the queue. The exception is if
1415 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1416 * the STOPPED bit and run it.
1417 */
1418 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1419 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1420 return;
1421
1422 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1423 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1424 }
1425
1426 __blk_mq_run_hw_queue(hctx);
1427 }
1428
1429
1430 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1431 {
1432 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1433 return;
1434
1435 /*
1436 * Stop the hw queue, then modify currently delayed work.
1437 * This should prevent us from running the queue prematurely.
1438 * Mark the queue as auto-clearing STOPPED when it runs.
1439 */
1440 blk_mq_stop_hw_queue(hctx);
1441 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1442 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1443 &hctx->run_work,
1444 msecs_to_jiffies(msecs));
1445 }
1446 EXPORT_SYMBOL(blk_mq_delay_queue);
1447
1448 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1449 struct request *rq,
1450 bool at_head)
1451 {
1452 struct blk_mq_ctx *ctx = rq->mq_ctx;
1453
1454 lockdep_assert_held(&ctx->lock);
1455
1456 trace_block_rq_insert(hctx->queue, rq);
1457
1458 if (at_head)
1459 list_add(&rq->queuelist, &ctx->rq_list);
1460 else
1461 list_add_tail(&rq->queuelist, &ctx->rq_list);
1462 }
1463
1464 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1465 bool at_head)
1466 {
1467 struct blk_mq_ctx *ctx = rq->mq_ctx;
1468
1469 lockdep_assert_held(&ctx->lock);
1470
1471 __blk_mq_insert_req_list(hctx, rq, at_head);
1472 blk_mq_hctx_mark_pending(hctx, ctx);
1473 }
1474
1475 /*
1476 * Should only be used carefully, when the caller knows we want to
1477 * bypass a potential IO scheduler on the target device.
1478 */
1479 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1480 {
1481 struct blk_mq_ctx *ctx = rq->mq_ctx;
1482 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1483
1484 spin_lock(&hctx->lock);
1485 list_add_tail(&rq->queuelist, &hctx->dispatch);
1486 spin_unlock(&hctx->lock);
1487
1488 if (run_queue)
1489 blk_mq_run_hw_queue(hctx, false);
1490 }
1491
1492 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1493 struct list_head *list)
1494
1495 {
1496 /*
1497 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1498 * offline now
1499 */
1500 spin_lock(&ctx->lock);
1501 while (!list_empty(list)) {
1502 struct request *rq;
1503
1504 rq = list_first_entry(list, struct request, queuelist);
1505 BUG_ON(rq->mq_ctx != ctx);
1506 list_del_init(&rq->queuelist);
1507 __blk_mq_insert_req_list(hctx, rq, false);
1508 }
1509 blk_mq_hctx_mark_pending(hctx, ctx);
1510 spin_unlock(&ctx->lock);
1511 }
1512
1513 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1514 {
1515 struct request *rqa = container_of(a, struct request, queuelist);
1516 struct request *rqb = container_of(b, struct request, queuelist);
1517
1518 return !(rqa->mq_ctx < rqb->mq_ctx ||
1519 (rqa->mq_ctx == rqb->mq_ctx &&
1520 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1521 }
1522
1523 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1524 {
1525 struct blk_mq_ctx *this_ctx;
1526 struct request_queue *this_q;
1527 struct request *rq;
1528 LIST_HEAD(list);
1529 LIST_HEAD(ctx_list);
1530 unsigned int depth;
1531
1532 list_splice_init(&plug->mq_list, &list);
1533
1534 list_sort(NULL, &list, plug_ctx_cmp);
1535
1536 this_q = NULL;
1537 this_ctx = NULL;
1538 depth = 0;
1539
1540 while (!list_empty(&list)) {
1541 rq = list_entry_rq(list.next);
1542 list_del_init(&rq->queuelist);
1543 BUG_ON(!rq->q);
1544 if (rq->mq_ctx != this_ctx) {
1545 if (this_ctx) {
1546 trace_block_unplug(this_q, depth, from_schedule);
1547 blk_mq_sched_insert_requests(this_q, this_ctx,
1548 &ctx_list,
1549 from_schedule);
1550 }
1551
1552 this_ctx = rq->mq_ctx;
1553 this_q = rq->q;
1554 depth = 0;
1555 }
1556
1557 depth++;
1558 list_add_tail(&rq->queuelist, &ctx_list);
1559 }
1560
1561 /*
1562 * If 'this_ctx' is set, we know we have entries to complete
1563 * on 'ctx_list'. Do those.
1564 */
1565 if (this_ctx) {
1566 trace_block_unplug(this_q, depth, from_schedule);
1567 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1568 from_schedule);
1569 }
1570 }
1571
1572 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1573 {
1574 blk_init_request_from_bio(rq, bio);
1575
1576 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1577
1578 blk_account_io_start(rq, true);
1579 }
1580
1581 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1582 struct blk_mq_ctx *ctx,
1583 struct request *rq)
1584 {
1585 spin_lock(&ctx->lock);
1586 __blk_mq_insert_request(hctx, rq, false);
1587 spin_unlock(&ctx->lock);
1588 }
1589
1590 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1591 {
1592 if (rq->tag != -1)
1593 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1594
1595 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1596 }
1597
1598 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1599 struct request *rq,
1600 blk_qc_t *cookie, bool may_sleep)
1601 {
1602 struct request_queue *q = rq->q;
1603 struct blk_mq_queue_data bd = {
1604 .rq = rq,
1605 .last = true,
1606 };
1607 blk_qc_t new_cookie;
1608 blk_status_t ret;
1609 bool run_queue = true;
1610
1611 /* RCU or SRCU read lock is needed before checking quiesced flag */
1612 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1613 run_queue = false;
1614 goto insert;
1615 }
1616
1617 if (q->elevator)
1618 goto insert;
1619
1620 if (!blk_mq_get_driver_tag(rq, NULL, false))
1621 goto insert;
1622
1623 if (!blk_mq_get_dispatch_budget(hctx)) {
1624 blk_mq_put_driver_tag(rq);
1625 goto insert;
1626 }
1627
1628 new_cookie = request_to_qc_t(hctx, rq);
1629
1630 /*
1631 * For OK queue, we are done. For error, kill it. Any other
1632 * error (busy), just add it to our list as we previously
1633 * would have done
1634 */
1635 ret = q->mq_ops->queue_rq(hctx, &bd);
1636 switch (ret) {
1637 case BLK_STS_OK:
1638 *cookie = new_cookie;
1639 return;
1640 case BLK_STS_RESOURCE:
1641 __blk_mq_requeue_request(rq);
1642 goto insert;
1643 default:
1644 *cookie = BLK_QC_T_NONE;
1645 blk_mq_end_request(rq, ret);
1646 return;
1647 }
1648
1649 insert:
1650 blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1651 }
1652
1653 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1654 struct request *rq, blk_qc_t *cookie)
1655 {
1656 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1657 rcu_read_lock();
1658 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1659 rcu_read_unlock();
1660 } else {
1661 unsigned int srcu_idx;
1662
1663 might_sleep();
1664
1665 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1666 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
1667 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1668 }
1669 }
1670
1671 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1672 {
1673 const int is_sync = op_is_sync(bio->bi_opf);
1674 const int is_flush_fua = op_is_flush(bio->bi_opf);
1675 struct blk_mq_alloc_data data = { .flags = 0 };
1676 struct request *rq;
1677 unsigned int request_count = 0;
1678 struct blk_plug *plug;
1679 struct request *same_queue_rq = NULL;
1680 blk_qc_t cookie;
1681 unsigned int wb_acct;
1682
1683 blk_queue_bounce(q, &bio);
1684
1685 blk_queue_split(q, &bio);
1686
1687 if (!bio_integrity_prep(bio))
1688 return BLK_QC_T_NONE;
1689
1690 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1691 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1692 return BLK_QC_T_NONE;
1693
1694 if (blk_mq_sched_bio_merge(q, bio))
1695 return BLK_QC_T_NONE;
1696
1697 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1698
1699 trace_block_getrq(q, bio, bio->bi_opf);
1700
1701 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1702 if (unlikely(!rq)) {
1703 __wbt_done(q->rq_wb, wb_acct);
1704 if (bio->bi_opf & REQ_NOWAIT)
1705 bio_wouldblock_error(bio);
1706 return BLK_QC_T_NONE;
1707 }
1708
1709 wbt_track(&rq->issue_stat, wb_acct);
1710
1711 cookie = request_to_qc_t(data.hctx, rq);
1712
1713 plug = current->plug;
1714 if (unlikely(is_flush_fua)) {
1715 blk_mq_put_ctx(data.ctx);
1716 blk_mq_bio_to_request(rq, bio);
1717
1718 /* bypass scheduler for flush rq */
1719 blk_insert_flush(rq);
1720 blk_mq_run_hw_queue(data.hctx, true);
1721 } else if (plug && q->nr_hw_queues == 1) {
1722 struct request *last = NULL;
1723
1724 blk_mq_put_ctx(data.ctx);
1725 blk_mq_bio_to_request(rq, bio);
1726
1727 /*
1728 * @request_count may become stale because of schedule
1729 * out, so check the list again.
1730 */
1731 if (list_empty(&plug->mq_list))
1732 request_count = 0;
1733 else if (blk_queue_nomerges(q))
1734 request_count = blk_plug_queued_count(q);
1735
1736 if (!request_count)
1737 trace_block_plug(q);
1738 else
1739 last = list_entry_rq(plug->mq_list.prev);
1740
1741 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1742 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1743 blk_flush_plug_list(plug, false);
1744 trace_block_plug(q);
1745 }
1746
1747 list_add_tail(&rq->queuelist, &plug->mq_list);
1748 } else if (plug && !blk_queue_nomerges(q)) {
1749 blk_mq_bio_to_request(rq, bio);
1750
1751 /*
1752 * We do limited plugging. If the bio can be merged, do that.
1753 * Otherwise the existing request in the plug list will be
1754 * issued. So the plug list will have one request at most
1755 * The plug list might get flushed before this. If that happens,
1756 * the plug list is empty, and same_queue_rq is invalid.
1757 */
1758 if (list_empty(&plug->mq_list))
1759 same_queue_rq = NULL;
1760 if (same_queue_rq)
1761 list_del_init(&same_queue_rq->queuelist);
1762 list_add_tail(&rq->queuelist, &plug->mq_list);
1763
1764 blk_mq_put_ctx(data.ctx);
1765
1766 if (same_queue_rq) {
1767 data.hctx = blk_mq_map_queue(q,
1768 same_queue_rq->mq_ctx->cpu);
1769 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1770 &cookie);
1771 }
1772 } else if (q->nr_hw_queues > 1 && is_sync) {
1773 blk_mq_put_ctx(data.ctx);
1774 blk_mq_bio_to_request(rq, bio);
1775 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1776 } else if (q->elevator) {
1777 blk_mq_put_ctx(data.ctx);
1778 blk_mq_bio_to_request(rq, bio);
1779 blk_mq_sched_insert_request(rq, false, true, true, true);
1780 } else {
1781 blk_mq_put_ctx(data.ctx);
1782 blk_mq_bio_to_request(rq, bio);
1783 blk_mq_queue_io(data.hctx, data.ctx, rq);
1784 blk_mq_run_hw_queue(data.hctx, true);
1785 }
1786
1787 return cookie;
1788 }
1789
1790 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1791 unsigned int hctx_idx)
1792 {
1793 struct page *page;
1794
1795 if (tags->rqs && set->ops->exit_request) {
1796 int i;
1797
1798 for (i = 0; i < tags->nr_tags; i++) {
1799 struct request *rq = tags->static_rqs[i];
1800
1801 if (!rq)
1802 continue;
1803 set->ops->exit_request(set, rq, hctx_idx);
1804 tags->static_rqs[i] = NULL;
1805 }
1806 }
1807
1808 while (!list_empty(&tags->page_list)) {
1809 page = list_first_entry(&tags->page_list, struct page, lru);
1810 list_del_init(&page->lru);
1811 /*
1812 * Remove kmemleak object previously allocated in
1813 * blk_mq_init_rq_map().
1814 */
1815 kmemleak_free(page_address(page));
1816 __free_pages(page, page->private);
1817 }
1818 }
1819
1820 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1821 {
1822 kfree(tags->rqs);
1823 tags->rqs = NULL;
1824 kfree(tags->static_rqs);
1825 tags->static_rqs = NULL;
1826
1827 blk_mq_free_tags(tags);
1828 }
1829
1830 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1831 unsigned int hctx_idx,
1832 unsigned int nr_tags,
1833 unsigned int reserved_tags)
1834 {
1835 struct blk_mq_tags *tags;
1836 int node;
1837
1838 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1839 if (node == NUMA_NO_NODE)
1840 node = set->numa_node;
1841
1842 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1843 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1844 if (!tags)
1845 return NULL;
1846
1847 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1848 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1849 node);
1850 if (!tags->rqs) {
1851 blk_mq_free_tags(tags);
1852 return NULL;
1853 }
1854
1855 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1856 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1857 node);
1858 if (!tags->static_rqs) {
1859 kfree(tags->rqs);
1860 blk_mq_free_tags(tags);
1861 return NULL;
1862 }
1863
1864 return tags;
1865 }
1866
1867 static size_t order_to_size(unsigned int order)
1868 {
1869 return (size_t)PAGE_SIZE << order;
1870 }
1871
1872 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1873 unsigned int hctx_idx, unsigned int depth)
1874 {
1875 unsigned int i, j, entries_per_page, max_order = 4;
1876 size_t rq_size, left;
1877 int node;
1878
1879 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1880 if (node == NUMA_NO_NODE)
1881 node = set->numa_node;
1882
1883 INIT_LIST_HEAD(&tags->page_list);
1884
1885 /*
1886 * rq_size is the size of the request plus driver payload, rounded
1887 * to the cacheline size
1888 */
1889 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1890 cache_line_size());
1891 left = rq_size * depth;
1892
1893 for (i = 0; i < depth; ) {
1894 int this_order = max_order;
1895 struct page *page;
1896 int to_do;
1897 void *p;
1898
1899 while (this_order && left < order_to_size(this_order - 1))
1900 this_order--;
1901
1902 do {
1903 page = alloc_pages_node(node,
1904 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1905 this_order);
1906 if (page)
1907 break;
1908 if (!this_order--)
1909 break;
1910 if (order_to_size(this_order) < rq_size)
1911 break;
1912 } while (1);
1913
1914 if (!page)
1915 goto fail;
1916
1917 page->private = this_order;
1918 list_add_tail(&page->lru, &tags->page_list);
1919
1920 p = page_address(page);
1921 /*
1922 * Allow kmemleak to scan these pages as they contain pointers
1923 * to additional allocations like via ops->init_request().
1924 */
1925 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1926 entries_per_page = order_to_size(this_order) / rq_size;
1927 to_do = min(entries_per_page, depth - i);
1928 left -= to_do * rq_size;
1929 for (j = 0; j < to_do; j++) {
1930 struct request *rq = p;
1931
1932 tags->static_rqs[i] = rq;
1933 if (set->ops->init_request) {
1934 if (set->ops->init_request(set, rq, hctx_idx,
1935 node)) {
1936 tags->static_rqs[i] = NULL;
1937 goto fail;
1938 }
1939 }
1940
1941 p += rq_size;
1942 i++;
1943 }
1944 }
1945 return 0;
1946
1947 fail:
1948 blk_mq_free_rqs(set, tags, hctx_idx);
1949 return -ENOMEM;
1950 }
1951
1952 /*
1953 * 'cpu' is going away. splice any existing rq_list entries from this
1954 * software queue to the hw queue dispatch list, and ensure that it
1955 * gets run.
1956 */
1957 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1958 {
1959 struct blk_mq_hw_ctx *hctx;
1960 struct blk_mq_ctx *ctx;
1961 LIST_HEAD(tmp);
1962
1963 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1964 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1965
1966 spin_lock(&ctx->lock);
1967 if (!list_empty(&ctx->rq_list)) {
1968 list_splice_init(&ctx->rq_list, &tmp);
1969 blk_mq_hctx_clear_pending(hctx, ctx);
1970 }
1971 spin_unlock(&ctx->lock);
1972
1973 if (list_empty(&tmp))
1974 return 0;
1975
1976 spin_lock(&hctx->lock);
1977 list_splice_tail_init(&tmp, &hctx->dispatch);
1978 spin_unlock(&hctx->lock);
1979
1980 blk_mq_run_hw_queue(hctx, true);
1981 return 0;
1982 }
1983
1984 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1985 {
1986 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1987 &hctx->cpuhp_dead);
1988 }
1989
1990 /* hctx->ctxs will be freed in queue's release handler */
1991 static void blk_mq_exit_hctx(struct request_queue *q,
1992 struct blk_mq_tag_set *set,
1993 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1994 {
1995 blk_mq_debugfs_unregister_hctx(hctx);
1996
1997 blk_mq_tag_idle(hctx);
1998
1999 if (set->ops->exit_request)
2000 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2001
2002 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2003
2004 if (set->ops->exit_hctx)
2005 set->ops->exit_hctx(hctx, hctx_idx);
2006
2007 if (hctx->flags & BLK_MQ_F_BLOCKING)
2008 cleanup_srcu_struct(hctx->queue_rq_srcu);
2009
2010 blk_mq_remove_cpuhp(hctx);
2011 blk_free_flush_queue(hctx->fq);
2012 sbitmap_free(&hctx->ctx_map);
2013 }
2014
2015 static void blk_mq_exit_hw_queues(struct request_queue *q,
2016 struct blk_mq_tag_set *set, int nr_queue)
2017 {
2018 struct blk_mq_hw_ctx *hctx;
2019 unsigned int i;
2020
2021 queue_for_each_hw_ctx(q, hctx, i) {
2022 if (i == nr_queue)
2023 break;
2024 blk_mq_exit_hctx(q, set, hctx, i);
2025 }
2026 }
2027
2028 static int blk_mq_init_hctx(struct request_queue *q,
2029 struct blk_mq_tag_set *set,
2030 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2031 {
2032 int node;
2033
2034 node = hctx->numa_node;
2035 if (node == NUMA_NO_NODE)
2036 node = hctx->numa_node = set->numa_node;
2037
2038 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2039 spin_lock_init(&hctx->lock);
2040 INIT_LIST_HEAD(&hctx->dispatch);
2041 hctx->queue = q;
2042 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2043
2044 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2045
2046 hctx->tags = set->tags[hctx_idx];
2047
2048 /*
2049 * Allocate space for all possible cpus to avoid allocation at
2050 * runtime
2051 */
2052 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2053 GFP_KERNEL, node);
2054 if (!hctx->ctxs)
2055 goto unregister_cpu_notifier;
2056
2057 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2058 node))
2059 goto free_ctxs;
2060
2061 hctx->nr_ctx = 0;
2062
2063 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2064 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2065
2066 if (set->ops->init_hctx &&
2067 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2068 goto free_bitmap;
2069
2070 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2071 goto exit_hctx;
2072
2073 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2074 if (!hctx->fq)
2075 goto sched_exit_hctx;
2076
2077 if (set->ops->init_request &&
2078 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
2079 node))
2080 goto free_fq;
2081
2082 if (hctx->flags & BLK_MQ_F_BLOCKING)
2083 init_srcu_struct(hctx->queue_rq_srcu);
2084
2085 blk_mq_debugfs_register_hctx(q, hctx);
2086
2087 return 0;
2088
2089 free_fq:
2090 kfree(hctx->fq);
2091 sched_exit_hctx:
2092 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2093 exit_hctx:
2094 if (set->ops->exit_hctx)
2095 set->ops->exit_hctx(hctx, hctx_idx);
2096 free_bitmap:
2097 sbitmap_free(&hctx->ctx_map);
2098 free_ctxs:
2099 kfree(hctx->ctxs);
2100 unregister_cpu_notifier:
2101 blk_mq_remove_cpuhp(hctx);
2102 return -1;
2103 }
2104
2105 static void blk_mq_init_cpu_queues(struct request_queue *q,
2106 unsigned int nr_hw_queues)
2107 {
2108 unsigned int i;
2109
2110 for_each_possible_cpu(i) {
2111 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2112 struct blk_mq_hw_ctx *hctx;
2113
2114 __ctx->cpu = i;
2115 spin_lock_init(&__ctx->lock);
2116 INIT_LIST_HEAD(&__ctx->rq_list);
2117 __ctx->queue = q;
2118
2119 /* If the cpu isn't present, the cpu is mapped to first hctx */
2120 if (!cpu_present(i))
2121 continue;
2122
2123 hctx = blk_mq_map_queue(q, i);
2124
2125 /*
2126 * Set local node, IFF we have more than one hw queue. If
2127 * not, we remain on the home node of the device
2128 */
2129 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2130 hctx->numa_node = local_memory_node(cpu_to_node(i));
2131 }
2132 }
2133
2134 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2135 {
2136 int ret = 0;
2137
2138 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2139 set->queue_depth, set->reserved_tags);
2140 if (!set->tags[hctx_idx])
2141 return false;
2142
2143 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2144 set->queue_depth);
2145 if (!ret)
2146 return true;
2147
2148 blk_mq_free_rq_map(set->tags[hctx_idx]);
2149 set->tags[hctx_idx] = NULL;
2150 return false;
2151 }
2152
2153 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2154 unsigned int hctx_idx)
2155 {
2156 if (set->tags[hctx_idx]) {
2157 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2158 blk_mq_free_rq_map(set->tags[hctx_idx]);
2159 set->tags[hctx_idx] = NULL;
2160 }
2161 }
2162
2163 static void blk_mq_map_swqueue(struct request_queue *q)
2164 {
2165 unsigned int i, hctx_idx;
2166 struct blk_mq_hw_ctx *hctx;
2167 struct blk_mq_ctx *ctx;
2168 struct blk_mq_tag_set *set = q->tag_set;
2169
2170 /*
2171 * Avoid others reading imcomplete hctx->cpumask through sysfs
2172 */
2173 mutex_lock(&q->sysfs_lock);
2174
2175 queue_for_each_hw_ctx(q, hctx, i) {
2176 cpumask_clear(hctx->cpumask);
2177 hctx->nr_ctx = 0;
2178 }
2179
2180 /*
2181 * Map software to hardware queues.
2182 *
2183 * If the cpu isn't present, the cpu is mapped to first hctx.
2184 */
2185 for_each_present_cpu(i) {
2186 hctx_idx = q->mq_map[i];
2187 /* unmapped hw queue can be remapped after CPU topo changed */
2188 if (!set->tags[hctx_idx] &&
2189 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2190 /*
2191 * If tags initialization fail for some hctx,
2192 * that hctx won't be brought online. In this
2193 * case, remap the current ctx to hctx[0] which
2194 * is guaranteed to always have tags allocated
2195 */
2196 q->mq_map[i] = 0;
2197 }
2198
2199 ctx = per_cpu_ptr(q->queue_ctx, i);
2200 hctx = blk_mq_map_queue(q, i);
2201
2202 cpumask_set_cpu(i, hctx->cpumask);
2203 ctx->index_hw = hctx->nr_ctx;
2204 hctx->ctxs[hctx->nr_ctx++] = ctx;
2205 }
2206
2207 mutex_unlock(&q->sysfs_lock);
2208
2209 queue_for_each_hw_ctx(q, hctx, i) {
2210 /*
2211 * If no software queues are mapped to this hardware queue,
2212 * disable it and free the request entries.
2213 */
2214 if (!hctx->nr_ctx) {
2215 /* Never unmap queue 0. We need it as a
2216 * fallback in case of a new remap fails
2217 * allocation
2218 */
2219 if (i && set->tags[i])
2220 blk_mq_free_map_and_requests(set, i);
2221
2222 hctx->tags = NULL;
2223 continue;
2224 }
2225
2226 hctx->tags = set->tags[i];
2227 WARN_ON(!hctx->tags);
2228
2229 /*
2230 * Set the map size to the number of mapped software queues.
2231 * This is more accurate and more efficient than looping
2232 * over all possibly mapped software queues.
2233 */
2234 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2235
2236 /*
2237 * Initialize batch roundrobin counts
2238 */
2239 hctx->next_cpu = cpumask_first(hctx->cpumask);
2240 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2241 }
2242 }
2243
2244 /*
2245 * Caller needs to ensure that we're either frozen/quiesced, or that
2246 * the queue isn't live yet.
2247 */
2248 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2249 {
2250 struct blk_mq_hw_ctx *hctx;
2251 int i;
2252
2253 queue_for_each_hw_ctx(q, hctx, i) {
2254 if (shared) {
2255 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2256 atomic_inc(&q->shared_hctx_restart);
2257 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2258 } else {
2259 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2260 atomic_dec(&q->shared_hctx_restart);
2261 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2262 }
2263 }
2264 }
2265
2266 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2267 bool shared)
2268 {
2269 struct request_queue *q;
2270
2271 lockdep_assert_held(&set->tag_list_lock);
2272
2273 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2274 blk_mq_freeze_queue(q);
2275 queue_set_hctx_shared(q, shared);
2276 blk_mq_unfreeze_queue(q);
2277 }
2278 }
2279
2280 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2281 {
2282 struct blk_mq_tag_set *set = q->tag_set;
2283
2284 mutex_lock(&set->tag_list_lock);
2285 list_del_rcu(&q->tag_set_list);
2286 INIT_LIST_HEAD(&q->tag_set_list);
2287 if (list_is_singular(&set->tag_list)) {
2288 /* just transitioned to unshared */
2289 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2290 /* update existing queue */
2291 blk_mq_update_tag_set_depth(set, false);
2292 }
2293 mutex_unlock(&set->tag_list_lock);
2294
2295 synchronize_rcu();
2296 }
2297
2298 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2299 struct request_queue *q)
2300 {
2301 q->tag_set = set;
2302
2303 mutex_lock(&set->tag_list_lock);
2304
2305 /*
2306 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2307 */
2308 if (!list_empty(&set->tag_list) &&
2309 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2310 set->flags |= BLK_MQ_F_TAG_SHARED;
2311 /* update existing queue */
2312 blk_mq_update_tag_set_depth(set, true);
2313 }
2314 if (set->flags & BLK_MQ_F_TAG_SHARED)
2315 queue_set_hctx_shared(q, true);
2316 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2317
2318 mutex_unlock(&set->tag_list_lock);
2319 }
2320
2321 /*
2322 * It is the actual release handler for mq, but we do it from
2323 * request queue's release handler for avoiding use-after-free
2324 * and headache because q->mq_kobj shouldn't have been introduced,
2325 * but we can't group ctx/kctx kobj without it.
2326 */
2327 void blk_mq_release(struct request_queue *q)
2328 {
2329 struct blk_mq_hw_ctx *hctx;
2330 unsigned int i;
2331
2332 /* hctx kobj stays in hctx */
2333 queue_for_each_hw_ctx(q, hctx, i) {
2334 if (!hctx)
2335 continue;
2336 kobject_put(&hctx->kobj);
2337 }
2338
2339 q->mq_map = NULL;
2340
2341 kfree(q->queue_hw_ctx);
2342
2343 /*
2344 * release .mq_kobj and sw queue's kobject now because
2345 * both share lifetime with request queue.
2346 */
2347 blk_mq_sysfs_deinit(q);
2348
2349 free_percpu(q->queue_ctx);
2350 }
2351
2352 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2353 {
2354 struct request_queue *uninit_q, *q;
2355
2356 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2357 if (!uninit_q)
2358 return ERR_PTR(-ENOMEM);
2359
2360 q = blk_mq_init_allocated_queue(set, uninit_q);
2361 if (IS_ERR(q))
2362 blk_cleanup_queue(uninit_q);
2363
2364 return q;
2365 }
2366 EXPORT_SYMBOL(blk_mq_init_queue);
2367
2368 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2369 {
2370 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2371
2372 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
2373 __alignof__(struct blk_mq_hw_ctx)) !=
2374 sizeof(struct blk_mq_hw_ctx));
2375
2376 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2377 hw_ctx_size += sizeof(struct srcu_struct);
2378
2379 return hw_ctx_size;
2380 }
2381
2382 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2383 struct request_queue *q)
2384 {
2385 int i, j;
2386 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2387
2388 blk_mq_sysfs_unregister(q);
2389 for (i = 0; i < set->nr_hw_queues; i++) {
2390 int node;
2391
2392 if (hctxs[i])
2393 continue;
2394
2395 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2396 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2397 GFP_KERNEL, node);
2398 if (!hctxs[i])
2399 break;
2400
2401 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2402 node)) {
2403 kfree(hctxs[i]);
2404 hctxs[i] = NULL;
2405 break;
2406 }
2407
2408 atomic_set(&hctxs[i]->nr_active, 0);
2409 hctxs[i]->numa_node = node;
2410 hctxs[i]->queue_num = i;
2411
2412 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2413 free_cpumask_var(hctxs[i]->cpumask);
2414 kfree(hctxs[i]);
2415 hctxs[i] = NULL;
2416 break;
2417 }
2418 blk_mq_hctx_kobj_init(hctxs[i]);
2419 }
2420 for (j = i; j < q->nr_hw_queues; j++) {
2421 struct blk_mq_hw_ctx *hctx = hctxs[j];
2422
2423 if (hctx) {
2424 if (hctx->tags)
2425 blk_mq_free_map_and_requests(set, j);
2426 blk_mq_exit_hctx(q, set, hctx, j);
2427 kobject_put(&hctx->kobj);
2428 hctxs[j] = NULL;
2429
2430 }
2431 }
2432 q->nr_hw_queues = i;
2433 blk_mq_sysfs_register(q);
2434 }
2435
2436 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2437 struct request_queue *q)
2438 {
2439 /* mark the queue as mq asap */
2440 q->mq_ops = set->ops;
2441
2442 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2443 blk_mq_poll_stats_bkt,
2444 BLK_MQ_POLL_STATS_BKTS, q);
2445 if (!q->poll_cb)
2446 goto err_exit;
2447
2448 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2449 if (!q->queue_ctx)
2450 goto err_exit;
2451
2452 /* init q->mq_kobj and sw queues' kobjects */
2453 blk_mq_sysfs_init(q);
2454
2455 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2456 GFP_KERNEL, set->numa_node);
2457 if (!q->queue_hw_ctx)
2458 goto err_percpu;
2459
2460 q->mq_map = set->mq_map;
2461
2462 blk_mq_realloc_hw_ctxs(set, q);
2463 if (!q->nr_hw_queues)
2464 goto err_hctxs;
2465
2466 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2467 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2468
2469 q->nr_queues = nr_cpu_ids;
2470
2471 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2472
2473 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2474 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2475
2476 q->sg_reserved_size = INT_MAX;
2477
2478 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2479 INIT_LIST_HEAD(&q->requeue_list);
2480 spin_lock_init(&q->requeue_lock);
2481
2482 blk_queue_make_request(q, blk_mq_make_request);
2483 if (q->mq_ops->poll)
2484 q->poll_fn = blk_mq_poll;
2485
2486 /*
2487 * Do this after blk_queue_make_request() overrides it...
2488 */
2489 q->nr_requests = set->queue_depth;
2490
2491 /*
2492 * Default to classic polling
2493 */
2494 q->poll_nsec = -1;
2495
2496 if (set->ops->complete)
2497 blk_queue_softirq_done(q, set->ops->complete);
2498
2499 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2500 blk_mq_add_queue_tag_set(set, q);
2501 blk_mq_map_swqueue(q);
2502
2503 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2504 int ret;
2505
2506 ret = blk_mq_sched_init(q);
2507 if (ret)
2508 return ERR_PTR(ret);
2509 }
2510
2511 return q;
2512
2513 err_hctxs:
2514 kfree(q->queue_hw_ctx);
2515 err_percpu:
2516 free_percpu(q->queue_ctx);
2517 err_exit:
2518 q->mq_ops = NULL;
2519 return ERR_PTR(-ENOMEM);
2520 }
2521 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2522
2523 void blk_mq_free_queue(struct request_queue *q)
2524 {
2525 struct blk_mq_tag_set *set = q->tag_set;
2526
2527 blk_mq_del_queue_tag_set(q);
2528 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2529 }
2530
2531 /* Basically redo blk_mq_init_queue with queue frozen */
2532 static void blk_mq_queue_reinit(struct request_queue *q)
2533 {
2534 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2535
2536 blk_mq_debugfs_unregister_hctxs(q);
2537 blk_mq_sysfs_unregister(q);
2538
2539 /*
2540 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2541 * we should change hctx numa_node according to the new topology (this
2542 * involves freeing and re-allocating memory, worth doing?)
2543 */
2544 blk_mq_map_swqueue(q);
2545
2546 blk_mq_sysfs_register(q);
2547 blk_mq_debugfs_register_hctxs(q);
2548 }
2549
2550 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2551 {
2552 int i;
2553
2554 for (i = 0; i < set->nr_hw_queues; i++)
2555 if (!__blk_mq_alloc_rq_map(set, i))
2556 goto out_unwind;
2557
2558 return 0;
2559
2560 out_unwind:
2561 while (--i >= 0)
2562 blk_mq_free_rq_map(set->tags[i]);
2563
2564 return -ENOMEM;
2565 }
2566
2567 /*
2568 * Allocate the request maps associated with this tag_set. Note that this
2569 * may reduce the depth asked for, if memory is tight. set->queue_depth
2570 * will be updated to reflect the allocated depth.
2571 */
2572 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2573 {
2574 unsigned int depth;
2575 int err;
2576
2577 depth = set->queue_depth;
2578 do {
2579 err = __blk_mq_alloc_rq_maps(set);
2580 if (!err)
2581 break;
2582
2583 set->queue_depth >>= 1;
2584 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2585 err = -ENOMEM;
2586 break;
2587 }
2588 } while (set->queue_depth);
2589
2590 if (!set->queue_depth || err) {
2591 pr_err("blk-mq: failed to allocate request map\n");
2592 return -ENOMEM;
2593 }
2594
2595 if (depth != set->queue_depth)
2596 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2597 depth, set->queue_depth);
2598
2599 return 0;
2600 }
2601
2602 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2603 {
2604 if (set->ops->map_queues)
2605 return set->ops->map_queues(set);
2606 else
2607 return blk_mq_map_queues(set);
2608 }
2609
2610 /*
2611 * Alloc a tag set to be associated with one or more request queues.
2612 * May fail with EINVAL for various error conditions. May adjust the
2613 * requested depth down, if if it too large. In that case, the set
2614 * value will be stored in set->queue_depth.
2615 */
2616 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2617 {
2618 int ret;
2619
2620 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2621
2622 if (!set->nr_hw_queues)
2623 return -EINVAL;
2624 if (!set->queue_depth)
2625 return -EINVAL;
2626 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2627 return -EINVAL;
2628
2629 if (!set->ops->queue_rq)
2630 return -EINVAL;
2631
2632 if (!set->ops->get_budget ^ !set->ops->put_budget)
2633 return -EINVAL;
2634
2635 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2636 pr_info("blk-mq: reduced tag depth to %u\n",
2637 BLK_MQ_MAX_DEPTH);
2638 set->queue_depth = BLK_MQ_MAX_DEPTH;
2639 }
2640
2641 /*
2642 * If a crashdump is active, then we are potentially in a very
2643 * memory constrained environment. Limit us to 1 queue and
2644 * 64 tags to prevent using too much memory.
2645 */
2646 if (is_kdump_kernel()) {
2647 set->nr_hw_queues = 1;
2648 set->queue_depth = min(64U, set->queue_depth);
2649 }
2650 /*
2651 * There is no use for more h/w queues than cpus.
2652 */
2653 if (set->nr_hw_queues > nr_cpu_ids)
2654 set->nr_hw_queues = nr_cpu_ids;
2655
2656 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2657 GFP_KERNEL, set->numa_node);
2658 if (!set->tags)
2659 return -ENOMEM;
2660
2661 ret = -ENOMEM;
2662 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2663 GFP_KERNEL, set->numa_node);
2664 if (!set->mq_map)
2665 goto out_free_tags;
2666
2667 ret = blk_mq_update_queue_map(set);
2668 if (ret)
2669 goto out_free_mq_map;
2670
2671 ret = blk_mq_alloc_rq_maps(set);
2672 if (ret)
2673 goto out_free_mq_map;
2674
2675 mutex_init(&set->tag_list_lock);
2676 INIT_LIST_HEAD(&set->tag_list);
2677
2678 return 0;
2679
2680 out_free_mq_map:
2681 kfree(set->mq_map);
2682 set->mq_map = NULL;
2683 out_free_tags:
2684 kfree(set->tags);
2685 set->tags = NULL;
2686 return ret;
2687 }
2688 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2689
2690 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2691 {
2692 int i;
2693
2694 for (i = 0; i < nr_cpu_ids; i++)
2695 blk_mq_free_map_and_requests(set, i);
2696
2697 kfree(set->mq_map);
2698 set->mq_map = NULL;
2699
2700 kfree(set->tags);
2701 set->tags = NULL;
2702 }
2703 EXPORT_SYMBOL(blk_mq_free_tag_set);
2704
2705 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2706 {
2707 struct blk_mq_tag_set *set = q->tag_set;
2708 struct blk_mq_hw_ctx *hctx;
2709 int i, ret;
2710
2711 if (!set)
2712 return -EINVAL;
2713
2714 blk_mq_freeze_queue(q);
2715
2716 ret = 0;
2717 queue_for_each_hw_ctx(q, hctx, i) {
2718 if (!hctx->tags)
2719 continue;
2720 /*
2721 * If we're using an MQ scheduler, just update the scheduler
2722 * queue depth. This is similar to what the old code would do.
2723 */
2724 if (!hctx->sched_tags) {
2725 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2726 false);
2727 } else {
2728 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2729 nr, true);
2730 }
2731 if (ret)
2732 break;
2733 }
2734
2735 if (!ret)
2736 q->nr_requests = nr;
2737
2738 blk_mq_unfreeze_queue(q);
2739
2740 return ret;
2741 }
2742
2743 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2744 int nr_hw_queues)
2745 {
2746 struct request_queue *q;
2747
2748 lockdep_assert_held(&set->tag_list_lock);
2749
2750 if (nr_hw_queues > nr_cpu_ids)
2751 nr_hw_queues = nr_cpu_ids;
2752 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2753 return;
2754
2755 list_for_each_entry(q, &set->tag_list, tag_set_list)
2756 blk_mq_freeze_queue(q);
2757
2758 set->nr_hw_queues = nr_hw_queues;
2759 blk_mq_update_queue_map(set);
2760 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2761 blk_mq_realloc_hw_ctxs(set, q);
2762 blk_mq_queue_reinit(q);
2763 }
2764
2765 list_for_each_entry(q, &set->tag_list, tag_set_list)
2766 blk_mq_unfreeze_queue(q);
2767 }
2768
2769 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2770 {
2771 mutex_lock(&set->tag_list_lock);
2772 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2773 mutex_unlock(&set->tag_list_lock);
2774 }
2775 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2776
2777 /* Enable polling stats and return whether they were already enabled. */
2778 static bool blk_poll_stats_enable(struct request_queue *q)
2779 {
2780 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2781 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2782 return true;
2783 blk_stat_add_callback(q, q->poll_cb);
2784 return false;
2785 }
2786
2787 static void blk_mq_poll_stats_start(struct request_queue *q)
2788 {
2789 /*
2790 * We don't arm the callback if polling stats are not enabled or the
2791 * callback is already active.
2792 */
2793 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2794 blk_stat_is_active(q->poll_cb))
2795 return;
2796
2797 blk_stat_activate_msecs(q->poll_cb, 100);
2798 }
2799
2800 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2801 {
2802 struct request_queue *q = cb->data;
2803 int bucket;
2804
2805 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2806 if (cb->stat[bucket].nr_samples)
2807 q->poll_stat[bucket] = cb->stat[bucket];
2808 }
2809 }
2810
2811 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2812 struct blk_mq_hw_ctx *hctx,
2813 struct request *rq)
2814 {
2815 unsigned long ret = 0;
2816 int bucket;
2817
2818 /*
2819 * If stats collection isn't on, don't sleep but turn it on for
2820 * future users
2821 */
2822 if (!blk_poll_stats_enable(q))
2823 return 0;
2824
2825 /*
2826 * As an optimistic guess, use half of the mean service time
2827 * for this type of request. We can (and should) make this smarter.
2828 * For instance, if the completion latencies are tight, we can
2829 * get closer than just half the mean. This is especially
2830 * important on devices where the completion latencies are longer
2831 * than ~10 usec. We do use the stats for the relevant IO size
2832 * if available which does lead to better estimates.
2833 */
2834 bucket = blk_mq_poll_stats_bkt(rq);
2835 if (bucket < 0)
2836 return ret;
2837
2838 if (q->poll_stat[bucket].nr_samples)
2839 ret = (q->poll_stat[bucket].mean + 1) / 2;
2840
2841 return ret;
2842 }
2843
2844 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2845 struct blk_mq_hw_ctx *hctx,
2846 struct request *rq)
2847 {
2848 struct hrtimer_sleeper hs;
2849 enum hrtimer_mode mode;
2850 unsigned int nsecs;
2851 ktime_t kt;
2852
2853 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2854 return false;
2855
2856 /*
2857 * poll_nsec can be:
2858 *
2859 * -1: don't ever hybrid sleep
2860 * 0: use half of prev avg
2861 * >0: use this specific value
2862 */
2863 if (q->poll_nsec == -1)
2864 return false;
2865 else if (q->poll_nsec > 0)
2866 nsecs = q->poll_nsec;
2867 else
2868 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2869
2870 if (!nsecs)
2871 return false;
2872
2873 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2874
2875 /*
2876 * This will be replaced with the stats tracking code, using
2877 * 'avg_completion_time / 2' as the pre-sleep target.
2878 */
2879 kt = nsecs;
2880
2881 mode = HRTIMER_MODE_REL;
2882 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2883 hrtimer_set_expires(&hs.timer, kt);
2884
2885 hrtimer_init_sleeper(&hs, current);
2886 do {
2887 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2888 break;
2889 set_current_state(TASK_UNINTERRUPTIBLE);
2890 hrtimer_start_expires(&hs.timer, mode);
2891 if (hs.task)
2892 io_schedule();
2893 hrtimer_cancel(&hs.timer);
2894 mode = HRTIMER_MODE_ABS;
2895 } while (hs.task && !signal_pending(current));
2896
2897 __set_current_state(TASK_RUNNING);
2898 destroy_hrtimer_on_stack(&hs.timer);
2899 return true;
2900 }
2901
2902 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2903 {
2904 struct request_queue *q = hctx->queue;
2905 long state;
2906
2907 /*
2908 * If we sleep, have the caller restart the poll loop to reset
2909 * the state. Like for the other success return cases, the
2910 * caller is responsible for checking if the IO completed. If
2911 * the IO isn't complete, we'll get called again and will go
2912 * straight to the busy poll loop.
2913 */
2914 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2915 return true;
2916
2917 hctx->poll_considered++;
2918
2919 state = current->state;
2920 while (!need_resched()) {
2921 int ret;
2922
2923 hctx->poll_invoked++;
2924
2925 ret = q->mq_ops->poll(hctx, rq->tag);
2926 if (ret > 0) {
2927 hctx->poll_success++;
2928 set_current_state(TASK_RUNNING);
2929 return true;
2930 }
2931
2932 if (signal_pending_state(state, current))
2933 set_current_state(TASK_RUNNING);
2934
2935 if (current->state == TASK_RUNNING)
2936 return true;
2937 if (ret < 0)
2938 break;
2939 cpu_relax();
2940 }
2941
2942 return false;
2943 }
2944
2945 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2946 {
2947 struct blk_mq_hw_ctx *hctx;
2948 struct request *rq;
2949
2950 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2951 return false;
2952
2953 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2954 if (!blk_qc_t_is_internal(cookie))
2955 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2956 else {
2957 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2958 /*
2959 * With scheduling, if the request has completed, we'll
2960 * get a NULL return here, as we clear the sched tag when
2961 * that happens. The request still remains valid, like always,
2962 * so we should be safe with just the NULL check.
2963 */
2964 if (!rq)
2965 return false;
2966 }
2967
2968 return __blk_mq_poll(hctx, rq);
2969 }
2970
2971 static int __init blk_mq_init(void)
2972 {
2973 /*
2974 * See comment in block/blk.h rq_atomic_flags enum
2975 */
2976 BUILD_BUG_ON((REQ_ATOM_STARTED / BITS_PER_BYTE) !=
2977 (REQ_ATOM_COMPLETE / BITS_PER_BYTE));
2978
2979 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2980 blk_mq_hctx_notify_dead);
2981 return 0;
2982 }
2983 subsys_initcall(blk_mq_init);