]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - block/blk-settings.c
mm, memcg: decouple e{low,min} state mutations from protection checks
[mirror_ubuntu-hirsute-kernel.git] / block / blk-settings.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Functions related to setting various queue properties from drivers
4 */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/init.h>
8 #include <linux/bio.h>
9 #include <linux/blkdev.h>
10 #include <linux/memblock.h> /* for max_pfn/max_low_pfn */
11 #include <linux/gcd.h>
12 #include <linux/lcm.h>
13 #include <linux/jiffies.h>
14 #include <linux/gfp.h>
15 #include <linux/dma-mapping.h>
16
17 #include "blk.h"
18 #include "blk-wbt.h"
19
20 unsigned long blk_max_low_pfn;
21 EXPORT_SYMBOL(blk_max_low_pfn);
22
23 unsigned long blk_max_pfn;
24
25 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
26 {
27 q->rq_timeout = timeout;
28 }
29 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
30
31 /**
32 * blk_set_default_limits - reset limits to default values
33 * @lim: the queue_limits structure to reset
34 *
35 * Description:
36 * Returns a queue_limit struct to its default state.
37 */
38 void blk_set_default_limits(struct queue_limits *lim)
39 {
40 lim->max_segments = BLK_MAX_SEGMENTS;
41 lim->max_discard_segments = 1;
42 lim->max_integrity_segments = 0;
43 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
44 lim->virt_boundary_mask = 0;
45 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
46 lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
47 lim->max_dev_sectors = 0;
48 lim->chunk_sectors = 0;
49 lim->max_write_same_sectors = 0;
50 lim->max_write_zeroes_sectors = 0;
51 lim->max_zone_append_sectors = 0;
52 lim->max_discard_sectors = 0;
53 lim->max_hw_discard_sectors = 0;
54 lim->discard_granularity = 0;
55 lim->discard_alignment = 0;
56 lim->discard_misaligned = 0;
57 lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
58 lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
59 lim->alignment_offset = 0;
60 lim->io_opt = 0;
61 lim->misaligned = 0;
62 lim->zoned = BLK_ZONED_NONE;
63 }
64 EXPORT_SYMBOL(blk_set_default_limits);
65
66 /**
67 * blk_set_stacking_limits - set default limits for stacking devices
68 * @lim: the queue_limits structure to reset
69 *
70 * Description:
71 * Returns a queue_limit struct to its default state. Should be used
72 * by stacking drivers like DM that have no internal limits.
73 */
74 void blk_set_stacking_limits(struct queue_limits *lim)
75 {
76 blk_set_default_limits(lim);
77
78 /* Inherit limits from component devices */
79 lim->max_segments = USHRT_MAX;
80 lim->max_discard_segments = USHRT_MAX;
81 lim->max_hw_sectors = UINT_MAX;
82 lim->max_segment_size = UINT_MAX;
83 lim->max_sectors = UINT_MAX;
84 lim->max_dev_sectors = UINT_MAX;
85 lim->max_write_same_sectors = UINT_MAX;
86 lim->max_write_zeroes_sectors = UINT_MAX;
87 lim->max_zone_append_sectors = UINT_MAX;
88 }
89 EXPORT_SYMBOL(blk_set_stacking_limits);
90
91 /**
92 * blk_queue_bounce_limit - set bounce buffer limit for queue
93 * @q: the request queue for the device
94 * @max_addr: the maximum address the device can handle
95 *
96 * Description:
97 * Different hardware can have different requirements as to what pages
98 * it can do I/O directly to. A low level driver can call
99 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
100 * buffers for doing I/O to pages residing above @max_addr.
101 **/
102 void blk_queue_bounce_limit(struct request_queue *q, u64 max_addr)
103 {
104 unsigned long b_pfn = max_addr >> PAGE_SHIFT;
105 int dma = 0;
106
107 q->bounce_gfp = GFP_NOIO;
108 #if BITS_PER_LONG == 64
109 /*
110 * Assume anything <= 4GB can be handled by IOMMU. Actually
111 * some IOMMUs can handle everything, but I don't know of a
112 * way to test this here.
113 */
114 if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
115 dma = 1;
116 q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
117 #else
118 if (b_pfn < blk_max_low_pfn)
119 dma = 1;
120 q->limits.bounce_pfn = b_pfn;
121 #endif
122 if (dma) {
123 init_emergency_isa_pool();
124 q->bounce_gfp = GFP_NOIO | GFP_DMA;
125 q->limits.bounce_pfn = b_pfn;
126 }
127 }
128 EXPORT_SYMBOL(blk_queue_bounce_limit);
129
130 /**
131 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
132 * @q: the request queue for the device
133 * @max_hw_sectors: max hardware sectors in the usual 512b unit
134 *
135 * Description:
136 * Enables a low level driver to set a hard upper limit,
137 * max_hw_sectors, on the size of requests. max_hw_sectors is set by
138 * the device driver based upon the capabilities of the I/O
139 * controller.
140 *
141 * max_dev_sectors is a hard limit imposed by the storage device for
142 * READ/WRITE requests. It is set by the disk driver.
143 *
144 * max_sectors is a soft limit imposed by the block layer for
145 * filesystem type requests. This value can be overridden on a
146 * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
147 * The soft limit can not exceed max_hw_sectors.
148 **/
149 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
150 {
151 struct queue_limits *limits = &q->limits;
152 unsigned int max_sectors;
153
154 if ((max_hw_sectors << 9) < PAGE_SIZE) {
155 max_hw_sectors = 1 << (PAGE_SHIFT - 9);
156 printk(KERN_INFO "%s: set to minimum %d\n",
157 __func__, max_hw_sectors);
158 }
159
160 limits->max_hw_sectors = max_hw_sectors;
161 max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
162 max_sectors = min_t(unsigned int, max_sectors, BLK_DEF_MAX_SECTORS);
163 limits->max_sectors = max_sectors;
164 q->backing_dev_info->io_pages = max_sectors >> (PAGE_SHIFT - 9);
165 }
166 EXPORT_SYMBOL(blk_queue_max_hw_sectors);
167
168 /**
169 * blk_queue_chunk_sectors - set size of the chunk for this queue
170 * @q: the request queue for the device
171 * @chunk_sectors: chunk sectors in the usual 512b unit
172 *
173 * Description:
174 * If a driver doesn't want IOs to cross a given chunk size, it can set
175 * this limit and prevent merging across chunks. Note that the chunk size
176 * must currently be a power-of-2 in sectors. Also note that the block
177 * layer must accept a page worth of data at any offset. So if the
178 * crossing of chunks is a hard limitation in the driver, it must still be
179 * prepared to split single page bios.
180 **/
181 void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
182 {
183 BUG_ON(!is_power_of_2(chunk_sectors));
184 q->limits.chunk_sectors = chunk_sectors;
185 }
186 EXPORT_SYMBOL(blk_queue_chunk_sectors);
187
188 /**
189 * blk_queue_max_discard_sectors - set max sectors for a single discard
190 * @q: the request queue for the device
191 * @max_discard_sectors: maximum number of sectors to discard
192 **/
193 void blk_queue_max_discard_sectors(struct request_queue *q,
194 unsigned int max_discard_sectors)
195 {
196 q->limits.max_hw_discard_sectors = max_discard_sectors;
197 q->limits.max_discard_sectors = max_discard_sectors;
198 }
199 EXPORT_SYMBOL(blk_queue_max_discard_sectors);
200
201 /**
202 * blk_queue_max_write_same_sectors - set max sectors for a single write same
203 * @q: the request queue for the device
204 * @max_write_same_sectors: maximum number of sectors to write per command
205 **/
206 void blk_queue_max_write_same_sectors(struct request_queue *q,
207 unsigned int max_write_same_sectors)
208 {
209 q->limits.max_write_same_sectors = max_write_same_sectors;
210 }
211 EXPORT_SYMBOL(blk_queue_max_write_same_sectors);
212
213 /**
214 * blk_queue_max_write_zeroes_sectors - set max sectors for a single
215 * write zeroes
216 * @q: the request queue for the device
217 * @max_write_zeroes_sectors: maximum number of sectors to write per command
218 **/
219 void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
220 unsigned int max_write_zeroes_sectors)
221 {
222 q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
223 }
224 EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
225
226 /**
227 * blk_queue_max_zone_append_sectors - set max sectors for a single zone append
228 * @q: the request queue for the device
229 * @max_zone_append_sectors: maximum number of sectors to write per command
230 **/
231 void blk_queue_max_zone_append_sectors(struct request_queue *q,
232 unsigned int max_zone_append_sectors)
233 {
234 unsigned int max_sectors;
235
236 if (WARN_ON(!blk_queue_is_zoned(q)))
237 return;
238
239 max_sectors = min(q->limits.max_hw_sectors, max_zone_append_sectors);
240 max_sectors = min(q->limits.chunk_sectors, max_sectors);
241
242 /*
243 * Signal eventual driver bugs resulting in the max_zone_append sectors limit
244 * being 0 due to a 0 argument, the chunk_sectors limit (zone size) not set,
245 * or the max_hw_sectors limit not set.
246 */
247 WARN_ON(!max_sectors);
248
249 q->limits.max_zone_append_sectors = max_sectors;
250 }
251 EXPORT_SYMBOL_GPL(blk_queue_max_zone_append_sectors);
252
253 /**
254 * blk_queue_max_segments - set max hw segments for a request for this queue
255 * @q: the request queue for the device
256 * @max_segments: max number of segments
257 *
258 * Description:
259 * Enables a low level driver to set an upper limit on the number of
260 * hw data segments in a request.
261 **/
262 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
263 {
264 if (!max_segments) {
265 max_segments = 1;
266 printk(KERN_INFO "%s: set to minimum %d\n",
267 __func__, max_segments);
268 }
269
270 q->limits.max_segments = max_segments;
271 }
272 EXPORT_SYMBOL(blk_queue_max_segments);
273
274 /**
275 * blk_queue_max_discard_segments - set max segments for discard requests
276 * @q: the request queue for the device
277 * @max_segments: max number of segments
278 *
279 * Description:
280 * Enables a low level driver to set an upper limit on the number of
281 * segments in a discard request.
282 **/
283 void blk_queue_max_discard_segments(struct request_queue *q,
284 unsigned short max_segments)
285 {
286 q->limits.max_discard_segments = max_segments;
287 }
288 EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments);
289
290 /**
291 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
292 * @q: the request queue for the device
293 * @max_size: max size of segment in bytes
294 *
295 * Description:
296 * Enables a low level driver to set an upper limit on the size of a
297 * coalesced segment
298 **/
299 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
300 {
301 if (max_size < PAGE_SIZE) {
302 max_size = PAGE_SIZE;
303 printk(KERN_INFO "%s: set to minimum %d\n",
304 __func__, max_size);
305 }
306
307 /* see blk_queue_virt_boundary() for the explanation */
308 WARN_ON_ONCE(q->limits.virt_boundary_mask);
309
310 q->limits.max_segment_size = max_size;
311 }
312 EXPORT_SYMBOL(blk_queue_max_segment_size);
313
314 /**
315 * blk_queue_logical_block_size - set logical block size for the queue
316 * @q: the request queue for the device
317 * @size: the logical block size, in bytes
318 *
319 * Description:
320 * This should be set to the lowest possible block size that the
321 * storage device can address. The default of 512 covers most
322 * hardware.
323 **/
324 void blk_queue_logical_block_size(struct request_queue *q, unsigned int size)
325 {
326 q->limits.logical_block_size = size;
327
328 if (q->limits.physical_block_size < size)
329 q->limits.physical_block_size = size;
330
331 if (q->limits.io_min < q->limits.physical_block_size)
332 q->limits.io_min = q->limits.physical_block_size;
333 }
334 EXPORT_SYMBOL(blk_queue_logical_block_size);
335
336 /**
337 * blk_queue_physical_block_size - set physical block size for the queue
338 * @q: the request queue for the device
339 * @size: the physical block size, in bytes
340 *
341 * Description:
342 * This should be set to the lowest possible sector size that the
343 * hardware can operate on without reverting to read-modify-write
344 * operations.
345 */
346 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
347 {
348 q->limits.physical_block_size = size;
349
350 if (q->limits.physical_block_size < q->limits.logical_block_size)
351 q->limits.physical_block_size = q->limits.logical_block_size;
352
353 if (q->limits.io_min < q->limits.physical_block_size)
354 q->limits.io_min = q->limits.physical_block_size;
355 }
356 EXPORT_SYMBOL(blk_queue_physical_block_size);
357
358 /**
359 * blk_queue_alignment_offset - set physical block alignment offset
360 * @q: the request queue for the device
361 * @offset: alignment offset in bytes
362 *
363 * Description:
364 * Some devices are naturally misaligned to compensate for things like
365 * the legacy DOS partition table 63-sector offset. Low-level drivers
366 * should call this function for devices whose first sector is not
367 * naturally aligned.
368 */
369 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
370 {
371 q->limits.alignment_offset =
372 offset & (q->limits.physical_block_size - 1);
373 q->limits.misaligned = 0;
374 }
375 EXPORT_SYMBOL(blk_queue_alignment_offset);
376
377 /**
378 * blk_limits_io_min - set minimum request size for a device
379 * @limits: the queue limits
380 * @min: smallest I/O size in bytes
381 *
382 * Description:
383 * Some devices have an internal block size bigger than the reported
384 * hardware sector size. This function can be used to signal the
385 * smallest I/O the device can perform without incurring a performance
386 * penalty.
387 */
388 void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
389 {
390 limits->io_min = min;
391
392 if (limits->io_min < limits->logical_block_size)
393 limits->io_min = limits->logical_block_size;
394
395 if (limits->io_min < limits->physical_block_size)
396 limits->io_min = limits->physical_block_size;
397 }
398 EXPORT_SYMBOL(blk_limits_io_min);
399
400 /**
401 * blk_queue_io_min - set minimum request size for the queue
402 * @q: the request queue for the device
403 * @min: smallest I/O size in bytes
404 *
405 * Description:
406 * Storage devices may report a granularity or preferred minimum I/O
407 * size which is the smallest request the device can perform without
408 * incurring a performance penalty. For disk drives this is often the
409 * physical block size. For RAID arrays it is often the stripe chunk
410 * size. A properly aligned multiple of minimum_io_size is the
411 * preferred request size for workloads where a high number of I/O
412 * operations is desired.
413 */
414 void blk_queue_io_min(struct request_queue *q, unsigned int min)
415 {
416 blk_limits_io_min(&q->limits, min);
417 }
418 EXPORT_SYMBOL(blk_queue_io_min);
419
420 /**
421 * blk_limits_io_opt - set optimal request size for a device
422 * @limits: the queue limits
423 * @opt: smallest I/O size in bytes
424 *
425 * Description:
426 * Storage devices may report an optimal I/O size, which is the
427 * device's preferred unit for sustained I/O. This is rarely reported
428 * for disk drives. For RAID arrays it is usually the stripe width or
429 * the internal track size. A properly aligned multiple of
430 * optimal_io_size is the preferred request size for workloads where
431 * sustained throughput is desired.
432 */
433 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
434 {
435 limits->io_opt = opt;
436 }
437 EXPORT_SYMBOL(blk_limits_io_opt);
438
439 /**
440 * blk_queue_io_opt - set optimal request size for the queue
441 * @q: the request queue for the device
442 * @opt: optimal request size in bytes
443 *
444 * Description:
445 * Storage devices may report an optimal I/O size, which is the
446 * device's preferred unit for sustained I/O. This is rarely reported
447 * for disk drives. For RAID arrays it is usually the stripe width or
448 * the internal track size. A properly aligned multiple of
449 * optimal_io_size is the preferred request size for workloads where
450 * sustained throughput is desired.
451 */
452 void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
453 {
454 blk_limits_io_opt(&q->limits, opt);
455 }
456 EXPORT_SYMBOL(blk_queue_io_opt);
457
458 /**
459 * blk_stack_limits - adjust queue_limits for stacked devices
460 * @t: the stacking driver limits (top device)
461 * @b: the underlying queue limits (bottom, component device)
462 * @start: first data sector within component device
463 *
464 * Description:
465 * This function is used by stacking drivers like MD and DM to ensure
466 * that all component devices have compatible block sizes and
467 * alignments. The stacking driver must provide a queue_limits
468 * struct (top) and then iteratively call the stacking function for
469 * all component (bottom) devices. The stacking function will
470 * attempt to combine the values and ensure proper alignment.
471 *
472 * Returns 0 if the top and bottom queue_limits are compatible. The
473 * top device's block sizes and alignment offsets may be adjusted to
474 * ensure alignment with the bottom device. If no compatible sizes
475 * and alignments exist, -1 is returned and the resulting top
476 * queue_limits will have the misaligned flag set to indicate that
477 * the alignment_offset is undefined.
478 */
479 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
480 sector_t start)
481 {
482 unsigned int top, bottom, alignment, ret = 0;
483
484 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
485 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
486 t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
487 t->max_write_same_sectors = min(t->max_write_same_sectors,
488 b->max_write_same_sectors);
489 t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
490 b->max_write_zeroes_sectors);
491 t->max_zone_append_sectors = min(t->max_zone_append_sectors,
492 b->max_zone_append_sectors);
493 t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
494
495 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
496 b->seg_boundary_mask);
497 t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
498 b->virt_boundary_mask);
499
500 t->max_segments = min_not_zero(t->max_segments, b->max_segments);
501 t->max_discard_segments = min_not_zero(t->max_discard_segments,
502 b->max_discard_segments);
503 t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
504 b->max_integrity_segments);
505
506 t->max_segment_size = min_not_zero(t->max_segment_size,
507 b->max_segment_size);
508
509 t->misaligned |= b->misaligned;
510
511 alignment = queue_limit_alignment_offset(b, start);
512
513 /* Bottom device has different alignment. Check that it is
514 * compatible with the current top alignment.
515 */
516 if (t->alignment_offset != alignment) {
517
518 top = max(t->physical_block_size, t->io_min)
519 + t->alignment_offset;
520 bottom = max(b->physical_block_size, b->io_min) + alignment;
521
522 /* Verify that top and bottom intervals line up */
523 if (max(top, bottom) % min(top, bottom)) {
524 t->misaligned = 1;
525 ret = -1;
526 }
527 }
528
529 t->logical_block_size = max(t->logical_block_size,
530 b->logical_block_size);
531
532 t->physical_block_size = max(t->physical_block_size,
533 b->physical_block_size);
534
535 t->io_min = max(t->io_min, b->io_min);
536 t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
537
538 /* Physical block size a multiple of the logical block size? */
539 if (t->physical_block_size & (t->logical_block_size - 1)) {
540 t->physical_block_size = t->logical_block_size;
541 t->misaligned = 1;
542 ret = -1;
543 }
544
545 /* Minimum I/O a multiple of the physical block size? */
546 if (t->io_min & (t->physical_block_size - 1)) {
547 t->io_min = t->physical_block_size;
548 t->misaligned = 1;
549 ret = -1;
550 }
551
552 /* Optimal I/O a multiple of the physical block size? */
553 if (t->io_opt & (t->physical_block_size - 1)) {
554 t->io_opt = 0;
555 t->misaligned = 1;
556 ret = -1;
557 }
558
559 t->raid_partial_stripes_expensive =
560 max(t->raid_partial_stripes_expensive,
561 b->raid_partial_stripes_expensive);
562
563 /* Find lowest common alignment_offset */
564 t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
565 % max(t->physical_block_size, t->io_min);
566
567 /* Verify that new alignment_offset is on a logical block boundary */
568 if (t->alignment_offset & (t->logical_block_size - 1)) {
569 t->misaligned = 1;
570 ret = -1;
571 }
572
573 /* Discard alignment and granularity */
574 if (b->discard_granularity) {
575 alignment = queue_limit_discard_alignment(b, start);
576
577 if (t->discard_granularity != 0 &&
578 t->discard_alignment != alignment) {
579 top = t->discard_granularity + t->discard_alignment;
580 bottom = b->discard_granularity + alignment;
581
582 /* Verify that top and bottom intervals line up */
583 if ((max(top, bottom) % min(top, bottom)) != 0)
584 t->discard_misaligned = 1;
585 }
586
587 t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
588 b->max_discard_sectors);
589 t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
590 b->max_hw_discard_sectors);
591 t->discard_granularity = max(t->discard_granularity,
592 b->discard_granularity);
593 t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
594 t->discard_granularity;
595 }
596
597 if (b->chunk_sectors)
598 t->chunk_sectors = min_not_zero(t->chunk_sectors,
599 b->chunk_sectors);
600
601 t->zoned = max(t->zoned, b->zoned);
602 return ret;
603 }
604 EXPORT_SYMBOL(blk_stack_limits);
605
606 /**
607 * disk_stack_limits - adjust queue limits for stacked drivers
608 * @disk: MD/DM gendisk (top)
609 * @bdev: the underlying block device (bottom)
610 * @offset: offset to beginning of data within component device
611 *
612 * Description:
613 * Merges the limits for a top level gendisk and a bottom level
614 * block_device.
615 */
616 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
617 sector_t offset)
618 {
619 struct request_queue *t = disk->queue;
620
621 if (blk_stack_limits(&t->limits, &bdev_get_queue(bdev)->limits,
622 get_start_sect(bdev) + (offset >> 9)) < 0) {
623 char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
624
625 disk_name(disk, 0, top);
626 bdevname(bdev, bottom);
627
628 printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
629 top, bottom);
630 }
631
632 t->backing_dev_info->io_pages =
633 t->limits.max_sectors >> (PAGE_SHIFT - 9);
634 }
635 EXPORT_SYMBOL(disk_stack_limits);
636
637 /**
638 * blk_queue_update_dma_pad - update pad mask
639 * @q: the request queue for the device
640 * @mask: pad mask
641 *
642 * Update dma pad mask.
643 *
644 * Appending pad buffer to a request modifies the last entry of a
645 * scatter list such that it includes the pad buffer.
646 **/
647 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
648 {
649 if (mask > q->dma_pad_mask)
650 q->dma_pad_mask = mask;
651 }
652 EXPORT_SYMBOL(blk_queue_update_dma_pad);
653
654 /**
655 * blk_queue_segment_boundary - set boundary rules for segment merging
656 * @q: the request queue for the device
657 * @mask: the memory boundary mask
658 **/
659 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
660 {
661 if (mask < PAGE_SIZE - 1) {
662 mask = PAGE_SIZE - 1;
663 printk(KERN_INFO "%s: set to minimum %lx\n",
664 __func__, mask);
665 }
666
667 q->limits.seg_boundary_mask = mask;
668 }
669 EXPORT_SYMBOL(blk_queue_segment_boundary);
670
671 /**
672 * blk_queue_virt_boundary - set boundary rules for bio merging
673 * @q: the request queue for the device
674 * @mask: the memory boundary mask
675 **/
676 void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
677 {
678 q->limits.virt_boundary_mask = mask;
679
680 /*
681 * Devices that require a virtual boundary do not support scatter/gather
682 * I/O natively, but instead require a descriptor list entry for each
683 * page (which might not be idential to the Linux PAGE_SIZE). Because
684 * of that they are not limited by our notion of "segment size".
685 */
686 if (mask)
687 q->limits.max_segment_size = UINT_MAX;
688 }
689 EXPORT_SYMBOL(blk_queue_virt_boundary);
690
691 /**
692 * blk_queue_dma_alignment - set dma length and memory alignment
693 * @q: the request queue for the device
694 * @mask: alignment mask
695 *
696 * description:
697 * set required memory and length alignment for direct dma transactions.
698 * this is used when building direct io requests for the queue.
699 *
700 **/
701 void blk_queue_dma_alignment(struct request_queue *q, int mask)
702 {
703 q->dma_alignment = mask;
704 }
705 EXPORT_SYMBOL(blk_queue_dma_alignment);
706
707 /**
708 * blk_queue_update_dma_alignment - update dma length and memory alignment
709 * @q: the request queue for the device
710 * @mask: alignment mask
711 *
712 * description:
713 * update required memory and length alignment for direct dma transactions.
714 * If the requested alignment is larger than the current alignment, then
715 * the current queue alignment is updated to the new value, otherwise it
716 * is left alone. The design of this is to allow multiple objects
717 * (driver, device, transport etc) to set their respective
718 * alignments without having them interfere.
719 *
720 **/
721 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
722 {
723 BUG_ON(mask > PAGE_SIZE);
724
725 if (mask > q->dma_alignment)
726 q->dma_alignment = mask;
727 }
728 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
729
730 /**
731 * blk_set_queue_depth - tell the block layer about the device queue depth
732 * @q: the request queue for the device
733 * @depth: queue depth
734 *
735 */
736 void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
737 {
738 q->queue_depth = depth;
739 rq_qos_queue_depth_changed(q);
740 }
741 EXPORT_SYMBOL(blk_set_queue_depth);
742
743 /**
744 * blk_queue_write_cache - configure queue's write cache
745 * @q: the request queue for the device
746 * @wc: write back cache on or off
747 * @fua: device supports FUA writes, if true
748 *
749 * Tell the block layer about the write cache of @q.
750 */
751 void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
752 {
753 if (wc)
754 blk_queue_flag_set(QUEUE_FLAG_WC, q);
755 else
756 blk_queue_flag_clear(QUEUE_FLAG_WC, q);
757 if (fua)
758 blk_queue_flag_set(QUEUE_FLAG_FUA, q);
759 else
760 blk_queue_flag_clear(QUEUE_FLAG_FUA, q);
761
762 wbt_set_write_cache(q, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
763 }
764 EXPORT_SYMBOL_GPL(blk_queue_write_cache);
765
766 /**
767 * blk_queue_required_elevator_features - Set a queue required elevator features
768 * @q: the request queue for the target device
769 * @features: Required elevator features OR'ed together
770 *
771 * Tell the block layer that for the device controlled through @q, only the
772 * only elevators that can be used are those that implement at least the set of
773 * features specified by @features.
774 */
775 void blk_queue_required_elevator_features(struct request_queue *q,
776 unsigned int features)
777 {
778 q->required_elevator_features = features;
779 }
780 EXPORT_SYMBOL_GPL(blk_queue_required_elevator_features);
781
782 /**
783 * blk_queue_can_use_dma_map_merging - configure queue for merging segments.
784 * @q: the request queue for the device
785 * @dev: the device pointer for dma
786 *
787 * Tell the block layer about merging the segments by dma map of @q.
788 */
789 bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
790 struct device *dev)
791 {
792 unsigned long boundary = dma_get_merge_boundary(dev);
793
794 if (!boundary)
795 return false;
796
797 /* No need to update max_segment_size. see blk_queue_virt_boundary() */
798 blk_queue_virt_boundary(q, boundary);
799
800 return true;
801 }
802 EXPORT_SYMBOL_GPL(blk_queue_can_use_dma_map_merging);
803
804 static int __init blk_settings_init(void)
805 {
806 blk_max_low_pfn = max_low_pfn - 1;
807 blk_max_pfn = max_pfn - 1;
808 return 0;
809 }
810 subsys_initcall(blk_settings_init);