]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-settings.c
Merge branches 'for-4.11/upstream-fixes', 'for-4.12/accutouch', 'for-4.12/cp2112...
[mirror_ubuntu-artful-kernel.git] / block / blk-settings.c
1 /*
2 * Functions related to setting various queue properties from drivers
3 */
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
10 #include <linux/gcd.h>
11 #include <linux/lcm.h>
12 #include <linux/jiffies.h>
13 #include <linux/gfp.h>
14
15 #include "blk.h"
16 #include "blk-wbt.h"
17
18 unsigned long blk_max_low_pfn;
19 EXPORT_SYMBOL(blk_max_low_pfn);
20
21 unsigned long blk_max_pfn;
22
23 /**
24 * blk_queue_prep_rq - set a prepare_request function for queue
25 * @q: queue
26 * @pfn: prepare_request function
27 *
28 * It's possible for a queue to register a prepare_request callback which
29 * is invoked before the request is handed to the request_fn. The goal of
30 * the function is to prepare a request for I/O, it can be used to build a
31 * cdb from the request data for instance.
32 *
33 */
34 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
35 {
36 q->prep_rq_fn = pfn;
37 }
38 EXPORT_SYMBOL(blk_queue_prep_rq);
39
40 /**
41 * blk_queue_unprep_rq - set an unprepare_request function for queue
42 * @q: queue
43 * @ufn: unprepare_request function
44 *
45 * It's possible for a queue to register an unprepare_request callback
46 * which is invoked before the request is finally completed. The goal
47 * of the function is to deallocate any data that was allocated in the
48 * prepare_request callback.
49 *
50 */
51 void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn)
52 {
53 q->unprep_rq_fn = ufn;
54 }
55 EXPORT_SYMBOL(blk_queue_unprep_rq);
56
57 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
58 {
59 q->softirq_done_fn = fn;
60 }
61 EXPORT_SYMBOL(blk_queue_softirq_done);
62
63 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
64 {
65 q->rq_timeout = timeout;
66 }
67 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
68
69 void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
70 {
71 q->rq_timed_out_fn = fn;
72 }
73 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
74
75 void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
76 {
77 q->lld_busy_fn = fn;
78 }
79 EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
80
81 /**
82 * blk_set_default_limits - reset limits to default values
83 * @lim: the queue_limits structure to reset
84 *
85 * Description:
86 * Returns a queue_limit struct to its default state.
87 */
88 void blk_set_default_limits(struct queue_limits *lim)
89 {
90 lim->max_segments = BLK_MAX_SEGMENTS;
91 lim->max_discard_segments = 1;
92 lim->max_integrity_segments = 0;
93 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
94 lim->virt_boundary_mask = 0;
95 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
96 lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
97 lim->max_dev_sectors = 0;
98 lim->chunk_sectors = 0;
99 lim->max_write_same_sectors = 0;
100 lim->max_write_zeroes_sectors = 0;
101 lim->max_discard_sectors = 0;
102 lim->max_hw_discard_sectors = 0;
103 lim->discard_granularity = 0;
104 lim->discard_alignment = 0;
105 lim->discard_misaligned = 0;
106 lim->discard_zeroes_data = 0;
107 lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
108 lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
109 lim->alignment_offset = 0;
110 lim->io_opt = 0;
111 lim->misaligned = 0;
112 lim->cluster = 1;
113 lim->zoned = BLK_ZONED_NONE;
114 }
115 EXPORT_SYMBOL(blk_set_default_limits);
116
117 /**
118 * blk_set_stacking_limits - set default limits for stacking devices
119 * @lim: the queue_limits structure to reset
120 *
121 * Description:
122 * Returns a queue_limit struct to its default state. Should be used
123 * by stacking drivers like DM that have no internal limits.
124 */
125 void blk_set_stacking_limits(struct queue_limits *lim)
126 {
127 blk_set_default_limits(lim);
128
129 /* Inherit limits from component devices */
130 lim->discard_zeroes_data = 1;
131 lim->max_segments = USHRT_MAX;
132 lim->max_discard_segments = 1;
133 lim->max_hw_sectors = UINT_MAX;
134 lim->max_segment_size = UINT_MAX;
135 lim->max_sectors = UINT_MAX;
136 lim->max_dev_sectors = UINT_MAX;
137 lim->max_write_same_sectors = UINT_MAX;
138 lim->max_write_zeroes_sectors = UINT_MAX;
139 }
140 EXPORT_SYMBOL(blk_set_stacking_limits);
141
142 /**
143 * blk_queue_make_request - define an alternate make_request function for a device
144 * @q: the request queue for the device to be affected
145 * @mfn: the alternate make_request function
146 *
147 * Description:
148 * The normal way for &struct bios to be passed to a device
149 * driver is for them to be collected into requests on a request
150 * queue, and then to allow the device driver to select requests
151 * off that queue when it is ready. This works well for many block
152 * devices. However some block devices (typically virtual devices
153 * such as md or lvm) do not benefit from the processing on the
154 * request queue, and are served best by having the requests passed
155 * directly to them. This can be achieved by providing a function
156 * to blk_queue_make_request().
157 *
158 * Caveat:
159 * The driver that does this *must* be able to deal appropriately
160 * with buffers in "highmemory". This can be accomplished by either calling
161 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
162 * blk_queue_bounce() to create a buffer in normal memory.
163 **/
164 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
165 {
166 /*
167 * set defaults
168 */
169 q->nr_requests = BLKDEV_MAX_RQ;
170
171 q->make_request_fn = mfn;
172 blk_queue_dma_alignment(q, 511);
173 blk_queue_congestion_threshold(q);
174 q->nr_batching = BLK_BATCH_REQ;
175
176 blk_set_default_limits(&q->limits);
177
178 /*
179 * by default assume old behaviour and bounce for any highmem page
180 */
181 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
182 }
183 EXPORT_SYMBOL(blk_queue_make_request);
184
185 /**
186 * blk_queue_bounce_limit - set bounce buffer limit for queue
187 * @q: the request queue for the device
188 * @max_addr: the maximum address the device can handle
189 *
190 * Description:
191 * Different hardware can have different requirements as to what pages
192 * it can do I/O directly to. A low level driver can call
193 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
194 * buffers for doing I/O to pages residing above @max_addr.
195 **/
196 void blk_queue_bounce_limit(struct request_queue *q, u64 max_addr)
197 {
198 unsigned long b_pfn = max_addr >> PAGE_SHIFT;
199 int dma = 0;
200
201 q->bounce_gfp = GFP_NOIO;
202 #if BITS_PER_LONG == 64
203 /*
204 * Assume anything <= 4GB can be handled by IOMMU. Actually
205 * some IOMMUs can handle everything, but I don't know of a
206 * way to test this here.
207 */
208 if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
209 dma = 1;
210 q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
211 #else
212 if (b_pfn < blk_max_low_pfn)
213 dma = 1;
214 q->limits.bounce_pfn = b_pfn;
215 #endif
216 if (dma) {
217 init_emergency_isa_pool();
218 q->bounce_gfp = GFP_NOIO | GFP_DMA;
219 q->limits.bounce_pfn = b_pfn;
220 }
221 }
222 EXPORT_SYMBOL(blk_queue_bounce_limit);
223
224 /**
225 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
226 * @q: the request queue for the device
227 * @max_hw_sectors: max hardware sectors in the usual 512b unit
228 *
229 * Description:
230 * Enables a low level driver to set a hard upper limit,
231 * max_hw_sectors, on the size of requests. max_hw_sectors is set by
232 * the device driver based upon the capabilities of the I/O
233 * controller.
234 *
235 * max_dev_sectors is a hard limit imposed by the storage device for
236 * READ/WRITE requests. It is set by the disk driver.
237 *
238 * max_sectors is a soft limit imposed by the block layer for
239 * filesystem type requests. This value can be overridden on a
240 * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
241 * The soft limit can not exceed max_hw_sectors.
242 **/
243 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
244 {
245 struct queue_limits *limits = &q->limits;
246 unsigned int max_sectors;
247
248 if ((max_hw_sectors << 9) < PAGE_SIZE) {
249 max_hw_sectors = 1 << (PAGE_SHIFT - 9);
250 printk(KERN_INFO "%s: set to minimum %d\n",
251 __func__, max_hw_sectors);
252 }
253
254 limits->max_hw_sectors = max_hw_sectors;
255 max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
256 max_sectors = min_t(unsigned int, max_sectors, BLK_DEF_MAX_SECTORS);
257 limits->max_sectors = max_sectors;
258 q->backing_dev_info->io_pages = max_sectors >> (PAGE_SHIFT - 9);
259 }
260 EXPORT_SYMBOL(blk_queue_max_hw_sectors);
261
262 /**
263 * blk_queue_chunk_sectors - set size of the chunk for this queue
264 * @q: the request queue for the device
265 * @chunk_sectors: chunk sectors in the usual 512b unit
266 *
267 * Description:
268 * If a driver doesn't want IOs to cross a given chunk size, it can set
269 * this limit and prevent merging across chunks. Note that the chunk size
270 * must currently be a power-of-2 in sectors. Also note that the block
271 * layer must accept a page worth of data at any offset. So if the
272 * crossing of chunks is a hard limitation in the driver, it must still be
273 * prepared to split single page bios.
274 **/
275 void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
276 {
277 BUG_ON(!is_power_of_2(chunk_sectors));
278 q->limits.chunk_sectors = chunk_sectors;
279 }
280 EXPORT_SYMBOL(blk_queue_chunk_sectors);
281
282 /**
283 * blk_queue_max_discard_sectors - set max sectors for a single discard
284 * @q: the request queue for the device
285 * @max_discard_sectors: maximum number of sectors to discard
286 **/
287 void blk_queue_max_discard_sectors(struct request_queue *q,
288 unsigned int max_discard_sectors)
289 {
290 q->limits.max_hw_discard_sectors = max_discard_sectors;
291 q->limits.max_discard_sectors = max_discard_sectors;
292 }
293 EXPORT_SYMBOL(blk_queue_max_discard_sectors);
294
295 /**
296 * blk_queue_max_write_same_sectors - set max sectors for a single write same
297 * @q: the request queue for the device
298 * @max_write_same_sectors: maximum number of sectors to write per command
299 **/
300 void blk_queue_max_write_same_sectors(struct request_queue *q,
301 unsigned int max_write_same_sectors)
302 {
303 q->limits.max_write_same_sectors = max_write_same_sectors;
304 }
305 EXPORT_SYMBOL(blk_queue_max_write_same_sectors);
306
307 /**
308 * blk_queue_max_write_zeroes_sectors - set max sectors for a single
309 * write zeroes
310 * @q: the request queue for the device
311 * @max_write_zeroes_sectors: maximum number of sectors to write per command
312 **/
313 void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
314 unsigned int max_write_zeroes_sectors)
315 {
316 q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
317 }
318 EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
319
320 /**
321 * blk_queue_max_segments - set max hw segments for a request for this queue
322 * @q: the request queue for the device
323 * @max_segments: max number of segments
324 *
325 * Description:
326 * Enables a low level driver to set an upper limit on the number of
327 * hw data segments in a request.
328 **/
329 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
330 {
331 if (!max_segments) {
332 max_segments = 1;
333 printk(KERN_INFO "%s: set to minimum %d\n",
334 __func__, max_segments);
335 }
336
337 q->limits.max_segments = max_segments;
338 }
339 EXPORT_SYMBOL(blk_queue_max_segments);
340
341 /**
342 * blk_queue_max_discard_segments - set max segments for discard requests
343 * @q: the request queue for the device
344 * @max_segments: max number of segments
345 *
346 * Description:
347 * Enables a low level driver to set an upper limit on the number of
348 * segments in a discard request.
349 **/
350 void blk_queue_max_discard_segments(struct request_queue *q,
351 unsigned short max_segments)
352 {
353 q->limits.max_discard_segments = max_segments;
354 }
355 EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments);
356
357 /**
358 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
359 * @q: the request queue for the device
360 * @max_size: max size of segment in bytes
361 *
362 * Description:
363 * Enables a low level driver to set an upper limit on the size of a
364 * coalesced segment
365 **/
366 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
367 {
368 if (max_size < PAGE_SIZE) {
369 max_size = PAGE_SIZE;
370 printk(KERN_INFO "%s: set to minimum %d\n",
371 __func__, max_size);
372 }
373
374 q->limits.max_segment_size = max_size;
375 }
376 EXPORT_SYMBOL(blk_queue_max_segment_size);
377
378 /**
379 * blk_queue_logical_block_size - set logical block size for the queue
380 * @q: the request queue for the device
381 * @size: the logical block size, in bytes
382 *
383 * Description:
384 * This should be set to the lowest possible block size that the
385 * storage device can address. The default of 512 covers most
386 * hardware.
387 **/
388 void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
389 {
390 q->limits.logical_block_size = size;
391
392 if (q->limits.physical_block_size < size)
393 q->limits.physical_block_size = size;
394
395 if (q->limits.io_min < q->limits.physical_block_size)
396 q->limits.io_min = q->limits.physical_block_size;
397 }
398 EXPORT_SYMBOL(blk_queue_logical_block_size);
399
400 /**
401 * blk_queue_physical_block_size - set physical block size for the queue
402 * @q: the request queue for the device
403 * @size: the physical block size, in bytes
404 *
405 * Description:
406 * This should be set to the lowest possible sector size that the
407 * hardware can operate on without reverting to read-modify-write
408 * operations.
409 */
410 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
411 {
412 q->limits.physical_block_size = size;
413
414 if (q->limits.physical_block_size < q->limits.logical_block_size)
415 q->limits.physical_block_size = q->limits.logical_block_size;
416
417 if (q->limits.io_min < q->limits.physical_block_size)
418 q->limits.io_min = q->limits.physical_block_size;
419 }
420 EXPORT_SYMBOL(blk_queue_physical_block_size);
421
422 /**
423 * blk_queue_alignment_offset - set physical block alignment offset
424 * @q: the request queue for the device
425 * @offset: alignment offset in bytes
426 *
427 * Description:
428 * Some devices are naturally misaligned to compensate for things like
429 * the legacy DOS partition table 63-sector offset. Low-level drivers
430 * should call this function for devices whose first sector is not
431 * naturally aligned.
432 */
433 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
434 {
435 q->limits.alignment_offset =
436 offset & (q->limits.physical_block_size - 1);
437 q->limits.misaligned = 0;
438 }
439 EXPORT_SYMBOL(blk_queue_alignment_offset);
440
441 /**
442 * blk_limits_io_min - set minimum request size for a device
443 * @limits: the queue limits
444 * @min: smallest I/O size in bytes
445 *
446 * Description:
447 * Some devices have an internal block size bigger than the reported
448 * hardware sector size. This function can be used to signal the
449 * smallest I/O the device can perform without incurring a performance
450 * penalty.
451 */
452 void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
453 {
454 limits->io_min = min;
455
456 if (limits->io_min < limits->logical_block_size)
457 limits->io_min = limits->logical_block_size;
458
459 if (limits->io_min < limits->physical_block_size)
460 limits->io_min = limits->physical_block_size;
461 }
462 EXPORT_SYMBOL(blk_limits_io_min);
463
464 /**
465 * blk_queue_io_min - set minimum request size for the queue
466 * @q: the request queue for the device
467 * @min: smallest I/O size in bytes
468 *
469 * Description:
470 * Storage devices may report a granularity or preferred minimum I/O
471 * size which is the smallest request the device can perform without
472 * incurring a performance penalty. For disk drives this is often the
473 * physical block size. For RAID arrays it is often the stripe chunk
474 * size. A properly aligned multiple of minimum_io_size is the
475 * preferred request size for workloads where a high number of I/O
476 * operations is desired.
477 */
478 void blk_queue_io_min(struct request_queue *q, unsigned int min)
479 {
480 blk_limits_io_min(&q->limits, min);
481 }
482 EXPORT_SYMBOL(blk_queue_io_min);
483
484 /**
485 * blk_limits_io_opt - set optimal request size for a device
486 * @limits: the queue limits
487 * @opt: smallest I/O size in bytes
488 *
489 * Description:
490 * Storage devices may report an optimal I/O size, which is the
491 * device's preferred unit for sustained I/O. This is rarely reported
492 * for disk drives. For RAID arrays it is usually the stripe width or
493 * the internal track size. A properly aligned multiple of
494 * optimal_io_size is the preferred request size for workloads where
495 * sustained throughput is desired.
496 */
497 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
498 {
499 limits->io_opt = opt;
500 }
501 EXPORT_SYMBOL(blk_limits_io_opt);
502
503 /**
504 * blk_queue_io_opt - set optimal request size for the queue
505 * @q: the request queue for the device
506 * @opt: optimal request size in bytes
507 *
508 * Description:
509 * Storage devices may report an optimal I/O size, which is the
510 * device's preferred unit for sustained I/O. This is rarely reported
511 * for disk drives. For RAID arrays it is usually the stripe width or
512 * the internal track size. A properly aligned multiple of
513 * optimal_io_size is the preferred request size for workloads where
514 * sustained throughput is desired.
515 */
516 void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
517 {
518 blk_limits_io_opt(&q->limits, opt);
519 }
520 EXPORT_SYMBOL(blk_queue_io_opt);
521
522 /**
523 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
524 * @t: the stacking driver (top)
525 * @b: the underlying device (bottom)
526 **/
527 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
528 {
529 blk_stack_limits(&t->limits, &b->limits, 0);
530 }
531 EXPORT_SYMBOL(blk_queue_stack_limits);
532
533 /**
534 * blk_stack_limits - adjust queue_limits for stacked devices
535 * @t: the stacking driver limits (top device)
536 * @b: the underlying queue limits (bottom, component device)
537 * @start: first data sector within component device
538 *
539 * Description:
540 * This function is used by stacking drivers like MD and DM to ensure
541 * that all component devices have compatible block sizes and
542 * alignments. The stacking driver must provide a queue_limits
543 * struct (top) and then iteratively call the stacking function for
544 * all component (bottom) devices. The stacking function will
545 * attempt to combine the values and ensure proper alignment.
546 *
547 * Returns 0 if the top and bottom queue_limits are compatible. The
548 * top device's block sizes and alignment offsets may be adjusted to
549 * ensure alignment with the bottom device. If no compatible sizes
550 * and alignments exist, -1 is returned and the resulting top
551 * queue_limits will have the misaligned flag set to indicate that
552 * the alignment_offset is undefined.
553 */
554 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
555 sector_t start)
556 {
557 unsigned int top, bottom, alignment, ret = 0;
558
559 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
560 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
561 t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
562 t->max_write_same_sectors = min(t->max_write_same_sectors,
563 b->max_write_same_sectors);
564 t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
565 b->max_write_zeroes_sectors);
566 t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
567
568 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
569 b->seg_boundary_mask);
570 t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
571 b->virt_boundary_mask);
572
573 t->max_segments = min_not_zero(t->max_segments, b->max_segments);
574 t->max_discard_segments = min_not_zero(t->max_discard_segments,
575 b->max_discard_segments);
576 t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
577 b->max_integrity_segments);
578
579 t->max_segment_size = min_not_zero(t->max_segment_size,
580 b->max_segment_size);
581
582 t->misaligned |= b->misaligned;
583
584 alignment = queue_limit_alignment_offset(b, start);
585
586 /* Bottom device has different alignment. Check that it is
587 * compatible with the current top alignment.
588 */
589 if (t->alignment_offset != alignment) {
590
591 top = max(t->physical_block_size, t->io_min)
592 + t->alignment_offset;
593 bottom = max(b->physical_block_size, b->io_min) + alignment;
594
595 /* Verify that top and bottom intervals line up */
596 if (max(top, bottom) % min(top, bottom)) {
597 t->misaligned = 1;
598 ret = -1;
599 }
600 }
601
602 t->logical_block_size = max(t->logical_block_size,
603 b->logical_block_size);
604
605 t->physical_block_size = max(t->physical_block_size,
606 b->physical_block_size);
607
608 t->io_min = max(t->io_min, b->io_min);
609 t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
610
611 t->cluster &= b->cluster;
612 t->discard_zeroes_data &= b->discard_zeroes_data;
613
614 /* Physical block size a multiple of the logical block size? */
615 if (t->physical_block_size & (t->logical_block_size - 1)) {
616 t->physical_block_size = t->logical_block_size;
617 t->misaligned = 1;
618 ret = -1;
619 }
620
621 /* Minimum I/O a multiple of the physical block size? */
622 if (t->io_min & (t->physical_block_size - 1)) {
623 t->io_min = t->physical_block_size;
624 t->misaligned = 1;
625 ret = -1;
626 }
627
628 /* Optimal I/O a multiple of the physical block size? */
629 if (t->io_opt & (t->physical_block_size - 1)) {
630 t->io_opt = 0;
631 t->misaligned = 1;
632 ret = -1;
633 }
634
635 t->raid_partial_stripes_expensive =
636 max(t->raid_partial_stripes_expensive,
637 b->raid_partial_stripes_expensive);
638
639 /* Find lowest common alignment_offset */
640 t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
641 % max(t->physical_block_size, t->io_min);
642
643 /* Verify that new alignment_offset is on a logical block boundary */
644 if (t->alignment_offset & (t->logical_block_size - 1)) {
645 t->misaligned = 1;
646 ret = -1;
647 }
648
649 /* Discard alignment and granularity */
650 if (b->discard_granularity) {
651 alignment = queue_limit_discard_alignment(b, start);
652
653 if (t->discard_granularity != 0 &&
654 t->discard_alignment != alignment) {
655 top = t->discard_granularity + t->discard_alignment;
656 bottom = b->discard_granularity + alignment;
657
658 /* Verify that top and bottom intervals line up */
659 if ((max(top, bottom) % min(top, bottom)) != 0)
660 t->discard_misaligned = 1;
661 }
662
663 t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
664 b->max_discard_sectors);
665 t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
666 b->max_hw_discard_sectors);
667 t->discard_granularity = max(t->discard_granularity,
668 b->discard_granularity);
669 t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
670 t->discard_granularity;
671 }
672
673 if (b->chunk_sectors)
674 t->chunk_sectors = min_not_zero(t->chunk_sectors,
675 b->chunk_sectors);
676
677 return ret;
678 }
679 EXPORT_SYMBOL(blk_stack_limits);
680
681 /**
682 * bdev_stack_limits - adjust queue limits for stacked drivers
683 * @t: the stacking driver limits (top device)
684 * @bdev: the component block_device (bottom)
685 * @start: first data sector within component device
686 *
687 * Description:
688 * Merges queue limits for a top device and a block_device. Returns
689 * 0 if alignment didn't change. Returns -1 if adding the bottom
690 * device caused misalignment.
691 */
692 int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
693 sector_t start)
694 {
695 struct request_queue *bq = bdev_get_queue(bdev);
696
697 start += get_start_sect(bdev);
698
699 return blk_stack_limits(t, &bq->limits, start);
700 }
701 EXPORT_SYMBOL(bdev_stack_limits);
702
703 /**
704 * disk_stack_limits - adjust queue limits for stacked drivers
705 * @disk: MD/DM gendisk (top)
706 * @bdev: the underlying block device (bottom)
707 * @offset: offset to beginning of data within component device
708 *
709 * Description:
710 * Merges the limits for a top level gendisk and a bottom level
711 * block_device.
712 */
713 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
714 sector_t offset)
715 {
716 struct request_queue *t = disk->queue;
717
718 if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
719 char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
720
721 disk_name(disk, 0, top);
722 bdevname(bdev, bottom);
723
724 printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
725 top, bottom);
726 }
727 }
728 EXPORT_SYMBOL(disk_stack_limits);
729
730 /**
731 * blk_queue_dma_pad - set pad mask
732 * @q: the request queue for the device
733 * @mask: pad mask
734 *
735 * Set dma pad mask.
736 *
737 * Appending pad buffer to a request modifies the last entry of a
738 * scatter list such that it includes the pad buffer.
739 **/
740 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
741 {
742 q->dma_pad_mask = mask;
743 }
744 EXPORT_SYMBOL(blk_queue_dma_pad);
745
746 /**
747 * blk_queue_update_dma_pad - update pad mask
748 * @q: the request queue for the device
749 * @mask: pad mask
750 *
751 * Update dma pad mask.
752 *
753 * Appending pad buffer to a request modifies the last entry of a
754 * scatter list such that it includes the pad buffer.
755 **/
756 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
757 {
758 if (mask > q->dma_pad_mask)
759 q->dma_pad_mask = mask;
760 }
761 EXPORT_SYMBOL(blk_queue_update_dma_pad);
762
763 /**
764 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
765 * @q: the request queue for the device
766 * @dma_drain_needed: fn which returns non-zero if drain is necessary
767 * @buf: physically contiguous buffer
768 * @size: size of the buffer in bytes
769 *
770 * Some devices have excess DMA problems and can't simply discard (or
771 * zero fill) the unwanted piece of the transfer. They have to have a
772 * real area of memory to transfer it into. The use case for this is
773 * ATAPI devices in DMA mode. If the packet command causes a transfer
774 * bigger than the transfer size some HBAs will lock up if there
775 * aren't DMA elements to contain the excess transfer. What this API
776 * does is adjust the queue so that the buf is always appended
777 * silently to the scatterlist.
778 *
779 * Note: This routine adjusts max_hw_segments to make room for appending
780 * the drain buffer. If you call blk_queue_max_segments() after calling
781 * this routine, you must set the limit to one fewer than your device
782 * can support otherwise there won't be room for the drain buffer.
783 */
784 int blk_queue_dma_drain(struct request_queue *q,
785 dma_drain_needed_fn *dma_drain_needed,
786 void *buf, unsigned int size)
787 {
788 if (queue_max_segments(q) < 2)
789 return -EINVAL;
790 /* make room for appending the drain */
791 blk_queue_max_segments(q, queue_max_segments(q) - 1);
792 q->dma_drain_needed = dma_drain_needed;
793 q->dma_drain_buffer = buf;
794 q->dma_drain_size = size;
795
796 return 0;
797 }
798 EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
799
800 /**
801 * blk_queue_segment_boundary - set boundary rules for segment merging
802 * @q: the request queue for the device
803 * @mask: the memory boundary mask
804 **/
805 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
806 {
807 if (mask < PAGE_SIZE - 1) {
808 mask = PAGE_SIZE - 1;
809 printk(KERN_INFO "%s: set to minimum %lx\n",
810 __func__, mask);
811 }
812
813 q->limits.seg_boundary_mask = mask;
814 }
815 EXPORT_SYMBOL(blk_queue_segment_boundary);
816
817 /**
818 * blk_queue_virt_boundary - set boundary rules for bio merging
819 * @q: the request queue for the device
820 * @mask: the memory boundary mask
821 **/
822 void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
823 {
824 q->limits.virt_boundary_mask = mask;
825 }
826 EXPORT_SYMBOL(blk_queue_virt_boundary);
827
828 /**
829 * blk_queue_dma_alignment - set dma length and memory alignment
830 * @q: the request queue for the device
831 * @mask: alignment mask
832 *
833 * description:
834 * set required memory and length alignment for direct dma transactions.
835 * this is used when building direct io requests for the queue.
836 *
837 **/
838 void blk_queue_dma_alignment(struct request_queue *q, int mask)
839 {
840 q->dma_alignment = mask;
841 }
842 EXPORT_SYMBOL(blk_queue_dma_alignment);
843
844 /**
845 * blk_queue_update_dma_alignment - update dma length and memory alignment
846 * @q: the request queue for the device
847 * @mask: alignment mask
848 *
849 * description:
850 * update required memory and length alignment for direct dma transactions.
851 * If the requested alignment is larger than the current alignment, then
852 * the current queue alignment is updated to the new value, otherwise it
853 * is left alone. The design of this is to allow multiple objects
854 * (driver, device, transport etc) to set their respective
855 * alignments without having them interfere.
856 *
857 **/
858 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
859 {
860 BUG_ON(mask > PAGE_SIZE);
861
862 if (mask > q->dma_alignment)
863 q->dma_alignment = mask;
864 }
865 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
866
867 void blk_queue_flush_queueable(struct request_queue *q, bool queueable)
868 {
869 spin_lock_irq(q->queue_lock);
870 if (queueable)
871 clear_bit(QUEUE_FLAG_FLUSH_NQ, &q->queue_flags);
872 else
873 set_bit(QUEUE_FLAG_FLUSH_NQ, &q->queue_flags);
874 spin_unlock_irq(q->queue_lock);
875 }
876 EXPORT_SYMBOL_GPL(blk_queue_flush_queueable);
877
878 /**
879 * blk_set_queue_depth - tell the block layer about the device queue depth
880 * @q: the request queue for the device
881 * @depth: queue depth
882 *
883 */
884 void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
885 {
886 q->queue_depth = depth;
887 wbt_set_queue_depth(q->rq_wb, depth);
888 }
889 EXPORT_SYMBOL(blk_set_queue_depth);
890
891 /**
892 * blk_queue_write_cache - configure queue's write cache
893 * @q: the request queue for the device
894 * @wc: write back cache on or off
895 * @fua: device supports FUA writes, if true
896 *
897 * Tell the block layer about the write cache of @q.
898 */
899 void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
900 {
901 spin_lock_irq(q->queue_lock);
902 if (wc)
903 queue_flag_set(QUEUE_FLAG_WC, q);
904 else
905 queue_flag_clear(QUEUE_FLAG_WC, q);
906 if (fua)
907 queue_flag_set(QUEUE_FLAG_FUA, q);
908 else
909 queue_flag_clear(QUEUE_FLAG_FUA, q);
910 spin_unlock_irq(q->queue_lock);
911
912 wbt_set_write_cache(q->rq_wb, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
913 }
914 EXPORT_SYMBOL_GPL(blk_queue_write_cache);
915
916 static int __init blk_settings_init(void)
917 {
918 blk_max_low_pfn = max_low_pfn - 1;
919 blk_max_pfn = max_pfn - 1;
920 return 0;
921 }
922 subsys_initcall(blk_settings_init);